Hybrid Organic–Inorganic Perovskite Photodetectors

Hybrid organic–inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and electrical properties including high optical absorption coefficient, high carrier mobility, and long carrier diffusion length, perovskites have open...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Small (Weinheim an der Bergstrasse, Germany) Ročník 13; číslo 41
Hlavní autori: Tian, Wei, Zhou, Huanping, Li, Liang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany Wiley Subscription Services, Inc 01.11.2017
Predmet:
ISSN:1613-6810, 1613-6829, 1613-6829
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Hybrid organic–inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and electrical properties including high optical absorption coefficient, high carrier mobility, and long carrier diffusion length, perovskites have opened up a great opportunity for high performance photodetectors. This review aims to give a comprehensive summary of the significant results on perovskite‐based photodetectors, focusing on the relationship among the perovskite structures, device configurations, and photodetecting performances. An introduction of recent progress in various perovskite structure‐based photodetectors is provided. The emphasis is placed on the correlation between the perovskite structure and the device performance. Next, recent developments of bandgap‐tunable perovskite and hybrid photodetectors built from perovskite heterostructures are highlighted. Then, effective approaches to enhance the stability of perovskite photodetector are presented, followed by the introduction of flexible and self‐powered perovskite photodetectors. Finally, a summary of the previous results is given, and the major challenges that need to be addressed in the future are outlined. A comprehensive summary of the research status on perovskite photodetectors is hoped to push forward the development of this field. Hybrid organic–inorganic perovskite materials have attracted wide research interests owing to their unique electrical and optoelectronic properties. This Review provides a profound summary of the most important works on perovskite photodetectors, and gives a systematic discussion on the advantages and disadvantages of different device configurations and perovskite morphologies, as well as future directions.
AbstractList Hybrid organic-inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and electrical properties including high optical absorption coefficient, high carrier mobility, and long carrier diffusion length, perovskites have opened up a great opportunity for high performance photodetectors. This review aims to give a comprehensive summary of the significant results on perovskite-based photodetectors, focusing on the relationship among the perovskite structures, device configurations, and photodetecting performances. An introduction of recent progress in various perovskite structure-based photodetectors is provided. The emphasis is placed on the correlation between the perovskite structure and the device performance. Next, recent developments of bandgap-tunable perovskite and hybrid photodetectors built from perovskite heterostructures are highlighted. Then, effective approaches to enhance the stability of perovskite photodetector are presented, followed by the introduction of flexible and self-powered perovskite photodetectors. Finally, a summary of the previous results is given, and the major challenges that need to be addressed in the future are outlined. A comprehensive summary of the research status on perovskite photodetectors is hoped to push forward the development of this field.Hybrid organic-inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and electrical properties including high optical absorption coefficient, high carrier mobility, and long carrier diffusion length, perovskites have opened up a great opportunity for high performance photodetectors. This review aims to give a comprehensive summary of the significant results on perovskite-based photodetectors, focusing on the relationship among the perovskite structures, device configurations, and photodetecting performances. An introduction of recent progress in various perovskite structure-based photodetectors is provided. The emphasis is placed on the correlation between the perovskite structure and the device performance. Next, recent developments of bandgap-tunable perovskite and hybrid photodetectors built from perovskite heterostructures are highlighted. Then, effective approaches to enhance the stability of perovskite photodetector are presented, followed by the introduction of flexible and self-powered perovskite photodetectors. Finally, a summary of the previous results is given, and the major challenges that need to be addressed in the future are outlined. A comprehensive summary of the research status on perovskite photodetectors is hoped to push forward the development of this field.
Hybrid organic-inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and electrical properties including high optical absorption coefficient, high carrier mobility, and long carrier diffusion length, perovskites have opened up a great opportunity for high performance photodetectors. This review aims to give a comprehensive summary of the significant results on perovskite-based photodetectors, focusing on the relationship among the perovskite structures, device configurations, and photodetecting performances. An introduction of recent progress in various perovskite structure-based photodetectors is provided. The emphasis is placed on the correlation between the perovskite structure and the device performance. Next, recent developments of bandgap-tunable perovskite and hybrid photodetectors built from perovskite heterostructures are highlighted. Then, effective approaches to enhance the stability of perovskite photodetector are presented, followed by the introduction of flexible and self-powered perovskite photodetectors. Finally, a summary of the previous results is given, and the major challenges that need to be addressed in the future are outlined. A comprehensive summary of the research status on perovskite photodetectors is hoped to push forward the development of this field.
Hybrid organic–inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and electrical properties including high optical absorption coefficient, high carrier mobility, and long carrier diffusion length, perovskites have opened up a great opportunity for high performance photodetectors. This review aims to give a comprehensive summary of the significant results on perovskite‐based photodetectors, focusing on the relationship among the perovskite structures, device configurations, and photodetecting performances. An introduction of recent progress in various perovskite structure‐based photodetectors is provided. The emphasis is placed on the correlation between the perovskite structure and the device performance. Next, recent developments of bandgap‐tunable perovskite and hybrid photodetectors built from perovskite heterostructures are highlighted. Then, effective approaches to enhance the stability of perovskite photodetector are presented, followed by the introduction of flexible and self‐powered perovskite photodetectors. Finally, a summary of the previous results is given, and the major challenges that need to be addressed in the future are outlined. A comprehensive summary of the research status on perovskite photodetectors is hoped to push forward the development of this field. Hybrid organic–inorganic perovskite materials have attracted wide research interests owing to their unique electrical and optoelectronic properties. This Review provides a profound summary of the most important works on perovskite photodetectors, and gives a systematic discussion on the advantages and disadvantages of different device configurations and perovskite morphologies, as well as future directions.
Author Tian, Wei
Li, Liang
Zhou, Huanping
Author_xml – sequence: 1
  givenname: Wei
  surname: Tian
  fullname: Tian, Wei
  organization: Soochow University
– sequence: 2
  givenname: Huanping
  surname: Zhou
  fullname: Zhou, Huanping
  organization: Peking University
– sequence: 3
  givenname: Liang
  surname: Li
  fullname: Li, Liang
  email: lli@suda.edu.cn, liang.li0216@gmail.com
  organization: Soochow University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28895306$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtKAzEUhoNU7EW3LqXgxs3UXCeZpYjaQqUFdR0ymYymTic1mVG68x18Q5_EKb0IBXF1zuL7fs75u6BVutIAcIrgAEGIL8O8KAYYIg4xgvwAdFCMSBQLnLR2O4Jt0A1hBiFBmPIj0MZCJIzAuAPocJl6m_Un_lmVVn9_fo1Kt977U-Pde3i1lelPX1zlMlMZXTkfjsFhropgTjazB55ubx6vh9F4cje6vhpHmnLBI8VyYXKREoE04ojhPDE0z4VgGSOpJhgKyghOYMppnqZKGca44klKeKwTSkgPXKxzF9691SZUcm6DNkWhSuPqIFHSRIvmdd6g53vozNW-bK5rKCZiQmhD98DZhqrTucnkwtu58ku57aMB6BrQ3oXgTS61rVRlXVl5ZQuJoFzVLle1y13tjTbY07bJfwrJWviwhVn-Q8uH-_H41_0B7FaUjw
CitedBy_id crossref_primary_10_1002_advs_202508332
crossref_primary_10_1002_smll_202205227
crossref_primary_10_1016_j_orgel_2023_106800
crossref_primary_10_1002_smll_202207520
crossref_primary_10_1007_s11465_023_0749_z
crossref_primary_10_1007_s40242_024_4152_z
crossref_primary_10_1016_j_micrna_2024_207914
crossref_primary_10_1021_acsnano_5c05794
crossref_primary_10_1002_crat_202100260
crossref_primary_10_1002_cey2_350
crossref_primary_10_1002_smll_202001534
crossref_primary_10_1039_D2NR06403K
crossref_primary_10_1080_10408436_2023_2289928
crossref_primary_10_3390_molecules26030705
crossref_primary_10_1063_5_0089840
crossref_primary_10_1039_D0MH01567A
crossref_primary_10_1016_j_optmat_2025_116806
crossref_primary_10_1016_j_orgel_2024_106998
crossref_primary_10_1002_crat_202300046
crossref_primary_10_1039_D5TC02430G
crossref_primary_10_1364_AO_481495
crossref_primary_10_1002_adom_202100786
crossref_primary_10_1039_D0NR05739H
crossref_primary_10_1109_LPT_2019_2920780
crossref_primary_10_1016_j_jpowsour_2024_236036
crossref_primary_10_1002_admt_202400757
crossref_primary_10_1016_j_optlastec_2024_110877
crossref_primary_10_1002_adom_202302712
crossref_primary_10_1039_D3QM00477E
crossref_primary_10_1002_inf2_12106
crossref_primary_10_1002_cnma_202400050
crossref_primary_10_1038_s41377_021_00516_7
crossref_primary_10_1016_j_nanoen_2023_108605
crossref_primary_10_1002_adom_201900272
crossref_primary_10_1007_s00339_020_03987_4
crossref_primary_10_1016_j_cej_2022_135997
crossref_primary_10_1016_j_cej_2025_166093
crossref_primary_10_1016_j_jpcs_2025_112944
crossref_primary_10_1002_adom_202202428
crossref_primary_10_1002_chem_202404004
crossref_primary_10_1002_pssa_202300166
crossref_primary_10_1016_j_orgel_2023_106942
crossref_primary_10_1051_epjap_2025022
crossref_primary_10_1016_j_ceramint_2021_08_290
crossref_primary_10_1007_s11664_022_09890_3
crossref_primary_10_1063_5_0153593
crossref_primary_10_1007_s10853_021_05840_2
crossref_primary_10_3390_photonics9050353
crossref_primary_10_1088_2515_7639_ab9aac
crossref_primary_10_1016_j_nanoen_2020_104611
crossref_primary_10_1002_adom_202000273
crossref_primary_10_1002_adom_202301782
crossref_primary_10_1016_j_apsusc_2020_147224
crossref_primary_10_1016_j_cjsc_2024_100454
crossref_primary_10_1109_LPT_2021_3113459
crossref_primary_10_1063_5_0122091
crossref_primary_10_1002_adfm_201906756
crossref_primary_10_1039_D2NR04735G
crossref_primary_10_1002_adom_202200238
crossref_primary_10_1016_j_jallcom_2021_161827
crossref_primary_10_1016_j_optmat_2024_115419
crossref_primary_10_1039_D5TA02548F
crossref_primary_10_1007_s40820_025_01815_z
crossref_primary_10_1007_s00216_021_03739_0
crossref_primary_10_1002_lpor_202400028
crossref_primary_10_1088_1361_6528_ad40b3
crossref_primary_10_1039_D5EL00043B
crossref_primary_10_1002_adfm_201909909
crossref_primary_10_1016_j_optmat_2022_113290
crossref_primary_10_1002_smll_202412101
crossref_primary_10_1021_acs_inorgchem_5c00116
crossref_primary_10_1002_adma_202210016
crossref_primary_10_1016_j_apsusc_2023_157867
crossref_primary_10_1088_1361_6528_acb713
crossref_primary_10_1007_s10854_025_14454_2
crossref_primary_10_1016_j_jallcom_2018_07_039
crossref_primary_10_1016_j_sna_2021_113176
crossref_primary_10_1039_D3NR04994A
crossref_primary_10_3390_ma16186317
crossref_primary_10_1039_C8RA08864K
crossref_primary_10_1002_adpr_202100335
crossref_primary_10_1002_admt_202300252
crossref_primary_10_1016_j_jiec_2024_06_007
crossref_primary_10_1515_nanoph_2020_0207
crossref_primary_10_1016_j_mssp_2023_108079
crossref_primary_10_1111_jace_17635
crossref_primary_10_1002_anie_201908743
crossref_primary_10_1002_smll_202412809
crossref_primary_10_1016_j_jallcom_2018_03_382
crossref_primary_10_1364_PRJ_403030
crossref_primary_10_1002_inf2_12010
crossref_primary_10_1016_j_cej_2022_136518
crossref_primary_10_1002_smsc_202000077
crossref_primary_10_1002_adma_202303964
crossref_primary_10_1016_j_mattod_2022_11_009
crossref_primary_10_1016_j_ijleo_2021_167069
crossref_primary_10_1007_s12274_020_3174_1
crossref_primary_10_1039_D2ME00032F
crossref_primary_10_1007_s12274_022_5312_4
crossref_primary_10_1016_j_mtchem_2025_102718
crossref_primary_10_1002_inf2_12141
crossref_primary_10_1002_pssr_202000410
crossref_primary_10_1016_j_solener_2019_03_024
crossref_primary_10_1002_adom_202201816
crossref_primary_10_1016_j_nanoen_2019_104279
crossref_primary_10_1002_adfm_201807672
crossref_primary_10_1016_j_surfin_2025_105966
crossref_primary_10_1002_adom_201800278
crossref_primary_10_1007_s10854_024_13964_9
crossref_primary_10_1016_j_optmat_2022_112147
crossref_primary_10_1016_j_photonics_2024_101232
crossref_primary_10_1002_adfm_202411671
crossref_primary_10_1002_adfm_201800113
crossref_primary_10_1039_D1QM00618E
crossref_primary_10_3390_nano12071185
crossref_primary_10_1080_23746149_2019_1592709
crossref_primary_10_1002_adfm_202413612
crossref_primary_10_1016_j_jallcom_2024_177627
crossref_primary_10_1088_1361_6528_aaddc4
crossref_primary_10_1002_adfm_202011284
crossref_primary_10_3390_bios11110415
crossref_primary_10_1088_1402_4896_ad5d29
crossref_primary_10_1039_D3NH00119A
crossref_primary_10_1021_jacsau_5c00651
crossref_primary_10_1016_j_electacta_2019_135332
crossref_primary_10_1002_adma_202411332
crossref_primary_10_1016_j_tsf_2023_139861
crossref_primary_10_1063_5_0186185
crossref_primary_10_1364_PRJ_461787
crossref_primary_10_1016_j_solener_2024_113211
crossref_primary_10_1016_j_jlumin_2024_120876
crossref_primary_10_1016_j_solener_2025_113874
crossref_primary_10_1002_adom_201801812
crossref_primary_10_1002_adfm_202010768
crossref_primary_10_1002_ange_201908743
crossref_primary_10_1002_adom_202301336
crossref_primary_10_1007_s44405_025_00011_2
crossref_primary_10_1002_adma_201801481
crossref_primary_10_1002_adfm_202008684
crossref_primary_10_1016_j_pmatsci_2025_101498
crossref_primary_10_1088_1674_4926_44_11_112001
crossref_primary_10_1002_solr_201800325
crossref_primary_10_1016_j_optmat_2024_115104
crossref_primary_10_1002_advs_202301149
crossref_primary_10_3390_nano13212867
crossref_primary_10_1002_smll_202007661
crossref_primary_10_1038_s41597_025_05637_x
crossref_primary_10_1002_adom_202501133
crossref_primary_10_1016_j_mssp_2023_107984
crossref_primary_10_1002_smll_202102987
crossref_primary_10_1088_1361_6528_abe907
crossref_primary_10_1002_adom_202402979
crossref_primary_10_1016_j_jssc_2024_125036
crossref_primary_10_1016_j_trechm_2022_10_008
crossref_primary_10_3390_s23010236
crossref_primary_10_1016_j_nanoen_2021_105959
crossref_primary_10_1016_j_surfin_2022_102315
crossref_primary_10_1016_j_jechem_2020_08_022
crossref_primary_10_1016_j_orgel_2018_11_016
crossref_primary_10_1002_lpor_201800204
crossref_primary_10_1002_aelm_202000920
crossref_primary_10_1016_j_ceramint_2025_01_573
crossref_primary_10_1002_inf2_12053
crossref_primary_10_1002_adfm_202200385
crossref_primary_10_1002_smll_202205976
crossref_primary_10_1039_D5RA03088A
crossref_primary_10_1002_adma_201807095
crossref_primary_10_1002_aelm_201900135
crossref_primary_10_1039_C8ME00022K
crossref_primary_10_1002_adma_202004416
crossref_primary_10_1039_D3NR00214D
crossref_primary_10_1021_acs_jpclett_5c01881
crossref_primary_10_1103_PhysRevMaterials_7_084601
crossref_primary_10_1002_adfm_201901371
crossref_primary_10_1063_5_0221884
crossref_primary_10_3390_mi13122089
crossref_primary_10_1039_C8RA00730F
crossref_primary_10_1038_s41598_020_65672_z
crossref_primary_10_1039_D1QI01326B
crossref_primary_10_1002_adfm_202009602
crossref_primary_10_1002_advs_202303133
crossref_primary_10_1088_1674_1056_27_12_127806
crossref_primary_10_1002_adom_202301028
crossref_primary_10_2478_msp_2022_0006
crossref_primary_10_1002_advs_202101729
crossref_primary_10_1016_j_ccr_2019_02_012
crossref_primary_10_1021_jacs_1c08923
crossref_primary_10_3390_app15147982
crossref_primary_10_3390_ma13214851
crossref_primary_10_1039_D5TC01077B
crossref_primary_10_1016_j_jcis_2019_07_044
crossref_primary_10_1002_admt_202000889
crossref_primary_10_1039_D4DT03247K
crossref_primary_10_1364_PRJ_444225
crossref_primary_10_1002_smll_202310591
crossref_primary_10_1002_adom_202001095
crossref_primary_10_1002_smll_202402951
crossref_primary_10_1002_adma_202003309
crossref_primary_10_1002_adom_202000557
crossref_primary_10_1109_TED_2022_3195689
crossref_primary_10_1016_j_apsusc_2021_151291
crossref_primary_10_1063_5_0234708
crossref_primary_10_1002_adom_202300831
crossref_primary_10_1002_smll_201900730
crossref_primary_10_1002_solr_201900210
crossref_primary_10_1021_acsaelm_5c00356
crossref_primary_10_1002_adfm_202005136
crossref_primary_10_1002_smll_202005606
crossref_primary_10_1016_j_nanoen_2019_103958
crossref_primary_10_3389_fphy_2022_957991
crossref_primary_10_1002_lpor_202200641
crossref_primary_10_1016_j_susmat_2023_e00622
crossref_primary_10_1021_acsami_5c09057
crossref_primary_10_1002_adom_202403123
crossref_primary_10_1063_5_0165439
crossref_primary_10_1016_j_optlastec_2024_112328
crossref_primary_10_1002_admt_202302033
crossref_primary_10_1016_j_solener_2025_113684
crossref_primary_10_1038_s41598_024_54036_6
crossref_primary_10_1002_adfm_201800179
crossref_primary_10_1088_2053_1591_ab6a47
crossref_primary_10_1002_adfm_201901280
crossref_primary_10_1016_j_rineng_2025_104693
crossref_primary_10_1021_acsami_5c06812
crossref_primary_10_1002_adom_202302013
crossref_primary_10_1109_SR_2025_3595503
crossref_primary_10_1002_smll_202506894
crossref_primary_10_1002_lpor_202000401
crossref_primary_10_1016_j_optmat_2024_115636
crossref_primary_10_1002_admi_202201785
crossref_primary_10_1002_eom2_12064
crossref_primary_10_1016_j_inoche_2025_115079
crossref_primary_10_3390_sym16030332
crossref_primary_10_34133_adi_0102
crossref_primary_10_1016_j_apmt_2024_102452
crossref_primary_10_1016_j_cej_2020_126779
crossref_primary_10_1002_aenm_202001349
crossref_primary_10_1016_j_mtchem_2024_102010
crossref_primary_10_1002_adfm_202108356
crossref_primary_10_1021_acs_chemrev_4c00663
crossref_primary_10_1039_D1NR01805A
crossref_primary_10_1109_LED_2024_3404618
crossref_primary_10_1002_adom_201800469
crossref_primary_10_3390_molecules25153536
crossref_primary_10_1002_adfm_201903907
crossref_primary_10_1016_j_synthmet_2020_116636
crossref_primary_10_1109_LED_2023_3307413
crossref_primary_10_1016_j_jallcom_2020_153882
crossref_primary_10_1016_j_orgel_2020_105626
crossref_primary_10_1039_C9RA04600C
crossref_primary_10_1002_aelm_202400649
crossref_primary_10_1039_D4CS00924J
crossref_primary_10_1016_j_solmat_2019_110230
crossref_primary_10_1002_smll_201802319
crossref_primary_10_1016_j_nanoen_2022_106960
crossref_primary_10_1016_j_apmate_2024_100250
crossref_primary_10_1016_j_ceramint_2022_09_019
crossref_primary_10_1063_5_0128271
crossref_primary_10_3390_photonics11111014
crossref_primary_10_1088_1674_1056_28_4_047804
crossref_primary_10_1002_adom_202000228
crossref_primary_10_1016_j_jallcom_2023_170869
crossref_primary_10_1016_j_pmatsci_2024_101242
crossref_primary_10_3390_ma16083134
crossref_primary_10_1016_j_microc_2024_111725
crossref_primary_10_1002_adfm_202105898
crossref_primary_10_1016_j_scib_2022_09_007
crossref_primary_10_1063_5_0064366
crossref_primary_10_1002_adfm_202304899
crossref_primary_10_1007_s11664_025_12309_4
crossref_primary_10_1039_D1MH02073K
crossref_primary_10_1002_solr_202200937
crossref_primary_10_1016_j_jallcom_2023_171043
crossref_primary_10_1063_5_0108781
crossref_primary_10_1016_j_mtcomm_2025_112552
crossref_primary_10_1038_s41378_021_00334_2
crossref_primary_10_1002_cphc_202200922
crossref_primary_10_1002_smll_201905253
crossref_primary_10_1088_1402_4896_aceb41
crossref_primary_10_1002_adfm_202100773
crossref_primary_10_1039_D5TC00364D
crossref_primary_10_1007_s11581_024_05658_3
crossref_primary_10_1016_j_jlumin_2024_120914
crossref_primary_10_1002_flm2_39
crossref_primary_10_1016_j_solener_2023_112106
crossref_primary_10_1021_acsaelm_5c01526
crossref_primary_10_1002_adma_202417397
crossref_primary_10_1007_s40820_024_01501_6
crossref_primary_10_1016_j_orgel_2020_105729
crossref_primary_10_1016_j_orgel_2022_106617
crossref_primary_10_1088_1361_6463_abbf76
crossref_primary_10_1109_LAWP_2023_3337009
crossref_primary_10_1002_chem_202200751
crossref_primary_10_30970_jps_29_2705
Cites_doi 10.1002/adma.201600468
10.1557/mrs2007.41
10.1016/S0038-1098(97)10085-0
10.1038/srep16563
10.1039/C6CC06425F
10.1021/acsnano.5b01480
10.1038/ncomms11105
10.1039/C4NR06982J
10.1021/acsnano.7b01351
10.1002/adma.201600992
10.1021/acsami.6b08318
10.1038/nmat1276
10.1039/C6TC02818G
10.1038/nmat4271
10.1016/j.orgel.2016.12.042
10.1016/j.nantod.2015.04.009
10.1039/C5NR08277C
10.1002/smll.201701042
10.1021/nl5020684
10.1039/C6CE00655H
10.1002/adma.201003156
10.1021/acsami.6b09502
10.1016/j.nima.2016.12.062
10.1126/sciadv.1500613
10.1021/ja506265h
10.1021/acsami.6b10034
10.1002/adma.201603573
10.1016/S0079-6727(02)00024-1
10.1021/jp209999j
10.1021/acsphotonics.5b00164
10.1016/j.mser.2009.02.001
10.1038/am.2016.167
10.1039/C5NR05604G
10.1021/jacs.5b11199
10.1002/adfm.201504477
10.1021/jz501392m
10.1039/C5TA05470B
10.1126/science.1243167
10.1002/adma.201505002
10.1002/adfm.201402020
10.1038/nnano.2010.78
10.1021/jz501983v
10.1021/jacs.6b11683
10.1038/nnano.2012.60
10.1002/adom.201600468
10.1186/1556-276X-8-188
10.1039/C5TC03417E
10.1126/science.1228604
10.1126/science.aaa2725
10.1103/PhysRevB.42.11099
10.1038/nphoton.2013.342
10.1039/c3tc32123a
10.1021/acs.nanolett.6b03119
10.1021/acs.nanolett.6b04587
10.1002/adma.201500099
10.1126/science.aaa5760
10.1039/C6SC04474C
10.1038/nature14133
10.1021/acs.nanolett.5b03504
10.1063/1.358463
10.1002/adma.201505126
10.1002/adma.19970091508
10.1002/adfm.201302090
10.1016/j.jallcom.2016.09.076
10.1038/nphoton.2015.82
10.1088/1674-4926/38/1/011004
10.1063/1.4971772
10.1002/anie.201503153
10.1021/acsnano.6b02442
10.1021/nl503057g
10.1021/nn504856g
10.1038/nmat4291
10.1002/lpor.201600215
10.1021/jz502717g
10.1021/cr050149z
10.1063/1.362677
10.1021/nl901637u
10.1039/c4ee00168k
10.1021/acsnano.5b07791
10.1002/aenm.201501520
10.1038/nchem.2324
10.1021/nl1006432
10.1002/adma.201306281
10.1038/nchem.1589
10.1038/ncomms6404
10.1002/anie.201603557
10.1039/C6NR06636D
10.1039/C5TC00673B
10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W
10.1002/adfm.201600405
10.1039/C6TC03592B
10.1038/nnano.2013.100
10.1002/advs.201500392
10.1063/1.3133358
10.1038/srep11830
10.1038/nnano.2014.149
10.1246/cl.150175
10.1021/nn501001j
10.1039/C5TA03686K
10.1021/acs.jpclett.6b02423
10.1002/adma.201405044
10.1021/acsnano.6b02425
10.1038/nphoton.2015.156
10.1038/srep19834
10.1038/nphoton.2016.139
10.1002/adma.201600069
10.1038/nphoton.2014.171
10.1002/adma.201402271
10.1126/science.1158877
10.1038/nphoton.2016.41
10.1002/cssc.201600868
10.1038/nature12509
10.1021/ja00006a076
10.1126/science.1254763
10.1021/acsnano.6b01540
10.1002/adma.201602639
10.1364/PRJ.3.000110
10.1088/1361-6463/aa5623
10.1002/adma.201405171
10.1021/acs.nanolett.5b00616
10.1002/adfm.200304399
10.1021/acs.jpclett.5b01666
10.1038/ncomms9238
10.1016/j.carbon.2016.04.060
10.1039/C5RA01180A
10.1039/c0cs00126k
10.1039/C5NR08677A
10.1038/ncomms6757
10.1039/C5RA27840F
10.1038/srep03826
10.1002/adma.201502238
10.1038/nature04855
10.1126/science.aaa0472
10.1038/natrevmats.2016.100
10.1126/science.286.5441.945
10.1039/C4CP03533J
10.1039/C6TA02851A
10.1021/acs.nanolett.5b01166
10.1039/C6CP01994C
10.1021/acsphotonics.6b00391
10.1126/science.aad1818
10.1002/adma.201601235
10.1073/pnas.0502848102
10.1002/cssc.201600679
10.1021/acs.nanolett.5b03061
10.1002/adfm.200600351
10.1021/acs.nanolett.6b03782
10.1039/C5CC02282G
10.1039/C4NR02065K
10.1021/nl0803702
10.1002/adma.201503461
10.1039/C5TC03342J
10.1038/ncomms3885
10.1021/acsnano.5b04995
10.1016/j.jssc.2013.07.008
10.1007/s12274-016-1413-2
10.1002/anie.200702506
10.1021/acsami.7b04616
10.1002/adma.201601603
10.1021/acs.accounts.5b00483
10.1126/science.1243982
10.1002/adma.201600064
10.1039/C6TC02097F
10.1021/ja809598r
10.1002/adma.201605993
10.1038/ncomms9724
10.1002/adma.201204979
10.1021/nn5041922
10.1063/1.4864778
10.1021/nn3035765
10.1002/adma.200390108
10.1002/adma.201405116
10.1002/adom.201600327
10.1002/adfm.201201008
10.1007/s11664-016-4536-z
10.1039/C5CE02531A
10.1021/acsnano.6b00272
10.1021/nl070111x
10.1002/adma.201305929
10.1016/j.nanoen.2016.09.035
10.1063/1.108863
10.1126/science.1254050
10.1039/C4CS00458B
10.1002/asia.201600430
10.1038/nmat1849
10.1002/adma.201405217
10.1038/nphoton.2015.175
10.1002/anie.201411956
10.1021/acs.nanolett.7b00166
10.1021/ja00124a012
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201702107
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 28895306
10_1002_smll_201702107
SMLL201702107
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Jiangsu Science and Technology Committee
  funderid: BK20140009
– fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
– fundername: National Natural Science Foundation of China
  funderid: 51772197; 51422206; 51372159; 51502184
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AAMMB
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AEFGJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
FEDTE
GODZA
HVGLF
LH4
AAYOK
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c4787-a5f8ef8b381c17152f9e4ff885d53bc3208453290b74fbbaae557a79b376c9433
IEDL.DBID DRFUL
ISICitedReferencesCount 439
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414374700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1613-6810
1613-6829
IngestDate Sun Nov 09 09:56:28 EST 2025
Fri Jul 25 12:05:24 EDT 2025
Thu Apr 03 07:05:13 EDT 2025
Sat Nov 29 03:27:28 EST 2025
Tue Nov 18 22:33:44 EST 2025
Wed Jan 22 16:50:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 41
Keywords perovskites
photodetectors
optical sensors
flexible
self-powered
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4787-a5f8ef8b381c17152f9e4ff885d53bc3208453290b74fbbaae557a79b376c9433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 28895306
PQID 1958633419
PQPubID 1046358
PageCount 22
ParticipantIDs proquest_miscellaneous_1938187027
proquest_journals_1958633419
pubmed_primary_28895306
crossref_citationtrail_10_1002_smll_201702107
crossref_primary_10_1002_smll_201702107
wiley_primary_10_1002_smll_201702107_SMLL201702107
PublicationCentury 2000
PublicationDate 2017-11-00
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-00
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 10
2002; 14
2007; 107
1991; 113
2013; 4
2014; 26
1999; 286
2016; 30
2014; 24
1996; 79
2013; 8
2013; 5
2012; 12
2014; 136
1997; 9
1990; 42
2017; 848
2015; 137
2009; 94
2005; 102
2014; 16
2014; 14
2007; 6
2007; 7
2016; 49
2010; 5
2012; 22
2006; 442
1994; 76
2016; 45
2007; 17
2009; 64
2015; 51
2013; 501
2015; 54
2016; 10
2013; 342
2016; 18
2016; 16
2016; 11
2015; 350
2016; 4
2017; 50
2016; 6
2016; 7
2016; 3
2008; 47
2005; 4
2003; 27
2015; 517
2016; 28
2012; 116
2016; 26
2016; 8
2016; 9
2017; 5
2017; 42
2017; 8
2013; 25
2017; 2
1993; 62
2015; 347
2016; 109
2013; 205
2003; 15
2008; 8
2016; 105
2007; 32
2017; 9
2014; 5
2014; 4
2014; 2
2017; 38
2015; 44
2011; 23
2014; 9
2014; 8
2014; 7
2014; 6
2012; 338
2009; 324
2015; 2
2015; 1
2015; 15
2015; 14
2015; 6
2015; 5
2015; 3
2011; 40
2015; 10
1995; 117
2016; 52
2017; 29
2017; 692
2009; 131
2015; 9
2015; 7
2016; 55
2015; 27
2017; 17
2004; 14
2017; 11
2017; 10
2017; 13
2009; 9
2017
2016; 138
1998; 105
2012; 6
2012; 7
2014; 345
2014; 104
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_158_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_135_1
e_1_2_10_173_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_112_1
e_1_2_10_13_1
e_1_2_10_51_1
e_1_2_10_147_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_101_1
e_1_2_10_185_1
e_1_2_10_41_1
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_52_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_148_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_186_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_42_1
e_1_2_10_190_1
e_1_2_10_91_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_175_1
e_1_2_10_30_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_187_1
e_1_2_10_164_1
e_1_2_10_43_1
e_1_2_10_20_1
Meng L. (e_1_2_10_56_1) 2017; 29
e_1_2_10_130_1
e_1_2_10_92_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_191_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_153_1
e_1_2_10_176_1
e_1_2_10_31_1
e_1_2_10_188_1
e_1_2_10_81_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_180_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_89_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_131_1
e_1_2_10_177_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_116_1
e_1_2_10_192_1
e_1_2_10_55_1
e_1_2_10_78_1
e_1_2_10_154_1
e_1_2_10_32_1
e_1_2_10_120_1
e_1_2_10_166_1
e_1_2_10_189_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_105_1
e_1_2_10_181_1
e_1_2_10_67_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_178_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_193_1
e_1_2_10_94_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_79_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_167_1
Wang H. (e_1_2_10_174_1) 2012; 12
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_182_1
e_1_2_10_83_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_179_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_171_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_119_1
e_1_2_10_145_1
e_1_2_10_168_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_183_1
e_1_2_10_160_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_108_1
e_1_2_10_157_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_172_1
e_1_2_10_96_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_50_1
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_62_1
e_1_2_10_161_1
e_1_2_10_85_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_184_1
e_1_2_10_47_1
References_xml – volume: 54
  start-page: 5693
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 25
  start-page: 4267
  year: 2013
  publication-title: Adv. Mater.
– volume: 14
  start-page: 557
  year: 2015
  publication-title: Nat. Mater.
– volume: 347
  start-page: 519
  year: 2015
  publication-title: Science
– volume: 7
  start-page: 1003
  year: 2007
  publication-title: Nano Lett.
– volume: 8
  start-page: 497
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 28
  start-page: 3683
  year: 2016
  publication-title: Adv. Mater.
– volume: 28
  start-page: 7799
  year: 2016
  publication-title: Adv. Mater.
– volume: 10
  start-page: 5113
  year: 2016
  publication-title: ACS Nano
– volume: 8
  start-page: 31289
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 2885
  year: 2013
  publication-title: Nat. Commun.
– volume: 6
  start-page: 8238
  year: 2015
  publication-title: Nat. Commun.
– volume: 10
  start-page: 2117
  year: 2010
  publication-title: Nano Lett.
– volume: 9
  start-page: 687
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 22
  start-page: 3326
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 16563
  year: 2015
  publication-title: Sci. Rep.
– volume: 1
  start-page: e1500613
  year: 2015
  publication-title: Sci. Adv.
– volume: 347
  start-page: 967
  year: 2015
  publication-title: Science
– volume: 286
  start-page: 945
  year: 1999
  publication-title: Science
– volume: 6
  start-page: 9127
  year: 2014
  publication-title: Nanoscale
– volume: 8
  start-page: 10640
  year: 2014
  publication-title: ACS Nano
– volume: 18
  start-page: 4405
  year: 2016
  publication-title: CrystEngComm
– volume: 24
  start-page: 151
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 2244
  year: 2017
  publication-title: Nano Res.
– volume: 27
  start-page: 2804
  year: 2015
  publication-title: Adv. Mater.
– volume: 205
  start-page: 39
  year: 2013
  publication-title: J. Solid State Chem.
– volume: 6
  start-page: 8724
  year: 2015
  publication-title: Nat. Commun.
– volume: 9
  start-page: 6178
  year: 2015
  publication-title: ACS Nano
– volume: 28
  start-page: 3528
  year: 2016
  publication-title: Adv. Mater.
– volume: 7
  start-page: 703
  year: 2015
  publication-title: Nat. Chem.
– volume: 45
  start-page: 655
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 104
  start-page: 063903
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 1567
  year: 2017
  publication-title: Nanoscale
– volume: 9
  start-page: 18977
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 2201
  year: 2016
  publication-title: Adv. Mater.
– volume: 113
  start-page: 2328
  year: 1991
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1602639
  year: 2017
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1377
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 16
  start-page: 7710
  year: 2016
  publication-title: Nano Lett.
– volume: 28
  start-page: 8144
  year: 2016
  publication-title: Adv. Mater.
– volume: 27
  start-page: 2311
  year: 2015
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1500392
  year: 2016
  publication-title: Adv. Sci.
– volume: 14
  start-page: 6761
  year: 2014
  publication-title: Nano Lett.
– volume: 4
  start-page: 86
  year: 2005
  publication-title: Nat. Mater.
– volume: 4
  start-page: 11
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 10
  start-page: 1047
  year: 2016
  publication-title: Laser Photonics Rev.
– volume: 136
  start-page: 12130
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 6411
  year: 2015
  publication-title: Adv. Mater.
– volume: 47
  start-page: 58
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: e328
  year: 2016
  publication-title: NPG Asia Mater.
– volume: 116
  start-page: 4267
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 16
  start-page: 7446
  year: 2016
  publication-title: Nano Lett.
– volume: 5
  start-page: 21859
  year: 2015
  publication-title: RSC Adv.
– volume: 3
  start-page: 6600
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 5
  start-page: 263
  year: 2013
  publication-title: Nat. Chem.
– volume: 10
  start-page: 355
  year: 2015
  publication-title: Nano Today
– volume: 5
  start-page: 391
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 27
  start-page: 41
  year: 2015
  publication-title: Adv. Mater.
– volume: 7
  start-page: 11105
  year: 2016
  publication-title: Nat. Commun.
– volume: 14
  start-page: 636
  year: 2015
  publication-title: Nat. Mater.
– volume: 342
  start-page: 344
  year: 2013
  publication-title: Science
– volume: 7
  start-page: 363
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 15
  start-page: 3833
  year: 2015
  publication-title: Nano Lett.
– volume: 2
  start-page: 1117
  year: 2015
  publication-title: ACS Photonics
– volume: 324
  start-page: 1530
  year: 2009
  publication-title: Science
– volume: 5
  start-page: 1600468
  year: 2017
  publication-title: Adv. Opt. Mater.
– volume: 5
  start-page: 5757
  year: 2014
  publication-title: Nat. Commun.
– volume: 14
  start-page: 158
  year: 2002
  publication-title: Adv. Mater.
– volume: 10
  start-page: 6623
  year: 2016
  publication-title: ACS Nano
– volume: 9
  start-page: 11310
  year: 2015
  publication-title: ACS Nano
– volume: 4
  start-page: 7302
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 3
  start-page: 2197
  year: 2016
  publication-title: ACS Photonics
– volume: 27
  start-page: 2060
  year: 2015
  publication-title: Adv. Mater.
– volume: 10
  start-page: 6816
  year: 2016
  publication-title: ACS Nano
– volume: 30
  start-page: 27
  year: 2016
  publication-title: Nano Energy
– volume: 14
  start-page: 5995
  year: 2014
  publication-title: Nano Lett.
– volume: 109
  start-page: 233303
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 52
  start-page: 13637
  year: 2016
  publication-title: Chem. Commun.
– volume: 8
  start-page: 7036
  year: 2016
  publication-title: Nanoscale
– volume: 44
  start-page: 720
  year: 2015
  publication-title: Chem. Lett.
– volume: 17
  start-page: 1795
  year: 2007
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 1603836
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  start-page: 535
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  start-page: 1592
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 8
  start-page: 737
  year: 2014
  publication-title: Nat. Photonics
– volume: 105
  start-page: 353
  year: 2016
  publication-title: Carbon
– volume: 8
  start-page: 188
  year: 2013
  publication-title: Nano Res. Lett.
– volume: 517
  start-page: 476
  year: 2015
  publication-title: Nature
– volume: 16
  start-page: 871
  year: 2016
  publication-title: Nano Lett.
– volume: 55
  start-page: 11945
  year: 2016
  publication-title: Angew. Chem. Int. Ed.
– volume: 24
  start-page: 7373
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 442
  start-page: 180
  year: 2006
  publication-title: Nature
– volume: 2
  start-page: 16100
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 10
  start-page: 585
  year: 2016
  publication-title: Nat. Photonics
– volume: 8
  start-page: 33273
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 9713
  year: 2016
  publication-title: Adv. Mater.
– volume: 14
  start-page: 38
  year: 2004
  publication-title: Adv. Funct. Mater.
– volume: 18
  start-page: 23174
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 10
  start-page: 6808
  year: 2016
  publication-title: ACS Nano
– volume: 42
  start-page: 11099
  year: 1990
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 4
  start-page: 10700
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 26
  start-page: 4213
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 347
  start-page: 522
  year: 2015
  publication-title: Science
– volume: 338
  start-page: 643
  year: 2012
  publication-title: Science
– volume: 4
  start-page: 8373
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 42
  start-page: 203
  year: 2017
  publication-title: Org. Electron.
– volume: 10
  start-page: 3536
  year: 2016
  publication-title: ACS Nano
– volume: 94
  start-page: 191103
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 23
  start-page: 649
  year: 2011
  publication-title: Adv. Mater.
– volume: 27
  start-page: 1912
  year: 2015
  publication-title: Adv. Mater.
– volume: 9
  start-page: 679
  year: 2015
  publication-title: Nat. Photonics
– volume: 9
  start-page: 2572
  year: 2016
  publication-title: ChemSusChem
– volume: 131
  start-page: 6050
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 094002
  year: 2017
  publication-title: J. Phys. D: Appl. Phys.
– volume: 28
  start-page: 5969
  year: 2016
  publication-title: Adv. Mater.
– volume: 692
  start-page: 589
  year: 2017
  publication-title: J. Alloys Compd.
– volume: 26
  start-page: 4653
  year: 2014
  publication-title: Adv. Mater.
– volume: 15
  start-page: 464
  year: 2003
  publication-title: Adv. Mater.
– volume: 5
  start-page: 2927
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 12
  start-page: 4764
  year: 2012
  publication-title: Nano Lett.
– volume: 38
  start-page: 011004
  year: 2017
  publication-title: J. Semicond.
– volume: 11
  start-page: 2675
  year: 2016
  publication-title: Chem. — Asian J.
– volume: 350
  start-page: 1222
  year: 2015
  publication-title: Science
– volume: 4
  start-page: 9172
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 8
  start-page: 1649
  year: 2008
  publication-title: Nano Lett.
– volume: 5
  start-page: 5404
  year: 2014
  publication-title: Nat. Commun.
– volume: 8
  start-page: 4015
  year: 2014
  publication-title: ACS Nano
– volume: 51
  start-page: 9659
  year: 2015
  publication-title: Chem. Commun.
– volume: 11
  start-page: 5766
  year: 2017
  publication-title: ACS Nano
– volume: 4
  start-page: 630
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 105
  start-page: 253
  year: 1998
  publication-title: Solid State Commun.
– volume: 8
  start-page: 133
  year: 2014
  publication-title: Nat. Photonics
– volume: 6
  start-page: 9229
  year: 2012
  publication-title: ACS Nano
– volume: 17
  start-page: 523
  year: 2017
  publication-title: Nano Lett.
– volume: 5
  start-page: 4175
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 45
  start-page: 3278
  year: 2016
  publication-title: J. Electron. Mater.
– volume: 138
  start-page: 16612
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 62
  start-page: 585
  year: 1993
  publication-title: Appl. Phys. Lett.
– volume: 15
  start-page: 7963
  year: 2015
  publication-title: Nano Lett.
– volume: 27
  start-page: 59
  year: 2003
  publication-title: Prog. Quantum Electron.
– volume: 8
  start-page: 2522
  year: 2017
  publication-title: Chem. Sci.
– volume: 345
  start-page: 295
  year: 2014
  publication-title: Science
– volume: 15
  start-page: 4571
  year: 2015
  publication-title: Nano Lett.
– volume: 8
  start-page: 7377
  year: 2016
  publication-title: Nanoscale
– volume: 342
  start-page: 341
  year: 2013
  publication-title: Science
– volume: 3
  start-page: 16445
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 21760
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 10794
  year: 2016
  publication-title: Adv. Mater.
– volume: 4
  start-page: 3826
  year: 2014
  publication-title: Sci. Rep.
– volume: 26
  start-page: 2137
  year: 2014
  publication-title: Adv. Mater.
– volume: 8
  start-page: 5350
  year: 2016
  publication-title: Nanoscale
– volume: 345
  start-page: 542
  year: 2014
  publication-title: Science
– volume: 8
  start-page: 10947
  year: 2014
  publication-title: ACS Nano
– volume: 848
  start-page: 106
  year: 2017
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
– volume: 9
  start-page: 3354
  year: 2009
  publication-title: Nano Lett.
– volume: 40
  start-page: 2986
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 137
  start-page: 16008
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 107
  start-page: 1324
  year: 2007
  publication-title: Chem. Rev.
– volume: 16
  start-page: 22122
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 9
  start-page: 1164
  year: 1997
  publication-title: Adv. Mater.
– volume: 5
  start-page: 11830
  year: 2015
  publication-title: Sci. Rep.
– volume: 9
  start-page: 687
  year: 2015
  publication-title: Nat. Photonics
– volume: 76
  start-page: 1363
  year: 1994
  publication-title: J. Appl. Phys.
– volume: 32
  start-page: 99
  year: 2007
  publication-title: MRS Bull.
– volume: 9
  start-page: 2597
  year: 2016
  publication-title: ChemSusChem
– volume: 6
  start-page: 19834
  year: 2016
  publication-title: Sci. Rep.
– volume: 28
  start-page: 566
  year: 2016
  publication-title: Adv. Mater.
– volume: 7
  start-page: 4163
  year: 2015
  publication-title: Nanoscale
– volume: 117
  start-page: 5297
  year: 1995
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 3781
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 28
  start-page: 2253
  year: 2016
  publication-title: Adv. Mater.
– volume: 17
  start-page: 2482
  year: 2017
  publication-title: Nano Lett.
– volume: 79
  start-page: 7433
  year: 1996
  publication-title: J. Appl. Phys.
– volume: 27
  start-page: 1414
  year: 2015
  publication-title: Adv. Mater.
– volume: 10
  start-page: 333
  year: 2016
  publication-title: Nat. Photonics
– volume: 54
  start-page: 8208
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 1829
  year: 2016
  publication-title: Adv. Opt. Mater.
– volume: 6
  start-page: 183
  year: 2007
  publication-title: Nat. Mater.
– volume: 13
  start-page: 1701042
  year: 2017
  publication-title: Small
– volume: 49
  start-page: 545
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 5
  start-page: 1501520
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 444
  year: 2015
  publication-title: Nat. Photonics
– volume: 26
  start-page: 1296
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 6205
  year: 2016
  publication-title: RSC Adv.
– volume: 8
  start-page: 23868
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 110
  year: 2015
  publication-title: Photonics Res.
– volume: 18
  start-page: 4476
  year: 2016
  publication-title: CrystEngComm
– volume: 64
  start-page: 33
  year: 2009
  publication-title: Mater. Sci. Eng., R
– year: 2017
– volume: 8
  start-page: 445
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 102
  start-page: 10451
  year: 2005
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 29
  start-page: 1605993
  year: 2017
  publication-title: Adv. Mater.
– volume: 501
  start-page: 395
  year: 2013
  publication-title: Nature
– ident: e_1_2_10_166_1
  doi: 10.1002/adma.201600468
– ident: e_1_2_10_168_1
  doi: 10.1557/mrs2007.41
– ident: e_1_2_10_68_1
  doi: 10.1016/S0038-1098(97)10085-0
– ident: e_1_2_10_124_1
  doi: 10.1038/srep16563
– ident: e_1_2_10_89_1
  doi: 10.1039/C6CC06425F
– ident: e_1_2_10_148_1
  doi: 10.1021/acsnano.5b01480
– ident: e_1_2_10_179_1
  doi: 10.1038/ncomms11105
– ident: e_1_2_10_136_1
  doi: 10.1039/C4NR06982J
– ident: e_1_2_10_97_1
  doi: 10.1021/acsnano.7b01351
– ident: e_1_2_10_163_1
  doi: 10.1002/adma.201600992
– ident: e_1_2_10_187_1
  doi: 10.1021/acsami.6b08318
– ident: e_1_2_10_9_1
  doi: 10.1038/nmat1276
– ident: e_1_2_10_62_1
  doi: 10.1039/C6TC02818G
– ident: e_1_2_10_64_1
  doi: 10.1038/nmat4271
– ident: e_1_2_10_73_1
  doi: 10.1016/j.orgel.2016.12.042
– ident: e_1_2_10_88_1
  doi: 10.1016/j.nantod.2015.04.009
– ident: e_1_2_10_188_1
  doi: 10.1039/C5NR08277C
– ident: e_1_2_10_191_1
  doi: 10.1002/smll.201701042
– ident: e_1_2_10_131_1
  doi: 10.1021/nl5020684
– ident: e_1_2_10_86_1
  doi: 10.1039/C6CE00655H
– ident: e_1_2_10_17_1
  doi: 10.1002/adma.201003156
– ident: e_1_2_10_190_1
  doi: 10.1021/acsami.6b09502
– ident: e_1_2_10_129_1
  doi: 10.1016/j.nima.2016.12.062
– ident: e_1_2_10_141_1
  doi: 10.1126/sciadv.1500613
– ident: e_1_2_10_20_1
  doi: 10.1021/ja506265h
– ident: e_1_2_10_49_1
  doi: 10.1021/acsami.6b10034
– ident: e_1_2_10_72_1
  doi: 10.1002/adma.201603573
– ident: e_1_2_10_5_1
  doi: 10.1016/S0079-6727(02)00024-1
– ident: e_1_2_10_169_1
  doi: 10.1021/jp209999j
– ident: e_1_2_10_110_1
  doi: 10.1021/acsphotonics.5b00164
– ident: e_1_2_10_167_1
  doi: 10.1016/j.mser.2009.02.001
– ident: e_1_2_10_82_1
  doi: 10.1038/am.2016.167
– ident: e_1_2_10_55_1
  doi: 10.1039/C5NR05604G
– ident: e_1_2_10_99_1
  doi: 10.1021/jacs.5b11199
– ident: e_1_2_10_102_1
  doi: 10.1002/adfm.201504477
– ident: e_1_2_10_41_1
  doi: 10.1021/jz501392m
– ident: e_1_2_10_154_1
  doi: 10.1039/C5TA05470B
– ident: e_1_2_10_34_1
  doi: 10.1126/science.1243167
– ident: e_1_2_10_122_1
  doi: 10.1002/adma.201505002
– ident: e_1_2_10_101_1
  doi: 10.1002/adfm.201402020
– ident: e_1_2_10_156_1
  doi: 10.1038/nnano.2010.78
– ident: e_1_2_10_93_1
  doi: 10.1021/jz501983v
– ident: e_1_2_10_27_1
  doi: 10.1021/jacs.6b11683
– volume: 29
  start-page: 1603836
  year: 2017
  ident: e_1_2_10_56_1
  publication-title: Adv. Mater.
– ident: e_1_2_10_145_1
  doi: 10.1038/nnano.2012.60
– ident: e_1_2_10_130_1
  doi: 10.1002/adom.201600468
– ident: e_1_2_10_170_1
  doi: 10.1186/1556-276X-8-188
– ident: e_1_2_10_83_1
  doi: 10.1039/C5TC03417E
– ident: e_1_2_10_46_1
  doi: 10.1126/science.1228604
– ident: e_1_2_10_118_1
  doi: 10.1126/science.aaa2725
– ident: e_1_2_10_25_1
  doi: 10.1103/PhysRevB.42.11099
– ident: e_1_2_10_50_1
  doi: 10.1038/nphoton.2013.342
– ident: e_1_2_10_143_1
  doi: 10.1039/c3tc32123a
– ident: e_1_2_10_52_1
– ident: e_1_2_10_138_1
  doi: 10.1021/acs.nanolett.6b03119
– ident: e_1_2_10_137_1
  doi: 10.1021/acs.nanolett.6b04587
– ident: e_1_2_10_108_1
  doi: 10.1002/adma.201500099
– ident: e_1_2_10_119_1
  doi: 10.1126/science.aaa5760
– ident: e_1_2_10_90_1
  doi: 10.1039/C6SC04474C
– ident: e_1_2_10_43_1
  doi: 10.1038/nature14133
– ident: e_1_2_10_139_1
  doi: 10.1021/acs.nanolett.5b03504
– ident: e_1_2_10_4_1
  doi: 10.1063/1.358463
– ident: e_1_2_10_133_1
  doi: 10.1002/adma.201505126
– ident: e_1_2_10_117_1
  doi: 10.1002/adma.19970091508
– ident: e_1_2_10_94_1
  doi: 10.1002/adfm.201302090
– ident: e_1_2_10_54_1
  doi: 10.1016/j.jallcom.2016.09.076
– ident: e_1_2_10_126_1
  doi: 10.1038/nphoton.2015.82
– ident: e_1_2_10_84_1
  doi: 10.1088/1674-4926/38/1/011004
– ident: e_1_2_10_78_1
  doi: 10.1063/1.4971772
– ident: e_1_2_10_177_1
  doi: 10.1002/anie.201503153
– ident: e_1_2_10_182_1
  doi: 10.1021/acsnano.6b02442
– ident: e_1_2_10_66_1
  doi: 10.1021/nl503057g
– ident: e_1_2_10_67_1
  doi: 10.1021/nn504856g
– ident: e_1_2_10_63_1
  doi: 10.1038/nmat4291
– ident: e_1_2_10_80_1
  doi: 10.1002/lpor.201600215
– ident: e_1_2_10_186_1
  doi: 10.1021/jz502717g
– ident: e_1_2_10_175_1
  doi: 10.1021/cr050149z
– ident: e_1_2_10_1_1
  doi: 10.1063/1.362677
– ident: e_1_2_10_10_1
  doi: 10.1021/nl901637u
– ident: e_1_2_10_38_1
  doi: 10.1039/c4ee00168k
– ident: e_1_2_10_140_1
  doi: 10.1021/acsnano.5b07791
– ident: e_1_2_10_70_1
  doi: 10.1002/aenm.201501520
– ident: e_1_2_10_181_1
  doi: 10.1038/nchem.2324
– ident: e_1_2_10_8_1
  doi: 10.1021/nl1006432
– ident: e_1_2_10_92_1
  doi: 10.1002/adma.201306281
– ident: e_1_2_10_173_1
  doi: 10.1038/nchem.1589
– ident: e_1_2_10_111_1
  doi: 10.1038/ncomms6404
– ident: e_1_2_10_165_1
  doi: 10.1002/anie.201603557
– ident: e_1_2_10_151_1
  doi: 10.1039/C6NR06636D
– ident: e_1_2_10_112_1
  doi: 10.1039/C5TC00673B
– ident: e_1_2_10_13_1
  doi: 10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W
– ident: e_1_2_10_103_1
  doi: 10.1002/adfm.201600405
– ident: e_1_2_10_153_1
  doi: 10.1039/C6TC03592B
– ident: e_1_2_10_144_1
  doi: 10.1038/nnano.2013.100
– ident: e_1_2_10_87_1
  doi: 10.1002/advs.201500392
– ident: e_1_2_10_16_1
  doi: 10.1063/1.3133358
– ident: e_1_2_10_147_1
  doi: 10.1038/srep11830
– volume: 12
  start-page: 4764
  year: 2012
  ident: e_1_2_10_174_1
  publication-title: Nano Lett.
– ident: e_1_2_10_58_1
  doi: 10.1038/nnano.2014.149
– ident: e_1_2_10_45_1
  doi: 10.1246/cl.150175
– ident: e_1_2_10_7_1
  doi: 10.1021/nn501001j
– ident: e_1_2_10_51_1
  doi: 10.1039/C5TA03686K
– ident: e_1_2_10_76_1
  doi: 10.1021/acs.jpclett.6b02423
– ident: e_1_2_10_59_1
  doi: 10.1002/adma.201405044
– ident: e_1_2_10_109_1
  doi: 10.1021/acsnano.6b02425
– ident: e_1_2_10_113_1
  doi: 10.1038/nphoton.2015.156
– ident: e_1_2_10_98_1
  doi: 10.1038/srep19834
– ident: e_1_2_10_128_1
  doi: 10.1038/nphoton.2016.139
– ident: e_1_2_10_164_1
  doi: 10.1002/adma.201600069
– ident: e_1_2_10_36_1
  doi: 10.1038/nphoton.2014.171
– ident: e_1_2_10_160_1
  doi: 10.1002/adma.201402271
– ident: e_1_2_10_172_1
  doi: 10.1126/science.1158877
– ident: e_1_2_10_127_1
  doi: 10.1038/nphoton.2016.41
– ident: e_1_2_10_184_1
  doi: 10.1002/cssc.201600868
– ident: e_1_2_10_39_1
  doi: 10.1038/nature12509
– ident: e_1_2_10_26_1
  doi: 10.1021/ja00006a076
– ident: e_1_2_10_33_1
  doi: 10.1126/science.1254763
– ident: e_1_2_10_61_1
  doi: 10.1021/acsnano.6b01540
– ident: e_1_2_10_74_1
  doi: 10.1002/adma.201602639
– ident: e_1_2_10_150_1
  doi: 10.1364/PRJ.3.000110
– ident: e_1_2_10_142_1
  doi: 10.1088/1361-6463/aa5623
– ident: e_1_2_10_105_1
  doi: 10.1002/adma.201405171
– ident: e_1_2_10_69_1
  doi: 10.1021/acs.nanolett.5b00616
– ident: e_1_2_10_19_1
  doi: 10.1002/adfm.200304399
– ident: e_1_2_10_121_1
  doi: 10.1021/acs.jpclett.5b01666
– ident: e_1_2_10_114_1
  doi: 10.1038/ncomms9238
– ident: e_1_2_10_189_1
  doi: 10.1016/j.carbon.2016.04.060
– ident: e_1_2_10_95_1
  doi: 10.1039/C5RA01180A
– ident: e_1_2_10_11_1
  doi: 10.1039/c0cs00126k
– ident: e_1_2_10_162_1
  doi: 10.1039/C5NR08677A
– ident: e_1_2_10_47_1
  doi: 10.1038/ncomms6757
– ident: e_1_2_10_193_1
  doi: 10.1039/C5RA27840F
– ident: e_1_2_10_146_1
  doi: 10.1038/srep03826
– ident: e_1_2_10_116_1
  doi: 10.1002/adma.201502238
– ident: e_1_2_10_2_1
  doi: 10.1038/nature04855
– ident: e_1_2_10_35_1
  doi: 10.1126/science.aaa0472
– ident: e_1_2_10_71_1
  doi: 10.1038/natrevmats.2016.100
– ident: e_1_2_10_48_1
  doi: 10.1126/science.286.5441.945
– ident: e_1_2_10_31_1
  doi: 10.1039/C4CP03533J
– ident: e_1_2_10_183_1
  doi: 10.1039/C6TA02851A
– ident: e_1_2_10_65_1
  doi: 10.1021/acs.nanolett.5b01166
– ident: e_1_2_10_178_1
  doi: 10.1039/C6CP01994C
– ident: e_1_2_10_115_1
  doi: 10.1021/acsphotonics.6b00391
– ident: e_1_2_10_53_1
  doi: 10.1126/science.aad1818
– ident: e_1_2_10_104_1
  doi: 10.1002/adma.201601235
– ident: e_1_2_10_149_1
  doi: 10.1073/pnas.0502848102
– ident: e_1_2_10_180_1
  doi: 10.1002/cssc.201600679
– ident: e_1_2_10_134_1
  doi: 10.1021/acs.nanolett.5b03061
– ident: e_1_2_10_12_1
  doi: 10.1002/adfm.200600351
– ident: e_1_2_10_79_1
  doi: 10.1021/acs.nanolett.6b03782
– ident: e_1_2_10_161_1
  doi: 10.1039/C5CC02282G
– ident: e_1_2_10_42_1
  doi: 10.1039/C4NR02065K
– ident: e_1_2_10_15_1
  doi: 10.1021/nl0803702
– ident: e_1_2_10_100_1
  doi: 10.1002/adma.201503461
– ident: e_1_2_10_192_1
  doi: 10.1039/C5TC03342J
– ident: e_1_2_10_185_1
  doi: 10.1038/ncomms3885
– ident: e_1_2_10_107_1
  doi: 10.1021/acsnano.5b04995
– ident: e_1_2_10_91_1
  doi: 10.1016/j.jssc.2013.07.008
– ident: e_1_2_10_159_1
  doi: 10.1007/s12274-016-1413-2
– ident: e_1_2_10_176_1
  doi: 10.1002/anie.200702506
– ident: e_1_2_10_29_1
  doi: 10.1021/acsami.7b04616
– ident: e_1_2_10_132_1
  doi: 10.1002/adma.201601603
– ident: e_1_2_10_85_1
  doi: 10.1021/acs.accounts.5b00483
– ident: e_1_2_10_37_1
  doi: 10.1126/science.1243982
– ident: e_1_2_10_60_1
  doi: 10.1002/adma.201600064
– ident: e_1_2_10_158_1
  doi: 10.1039/C6TC02097F
– ident: e_1_2_10_30_1
  doi: 10.1021/ja809598r
– ident: e_1_2_10_75_1
  doi: 10.1002/adma.201605993
– ident: e_1_2_10_123_1
  doi: 10.1038/ncomms9724
– ident: e_1_2_10_18_1
  doi: 10.1002/adma.201204979
– ident: e_1_2_10_32_1
  doi: 10.1021/nn5041922
– ident: e_1_2_10_40_1
  doi: 10.1063/1.4864778
– ident: e_1_2_10_157_1
  doi: 10.1021/nn3035765
– ident: e_1_2_10_24_1
  doi: 10.1002/adma.200390108
– ident: e_1_2_10_106_1
  doi: 10.1002/adma.201405116
– ident: e_1_2_10_120_1
  doi: 10.1002/adom.201600327
– ident: e_1_2_10_23_1
  doi: 10.1002/adfm.201201008
– ident: e_1_2_10_22_1
  doi: 10.1007/s11664-016-4536-z
– ident: e_1_2_10_125_1
  doi: 10.1039/C5CE02531A
– ident: e_1_2_10_6_1
  doi: 10.1021/acsnano.6b00272
– ident: e_1_2_10_14_1
  doi: 10.1021/nl070111x
– ident: e_1_2_10_21_1
  doi: 10.1002/adma.201305929
– ident: e_1_2_10_77_1
  doi: 10.1016/j.nanoen.2016.09.035
– ident: e_1_2_10_3_1
  doi: 10.1063/1.108863
– ident: e_1_2_10_44_1
  doi: 10.1126/science.1254050
– ident: e_1_2_10_81_1
  doi: 10.1039/C4CS00458B
– ident: e_1_2_10_96_1
  doi: 10.1002/asia.201600430
– ident: e_1_2_10_171_1
  doi: 10.1038/nmat1849
– ident: e_1_2_10_57_1
  doi: 10.1002/adma.201405217
– ident: e_1_2_10_155_1
  doi: 10.1038/nphoton.2015.175
– ident: e_1_2_10_135_1
  doi: 10.1002/anie.201411956
– ident: e_1_2_10_152_1
  doi: 10.1021/acs.nanolett.7b00166
– ident: e_1_2_10_28_1
  doi: 10.1021/ja00124a012
SSID ssj0031247
Score 2.6669776
SecondaryResourceType review_article
Snippet Hybrid organic–inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and...
Hybrid organic-inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Absorptivity
Carrier mobility
Configuration management
Diffusion length
Electrical properties
flexible
Heterostructures
Nanotechnology
Optical properties
optical sensors
Optoelectronic devices
Perovskite structure
Perovskites
photodetectors
Photometers
self‐powered
Title Hybrid Organic–Inorganic Perovskite Photodetectors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201702107
https://www.ncbi.nlm.nih.gov/pubmed/28895306
https://www.proquest.com/docview/1958633419
https://www.proquest.com/docview/1938187027
Volume 13
WOSCitedRecordID wos000414374700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1613-6829
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031247
  issn: 1613-6810
  databaseCode: DRFUL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxwxFD7o6kN9UKtV1xsjFHwK7uYySR5FuyisstQK-zbkSgs6Izur0Lf-h_7D_hKTmdnRpUjBvs0wJ5mQ5Jzz5YTzHYDPNvVB0bREjluGqFUpkpRLpFMX0KsM1hCbqtgEv74W47Ecvcrir_kh2oBb1IzKXkcFV7o8eSENLe_v4tVBn8dTC1-EJRw2L-vA0vnXwe1wZo1J8F9VgZXgtlDk3poRN_bwyXwP847pL7Q5D14r7zNY-_9xr8NqgzyT03qrfIQFl2_Ayis-wk2gFz9jAldSJ2iaP79-X-Z12SeTjNykeCpjrDcZfS-mhXXTKuBffoLbwZdvZxeoKauATGTiQYp54bzQwVebPg_-20tHvReCWUa0IbgnKCNY9jSnXmulHGNccamDLTKSErIFnbzI3Q4kTNmARwTpeSqptUSkqTdCOY-V4ravu4Bmc5qZhnM8lr64y2q2ZJzF2cja2ejCcSv_ULNtvCm5P1uirNG6MovEOSmJDHVdOGo_B32JlyAqd8VjlIkYJXQSutiul7b9FRZCsnCG6gKuVvAfY8hurobD9m33PY324EN8rpMb96EznTy6A1g2T9Mf5eQQFvlYHDY7-hmN6_Ta
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dStxAFD5YFVov1FZbt7U2guDV4G4yk5m5LLbLinFZqoJ3YX5RsEnZrELv-g59wz5J5yTZ2KVIQXqZZDIZzv-cyfkOwIFNfVA0LYnjlhFqVUok5ZLo1IXoVQZrGJu62QQfj8XVlZy0fxNiLUyDD9El3FAzanuNCo4J6aMH1NDq6y2eHQw4blv4M1ihQZaCkK98-jK8zObmOAkOrO6wEvwWQfCtOXJjPz5anGHRM_0Vbi5Gr7X7GW78h4Vvwnobe0YfG2F5CUuueAVrfyASbgEdfccSrqgp0TS_fvw8KZrGTyaauGl5X2G2N5pcl7PSulmd8q-24XL4-eJ4RNrGCsQgFg9RzAvnhQ7e2gx48OBeOuq9EMyyRJsk7gvKklj2Nadea6UcY1xxqYM1MpImyWtYLsrC7UDElA0RiUj6nkpqbWBA6o1QzsdKcTvQPSBzouamRR3H5he3eYOXHOdIjbyjRg8Ou_HfGryNR0fuznmUt3pX5QidkyaIUdeD_e5x0Bg8BlGFK-9wDEYpYZIwxZuGt92nYiEkC7uoHsQ1C_-xhvz8LMu6q7dPeekDPB9dnGV5djI-fQcv8H5T6rgLy7PpnXsPq-Z-dlNN91rB_g18lPfi
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEB_asxR9aO2HetXaFAp9WrzL7mZ3H4t6KL0eh63gW9hPLGgil1Pwzf-h_2H_ku4kuehRSqH0MclksuzsfOxs5jcAH1wWoqIZRbxwnDCnM6KYUMRkPkavKlrD1NbNJsRkIs_O1LT9mxBrYRp8iC7hhppR22tUcH_lwt49amh1eYFnB0OB2xbxGFYYdpLpwcrByeh0vDDHNDqwusNK9FsEwbcWyI2DdG-Zw7Jn-i3cXI5ea_czev4fBr4Oz9rYM_nULJYX8MgXL2HtASLhK2BHt1jClTQlmvbn3Y_jomn8ZJOpn5U3FWZ7k-l5OS-dn9cp_-o1nI4Ov-0fkbaxArGIxUM0D9IHaaK3tkMRPXhQnoUgJXecGkvTgWScpmpgBAvGaO05F1ooE62RVYzSDegVZeG3IOHaxYhE0kFgijlHZZYFK7UPqdbCDU0fyGJSc9uijmPzi4u8wUtOc5yNvJuNPnzs6K8avI0_Uu4sZJS3elflCJ2TUcSo68P77nHUGDwG0YUvr5EGo5TIJLLYbGTbfSqVUvG4i-pDWovwL2PIv34Zj7urN__y0jt4Oj0Y5ePjyedtWMXbTaXjDvTms2v_Fp7Ym_n3arbbrutfEm_3XQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Organic-Inorganic+Perovskite+Photodetectors&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Tian%2C+Wei&rft.au=Zhou%2C+Huanping&rft.au=Li%2C+Liang&rft.date=2017-11-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=13&rft.issue=41&rft_id=info:doi/10.1002%2Fsmll.201702107&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon