A Hybrid Prediction Method for Plant lncRNA-Protein Interaction
Long non-protein-coding RNAs (lncRNAs) identification and analysis are pervasive in transcriptome studies due to their roles in biological processes. In particular, lncRNA-protein interaction has plausible relevance to gene expression regulation and in cellular processes such as pathogen resistance...
Uložené v:
| Vydané v: | Cells (Basel, Switzerland) Ročník 8; číslo 6; s. 521 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
30.05.2019
MDPI |
| Predmet: | |
| ISSN: | 2073-4409, 2073-4409 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Long non-protein-coding RNAs (lncRNAs) identification and analysis are pervasive in transcriptome studies due to their roles in biological processes. In particular, lncRNA-protein interaction has plausible relevance to gene expression regulation and in cellular processes such as pathogen resistance in plants. While lncRNA-protein interaction has been studied in animals, there has yet to be extensive research in plants. In this paper, we propose a novel plant lncRNA-protein interaction prediction method, namely PLRPIM, which combines deep learning and shallow machine learning methods. The selection of an optimal feature subset and subsequent efficient compression are significant challenges for deep learning models. The proposed method adopts k-mer and extracts high-level abstraction sequence-based features using stacked sparse autoencoder. Based on the extracted features, the fusion of random forest (RF) and light gradient boosting machine (LGBM) is used to build the prediction model. The performances are evaluated on Arabidopsis thaliana and Zea mays datasets. Results from experiments demonstrate PLRPIM’s superiority compared with other prediction tools on the two datasets. Based on 5-fold cross-validation, we obtain 89.98% and 93.44% accuracy, 0.954 and 0.982 AUC for Arabidopsis thaliana and Zea mays, respectively. PLRPIM predicts potential lncRNA-protein interaction pairs effectively, which can facilitate lncRNA related research including function prediction. |
|---|---|
| AbstractList | Long non-protein-coding RNAs (lncRNAs) identification and analysis are pervasive in transcriptome studies due to their roles in biological processes. In particular, lncRNA-protein interaction has plausible relevance to gene expression regulation and in cellular processes such as pathogen resistance in plants. While lncRNA-protein interaction has been studied in animals, there has yet to be extensive research in plants. In this paper, we propose a novel plant lncRNA-protein interaction prediction method, namely PLRPIM, which combines deep learning and shallow machine learning methods. The selection of an optimal feature subset and subsequent efficient compression are significant challenges for deep learning models. The proposed method adopts k-mer and extracts high-level abstraction sequence-based features using stacked sparse autoencoder. Based on the extracted features, the fusion of random forest (RF) and light gradient boosting machine (LGBM) is used to build the prediction model. The performances are evaluated on Arabidopsis thaliana and Zea mays datasets. Results from experiments demonstrate PLRPIM’s superiority compared with other prediction tools on the two datasets. Based on 5-fold cross-validation, we obtain 89.98% and 93.44% accuracy, 0.954 and 0.982 AUC for Arabidopsis thaliana and Zea mays, respectively. PLRPIM predicts potential lncRNA-protein interaction pairs effectively, which can facilitate lncRNA related research including function prediction. Long non-protein-coding RNAs (lncRNAs) identification and analysis are pervasive in transcriptome studies due to their roles in biological processes. In particular, lncRNA-protein interaction has plausible relevance to gene expression regulation and in cellular processes such as pathogen resistance in plants. While lncRNA-protein interaction has been studied in animals, there has yet to be extensive research in plants. In this paper, we propose a novel plant lncRNA-protein interaction prediction method, namely PLRPIM, which combines deep learning and shallow machine learning methods. The selection of an optimal feature subset and subsequent efficient compression are significant challenges for deep learning models. The proposed method adopts -mer and extracts high-level abstraction sequence-based features using stacked sparse autoencoder. Based on the extracted features, the fusion of random forest (RF) and light gradient boosting machine (LGBM) is used to build the prediction model. The performances are evaluated on and datasets. Results from experiments demonstrate PLRPIM's superiority compared with other prediction tools on the two datasets. Based on 5-fold cross-validation, we obtain 89.98% and 93.44% accuracy, 0.954 and 0.982 AUC for and respectively. PLRPIM predicts potential lncRNA-protein interaction pairs effectively, which can facilitate lncRNA related research including function prediction. Long non-protein-coding RNAs (lncRNAs) identification and analysis are pervasive in transcriptome studies due to their roles in biological processes. In particular, lncRNA-protein interaction has plausible relevance to gene expression regulation and in cellular processes such as pathogen resistance in plants. While lncRNA-protein interaction has been studied in animals, there has yet to be extensive research in plants. In this paper, we propose a novel plant lncRNA-protein interaction prediction method, namely PLRPIM, which combines deep learning and shallow machine learning methods. The selection of an optimal feature subset and subsequent efficient compression are significant challenges for deep learning models. The proposed method adopts k-mer and extracts high-level abstraction sequence-based features using stacked sparse autoencoder. Based on the extracted features, the fusion of random forest (RF) and light gradient boosting machine (LGBM) is used to build the prediction model. The performances are evaluated on Arabidopsis thaliana and Zea mays datasets. Results from experiments demonstrate PLRPIM's superiority compared with other prediction tools on the two datasets. Based on 5-fold cross-validation, we obtain 89.98% and 93.44% accuracy, 0.954 and 0.982 AUC for Arabidopsis thaliana and Zea mays, respectively. PLRPIM predicts potential lncRNA-protein interaction pairs effectively, which can facilitate lncRNA related research including function prediction.Long non-protein-coding RNAs (lncRNAs) identification and analysis are pervasive in transcriptome studies due to their roles in biological processes. In particular, lncRNA-protein interaction has plausible relevance to gene expression regulation and in cellular processes such as pathogen resistance in plants. While lncRNA-protein interaction has been studied in animals, there has yet to be extensive research in plants. In this paper, we propose a novel plant lncRNA-protein interaction prediction method, namely PLRPIM, which combines deep learning and shallow machine learning methods. The selection of an optimal feature subset and subsequent efficient compression are significant challenges for deep learning models. The proposed method adopts k-mer and extracts high-level abstraction sequence-based features using stacked sparse autoencoder. Based on the extracted features, the fusion of random forest (RF) and light gradient boosting machine (LGBM) is used to build the prediction model. The performances are evaluated on Arabidopsis thaliana and Zea mays datasets. Results from experiments demonstrate PLRPIM's superiority compared with other prediction tools on the two datasets. Based on 5-fold cross-validation, we obtain 89.98% and 93.44% accuracy, 0.954 and 0.982 AUC for Arabidopsis thaliana and Zea mays, respectively. PLRPIM predicts potential lncRNA-protein interaction pairs effectively, which can facilitate lncRNA related research including function prediction. |
| Author | Wekesa, Jael Sanyanda Luan, Yushi Chen, Ming Meng, Jun |
| AuthorAffiliation | 3 School of Bioengineering, Dalian University of Technology, Dalian 116023, Liaoning, China; luanyush@dlut.edu.cn 4 College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; mchen@zju.edu.cn 1 School of Computer Science and Technology, Dalian University of Technology, Dalian 116023, Liaoning, China; jael@mail.dlut.edu.cn 2 Department of Information Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi 62000-00200, Kenya |
| AuthorAffiliation_xml | – name: 1 School of Computer Science and Technology, Dalian University of Technology, Dalian 116023, Liaoning, China; jael@mail.dlut.edu.cn – name: 2 Department of Information Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi 62000-00200, Kenya – name: 3 School of Bioengineering, Dalian University of Technology, Dalian 116023, Liaoning, China; luanyush@dlut.edu.cn – name: 4 College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; mchen@zju.edu.cn |
| Author_xml | – sequence: 1 givenname: Jael Sanyanda surname: Wekesa fullname: Wekesa, Jael Sanyanda – sequence: 2 givenname: Yushi surname: Luan fullname: Luan, Yushi – sequence: 3 givenname: Ming surname: Chen fullname: Chen, Ming – sequence: 4 givenname: Jun surname: Meng fullname: Meng, Jun |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31151273$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk1vEzEQhi3UipbQG2e0EpceWPC3vRdQVAGN1EKE4Gx5_dE62tjFdir13-M0LUorfBlr_M6jGb_zChzEFB0AbxD8QMgAPxo3TUVCDhlGL8AxhoL0lMLhYO9-BE5KWcF2JOIIspfgiCDEEBbkGHyed-d3Yw62W2Zng6khxe7S1etkO59yt5x0rN0Uzc_v836ZU3UhdotYXdb32tfg0OupuJOHOAO_v375dXbeX_z4tjibX_SGCll75EajBytki04PZtAjFYZaPmqGtJBkFJQ6zIVAxlsiGWWCW2I9gZ4MDJIZWOy4NumVuslhrfOdSjqo-0TKV0rnGszklPAYaW68G5GmCMkRM0OI9xASax3EjfVpx7rZjGtnjYs16-kJ9OlLDNfqKt0qzrGQgjbA6QMgpz8bV6pah7K1QkeXNkVhTNoIDLa5ZuDdM-kqbXJsX9VUA5dyGJoPM_B2v6N_rTz61AR4JzA5lZKdVyZUvTWgNRgmhaDa7oPa34dW9P5Z0SP3v_K_1T62TA |
| CitedBy_id | crossref_primary_10_1016_j_csbj_2025_05_050 crossref_primary_10_1016_j_jbiotec_2022_09_014 crossref_primary_10_1007_s12539_022_00501_7 crossref_primary_10_1016_j_oceaneng_2024_117417 crossref_primary_10_1186_s12859_020_03870_2 crossref_primary_10_3389_fgene_2020_615144 crossref_primary_10_1186_s12915_025_02231_w crossref_primary_10_1016_j_asoc_2025_113795 crossref_primary_10_1093_bib_bbac452 crossref_primary_10_3390_ijms252211964 crossref_primary_10_1016_j_compbiomed_2023_106711 crossref_primary_10_1016_j_ygeno_2022_110443 crossref_primary_10_1007_s12539_023_00598_4 crossref_primary_10_3389_fgene_2023_1199087 crossref_primary_10_1038_s41598_021_85629_0 crossref_primary_10_1080_01140671_2021_1900293 crossref_primary_10_3390_ijms20184491 |
| Cites_doi | 10.1016/j.neucom.2015.11.105 10.3389/fpls.2016.01419 10.1186/s12864-016-2931-8 10.3389/fgene.2018.00458 10.1016/j.tplants.2014.07.003 10.1371/journal.pgen.1006939 10.1093/bioinformatics/bty364 10.1093/bioinformatics/btw730 10.1038/nprot.2017.076 10.1039/C2MB25292A 10.3390/ncrna3020016 10.1039/C7MB00290D 10.1109/ICASSP.2013.6639343 10.1080/07388551.2017.1312270 10.18632/oncotarget.21934 10.1016/S0893-6080(98)00116-6 10.1093/nar/gkv020 10.1145/1390156.1390294 10.3390/cells8020122 10.1016/j.omtn.2018.03.001 10.1016/j.bbagrm.2015.10.010 10.1371/journal.pcbi.1006616 10.1038/nmeth.1611 10.3390/cells8010062 10.1186/1471-2105-12-489 10.1038/s41598-018-32511-1 10.1016/j.gpb.2016.01.004 10.1016/j.imavis.2017.01.005 10.1016/j.cmpb.2017.09.005 10.1186/1471-2164-14-651 10.1093/bioinformatics/bty085 10.1093/bioinformatics/bty428 10.1007/978-1-4939-7371-2_17 10.3389/fgene.2018.00239 10.3389/fgene.2018.00477 10.1007/978-1-4939-7318-7_19 10.1145/2939672.2939785 10.1093/nar/gkx866 10.1038/nature14539 10.1371/journal.pone.0156723 10.1038/nbt.3300 10.3389/fpls.2018.01162 10.3390/ncrna3010011 10.1038/nmeth.3547 10.1016/j.gpb.2015.02.003 |
| ContentType | Journal Article |
| Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
| Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
| DOI | 10.3390/cells8060521 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Genetics Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2073-4409 |
| ExternalDocumentID | oai_doaj_org_article_7f21a6cfeb1a4118b25c33ff003dde02 PMC6627874 31151273 10_3390_cells8060521 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United States--US China |
| GeographicLocations_xml | – name: China – name: United States--US |
| GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ABDBF ACUHS ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK EBD ESX GROUPED_DOAJ HCIFZ HYE IAO KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM CGR CUY CVF ECM EIF NPM 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c478t-1ebca9d78ebcea9c9ab47c4d6ba51a783b744e26771cfd3854576d3df30f39503 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000475309200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-4409 |
| IngestDate | Fri Oct 03 12:41:06 EDT 2025 Tue Nov 04 01:58:33 EST 2025 Sun Nov 09 11:26:30 EST 2025 Sun Nov 09 07:17:29 EST 2025 Thu Jan 02 22:59:26 EST 2025 Tue Nov 18 22:02:22 EST 2025 Sat Nov 29 07:18:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | autoencoder hybrid random forest light gradient boosting machine lncRNA-protein interaction plant |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c478t-1ebca9d78ebcea9c9ab47c4d6ba51a783b744e26771cfd3854576d3df30f39503 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2296889927?pq-origsite=%requestingapplication% |
| PMID | 31151273 |
| PQID | 2296889927 |
| PQPubID | 2032536 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7f21a6cfeb1a4118b25c33ff003dde02 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6627874 proquest_miscellaneous_2233855078 proquest_journals_2296889927 pubmed_primary_31151273 crossref_citationtrail_10_3390_cells8060521 crossref_primary_10_3390_cells8060521 |
| PublicationCentury | 2000 |
| PublicationDate | 20190530 |
| PublicationDateYYYYMMDD | 2019-05-30 |
| PublicationDate_xml | – month: 5 year: 2019 text: 20190530 day: 30 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Cells (Basel, Switzerland) |
| PublicationTitleAlternate | Cells |
| PublicationYear | 2019 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Zhou (ref_32) 2015; 12 Arendsee (ref_57) 2014; 19 ref_14 Nejat (ref_3) 2018; 38 ref_12 ref_55 ref_53 ref_51 Mohanty (ref_28) 2016; 7 ref_18 ref_16 Liu (ref_29) 2018; 2018 Ge (ref_23) 2016; 14 LeCun (ref_30) 2015; 521 Mermaz (ref_10) 2018; 1675 Yang (ref_15) 2018; 34 ref_25 Cao (ref_43) 2018; 34 ref_22 Qian (ref_56) 1999; 12 Liu (ref_11) 2015; 13 Xiao (ref_45) 2018; 153 Hu (ref_44) 2018; 15 Alipanahi (ref_31) 2015; 33 Zhao (ref_21) 2018; 9 Singh (ref_13) 2017; 45 Liu (ref_46) 2016; 206 Sankaran (ref_49) 2017; 60 Zhang (ref_50) 2017; 33 Pan (ref_34) 2018; 34 ref_36 ref_33 Zurada (ref_35) 2016; 27 Bierhoff (ref_9) 2018; 1686 ref_39 ref_38 Zhan (ref_52) 2018; 9 ref_37 Wang (ref_40) 2013; 9 Liu (ref_24) 2017; 8 Kashi (ref_6) 2016; 1859 Camborde (ref_8) 2017; 12 ref_47 Suresh (ref_19) 2015; 43 ref_41 ref_1 ref_2 Hu (ref_20) 2017; 13 Yi (ref_42) 2018; 11 Fuentes (ref_27) 2018; 9 ref_48 Zhang (ref_26) 2018; 9 ref_5 ref_4 Bellucci (ref_17) 2011; 8 ref_7 Wang (ref_54) 2018; 8 |
| References_xml | – volume: 206 start-page: 28 year: 2016 ident: ref_46 article-title: Prediction of protein-RNA interactions using sequence and structure descriptors publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.105 – ident: ref_55 – ident: ref_51 – volume: 7 start-page: 346 year: 2016 ident: ref_28 article-title: Using Deep Learning for Image-Based Plant Disease Detection publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01419 – ident: ref_41 doi: 10.1186/s12864-016-2931-8 – volume: 9 start-page: 458 year: 2018 ident: ref_52 article-title: Accurate Prediction of ncRNA-Protein Interactions From the Integration of Sequence and Evolutionary Information publication-title: Front Genet. doi: 10.3389/fgene.2018.00458 – volume: 19 start-page: 698 year: 2014 ident: ref_57 article-title: Coming of age: orphan genes in plants publication-title: Trends Plant. Sci. doi: 10.1016/j.tplants.2014.07.003 – ident: ref_1 – ident: ref_4 doi: 10.1371/journal.pgen.1006939 – volume: 34 start-page: 3427 year: 2018 ident: ref_34 article-title: Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty364 – volume: 33 start-page: 854 year: 2017 ident: ref_50 article-title: RBPPred: Predicting RNA-binding proteins from sequence using SVM publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw730 – volume: 12 start-page: 1933 year: 2017 ident: ref_8 article-title: Detection of nucleic acid-protein interactions in plant leaves using fluorescence lifetime imaging microscopy publication-title: Nat. Protoc. doi: 10.1038/nprot.2017.076 – volume: 9 start-page: 133 year: 2013 ident: ref_40 article-title: De novo prediction of RNA–protein interactions from sequence information publication-title: Mol. BioSyst. doi: 10.1039/C2MB25292A – ident: ref_5 doi: 10.3390/ncrna3020016 – volume: 13 start-page: 1781 year: 2017 ident: ref_20 article-title: LPI-ETSLP: lncRNA–protein interaction prediction using eigenvalue transformation-based semi-supervised link prediction publication-title: Mol. BioSyst. doi: 10.1039/C7MB00290D – ident: ref_48 doi: 10.1109/ICASSP.2013.6639343 – volume: 38 start-page: 93 year: 2018 ident: ref_3 article-title: Emerging roles of long non-coding RNAs in plant response to biotic and abiotic stresses publication-title: Crit. Rev. Biotechnol. doi: 10.1080/07388551.2017.1312270 – volume: 8 start-page: 103975 year: 2017 ident: ref_24 article-title: LPI-NRLMF: lncRNA-protein interaction prediction by neighborhood regularized logistic matrix factorization publication-title: Oncotarget doi: 10.18632/oncotarget.21934 – volume: 12 start-page: 145 year: 1999 ident: ref_56 article-title: On the momentum term in gradient descent learning algorithms publication-title: Neural Networks doi: 10.1016/S0893-6080(98)00116-6 – volume: 43 start-page: 1370 year: 2015 ident: ref_19 article-title: RPI-Pred: Predicting ncRNA-protein interaction using sequence and structural information publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv020 – ident: ref_37 doi: 10.1145/1390156.1390294 – ident: ref_33 doi: 10.3390/cells8020122 – volume: 11 start-page: 337 year: 2018 ident: ref_42 article-title: A Deep Learning Framework for Robust and Accurate Prediction of ncRNA-Protein Interactions Using Evolutionary Information publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2018.03.001 – volume: 1859 start-page: 3 year: 2016 ident: ref_6 article-title: Discovery and functional analysis of lncRNAs: Methodologies to investigate an uncharacterized transcriptome publication-title: Biochim. et Biophys. Acta (BBA)-Gene Regul. Mech. doi: 10.1016/j.bbagrm.2015.10.010 – ident: ref_16 doi: 10.1371/journal.pcbi.1006616 – volume: 8 start-page: 444 year: 2011 ident: ref_17 article-title: Predicting protein associations with long noncoding RNAs publication-title: Nat. Methods doi: 10.1038/nmeth.1611 – volume: 27 start-page: 1 year: 2016 ident: ref_35 article-title: Deep Learning of Part-Based Representation of Data Using Sparse Autoencoders With Nonnegativity Constraints publication-title: IEEE Trans. Neural Networks Learn. Syst. – ident: ref_38 – ident: ref_7 doi: 10.3390/cells8010062 – ident: ref_39 doi: 10.1186/1471-2105-12-489 – volume: 8 start-page: 14285 year: 2018 ident: ref_54 article-title: Enhanced Prediction of Hot Spots at Protein-Protein Interfaces Using Extreme Gradient Boosting publication-title: Sci. Rep. doi: 10.1038/s41598-018-32511-1 – volume: 14 start-page: 62 year: 2016 ident: ref_23 article-title: A Bipartite Network-based Method for Prediction of Long Non-coding RNA-protein Interactions publication-title: Genom. Proteom. Bioinform. doi: 10.1016/j.gpb.2016.01.004 – volume: 60 start-page: 64 year: 2017 ident: ref_49 article-title: Group sparse autoencoder publication-title: Image Vision Comput. doi: 10.1016/j.imavis.2017.01.005 – volume: 153 start-page: 1 year: 2018 ident: ref_45 article-title: A deep learning-based multi-model ensemble method for cancer prediction publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.09.005 – ident: ref_47 – ident: ref_18 doi: 10.1186/1471-2164-14-651 – volume: 34 start-page: 2185 year: 2018 ident: ref_43 article-title: The lncLocator: a subcellular localization predictor for long non-coding RNAs based on a stacked ensemble classifier publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty085 – volume: 34 start-page: 3825 year: 2018 ident: ref_15 article-title: LncADeep: an ab initio lncRNA identification and functional annotation tool based on deep learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty428 – volume: 2018 start-page: 1 year: 2018 ident: ref_29 article-title: A Stacked Autoencoder-Based Deep Neural Network for Achieving Gearbox Fault Diagnosis publication-title: Math. Probl. Eng. – volume: 1686 start-page: 241 year: 2018 ident: ref_9 article-title: Analysis of lncRNA-Protein Interactions by RNA-Protein Pull-Down Assays and RNA Immunoprecipitation (RIP) publication-title: Cell. Quiescence doi: 10.1007/978-1-4939-7371-2_17 – volume: 9 start-page: 239 year: 2018 ident: ref_21 article-title: IRWNRLPI: Integrating Random Walk and Neighborhood Regularized Logistic Matrix Factorization for lncRNA-Protein Interaction Prediction publication-title: Front. Genet. doi: 10.3389/fgene.2018.00239 – ident: ref_25 – volume: 9 start-page: 477 year: 2018 ident: ref_26 article-title: Deep Learning-Based Multi-Omics Data Integration Reveals Two Prognostic Subtypes in High-Risk Neuroblastoma publication-title: Front. Genet. doi: 10.3389/fgene.2018.00477 – volume: 1675 start-page: 331 year: 2018 ident: ref_10 article-title: RNA Immunoprecipitation Protocol to Identify Protein-RNA Interactions in Arabidopsis thaliana publication-title: Plant Chromatin Dyn. doi: 10.1007/978-1-4939-7318-7_19 – ident: ref_12 – ident: ref_53 doi: 10.1145/2939672.2939785 – volume: 45 start-page: e183 year: 2017 ident: ref_13 article-title: PLncPRO for prediction of long non-coding RNAs (lncRNAs) in plants and its application for discovery of abiotic stress-responsive lncRNAs in rice and chickpea publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx866 – volume: 521 start-page: 436 year: 2015 ident: ref_30 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref_36 – ident: ref_2 doi: 10.1371/journal.pone.0156723 – volume: 33 start-page: 831 year: 2015 ident: ref_31 article-title: Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3300 – volume: 15 start-page: 1 year: 2018 ident: ref_44 article-title: HLPI-Ensemble: Prediction of human lncRNA-protein interactions based on ensemble strategy publication-title: RNA Boil. – ident: ref_22 – volume: 9 start-page: 1162 year: 2018 ident: ref_27 article-title: High-Performance Deep Neural Network-Based Tomato Plant Diseases and Pests Diagnosis System With Refinement Filter Bank publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01162 – ident: ref_14 doi: 10.3390/ncrna3010011 – volume: 12 start-page: 931 year: 2015 ident: ref_32 article-title: Predicting effects of noncoding variants with deep learning-based sequence model publication-title: Nat. Methods doi: 10.1038/nmeth.3547 – volume: 13 start-page: 137 year: 2015 ident: ref_11 article-title: Long non-coding RNAs and their biological roles in plants publication-title: Genom. Proteom. Bioinform. doi: 10.1016/j.gpb.2015.02.003 |
| SSID | ssj0000816105 |
| Score | 2.2598777 |
| Snippet | Long non-protein-coding RNAs (lncRNAs) identification and analysis are pervasive in transcriptome studies due to their roles in biological processes. In... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 521 |
| SubjectTerms | Algorithms Arabidopsis - genetics Arabidopsis thaliana Artificial intelligence autoencoder Bioinformatics Compression Computational Biology - methods Deep learning Deoxyribonucleic acid DNA Gene expression Gene regulation hybrid International conferences Learning algorithms light gradient boosting machine lncRNA-protein interaction Localization Machine learning Neural networks plant Plant diseases Plant Proteins - metabolism Prediction models Protein Binding random forest Research methodology RNA, Long Noncoding - genetics RNA, Long Noncoding - metabolism RNA-protein interactions ROC Curve Zea mays Zea mays - genetics |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ra9RAEB6kKPgiaqvGVtmCPpXQTXaT2TzJKZY-tMchtvQt7G6yeFBSubsK_fed2U2PO1F88SmQDGQzs7PzzWb2G4APtOAF2zlyJCNDTvFakkvpMpeBYn1X-uBiyf_lGU6n5uqqmW20-uKasEQPnBR3jKEsbO0DrSlWExp2ZeWVCoFmI3lmopGU2GwkU3ENNoRkZJUq3RXl9ce8D740subDqlsxKFL1_wlf_l4muRF3Tp7DsxEwikka6At41A8v4UlqIXm3C58m4vSOT12J2YL_ubCexXlsCy0IjwpuSrQS14P_Np3kMyZlmA8ibgOmEw17cHHy9fuX03xsipB7jWaVF1y91HRo6NrbxjfWafS6q52tCotGOdS6L2vEwodOGUJIWHeqC0oG1VRSvYKd4Wbo34AoOgpf2BuP0mhfo-09el-52hfaaesyOHpQU-tHxnBuXHHdUubASm03lZrBx7X0z8SU8Re5z6zxtQzzW8cbZPV2tHr7L6tncPBgr3Z0umVblk1tKH8sMYPD9WNyF369HfqbW5ahnJw53EwGr5N51yNh4qGC4FwGuGX4raFuPxnmPyIlN9PoG9Rv_8e37cNTQmVNLFGQB7CzWtz27-Cx_7WaLxfv4zy_Byp-BHU priority: 102 providerName: Directory of Open Access Journals |
| Title | A Hybrid Prediction Method for Plant lncRNA-Protein Interaction |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31151273 https://www.proquest.com/docview/2296889927 https://www.proquest.com/docview/2233855078 https://pubmed.ncbi.nlm.nih.gov/PMC6627874 https://doaj.org/article/7f21a6cfeb1a4118b25c33ff003dde02 |
| Volume | 8 |
| WOSCitedRecordID | wos000475309200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2073-4409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816105 issn: 2073-4409 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816105 issn: 2073-4409 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2073-4409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816105 issn: 2073-4409 databaseCode: M7P dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-4409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816105 issn: 2073-4409 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2073-4409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816105 issn: 2073-4409 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9sq-CL39ZoPSLok4Rudveym6dyLVcq2CMUlfMpbHaz9qDk6t1V6It_uzObXNoT9cWXBLIDGTI7n5n9DcBbNHjeuAoVSTOfoL9mqFKSJ8yjr3fc-iq0_H_5qCYTPZ3mRVdwW3ZtlWubGAy1m1uqke9znmcakwOuDi6_JzQ1iv6udiM0tmCHUBJ4aN0r-hoLDZXA-KHtdxeY3e9TNXypWUZHVjc8UQDs_1OU-Xuz5C3vc_zwf_l-BA-6uDMetRvlMdypmydwr51Eef0UDkbxyTUd3oqLBf26IXHFp2G6dIxhbUyzjVbxRWPPJqOkIGyHWROHamJ7MOIZfD4efzo6SbrZComVSq-SlJqgcqc03muT29xUUlnpssoMU6O0qJSUNc-USq13QmOgpTInnBfMi3zIxHPYbuZN_QLi1KEXVLW2imlpM2Vqq6wdVplNZSVNFcH79XcubQc8TvMvLkpMQEgq5W2pRPCup75sATf-QndIIutpCCY7PJgvvpWd1pXK89Rk1qNDMhJTqYoPrRDeoylDs854BHtroZWd7i7LG4lF8KZfRq2j15umnl8RDab2BAWnI9ht90fPCeEXpRgVRqA2ds4Gq5srzew8IHsTGr9W8uW_2XoF9zFsy0MPA9uD7dXiqn4Nd-2P1Wy5GMCWmuoB7ByOJ8XZINQYBkEt6PpzjCvFh9Pi6y8-7hh5 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAQX3g9DgUWiJ2R1vbvxrg-oCo8qUZPIQgWVk7HXXohUOSVJQflT_EZm_KJBwK0HTpbskT3yfjuP3dn5AJ6jwXNpnuFEMtz56K85TiklfO7Q1-fCuqwq-f8w1tOpOT6O4i340Z6FobLK1iZWhjqfW1oj3xMiCg0mB0Lvn371iTWKdldbCo0aFofF-jumbMuXozc4vrtCHLw9ej30G1YB3yptVn5A5T9Rrg1eizSyUZopbVUeZmk_SLWRmVaqEKHWgXW5NBhi6DCXuZPcyajPJb73EmwrAnsPtuPRJP7YreoQjQVGLHWFvZQR36P196XhIR2S3fB9FUXAn-La38szz_m7gxv_25-6CdebyJoN6qlwC7aK8jZcqbk213dgf8CGazqexuIFbU4RINmk4s9mGLgzYm9asZPSvpsO_Ji6V8xKVq2X1kc_7sL7C9H-HvTKeVk8ABbk6Od1YazmRtlQp4XV1vaz0AYqU2nmwYt2XBPbtFYnho-TBFMsQkFyHgUe7HbSp3VLkb_IvSKIdDLUCLy6MV98Thq7kmgngjS0Dl1uqjBZzETfSukcGmt0XFx4sNOCJGms0zL5hRAPnnWP0a7Q59OymJ-RjJRVszvjwf0aj50m1KEpwLjXA72B1A1VN5-Usy9V73LiGzBaPfy3Wk_h6vBoMk7Go-nhI7iGQWpUVWzwHeitFmfFY7hsv61my8WTZgIy-HTRSP4JXotyLA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvB-BAkaiJxTVsb2xc0DVQll11XYVIUDlFBwnhpWqbNndgvav8euYyWPpIuDWA6dIiZWM4m9e9ng-gOdo8LwtclQkw32I_pqjSikRco--vhDO53XJ_4dDPR6b4-Mk3YAf3VkYKqvsbGJtqIupozXyHSGS2GBygKm6b8si0r3h7unXkBikaKe1o9NoIHJQLr9j-jZ_OdrDud4WYvjm3ev9sGUYCJ3SZhFGVAqUFNrgtbSJS2yutFNFnNt-ZLWRuVaqFLHWkfOFNBhu6LiQhZfcy6TPJb73EmxiSK5EDzbT0VH6cbXCQ5QWGL001fZSJnyH1uLnhsd0YHbND9Z0AX-KcX8v1Tzn-4Y3_ue_dhOutxE3GzQqcgs2yuo2XGk4OJd3YHfA9pd0bI2lM9q0IqCyo5pXm2FAz4jVacFOKvd2PAhT6moxqVi9jtocCbkL7y9E-nvQq6ZV-QBYVKD_16VxmhvlYm1Lp53r57GLVK5sHsCLbo4z17ZcJ-aPkwxTL0JEdh4RAWyvRp82rUb-Mu4VwWU1hhqE1zems89Za28y7UVkY-fRFVuFSWQu-k5K79GIo0PjIoCtDjBZa7Xm2S-0BPBs9RjtDX3eVuX0jMZIWTfBMwHcb7C5koQ6N0UYDweg11C7Jur6k2rype5pTjwERquH_xbrKVxF-GaHo_HBI7iGsWtSF3LwLegtZmflY7jsvi0m89mTVhcZfLpoIP8EMz167A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Prediction+Method+for+Plant+lncRNA-Protein+Interaction&rft.jtitle=Cells+%28Basel%2C+Switzerland%29&rft.au=Wekesa%2C+Jael+Sanyanda&rft.au=Luan%2C+Yushi&rft.au=Chen%2C+Ming&rft.au=Meng%2C+Jun&rft.date=2019-05-30&rft.issn=2073-4409&rft.eissn=2073-4409&rft.volume=8&rft.issue=6&rft.spage=521&rft_id=info:doi/10.3390%2Fcells8060521&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_cells8060521 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4409&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4409&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4409&client=summon |