A Hybrid Prediction Method for Plant lncRNA-Protein Interaction

Long non-protein-coding RNAs (lncRNAs) identification and analysis are pervasive in transcriptome studies due to their roles in biological processes. In particular, lncRNA-protein interaction has plausible relevance to gene expression regulation and in cellular processes such as pathogen resistance...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cells (Basel, Switzerland) Ročník 8; číslo 6; s. 521
Hlavní autoři: Wekesa, Jael Sanyanda, Luan, Yushi, Chen, Ming, Meng, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 30.05.2019
MDPI
Témata:
ISSN:2073-4409, 2073-4409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Long non-protein-coding RNAs (lncRNAs) identification and analysis are pervasive in transcriptome studies due to their roles in biological processes. In particular, lncRNA-protein interaction has plausible relevance to gene expression regulation and in cellular processes such as pathogen resistance in plants. While lncRNA-protein interaction has been studied in animals, there has yet to be extensive research in plants. In this paper, we propose a novel plant lncRNA-protein interaction prediction method, namely PLRPIM, which combines deep learning and shallow machine learning methods. The selection of an optimal feature subset and subsequent efficient compression are significant challenges for deep learning models. The proposed method adopts k-mer and extracts high-level abstraction sequence-based features using stacked sparse autoencoder. Based on the extracted features, the fusion of random forest (RF) and light gradient boosting machine (LGBM) is used to build the prediction model. The performances are evaluated on Arabidopsis thaliana and Zea mays datasets. Results from experiments demonstrate PLRPIM’s superiority compared with other prediction tools on the two datasets. Based on 5-fold cross-validation, we obtain 89.98% and 93.44% accuracy, 0.954 and 0.982 AUC for Arabidopsis thaliana and Zea mays, respectively. PLRPIM predicts potential lncRNA-protein interaction pairs effectively, which can facilitate lncRNA related research including function prediction.
AbstractList Long non-protein-coding RNAs (lncRNAs) identification and analysis are pervasive in transcriptome studies due to their roles in biological processes. In particular, lncRNA-protein interaction has plausible relevance to gene expression regulation and in cellular processes such as pathogen resistance in plants. While lncRNA-protein interaction has been studied in animals, there has yet to be extensive research in plants. In this paper, we propose a novel plant lncRNA-protein interaction prediction method, namely PLRPIM, which combines deep learning and shallow machine learning methods. The selection of an optimal feature subset and subsequent efficient compression are significant challenges for deep learning models. The proposed method adopts k-mer and extracts high-level abstraction sequence-based features using stacked sparse autoencoder. Based on the extracted features, the fusion of random forest (RF) and light gradient boosting machine (LGBM) is used to build the prediction model. The performances are evaluated on Arabidopsis thaliana and Zea mays datasets. Results from experiments demonstrate PLRPIM’s superiority compared with other prediction tools on the two datasets. Based on 5-fold cross-validation, we obtain 89.98% and 93.44% accuracy, 0.954 and 0.982 AUC for Arabidopsis thaliana and Zea mays, respectively. PLRPIM predicts potential lncRNA-protein interaction pairs effectively, which can facilitate lncRNA related research including function prediction.
Long non-protein-coding RNAs (lncRNAs) identification and analysis are pervasive in transcriptome studies due to their roles in biological processes. In particular, lncRNA-protein interaction has plausible relevance to gene expression regulation and in cellular processes such as pathogen resistance in plants. While lncRNA-protein interaction has been studied in animals, there has yet to be extensive research in plants. In this paper, we propose a novel plant lncRNA-protein interaction prediction method, namely PLRPIM, which combines deep learning and shallow machine learning methods. The selection of an optimal feature subset and subsequent efficient compression are significant challenges for deep learning models. The proposed method adopts -mer and extracts high-level abstraction sequence-based features using stacked sparse autoencoder. Based on the extracted features, the fusion of random forest (RF) and light gradient boosting machine (LGBM) is used to build the prediction model. The performances are evaluated on and datasets. Results from experiments demonstrate PLRPIM's superiority compared with other prediction tools on the two datasets. Based on 5-fold cross-validation, we obtain 89.98% and 93.44% accuracy, 0.954 and 0.982 AUC for and respectively. PLRPIM predicts potential lncRNA-protein interaction pairs effectively, which can facilitate lncRNA related research including function prediction.
Long non-protein-coding RNAs (lncRNAs) identification and analysis are pervasive in transcriptome studies due to their roles in biological processes. In particular, lncRNA-protein interaction has plausible relevance to gene expression regulation and in cellular processes such as pathogen resistance in plants. While lncRNA-protein interaction has been studied in animals, there has yet to be extensive research in plants. In this paper, we propose a novel plant lncRNA-protein interaction prediction method, namely PLRPIM, which combines deep learning and shallow machine learning methods. The selection of an optimal feature subset and subsequent efficient compression are significant challenges for deep learning models. The proposed method adopts k-mer and extracts high-level abstraction sequence-based features using stacked sparse autoencoder. Based on the extracted features, the fusion of random forest (RF) and light gradient boosting machine (LGBM) is used to build the prediction model. The performances are evaluated on Arabidopsis thaliana and Zea mays datasets. Results from experiments demonstrate PLRPIM's superiority compared with other prediction tools on the two datasets. Based on 5-fold cross-validation, we obtain 89.98% and 93.44% accuracy, 0.954 and 0.982 AUC for Arabidopsis thaliana and Zea mays, respectively. PLRPIM predicts potential lncRNA-protein interaction pairs effectively, which can facilitate lncRNA related research including function prediction.Long non-protein-coding RNAs (lncRNAs) identification and analysis are pervasive in transcriptome studies due to their roles in biological processes. In particular, lncRNA-protein interaction has plausible relevance to gene expression regulation and in cellular processes such as pathogen resistance in plants. While lncRNA-protein interaction has been studied in animals, there has yet to be extensive research in plants. In this paper, we propose a novel plant lncRNA-protein interaction prediction method, namely PLRPIM, which combines deep learning and shallow machine learning methods. The selection of an optimal feature subset and subsequent efficient compression are significant challenges for deep learning models. The proposed method adopts k-mer and extracts high-level abstraction sequence-based features using stacked sparse autoencoder. Based on the extracted features, the fusion of random forest (RF) and light gradient boosting machine (LGBM) is used to build the prediction model. The performances are evaluated on Arabidopsis thaliana and Zea mays datasets. Results from experiments demonstrate PLRPIM's superiority compared with other prediction tools on the two datasets. Based on 5-fold cross-validation, we obtain 89.98% and 93.44% accuracy, 0.954 and 0.982 AUC for Arabidopsis thaliana and Zea mays, respectively. PLRPIM predicts potential lncRNA-protein interaction pairs effectively, which can facilitate lncRNA related research including function prediction.
Author Wekesa, Jael Sanyanda
Luan, Yushi
Chen, Ming
Meng, Jun
AuthorAffiliation 3 School of Bioengineering, Dalian University of Technology, Dalian 116023, Liaoning, China; luanyush@dlut.edu.cn
4 College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; mchen@zju.edu.cn
1 School of Computer Science and Technology, Dalian University of Technology, Dalian 116023, Liaoning, China; jael@mail.dlut.edu.cn
2 Department of Information Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi 62000-00200, Kenya
AuthorAffiliation_xml – name: 1 School of Computer Science and Technology, Dalian University of Technology, Dalian 116023, Liaoning, China; jael@mail.dlut.edu.cn
– name: 2 Department of Information Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi 62000-00200, Kenya
– name: 3 School of Bioengineering, Dalian University of Technology, Dalian 116023, Liaoning, China; luanyush@dlut.edu.cn
– name: 4 College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; mchen@zju.edu.cn
Author_xml – sequence: 1
  givenname: Jael Sanyanda
  surname: Wekesa
  fullname: Wekesa, Jael Sanyanda
– sequence: 2
  givenname: Yushi
  surname: Luan
  fullname: Luan, Yushi
– sequence: 3
  givenname: Ming
  surname: Chen
  fullname: Chen, Ming
– sequence: 4
  givenname: Jun
  surname: Meng
  fullname: Meng, Jun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31151273$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vEzEQhi3UipbQG2e0EpceWPC3vRdQVAGN1EKE4Gx5_dE62tjFdir13-M0LUorfBlr_M6jGb_zChzEFB0AbxD8QMgAPxo3TUVCDhlGL8AxhoL0lMLhYO9-BE5KWcF2JOIIspfgiCDEEBbkGHyed-d3Yw62W2Zng6khxe7S1etkO59yt5x0rN0Uzc_v836ZU3UhdotYXdb32tfg0OupuJOHOAO_v375dXbeX_z4tjibX_SGCll75EajBytki04PZtAjFYZaPmqGtJBkFJQ6zIVAxlsiGWWCW2I9gZ4MDJIZWOy4NumVuslhrfOdSjqo-0TKV0rnGszklPAYaW68G5GmCMkRM0OI9xASax3EjfVpx7rZjGtnjYs16-kJ9OlLDNfqKt0qzrGQgjbA6QMgpz8bV6pah7K1QkeXNkVhTNoIDLa5ZuDdM-kqbXJsX9VUA5dyGJoPM_B2v6N_rTz61AR4JzA5lZKdVyZUvTWgNRgmhaDa7oPa34dW9P5Z0SP3v_K_1T62TA
CitedBy_id crossref_primary_10_1016_j_csbj_2025_05_050
crossref_primary_10_1016_j_jbiotec_2022_09_014
crossref_primary_10_1007_s12539_022_00501_7
crossref_primary_10_1016_j_oceaneng_2024_117417
crossref_primary_10_1186_s12859_020_03870_2
crossref_primary_10_3389_fgene_2020_615144
crossref_primary_10_1186_s12915_025_02231_w
crossref_primary_10_1016_j_asoc_2025_113795
crossref_primary_10_1093_bib_bbac452
crossref_primary_10_3390_ijms252211964
crossref_primary_10_1016_j_compbiomed_2023_106711
crossref_primary_10_1016_j_ygeno_2022_110443
crossref_primary_10_1007_s12539_023_00598_4
crossref_primary_10_3389_fgene_2023_1199087
crossref_primary_10_1038_s41598_021_85629_0
crossref_primary_10_1080_01140671_2021_1900293
crossref_primary_10_3390_ijms20184491
Cites_doi 10.1016/j.neucom.2015.11.105
10.3389/fpls.2016.01419
10.1186/s12864-016-2931-8
10.3389/fgene.2018.00458
10.1016/j.tplants.2014.07.003
10.1371/journal.pgen.1006939
10.1093/bioinformatics/bty364
10.1093/bioinformatics/btw730
10.1038/nprot.2017.076
10.1039/C2MB25292A
10.3390/ncrna3020016
10.1039/C7MB00290D
10.1109/ICASSP.2013.6639343
10.1080/07388551.2017.1312270
10.18632/oncotarget.21934
10.1016/S0893-6080(98)00116-6
10.1093/nar/gkv020
10.1145/1390156.1390294
10.3390/cells8020122
10.1016/j.omtn.2018.03.001
10.1016/j.bbagrm.2015.10.010
10.1371/journal.pcbi.1006616
10.1038/nmeth.1611
10.3390/cells8010062
10.1186/1471-2105-12-489
10.1038/s41598-018-32511-1
10.1016/j.gpb.2016.01.004
10.1016/j.imavis.2017.01.005
10.1016/j.cmpb.2017.09.005
10.1186/1471-2164-14-651
10.1093/bioinformatics/bty085
10.1093/bioinformatics/bty428
10.1007/978-1-4939-7371-2_17
10.3389/fgene.2018.00239
10.3389/fgene.2018.00477
10.1007/978-1-4939-7318-7_19
10.1145/2939672.2939785
10.1093/nar/gkx866
10.1038/nature14539
10.1371/journal.pone.0156723
10.1038/nbt.3300
10.3389/fpls.2018.01162
10.3390/ncrna3010011
10.1038/nmeth.3547
10.1016/j.gpb.2015.02.003
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.3390/cells8060521
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2073-4409
ExternalDocumentID oai_doaj_org_article_7f21a6cfeb1a4118b25c33ff003dde02
PMC6627874
31151273
10_3390_cells8060521
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
ABDBF
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
DIK
EBD
ESX
GROUPED_DOAJ
HCIFZ
HYE
IAO
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
CGR
CUY
CVF
ECM
EIF
NPM
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c478t-1ebca9d78ebcea9c9ab47c4d6ba51a783b744e26771cfd3854576d3df30f39503
IEDL.DBID M7P
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000475309200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-4409
IngestDate Fri Oct 03 12:41:06 EDT 2025
Tue Nov 04 01:58:33 EST 2025
Sun Nov 09 11:26:30 EST 2025
Sun Nov 09 07:17:29 EST 2025
Thu Jan 02 22:59:26 EST 2025
Tue Nov 18 22:02:22 EST 2025
Sat Nov 29 07:18:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords autoencoder
hybrid
random forest
light gradient boosting machine
lncRNA-protein interaction
plant
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-1ebca9d78ebcea9c9ab47c4d6ba51a783b744e26771cfd3854576d3df30f39503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2296889927?pq-origsite=%requestingapplication%
PMID 31151273
PQID 2296889927
PQPubID 2032536
ParticipantIDs doaj_primary_oai_doaj_org_article_7f21a6cfeb1a4118b25c33ff003dde02
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6627874
proquest_miscellaneous_2233855078
proquest_journals_2296889927
pubmed_primary_31151273
crossref_citationtrail_10_3390_cells8060521
crossref_primary_10_3390_cells8060521
PublicationCentury 2000
PublicationDate 20190530
PublicationDateYYYYMMDD 2019-05-30
PublicationDate_xml – month: 5
  year: 2019
  text: 20190530
  day: 30
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Cells (Basel, Switzerland)
PublicationTitleAlternate Cells
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhou (ref_32) 2015; 12
Arendsee (ref_57) 2014; 19
ref_14
Nejat (ref_3) 2018; 38
ref_12
ref_55
ref_53
ref_51
Mohanty (ref_28) 2016; 7
ref_18
ref_16
Liu (ref_29) 2018; 2018
Ge (ref_23) 2016; 14
LeCun (ref_30) 2015; 521
Mermaz (ref_10) 2018; 1675
Yang (ref_15) 2018; 34
ref_25
Cao (ref_43) 2018; 34
ref_22
Qian (ref_56) 1999; 12
Liu (ref_11) 2015; 13
Xiao (ref_45) 2018; 153
Hu (ref_44) 2018; 15
Alipanahi (ref_31) 2015; 33
Zhao (ref_21) 2018; 9
Singh (ref_13) 2017; 45
Liu (ref_46) 2016; 206
Sankaran (ref_49) 2017; 60
Zhang (ref_50) 2017; 33
Pan (ref_34) 2018; 34
ref_36
ref_33
Zurada (ref_35) 2016; 27
Bierhoff (ref_9) 2018; 1686
ref_39
ref_38
Zhan (ref_52) 2018; 9
ref_37
Wang (ref_40) 2013; 9
Liu (ref_24) 2017; 8
Kashi (ref_6) 2016; 1859
Camborde (ref_8) 2017; 12
ref_47
Suresh (ref_19) 2015; 43
ref_41
ref_1
ref_2
Hu (ref_20) 2017; 13
Yi (ref_42) 2018; 11
Fuentes (ref_27) 2018; 9
ref_48
Zhang (ref_26) 2018; 9
ref_5
ref_4
Bellucci (ref_17) 2011; 8
ref_7
Wang (ref_54) 2018; 8
References_xml – volume: 206
  start-page: 28
  year: 2016
  ident: ref_46
  article-title: Prediction of protein-RNA interactions using sequence and structure descriptors
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.105
– ident: ref_55
– ident: ref_51
– volume: 7
  start-page: 346
  year: 2016
  ident: ref_28
  article-title: Using Deep Learning for Image-Based Plant Disease Detection
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01419
– ident: ref_41
  doi: 10.1186/s12864-016-2931-8
– volume: 9
  start-page: 458
  year: 2018
  ident: ref_52
  article-title: Accurate Prediction of ncRNA-Protein Interactions From the Integration of Sequence and Evolutionary Information
  publication-title: Front Genet.
  doi: 10.3389/fgene.2018.00458
– volume: 19
  start-page: 698
  year: 2014
  ident: ref_57
  article-title: Coming of age: orphan genes in plants
  publication-title: Trends Plant. Sci.
  doi: 10.1016/j.tplants.2014.07.003
– ident: ref_1
– ident: ref_4
  doi: 10.1371/journal.pgen.1006939
– volume: 34
  start-page: 3427
  year: 2018
  ident: ref_34
  article-title: Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty364
– volume: 33
  start-page: 854
  year: 2017
  ident: ref_50
  article-title: RBPPred: Predicting RNA-binding proteins from sequence using SVM
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw730
– volume: 12
  start-page: 1933
  year: 2017
  ident: ref_8
  article-title: Detection of nucleic acid-protein interactions in plant leaves using fluorescence lifetime imaging microscopy
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2017.076
– volume: 9
  start-page: 133
  year: 2013
  ident: ref_40
  article-title: De novo prediction of RNA–protein interactions from sequence information
  publication-title: Mol. BioSyst.
  doi: 10.1039/C2MB25292A
– ident: ref_5
  doi: 10.3390/ncrna3020016
– volume: 13
  start-page: 1781
  year: 2017
  ident: ref_20
  article-title: LPI-ETSLP: lncRNA–protein interaction prediction using eigenvalue transformation-based semi-supervised link prediction
  publication-title: Mol. BioSyst.
  doi: 10.1039/C7MB00290D
– ident: ref_48
  doi: 10.1109/ICASSP.2013.6639343
– volume: 38
  start-page: 93
  year: 2018
  ident: ref_3
  article-title: Emerging roles of long non-coding RNAs in plant response to biotic and abiotic stresses
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.1080/07388551.2017.1312270
– volume: 8
  start-page: 103975
  year: 2017
  ident: ref_24
  article-title: LPI-NRLMF: lncRNA-protein interaction prediction by neighborhood regularized logistic matrix factorization
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.21934
– volume: 12
  start-page: 145
  year: 1999
  ident: ref_56
  article-title: On the momentum term in gradient descent learning algorithms
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(98)00116-6
– volume: 43
  start-page: 1370
  year: 2015
  ident: ref_19
  article-title: RPI-Pred: Predicting ncRNA-protein interaction using sequence and structural information
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv020
– ident: ref_37
  doi: 10.1145/1390156.1390294
– ident: ref_33
  doi: 10.3390/cells8020122
– volume: 11
  start-page: 337
  year: 2018
  ident: ref_42
  article-title: A Deep Learning Framework for Robust and Accurate Prediction of ncRNA-Protein Interactions Using Evolutionary Information
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2018.03.001
– volume: 1859
  start-page: 3
  year: 2016
  ident: ref_6
  article-title: Discovery and functional analysis of lncRNAs: Methodologies to investigate an uncharacterized transcriptome
  publication-title: Biochim. et Biophys. Acta (BBA)-Gene Regul. Mech.
  doi: 10.1016/j.bbagrm.2015.10.010
– ident: ref_16
  doi: 10.1371/journal.pcbi.1006616
– volume: 8
  start-page: 444
  year: 2011
  ident: ref_17
  article-title: Predicting protein associations with long noncoding RNAs
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1611
– volume: 27
  start-page: 1
  year: 2016
  ident: ref_35
  article-title: Deep Learning of Part-Based Representation of Data Using Sparse Autoencoders With Nonnegativity Constraints
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– ident: ref_38
– ident: ref_7
  doi: 10.3390/cells8010062
– ident: ref_39
  doi: 10.1186/1471-2105-12-489
– volume: 8
  start-page: 14285
  year: 2018
  ident: ref_54
  article-title: Enhanced Prediction of Hot Spots at Protein-Protein Interfaces Using Extreme Gradient Boosting
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-32511-1
– volume: 14
  start-page: 62
  year: 2016
  ident: ref_23
  article-title: A Bipartite Network-based Method for Prediction of Long Non-coding RNA-protein Interactions
  publication-title: Genom. Proteom. Bioinform.
  doi: 10.1016/j.gpb.2016.01.004
– volume: 60
  start-page: 64
  year: 2017
  ident: ref_49
  article-title: Group sparse autoencoder
  publication-title: Image Vision Comput.
  doi: 10.1016/j.imavis.2017.01.005
– volume: 153
  start-page: 1
  year: 2018
  ident: ref_45
  article-title: A deep learning-based multi-model ensemble method for cancer prediction
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.09.005
– ident: ref_47
– ident: ref_18
  doi: 10.1186/1471-2164-14-651
– volume: 34
  start-page: 2185
  year: 2018
  ident: ref_43
  article-title: The lncLocator: a subcellular localization predictor for long non-coding RNAs based on a stacked ensemble classifier
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty085
– volume: 34
  start-page: 3825
  year: 2018
  ident: ref_15
  article-title: LncADeep: an ab initio lncRNA identification and functional annotation tool based on deep learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty428
– volume: 2018
  start-page: 1
  year: 2018
  ident: ref_29
  article-title: A Stacked Autoencoder-Based Deep Neural Network for Achieving Gearbox Fault Diagnosis
  publication-title: Math. Probl. Eng.
– volume: 1686
  start-page: 241
  year: 2018
  ident: ref_9
  article-title: Analysis of lncRNA-Protein Interactions by RNA-Protein Pull-Down Assays and RNA Immunoprecipitation (RIP)
  publication-title: Cell. Quiescence
  doi: 10.1007/978-1-4939-7371-2_17
– volume: 9
  start-page: 239
  year: 2018
  ident: ref_21
  article-title: IRWNRLPI: Integrating Random Walk and Neighborhood Regularized Logistic Matrix Factorization for lncRNA-Protein Interaction Prediction
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2018.00239
– ident: ref_25
– volume: 9
  start-page: 477
  year: 2018
  ident: ref_26
  article-title: Deep Learning-Based Multi-Omics Data Integration Reveals Two Prognostic Subtypes in High-Risk Neuroblastoma
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2018.00477
– volume: 1675
  start-page: 331
  year: 2018
  ident: ref_10
  article-title: RNA Immunoprecipitation Protocol to Identify Protein-RNA Interactions in Arabidopsis thaliana
  publication-title: Plant Chromatin Dyn.
  doi: 10.1007/978-1-4939-7318-7_19
– ident: ref_12
– ident: ref_53
  doi: 10.1145/2939672.2939785
– volume: 45
  start-page: e183
  year: 2017
  ident: ref_13
  article-title: PLncPRO for prediction of long non-coding RNAs (lncRNAs) in plants and its application for discovery of abiotic stress-responsive lncRNAs in rice and chickpea
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx866
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_30
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref_36
– ident: ref_2
  doi: 10.1371/journal.pone.0156723
– volume: 33
  start-page: 831
  year: 2015
  ident: ref_31
  article-title: Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3300
– volume: 15
  start-page: 1
  year: 2018
  ident: ref_44
  article-title: HLPI-Ensemble: Prediction of human lncRNA-protein interactions based on ensemble strategy
  publication-title: RNA Boil.
– ident: ref_22
– volume: 9
  start-page: 1162
  year: 2018
  ident: ref_27
  article-title: High-Performance Deep Neural Network-Based Tomato Plant Diseases and Pests Diagnosis System With Refinement Filter Bank
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01162
– ident: ref_14
  doi: 10.3390/ncrna3010011
– volume: 12
  start-page: 931
  year: 2015
  ident: ref_32
  article-title: Predicting effects of noncoding variants with deep learning-based sequence model
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3547
– volume: 13
  start-page: 137
  year: 2015
  ident: ref_11
  article-title: Long non-coding RNAs and their biological roles in plants
  publication-title: Genom. Proteom. Bioinform.
  doi: 10.1016/j.gpb.2015.02.003
SSID ssj0000816105
Score 2.2597792
Snippet Long non-protein-coding RNAs (lncRNAs) identification and analysis are pervasive in transcriptome studies due to their roles in biological processes. In...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 521
SubjectTerms Algorithms
Arabidopsis - genetics
Arabidopsis thaliana
Artificial intelligence
autoencoder
Bioinformatics
Compression
Computational Biology - methods
Deep learning
Deoxyribonucleic acid
DNA
Gene expression
Gene regulation
hybrid
International conferences
Learning algorithms
light gradient boosting machine
lncRNA-protein interaction
Localization
Machine learning
Neural networks
plant
Plant diseases
Plant Proteins - metabolism
Prediction models
Protein Binding
random forest
Research methodology
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
RNA-protein interactions
ROC Curve
Zea mays
Zea mays - genetics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS-QwEB9ETvDl8O7Uqx9HDvRJimmTNsmTrKL4cLcsouBbadMEF6TK7ir43zuT1GVXlHu5vhSaoU1m8vGbdPIbgAMurdaOqzT3mU4lLnmpzk2Z5pkliG8L7kPWkj9qONS3t2a0kOqLYsIiPXBU3LHyeVaX1uOcUktEw01eWCG8x96IIzPSSHJlFpypMAdrRDK8iJHuAv36Y9oHn2pe0mHVpTUoUPV_hC_fh0kurDsXG_C1B4xsECv6DVZc9x3WYgrJlx9wMmCXL3Tqio0m9M-F9Mz-hrTQDPEoo6REM3bf2avhIB0RKcO4Y2EbMJ5o2ISbi_Prs8u0T4qQWqn0LM0oesm0SuPd1caaupHKyrZs6iKrlRaNktLlpVKZ9a3QiJBU2YrWC-6FKbjYgtXuoXM_gXlXN957R6TvuI7zxmkjeeM5vgAvncDRm5oq2zOGU-KK-wo9B1JqtajUBA7n0o-RKeMTuVPS-FyG-K3DA7R61Vu9-pfVE9h7s1fVD7pplWMn0-g_5iqB3_NiHC70-bpzD08kgz45cbhh67ajeec1IeKhDOFcAmrJ8EtVXS7pxneBkpto9LWSO_-jbbuwjqjMhBAFvgers8mT24cv9nk2nk5-hX7-ClvaBBk
  priority: 102
  providerName: Directory of Open Access Journals
Title A Hybrid Prediction Method for Plant lncRNA-Protein Interaction
URI https://www.ncbi.nlm.nih.gov/pubmed/31151273
https://www.proquest.com/docview/2296889927
https://www.proquest.com/docview/2233855078
https://pubmed.ncbi.nlm.nih.gov/PMC6627874
https://doaj.org/article/7f21a6cfeb1a4118b25c33ff003dde02
Volume 8
WOSCitedRecordID wos000475309200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2073-4409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816105
  issn: 2073-4409
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816105
  issn: 2073-4409
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2073-4409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816105
  issn: 2073-4409
  databaseCode: M7P
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-4409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816105
  issn: 2073-4409
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2073-4409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816105
  issn: 2073-4409
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH5iG0hcGL8JjMpIcELWHMeNndPUTZ2GxKpoAqmcosSxR6UpHW2HtAt_O-85abaiwYUeWim2EqfPP773_Px9AO-FssY4obn0seEKlzxuZJZyGVuC-HYofFAt-awnEzOdZnkXcFt2aZXrOTFM1PXcUox8X-IdDDoHUh9c_uCkGkW7q52ExhbsEEuCDKl7eR9jIVEJxA9tvnuC3v0-RcOXRqR0ZHVjJQqE_XehzD-TJW-tPse7_9vux_Cow51s1HaUJ3DPNU_hQatEef0MDkbs5JoOb7F8QVs3ZC52GtSlGcJaRtpGK3bR2LPJiOfE7TBrWIgmtgcjnsPX4_GXoxPeaStwq7RZ8ZiSoLJaG_x1ZWazslLaqjqtymFcapNUWiknU61j6-vEINDSaZ3UPhE-yYYieQHbzbxxr4B5V1bee0fc8QgHROVMpkTlBd4APyaCj-v_ubAd8TjpX1wU6ICQVYrbVongQ1_7siXc-Eu9QzJZX4dossOF-eK86EZdob2My9R6XJBKha5UJYc2SbzHqQyndSEj2FsbrejG7rK4sVgE7_piHHX0-LJx8yuqg649UcHh271s-0ffEuIvihEVRqA3es5GUzdLmtn3wOxNbPxGq9f_btYbeIiwLQs5DGIPtleLK_cW7tufq9lyMYAtPTUD2DkcT_KzQYgxDMKwoO9fYyzJP53m334DO6UYHQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHQheuF8CA4LEnlA0x3Zj5wFN5TK1WltFaEjjKUscGypN6Wg7UP8Uv5FzcmNFwNseyEukxHKc-PM5n53j8wG8ZNJobZkKuAt1INHlBZrHUcBDQxTf9JmrVEvGajrVx8dxsgU_2r0wFFbZ2sTKUBdzQ2vkexxr0Dg54Gr_7GtAqlH0d7WV0KhhcWjX33HKtnw9eof9u8v5wfujt8OgURUIjFR6FYQU_hMXSuPZZrGJs1wqI4soz_phprTIlZSWR0qFxhVCI8VQUSEKJ5gTcZ8JrPcKbEsCew-2k9Ek-dSt6pCMBTKWOsJeiJjt0fr7UrOINslu-L5KIuBPvPb38MwL_u7g1v_2pW7DzYZZ-4N6KNyBLVvehWu11ub6HuwP_OGatqf5yYJ-ThEg_Umln-0jcfdJvWnln5bmw3QQJJS9Ylb61XppvfXjPny8lNY_gF45L-0j8J3Ncuecpez4SHhYbnUsWe4YVoCH9uBV26-paVKrk8LHaYpTLEJBehEFHux2pc_qlCJ_KfeGINKVoUTg1YX54nPa2JVUOR5mkXHocjOJk8Wc940QzqGxRsfFuAc7LUjSxjot018I8eBFdxvtCj0-K-38nMoIUSW7w7d7WOOxawllaAqR93qgNpC60dTNO-XsS5W7nPQGtJKP_92s53B9eDQZp-PR9PAJ3ECSGlcRG2wHeqvFuX0KV8231Wy5eNYMQB9OLhvJPwGSqXHQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvB-BAkaiJxTVsb2xc0DVQll11XYVIZDKKU0cG1aqsmV3C9q_xq9jJo-li4BbD-QSKbEcJ_ky840zng_gJVfWGMd1KHxkQoUuLzQiiUMRWaL4ts99rVpyqMdjc3ycpBvwo1sLQ2mVnU2sDXU5tTRHviOwB4PBAYbqvk2LSPeGu2dfQ1KQoj-tnZxGA5EDt_yO4dv89WgP3_W2EMN3H97uh63CQGiVNoswolSgpNQG9y5PbJIXSltVxkXej3JtZKGVciLWOrK-lAbpho5LWXrJvUz6XGK_V2ATKbkSPdhMR0fpp9UMD0laIHtpsu2lTPgOzcXPDY9pweyaH6zlAv7EcX9P1bzg-4a3_uendhtutoybDZpP5A5suOouXGs0OJf3YHfA9pe0bI2lM_ppRUBlR7WuNkNCz0jVacFOK_t-PAhTqmoxqVg9j9osCbkPHy9l9A-gV00r9wiYd3nhvXdUNR-JEC-cSRQvPMcOcDMBvOrecWbbkuuk_HGaYehFiMguIiKA7VXrs6bUyF_avSG4rNpQgfD6wHT2OWvtTaa9iPLYenTFucIgshB9K6X3aMTRoXERwFYHmKy1WvPsF1oCeLE6jfaGLp9XbnpObaSsi-Dh3T1ssLkaCVVuipAPB6DXULs21PUz1eRLXdOcdAiMVo__PazncB3hmx2OxgdP4AZy16RO5OBb0FvMzt1TuGq_LSbz2bP2W2RwctlA_glVb3qQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Prediction+Method+for+Plant+lncRNA-Protein+Interaction&rft.jtitle=Cells+%28Basel%2C+Switzerland%29&rft.au=Wekesa%2C+Jael+Sanyanda&rft.au=Luan%2C+Yushi&rft.au=Chen%2C+Ming&rft.au=Meng%2C+Jun&rft.date=2019-05-30&rft.pub=MDPI+AG&rft.eissn=2073-4409&rft.volume=8&rft.issue=6&rft_id=info:doi/10.3390%2Fcells8060521&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4409&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4409&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4409&client=summon