Real option pricing with mean-reverting investment and project value
In this work, we are concerned with valuing the option to invest in a project when the project value and the investment cost are both mean-reverting. Previous works on stochastic project and investment cost concentrate on geometric Brownian motions (GBMs) for driving the factors. However, when the p...
Saved in:
| Published in: | The European journal of finance Vol. 19; no. 7-8; pp. 625 - 644 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Routledge
01.09.2013
Taylor & Francis LLC |
| Subjects: | |
| ISSN: | 1351-847X, 1466-4364 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this work, we are concerned with valuing the option to invest in a project when the project value and the investment cost are both mean-reverting. Previous works on stochastic project and investment cost concentrate on geometric Brownian motions (GBMs) for driving the factors. However, when the project involved is linked to commodities, mean-reverting assumptions are more meaningful. Here, we introduce a model and prove that the optimal exercise strategy is not a function of the ratio of the project value to the investment V/I - contrary to the GBM case. We also demonstrate that the limiting trigger curve as maturity approaches traces out a nonlinear curve in (V, I) space and derive its explicit form. Finally, we numerically investigate the finite-horizon problem, using the Fourier space time-stepping algorithm of Jaimungal and Surkov [2009. Lev´y based cross-commodity models and derivative valuation. SIAM Journal of Financial Mathematics, to appear.
http://www.ssrn.com/abstract=972837
]. Numerically, the optimal exercise policies are found to be approximately linear in V/I; however, contrary to the GBM case they are not described by a curve of the form V*/I*=c(t). The option price behavior as well as the trigger curve behavior nicely generalize earlier one-factor model results. |
|---|---|
| AbstractList | In this work, we are concerned with valuing the option to invest in a project when the project value and the investment cost are both mean-reverting. Previous works on stochastic project and investment cost concentrate on geometric Brownian motions (GBMs) for driving the factors. However, when the project involved is linked to commodities, mean-reverting assumptions are more meaningful. Here, we introduce a model and prove that the optimal exercise strategy is not a function of the ratio of the project value to the investment V/I - contrary to the GBM case. We also demonstrate that the limiting trigger curve as maturity approaches traces out a nonlinear curve in (V, I) space and derive its explicit form. Finally, we numerically investigate the finite-horizon problem, using the Fourier space time-stepping algorithm of Jaimungal and Surkov [2009. Lev´y based cross-commodity models and derivative valuation. SIAM Journal of Financial Mathematics, to appear. http://www.ssrn.com/abstract=972837]. Numerically, the optimal exercise policies are found to be approximately linear in V/I; however, contrary to the GBM case they are not described by a curve of the form V*/I*=c(t). The option price behavior as well as the trigger curve behavior nicely generalize earlier one-factor model results. Reprinted by permission of Routledge, Taylor and Francis Ltd. In this work, we are concerned with valuing the option to invest in a project when the project value and the investment cost are both mean-reverting. Previous works on stochastic project and investment cost concentrate on geometric Brownian motions (GBMs) for driving the factors. However, when the project involved is linked to commodities, mean-reverting assumptions are more meaningful. Here, we introduce a model and prove that the optimal exercise strategy is not a function of the ratio of the project value to the investment V/I -- contrary to the GBM case. We also demonstrate that the limiting trigger curve as maturity approaches traces out a nonlinear curve in (V, I) space and derive its explicit form. Finally, we numerically investigate the finite-horizon problem, using the Fourier space time-stepping algorithm of Jaimungal and Surkov [2009. Levy based cross-commodity models and derivative valuation. SIAM Journal of Financial Mathematics, to appear. http://www.ssrn.com/abstract=972837]. Numerically, the optimal exercise policies are found to be approximately linear in V/I; however, contrary to the GBM case they are not described by a curve of the form V*/I*=c(t). The option price behavior as well as the trigger curve behavior nicely generalize earlier one-factor model results. [PUBLICATION ABSTRACT] In this work, we are concerned with valuing the option to invest in a project when the project value and the investment cost are both mean-reverting. Previous works on stochastic project and investment cost concentrate on geometric Brownian motions (GBMs) for driving the factors. However, when the project involved is linked to commodities, mean-reverting assumptions are more meaningful. Here, we introduce a model and prove that the optimal exercise strategy is not a function of the ratio of the project value to the investment V/I - contrary to the GBM case. We also demonstrate that the limiting trigger curve as maturity approaches traces out a nonlinear curve in (V, I) space and derive its explicit form. Finally, we numerically investigate the finite-horizon problem, using the Fourier space time-stepping algorithm of Jaimungal and Surkov [2009. Lev´y based cross-commodity models and derivative valuation. SIAM Journal of Financial Mathematics, to appear. http://www.ssrn.com/abstract=972837 ]. Numerically, the optimal exercise policies are found to be approximately linear in V/I; however, contrary to the GBM case they are not described by a curve of the form V*/I*=c(t). The option price behavior as well as the trigger curve behavior nicely generalize earlier one-factor model results. |
| Author | de Souza, Max O. Jaimungal, Sebastian Zubelli, Jorge P. |
| Author_xml | – sequence: 1 givenname: Sebastian surname: Jaimungal fullname: Jaimungal, Sebastian organization: Department of Statistics , University of Toronto – sequence: 2 givenname: Max O. surname: de Souza fullname: de Souza, Max O. organization: Departamento de Matemática Aplicada , Universidade Federl Fluminense – sequence: 3 givenname: Jorge P. surname: Zubelli fullname: Zubelli, Jorge P. email: zubelli@impa.br organization: IMPA |
| BookMark | eNqFkE1rHDEMhk1IIF_9BzkM9JLLbCXb8cz2EkrapIVAICTQm9F67NbLjJ3a3g359_Gw7SWH5iQhnlcSzzHbDzFYxs4QFgg9fEJxgb3sfi44IC4UoFKwx45QKtVKoeR-7SvSzswhO855DQCqA3nEvt5bGpv4VHwMzVPyxodfzbMvv5vJUmiT3dpU5pkPW5vLZENpKAwVjWtrSrOlcWNP2YGjMdsPf-sJe7z-9nD1vb29u_lx9eW2NbLrSytc59xSoBm4lGgMceAAK1Jy1fVDv3K264Rx3OGSyChjuVxBT0s0fOgBSJyw893eev3Ppr6jJ5-NHUcKNm6yRimB865XvKIf36DruEmhflcpIRDFElWlPu8ok2LOyTptfKHZRUnkR42gZ8H6n2A9C9Y7wTUs34Srv4nSy3uxy13MBxfTRM8xjYMu9DLG5BIF47MW_93wCun7k7U |
| CitedBy_id | crossref_primary_10_1016_j_enpol_2019_04_035 crossref_primary_10_1016_j_ejor_2021_10_035 crossref_primary_10_1111_1467_9698_5238 crossref_primary_10_1007_s10799_014_0212_2 crossref_primary_10_1080_1351847X_2020_1754873 crossref_primary_10_1007_s10479_019_03273_4 crossref_primary_10_1016_j_econmod_2015_11_015 crossref_primary_10_1007_s12599_016_0423_7 crossref_primary_10_1007_s10479_018_2910_3 crossref_primary_10_1080_14697688_2021_1996625 crossref_primary_10_1080_1351847X_2018_1486865 crossref_primary_10_3390_risks6010005 crossref_primary_10_3390_asi3020021 crossref_primary_10_1016_j_jebo_2021_09_011 |
| Cites_doi | 10.1515/9781400830176 10.1080/13504860500117503 10.1080/09603100600749204 10.1086/296288 10.2307/2329512 10.1201/9781420034868 10.2307/2326358 10.21314/JCF.2008.178 10.2307/1884175 10.1007/978-3-662-12616-5 10.1016/S0165-1889(02)00181-1 10.3905/jai.2005.591576 10.1093/rfs/14.1.113 10.3905/JAI.2009.11.3.065 10.1111/0022-1082.00161 10.1093/rfs/hhl005 10.2307/2331377 10.1002/fut.20468 10.2307/2526587 10.2307/3003143 10.1016/S0167-6687(96)00004-2 10.1287/mnsc.46.7.893.12034 10.2307/2328801 10.1016/j.jbankfin.2008.04.004 10.3905/jod.1994.407896 10.1086/261619 10.2307/2326357 10.1016/0165-1889(94)00838-9 10.1016/B978-075065332-9.50001-X |
| ContentType | Journal Article |
| Copyright | Copyright Taylor & Francis Group, LLC 2013 Copyright Taylor & Francis Ltd. 2013 |
| Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2013 – notice: Copyright Taylor & Francis Ltd. 2013 |
| DBID | AAYXX CITATION 8BJ FQK JBE |
| DOI | 10.1080/1351847X.2011.601660 |
| DatabaseName | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences |
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) |
| DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences (IBSS) |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Business Mathematics |
| EISSN | 1466-4364 |
| EndPage | 644 |
| ExternalDocumentID | 3073943041 10_1080_1351847X_2011_601660 601660 |
| GroupedDBID | .7I .QK 0BK 0R~ 123 29G 4.4 5VS 8VB AABCJ AAFWJ AAGDL AAGZJ AAHIA AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABFIM ABJNI ABLIJ ABPEM ABTAI ABXUL ABXYU ABZLS ACGCV ACGFS ACHQT ACTIO ACTOA ADAHI ADCVX ADKVQ ADLRE ADXPE AECIN AEFOU AEISY AEKEX AEMXT AEOZL AEPSL AEYOC AEZRU AFRVT AGDLA AGMYJ AGRBW AHDZW AIJEM AIYEW AJWEG AKBVH AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQTUD AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 CS3 DGFLZ DKSSO EBS EJD E~B E~C G-F GTTXZ H13 HF~ HZ~ IPNFZ J.O KYCEM M4Z MS~ NA5 NW~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RSYQP S-F STATR TASJS TBQAZ TDBHL TEK TFH TFL TFW TNTFI TRJHH TUROJ U5U UT5 UT9 VAE ZL0 ~01 ~S~ 07P 1TA AAFVA AANYG AAOXQ AAYXX ABEGC ABGBO ACEWE ACNXC ADCGH ADQGD ADRTI AEQHL AEZSO AFUNZ AGQQZ AHQJS AHSWU AOTUK ARPNQ AWPGZ BCKCY BGEDN C5D CAG CITATION COF CRHQX C~U HJNLM LJTGL LW2 MIDIT ODZWD TBU UU7 V5V 8BJ FQK JBE |
| ID | FETCH-LOGICAL-c478t-3f7ff931cd2441cca20200ba64b78d8bfe773cf2f19aac6ce24b08a91c2d800a3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000323999800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1351-847X |
| IngestDate | Fri Sep 05 11:42:20 EDT 2025 Mon Nov 10 21:40:59 EST 2025 Tue Nov 18 22:15:31 EST 2025 Sat Nov 29 06:39:36 EST 2025 Mon Oct 20 23:47:25 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7-8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c478t-3f7ff931cd2441cca20200ba64b78d8bfe773cf2f19aac6ce24b08a91c2d800a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID1874219_code879537.pdf?abstractid=1693562&mirid=1&type=2 |
| PQID | 1433113916 |
| PQPubID | 32054 |
| PageCount | 20 |
| ParticipantIDs | crossref_citationtrail_10_1080_1351847X_2011_601660 proquest_journals_1433113916 proquest_miscellaneous_1440227862 informaworld_taylorfrancis_310_1080_1351847X_2011_601660 crossref_primary_10_1080_1351847X_2011_601660 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-09-01 |
| PublicationDateYYYYMMDD | 2013-09-01 |
| PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | The European journal of finance |
| PublicationYear | 2013 |
| Publisher | Routledge Taylor & Francis LLC |
| Publisher_xml | – name: Routledge – name: Taylor & Francis LLC |
| References | Dixit A. (CIT0012) 1994 CIT0030 CIT0010 CIT0034 CIT0011 CIT0033 Paxson D. (CIT0032) 2003 Trigeorgis L. (CIT0038) 1999 CIT0014 CIT0035 CIT0016 Föllmer H. (CIT0015) 1991 CIT0037 CIT0018 CIT0017 CIT0019 Brennan M. J. (CIT0004) 2000 Jackson K. (CIT0020) 2008; 12 CIT0001 CIT0022 Moel A. (CIT0031) 2000 CIT0003 CIT0025 CIT0002 CIT0024 Schwartz E. S. (CIT0036) 2001 CIT0005 CIT0027 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
| References_xml | – volume-title: Investment under uncertainty year: 1994 ident: CIT0012 doi: 10.1515/9781400830176 – ident: CIT0006 doi: 10.1080/13504860500117503 – ident: CIT0001 doi: 10.1080/09603100600749204 – ident: CIT0003 doi: 10.1086/296288 – ident: CIT0034 doi: 10.2307/2329512 – ident: CIT0009 doi: 10.1201/9781420034868 – ident: CIT0025 doi: 10.2307/2326358 – start-page: 389 volume-title: Applied stochastic analysis: Stochastics monographs vol. 5 year: 1991 ident: CIT0015 – volume: 12 start-page: 1 issue: 2 year: 2008 ident: CIT0020 publication-title: Journal of Computational Finance doi: 10.21314/JCF.2008.178 – volume-title: Real options: Managerial flexibility and strategy in resource allocation year: 1999 ident: CIT0038 – ident: CIT0027 doi: 10.2307/1884175 – ident: CIT0022 doi: 10.1007/978-3-662-12616-5 – ident: CIT0033 doi: 10.1016/S0165-1889(02)00181-1 – ident: CIT0016 doi: 10.3905/jai.2005.591576 – ident: CIT0024 doi: 10.1093/rfs/14.1.113 – ident: CIT0017 doi: 10.3905/JAI.2009.11.3.065 – ident: CIT0002 doi: 10.1111/0022-1082.00161 – ident: CIT0019 doi: 10.1093/rfs/hhl005 – ident: CIT0030 doi: 10.2307/2331377 – ident: CIT0010 doi: 10.1002/fut.20468 – volume-title: Project flexibility, agency, and competition year: 2000 ident: CIT0031 – ident: CIT0026 doi: 10.2307/2526587 – ident: CIT0028 doi: 10.2307/3003143 – ident: CIT0005 doi: 10.1016/S0167-6687(96)00004-2 – ident: CIT0037 – volume-title: Real options and investment under uncertainty classical readings and recent contributions year: 2001 ident: CIT0036 – ident: CIT0035 doi: 10.1287/mnsc.46.7.893.12034 – ident: CIT0018 doi: 10.2307/2328801 – ident: CIT0008 doi: 10.1016/j.jbankfin.2008.04.004 – ident: CIT0007 doi: 10.3905/jod.1994.407896 – ident: CIT0011 doi: 10.1086/261619 – ident: CIT0014 doi: 10.2307/2326357 – ident: CIT0029 doi: 10.1016/0165-1889(94)00838-9 – volume-title: Real R & D options year: 2003 ident: CIT0032 doi: 10.1016/B978-075065332-9.50001-X – volume-title: Project flexibility, agency, and competition: New developments in the theory and application of real options year: 2000 ident: CIT0004 |
| SSID | ssj0006704 |
| Score | 2.03871 |
| Snippet | In this work, we are concerned with valuing the option to invest in a project when the project value and the investment cost are both mean-reverting. Previous... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 625 |
| SubjectTerms | Algorithms Approximation C6 (Mathematical Methods and Programming) Commodities Derivatives Development projects Fourier transforms Investment investment under uncertainty Investments Mathematical problems Mathematics Maturity mean-reverting Pricing real options Securities prices stochastic investment Stochastic models Studies Valuation Value |
| Title | Real option pricing with mean-reverting investment and project value |
| URI | https://www.tandfonline.com/doi/abs/10.1080/1351847X.2011.601660 https://www.proquest.com/docview/1433113916 https://www.proquest.com/docview/1440227862 |
| Volume | 19 |
| WOSCitedRecordID | wos000323999800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1466-4364 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006704 issn: 1351-847X databaseCode: TFW dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kiHjxLVarrOB1MZuN2eQoavFURCr2FvZZCpqWPvz9zmyS0iIq6Dm7SZjZee7MN4RcyTSNVALRCYLgsiQxmmnOHdOxz6LUCRtZG4ZNyF4vGwzyp5UufiyrxBjaV0ARQVejcCs9ayrirnGoHCjVQQXAiXgiKQbtYPlRMvvd16UqTmVUTbW94Qx3NL1z37xkzTatIZd-0dTB_HR3___je2Sndj3pbXVW9smGKw_IVlP5fkjun8FppOOgQ-hkilfuQ4p5WvruVMkQ6wkhB4Z0FLA5MK1I4VdoncyhiBvujshL96F_98jqIQvMAIvmTHjpfS64sWDoOfAzBgcy0ipNtMxspr2TUhgfe54rZXB-WKKjTOXcxBacTSWOSascl-6EUJeDMwDhjFYm4LBhf4jSkhuvcquEbRPRkLcwNQI5DsJ4K3gNVNoQqEACFRWB2oQtd00qBI5f1mernCvmIfPhqzElhfh5a6fhclGL8gxiIyE4x_7kNrlcPgYhxJsVVbrxAtckCMUI0eHp379-RrbjMGsDC9g6pDWfLtw52TQf89FsehEO9ieVXfPH |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA6ior54F6dTI_gabJquaR9FHRPnEJm4t5CkyRhoN3bx95uTtsMhKojPTdpyTnJuOfk-hC54HAcyctkJgOCSKNKKKEoNUaFNgtiwLMgyTzbBO52k10sfy27CSdlWCTm0LYAivK2GzQ3F6Kol7hJY5ZxV7RUInAAoErusfaXhXC3A53ebL3NjHPOg4LVtUAJTqttz37xlwTstYJd-sdXeATW3_uHXt9FmGX3iq2K57KAlk--itar5fQ_dPLm4EQ-9GcGjMZy69zGUavGbkTkBuCdAHejjgYfngMoidv-Cy3oOBuhws4-em7fd6xYpeRaIdlqaEma5tSmjOnO-njqVhi6GDJSMI8WTLFHWcM60DS1NpdRAIRapIJEp1WHm4k3JDtByPszNIcImdfGAy2iU1B6KDa6ISMWptjLNJMtqiFXyFboEIQcujFdBS6zSSkACBCQKAdUQmc8aFSAcv4xPPqtOTH3xwxZMJYL9PLVeqVmUu3ni0iPGKIUryjV0Pn_s9iEcrsjcDGcwJgI0RpcgHv3962dovdV9aIv2Xef-GG2EnnoD-tnqaHk6npkTtKrfp4PJ-NSv8g8OWffx |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yZfjitzidGsHXYNPUfjyKsyjKGDJxbyWfY6Dd2Dr_fnNpOzZEBX1u0pa75HJ3ufv9ELqMwtDjgY1OAASXBIEURFCqifBN7IWaKU8pRzYRdbvxYJD0lrr4oawSYmhTAkU4Ww2be6JMXRF3BaRy1qgOSgBOwBMJbdC-bj3nENZ4P31d2OIw8kpa22tKYErdPPfNW1YOpxXo0i-m2p0_6fb__3wHbVW-J74pF8suWtP5HmrWpe_7qPNsvUY8dkYET6Zw5z7EkKjF75rnBMCeAHNgiEcOnAPyitj-Cq6yORiAw_UBeknv-rf3pGJZINLqqCDMRMYkjEplT3pqFepbD9ITPAxEFKtYGB1FTBrf0IRzCQRigfBinlDpK-ttcnaIGvk410cI68R6AzaeEVw6IDZoEOEiotLwRHGmWojV4s1kBUEOTBhvGa2QSmsBZSCgrBRQC5HFrEkJwfHL-HhZc1nhUh-m5CnJ2M9T27WWs2ovz2xwxBil0KDcQheLx3YXwtUKz_V4DmMCwGK04eHx379-jpq9Tpo9PXQfT9Cm73g3oJitjRrFdK5P0Yb8KEaz6Zlb458i5faj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real+option+pricing+with+mean-reverting+investment+and+project+value&rft.jtitle=The+European+journal+of+finance&rft.au=Jaimungal%2C+Sebastian&rft.au=de+Souza%2C+Max+O.&rft.au=Zubelli%2C+Jorge+P.&rft.date=2013-09-01&rft.issn=1351-847X&rft.eissn=1466-4364&rft.volume=19&rft.issue=7-8&rft.spage=625&rft.epage=644&rft_id=info:doi/10.1080%2F1351847X.2011.601660&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_1351847X_2011_601660 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1351-847X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1351-847X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1351-847X&client=summon |