Hybrid Organic–Inorganic Perovskite Photodetectors
Hybrid organic–inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and electrical properties including high optical absorption coefficient, high carrier mobility, and long carrier diffusion length, perovskites have open...
Uložené v:
| Vydané v: | Small (Weinheim an der Bergstrasse, Germany) Ročník 13; číslo 41 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
Wiley Subscription Services, Inc
01.11.2017
|
| Predmet: | |
| ISSN: | 1613-6810, 1613-6829, 1613-6829 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Hybrid organic–inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and electrical properties including high optical absorption coefficient, high carrier mobility, and long carrier diffusion length, perovskites have opened up a great opportunity for high performance photodetectors. This review aims to give a comprehensive summary of the significant results on perovskite‐based photodetectors, focusing on the relationship among the perovskite structures, device configurations, and photodetecting performances. An introduction of recent progress in various perovskite structure‐based photodetectors is provided. The emphasis is placed on the correlation between the perovskite structure and the device performance. Next, recent developments of bandgap‐tunable perovskite and hybrid photodetectors built from perovskite heterostructures are highlighted. Then, effective approaches to enhance the stability of perovskite photodetector are presented, followed by the introduction of flexible and self‐powered perovskite photodetectors. Finally, a summary of the previous results is given, and the major challenges that need to be addressed in the future are outlined. A comprehensive summary of the research status on perovskite photodetectors is hoped to push forward the development of this field.
Hybrid organic–inorganic perovskite materials have attracted wide research interests owing to their unique electrical and optoelectronic properties. This Review provides a profound summary of the most important works on perovskite photodetectors, and gives a systematic discussion on the advantages and disadvantages of different device configurations and perovskite morphologies, as well as future directions. |
|---|---|
| AbstractList | Hybrid organic-inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and electrical properties including high optical absorption coefficient, high carrier mobility, and long carrier diffusion length, perovskites have opened up a great opportunity for high performance photodetectors. This review aims to give a comprehensive summary of the significant results on perovskite-based photodetectors, focusing on the relationship among the perovskite structures, device configurations, and photodetecting performances. An introduction of recent progress in various perovskite structure-based photodetectors is provided. The emphasis is placed on the correlation between the perovskite structure and the device performance. Next, recent developments of bandgap-tunable perovskite and hybrid photodetectors built from perovskite heterostructures are highlighted. Then, effective approaches to enhance the stability of perovskite photodetector are presented, followed by the introduction of flexible and self-powered perovskite photodetectors. Finally, a summary of the previous results is given, and the major challenges that need to be addressed in the future are outlined. A comprehensive summary of the research status on perovskite photodetectors is hoped to push forward the development of this field.Hybrid organic-inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and electrical properties including high optical absorption coefficient, high carrier mobility, and long carrier diffusion length, perovskites have opened up a great opportunity for high performance photodetectors. This review aims to give a comprehensive summary of the significant results on perovskite-based photodetectors, focusing on the relationship among the perovskite structures, device configurations, and photodetecting performances. An introduction of recent progress in various perovskite structure-based photodetectors is provided. The emphasis is placed on the correlation between the perovskite structure and the device performance. Next, recent developments of bandgap-tunable perovskite and hybrid photodetectors built from perovskite heterostructures are highlighted. Then, effective approaches to enhance the stability of perovskite photodetector are presented, followed by the introduction of flexible and self-powered perovskite photodetectors. Finally, a summary of the previous results is given, and the major challenges that need to be addressed in the future are outlined. A comprehensive summary of the research status on perovskite photodetectors is hoped to push forward the development of this field. Hybrid organic-inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and electrical properties including high optical absorption coefficient, high carrier mobility, and long carrier diffusion length, perovskites have opened up a great opportunity for high performance photodetectors. This review aims to give a comprehensive summary of the significant results on perovskite-based photodetectors, focusing on the relationship among the perovskite structures, device configurations, and photodetecting performances. An introduction of recent progress in various perovskite structure-based photodetectors is provided. The emphasis is placed on the correlation between the perovskite structure and the device performance. Next, recent developments of bandgap-tunable perovskite and hybrid photodetectors built from perovskite heterostructures are highlighted. Then, effective approaches to enhance the stability of perovskite photodetector are presented, followed by the introduction of flexible and self-powered perovskite photodetectors. Finally, a summary of the previous results is given, and the major challenges that need to be addressed in the future are outlined. A comprehensive summary of the research status on perovskite photodetectors is hoped to push forward the development of this field. Hybrid organic–inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and electrical properties including high optical absorption coefficient, high carrier mobility, and long carrier diffusion length, perovskites have opened up a great opportunity for high performance photodetectors. This review aims to give a comprehensive summary of the significant results on perovskite‐based photodetectors, focusing on the relationship among the perovskite structures, device configurations, and photodetecting performances. An introduction of recent progress in various perovskite structure‐based photodetectors is provided. The emphasis is placed on the correlation between the perovskite structure and the device performance. Next, recent developments of bandgap‐tunable perovskite and hybrid photodetectors built from perovskite heterostructures are highlighted. Then, effective approaches to enhance the stability of perovskite photodetector are presented, followed by the introduction of flexible and self‐powered perovskite photodetectors. Finally, a summary of the previous results is given, and the major challenges that need to be addressed in the future are outlined. A comprehensive summary of the research status on perovskite photodetectors is hoped to push forward the development of this field. Hybrid organic–inorganic perovskite materials have attracted wide research interests owing to their unique electrical and optoelectronic properties. This Review provides a profound summary of the most important works on perovskite photodetectors, and gives a systematic discussion on the advantages and disadvantages of different device configurations and perovskite morphologies, as well as future directions. |
| Author | Tian, Wei Li, Liang Zhou, Huanping |
| Author_xml | – sequence: 1 givenname: Wei surname: Tian fullname: Tian, Wei organization: Soochow University – sequence: 2 givenname: Huanping surname: Zhou fullname: Zhou, Huanping organization: Peking University – sequence: 3 givenname: Liang surname: Li fullname: Li, Liang email: lli@suda.edu.cn, liang.li0216@gmail.com organization: Soochow University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28895306$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkMtKAzEUhoNU7EW3LqXgxs3UXCeZpYjaQqUFdR0ymYymTic1mVG68x18Q5_EKb0IBXF1zuL7fs75u6BVutIAcIrgAEGIL8O8KAYYIg4xgvwAdFCMSBQLnLR2O4Jt0A1hBiFBmPIj0MZCJIzAuAPocJl6m_Un_lmVVn9_fo1Kt977U-Pde3i1lelPX1zlMlMZXTkfjsFhropgTjazB55ubx6vh9F4cje6vhpHmnLBI8VyYXKREoE04ojhPDE0z4VgGSOpJhgKyghOYMppnqZKGca44klKeKwTSkgPXKxzF9691SZUcm6DNkWhSuPqIFHSRIvmdd6g53vozNW-bK5rKCZiQmhD98DZhqrTucnkwtu58ku57aMB6BrQ3oXgTS61rVRlXVl5ZQuJoFzVLle1y13tjTbY07bJfwrJWviwhVn-Q8uH-_H41_0B7FaUjw |
| CitedBy_id | crossref_primary_10_1002_advs_202508332 crossref_primary_10_1002_smll_202205227 crossref_primary_10_1016_j_orgel_2023_106800 crossref_primary_10_1002_smll_202207520 crossref_primary_10_1007_s11465_023_0749_z crossref_primary_10_1007_s40242_024_4152_z crossref_primary_10_1016_j_micrna_2024_207914 crossref_primary_10_1021_acsnano_5c05794 crossref_primary_10_1002_crat_202100260 crossref_primary_10_1002_cey2_350 crossref_primary_10_1002_smll_202001534 crossref_primary_10_1039_D2NR06403K crossref_primary_10_1080_10408436_2023_2289928 crossref_primary_10_3390_molecules26030705 crossref_primary_10_1063_5_0089840 crossref_primary_10_1039_D0MH01567A crossref_primary_10_1016_j_optmat_2025_116806 crossref_primary_10_1016_j_orgel_2024_106998 crossref_primary_10_1002_crat_202300046 crossref_primary_10_1039_D5TC02430G crossref_primary_10_1364_AO_481495 crossref_primary_10_1002_adom_202100786 crossref_primary_10_1039_D0NR05739H crossref_primary_10_1109_LPT_2019_2920780 crossref_primary_10_1016_j_jpowsour_2024_236036 crossref_primary_10_1002_admt_202400757 crossref_primary_10_1016_j_optlastec_2024_110877 crossref_primary_10_1002_adom_202302712 crossref_primary_10_1039_D3QM00477E crossref_primary_10_1002_inf2_12106 crossref_primary_10_1002_cnma_202400050 crossref_primary_10_1038_s41377_021_00516_7 crossref_primary_10_1016_j_nanoen_2023_108605 crossref_primary_10_1002_adom_201900272 crossref_primary_10_1007_s00339_020_03987_4 crossref_primary_10_1016_j_cej_2022_135997 crossref_primary_10_1016_j_cej_2025_166093 crossref_primary_10_1016_j_jpcs_2025_112944 crossref_primary_10_1002_adom_202202428 crossref_primary_10_1002_chem_202404004 crossref_primary_10_1002_pssa_202300166 crossref_primary_10_1016_j_orgel_2023_106942 crossref_primary_10_1051_epjap_2025022 crossref_primary_10_1016_j_ceramint_2021_08_290 crossref_primary_10_1007_s11664_022_09890_3 crossref_primary_10_1063_5_0153593 crossref_primary_10_1007_s10853_021_05840_2 crossref_primary_10_3390_photonics9050353 crossref_primary_10_1088_2515_7639_ab9aac crossref_primary_10_1016_j_nanoen_2020_104611 crossref_primary_10_1002_adom_202000273 crossref_primary_10_1002_adom_202301782 crossref_primary_10_1016_j_apsusc_2020_147224 crossref_primary_10_1016_j_cjsc_2024_100454 crossref_primary_10_1109_LPT_2021_3113459 crossref_primary_10_1063_5_0122091 crossref_primary_10_1002_adfm_201906756 crossref_primary_10_1039_D2NR04735G crossref_primary_10_1002_adom_202200238 crossref_primary_10_1016_j_jallcom_2021_161827 crossref_primary_10_1016_j_optmat_2024_115419 crossref_primary_10_1039_D5TA02548F crossref_primary_10_1007_s40820_025_01815_z crossref_primary_10_1007_s00216_021_03739_0 crossref_primary_10_1002_lpor_202400028 crossref_primary_10_1088_1361_6528_ad40b3 crossref_primary_10_1039_D5EL00043B crossref_primary_10_1002_adfm_201909909 crossref_primary_10_1016_j_optmat_2022_113290 crossref_primary_10_1002_smll_202412101 crossref_primary_10_1021_acs_inorgchem_5c00116 crossref_primary_10_1002_adma_202210016 crossref_primary_10_1016_j_apsusc_2023_157867 crossref_primary_10_1088_1361_6528_acb713 crossref_primary_10_1007_s10854_025_14454_2 crossref_primary_10_1016_j_jallcom_2018_07_039 crossref_primary_10_1016_j_sna_2021_113176 crossref_primary_10_1039_D3NR04994A crossref_primary_10_3390_ma16186317 crossref_primary_10_1039_C8RA08864K crossref_primary_10_1002_adpr_202100335 crossref_primary_10_1002_admt_202300252 crossref_primary_10_1016_j_jiec_2024_06_007 crossref_primary_10_1515_nanoph_2020_0207 crossref_primary_10_1016_j_mssp_2023_108079 crossref_primary_10_1111_jace_17635 crossref_primary_10_1002_anie_201908743 crossref_primary_10_1002_smll_202412809 crossref_primary_10_1016_j_jallcom_2018_03_382 crossref_primary_10_1364_PRJ_403030 crossref_primary_10_1002_inf2_12010 crossref_primary_10_1016_j_cej_2022_136518 crossref_primary_10_1002_smsc_202000077 crossref_primary_10_1002_adma_202303964 crossref_primary_10_1016_j_mattod_2022_11_009 crossref_primary_10_1016_j_ijleo_2021_167069 crossref_primary_10_1007_s12274_020_3174_1 crossref_primary_10_1039_D2ME00032F crossref_primary_10_1007_s12274_022_5312_4 crossref_primary_10_1016_j_mtchem_2025_102718 crossref_primary_10_1002_inf2_12141 crossref_primary_10_1002_pssr_202000410 crossref_primary_10_1016_j_solener_2019_03_024 crossref_primary_10_1002_adom_202201816 crossref_primary_10_1016_j_nanoen_2019_104279 crossref_primary_10_1002_adfm_201807672 crossref_primary_10_1016_j_surfin_2025_105966 crossref_primary_10_1002_adom_201800278 crossref_primary_10_1007_s10854_024_13964_9 crossref_primary_10_1016_j_optmat_2022_112147 crossref_primary_10_1016_j_photonics_2024_101232 crossref_primary_10_1002_adfm_202411671 crossref_primary_10_1002_adfm_201800113 crossref_primary_10_1039_D1QM00618E crossref_primary_10_3390_nano12071185 crossref_primary_10_1080_23746149_2019_1592709 crossref_primary_10_1002_adfm_202413612 crossref_primary_10_1016_j_jallcom_2024_177627 crossref_primary_10_1088_1361_6528_aaddc4 crossref_primary_10_1002_adfm_202011284 crossref_primary_10_3390_bios11110415 crossref_primary_10_1088_1402_4896_ad5d29 crossref_primary_10_1039_D3NH00119A crossref_primary_10_1021_jacsau_5c00651 crossref_primary_10_1016_j_electacta_2019_135332 crossref_primary_10_1002_adma_202411332 crossref_primary_10_1016_j_tsf_2023_139861 crossref_primary_10_1063_5_0186185 crossref_primary_10_1364_PRJ_461787 crossref_primary_10_1016_j_solener_2024_113211 crossref_primary_10_1016_j_jlumin_2024_120876 crossref_primary_10_1016_j_solener_2025_113874 crossref_primary_10_1002_adom_201801812 crossref_primary_10_1002_adfm_202010768 crossref_primary_10_1002_ange_201908743 crossref_primary_10_1002_adom_202301336 crossref_primary_10_1007_s44405_025_00011_2 crossref_primary_10_1002_adma_201801481 crossref_primary_10_1002_adfm_202008684 crossref_primary_10_1016_j_pmatsci_2025_101498 crossref_primary_10_1088_1674_4926_44_11_112001 crossref_primary_10_1002_solr_201800325 crossref_primary_10_1016_j_optmat_2024_115104 crossref_primary_10_1002_advs_202301149 crossref_primary_10_3390_nano13212867 crossref_primary_10_1002_smll_202007661 crossref_primary_10_1038_s41597_025_05637_x crossref_primary_10_1002_adom_202501133 crossref_primary_10_1016_j_mssp_2023_107984 crossref_primary_10_1002_smll_202102987 crossref_primary_10_1088_1361_6528_abe907 crossref_primary_10_1002_adom_202402979 crossref_primary_10_1016_j_jssc_2024_125036 crossref_primary_10_1016_j_trechm_2022_10_008 crossref_primary_10_3390_s23010236 crossref_primary_10_1016_j_nanoen_2021_105959 crossref_primary_10_1016_j_surfin_2022_102315 crossref_primary_10_1016_j_jechem_2020_08_022 crossref_primary_10_1016_j_orgel_2018_11_016 crossref_primary_10_1002_lpor_201800204 crossref_primary_10_1002_aelm_202000920 crossref_primary_10_1016_j_ceramint_2025_01_573 crossref_primary_10_1002_inf2_12053 crossref_primary_10_1002_adfm_202200385 crossref_primary_10_1002_smll_202205976 crossref_primary_10_1039_D5RA03088A crossref_primary_10_1002_adma_201807095 crossref_primary_10_1002_aelm_201900135 crossref_primary_10_1039_C8ME00022K crossref_primary_10_1002_adma_202004416 crossref_primary_10_1039_D3NR00214D crossref_primary_10_1021_acs_jpclett_5c01881 crossref_primary_10_1103_PhysRevMaterials_7_084601 crossref_primary_10_1002_adfm_201901371 crossref_primary_10_1063_5_0221884 crossref_primary_10_3390_mi13122089 crossref_primary_10_1039_C8RA00730F crossref_primary_10_1038_s41598_020_65672_z crossref_primary_10_1039_D1QI01326B crossref_primary_10_1002_adfm_202009602 crossref_primary_10_1002_advs_202303133 crossref_primary_10_1088_1674_1056_27_12_127806 crossref_primary_10_1002_adom_202301028 crossref_primary_10_2478_msp_2022_0006 crossref_primary_10_1002_advs_202101729 crossref_primary_10_1016_j_ccr_2019_02_012 crossref_primary_10_1021_jacs_1c08923 crossref_primary_10_3390_app15147982 crossref_primary_10_3390_ma13214851 crossref_primary_10_1039_D5TC01077B crossref_primary_10_1016_j_jcis_2019_07_044 crossref_primary_10_1002_admt_202000889 crossref_primary_10_1039_D4DT03247K crossref_primary_10_1364_PRJ_444225 crossref_primary_10_1002_smll_202310591 crossref_primary_10_1002_adom_202001095 crossref_primary_10_1002_smll_202402951 crossref_primary_10_1002_adma_202003309 crossref_primary_10_1002_adom_202000557 crossref_primary_10_1109_TED_2022_3195689 crossref_primary_10_1016_j_apsusc_2021_151291 crossref_primary_10_1063_5_0234708 crossref_primary_10_1002_adom_202300831 crossref_primary_10_1002_smll_201900730 crossref_primary_10_1002_solr_201900210 crossref_primary_10_1021_acsaelm_5c00356 crossref_primary_10_1002_adfm_202005136 crossref_primary_10_1002_smll_202005606 crossref_primary_10_1016_j_nanoen_2019_103958 crossref_primary_10_3389_fphy_2022_957991 crossref_primary_10_1002_lpor_202200641 crossref_primary_10_1016_j_susmat_2023_e00622 crossref_primary_10_1021_acsami_5c09057 crossref_primary_10_1002_adom_202403123 crossref_primary_10_1063_5_0165439 crossref_primary_10_1016_j_optlastec_2024_112328 crossref_primary_10_1002_admt_202302033 crossref_primary_10_1016_j_solener_2025_113684 crossref_primary_10_1038_s41598_024_54036_6 crossref_primary_10_1002_adfm_201800179 crossref_primary_10_1088_2053_1591_ab6a47 crossref_primary_10_1002_adfm_201901280 crossref_primary_10_1016_j_rineng_2025_104693 crossref_primary_10_1021_acsami_5c06812 crossref_primary_10_1002_adom_202302013 crossref_primary_10_1109_SR_2025_3595503 crossref_primary_10_1002_smll_202506894 crossref_primary_10_1002_lpor_202000401 crossref_primary_10_1016_j_optmat_2024_115636 crossref_primary_10_1002_admi_202201785 crossref_primary_10_1002_eom2_12064 crossref_primary_10_1016_j_inoche_2025_115079 crossref_primary_10_3390_sym16030332 crossref_primary_10_34133_adi_0102 crossref_primary_10_1016_j_apmt_2024_102452 crossref_primary_10_1016_j_cej_2020_126779 crossref_primary_10_1002_aenm_202001349 crossref_primary_10_1016_j_mtchem_2024_102010 crossref_primary_10_1002_adfm_202108356 crossref_primary_10_1021_acs_chemrev_4c00663 crossref_primary_10_1039_D1NR01805A crossref_primary_10_1109_LED_2024_3404618 crossref_primary_10_1002_adom_201800469 crossref_primary_10_3390_molecules25153536 crossref_primary_10_1002_adfm_201903907 crossref_primary_10_1016_j_synthmet_2020_116636 crossref_primary_10_1109_LED_2023_3307413 crossref_primary_10_1016_j_jallcom_2020_153882 crossref_primary_10_1016_j_orgel_2020_105626 crossref_primary_10_1039_C9RA04600C crossref_primary_10_1002_aelm_202400649 crossref_primary_10_1039_D4CS00924J crossref_primary_10_1016_j_solmat_2019_110230 crossref_primary_10_1002_smll_201802319 crossref_primary_10_1016_j_nanoen_2022_106960 crossref_primary_10_1016_j_apmate_2024_100250 crossref_primary_10_1016_j_ceramint_2022_09_019 crossref_primary_10_1063_5_0128271 crossref_primary_10_3390_photonics11111014 crossref_primary_10_1088_1674_1056_28_4_047804 crossref_primary_10_1002_adom_202000228 crossref_primary_10_1016_j_jallcom_2023_170869 crossref_primary_10_1016_j_pmatsci_2024_101242 crossref_primary_10_3390_ma16083134 crossref_primary_10_1016_j_microc_2024_111725 crossref_primary_10_1002_adfm_202105898 crossref_primary_10_1016_j_scib_2022_09_007 crossref_primary_10_1063_5_0064366 crossref_primary_10_1002_adfm_202304899 crossref_primary_10_1007_s11664_025_12309_4 crossref_primary_10_1039_D1MH02073K crossref_primary_10_1002_solr_202200937 crossref_primary_10_1016_j_jallcom_2023_171043 crossref_primary_10_1063_5_0108781 crossref_primary_10_1016_j_mtcomm_2025_112552 crossref_primary_10_1038_s41378_021_00334_2 crossref_primary_10_1002_cphc_202200922 crossref_primary_10_1002_smll_201905253 crossref_primary_10_1088_1402_4896_aceb41 crossref_primary_10_1002_adfm_202100773 crossref_primary_10_1039_D5TC00364D crossref_primary_10_1007_s11581_024_05658_3 crossref_primary_10_1016_j_jlumin_2024_120914 crossref_primary_10_1002_flm2_39 crossref_primary_10_1016_j_solener_2023_112106 crossref_primary_10_1021_acsaelm_5c01526 crossref_primary_10_1002_adma_202417397 crossref_primary_10_1007_s40820_024_01501_6 crossref_primary_10_1016_j_orgel_2020_105729 crossref_primary_10_1016_j_orgel_2022_106617 crossref_primary_10_1088_1361_6463_abbf76 crossref_primary_10_1109_LAWP_2023_3337009 crossref_primary_10_1002_chem_202200751 crossref_primary_10_30970_jps_29_2705 |
| Cites_doi | 10.1002/adma.201600468 10.1557/mrs2007.41 10.1016/S0038-1098(97)10085-0 10.1038/srep16563 10.1039/C6CC06425F 10.1021/acsnano.5b01480 10.1038/ncomms11105 10.1039/C4NR06982J 10.1021/acsnano.7b01351 10.1002/adma.201600992 10.1021/acsami.6b08318 10.1038/nmat1276 10.1039/C6TC02818G 10.1038/nmat4271 10.1016/j.orgel.2016.12.042 10.1016/j.nantod.2015.04.009 10.1039/C5NR08277C 10.1002/smll.201701042 10.1021/nl5020684 10.1039/C6CE00655H 10.1002/adma.201003156 10.1021/acsami.6b09502 10.1016/j.nima.2016.12.062 10.1126/sciadv.1500613 10.1021/ja506265h 10.1021/acsami.6b10034 10.1002/adma.201603573 10.1016/S0079-6727(02)00024-1 10.1021/jp209999j 10.1021/acsphotonics.5b00164 10.1016/j.mser.2009.02.001 10.1038/am.2016.167 10.1039/C5NR05604G 10.1021/jacs.5b11199 10.1002/adfm.201504477 10.1021/jz501392m 10.1039/C5TA05470B 10.1126/science.1243167 10.1002/adma.201505002 10.1002/adfm.201402020 10.1038/nnano.2010.78 10.1021/jz501983v 10.1021/jacs.6b11683 10.1038/nnano.2012.60 10.1002/adom.201600468 10.1186/1556-276X-8-188 10.1039/C5TC03417E 10.1126/science.1228604 10.1126/science.aaa2725 10.1103/PhysRevB.42.11099 10.1038/nphoton.2013.342 10.1039/c3tc32123a 10.1021/acs.nanolett.6b03119 10.1021/acs.nanolett.6b04587 10.1002/adma.201500099 10.1126/science.aaa5760 10.1039/C6SC04474C 10.1038/nature14133 10.1021/acs.nanolett.5b03504 10.1063/1.358463 10.1002/adma.201505126 10.1002/adma.19970091508 10.1002/adfm.201302090 10.1016/j.jallcom.2016.09.076 10.1038/nphoton.2015.82 10.1088/1674-4926/38/1/011004 10.1063/1.4971772 10.1002/anie.201503153 10.1021/acsnano.6b02442 10.1021/nl503057g 10.1021/nn504856g 10.1038/nmat4291 10.1002/lpor.201600215 10.1021/jz502717g 10.1021/cr050149z 10.1063/1.362677 10.1021/nl901637u 10.1039/c4ee00168k 10.1021/acsnano.5b07791 10.1002/aenm.201501520 10.1038/nchem.2324 10.1021/nl1006432 10.1002/adma.201306281 10.1038/nchem.1589 10.1038/ncomms6404 10.1002/anie.201603557 10.1039/C6NR06636D 10.1039/C5TC00673B 10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W 10.1002/adfm.201600405 10.1039/C6TC03592B 10.1038/nnano.2013.100 10.1002/advs.201500392 10.1063/1.3133358 10.1038/srep11830 10.1038/nnano.2014.149 10.1246/cl.150175 10.1021/nn501001j 10.1039/C5TA03686K 10.1021/acs.jpclett.6b02423 10.1002/adma.201405044 10.1021/acsnano.6b02425 10.1038/nphoton.2015.156 10.1038/srep19834 10.1038/nphoton.2016.139 10.1002/adma.201600069 10.1038/nphoton.2014.171 10.1002/adma.201402271 10.1126/science.1158877 10.1038/nphoton.2016.41 10.1002/cssc.201600868 10.1038/nature12509 10.1021/ja00006a076 10.1126/science.1254763 10.1021/acsnano.6b01540 10.1002/adma.201602639 10.1364/PRJ.3.000110 10.1088/1361-6463/aa5623 10.1002/adma.201405171 10.1021/acs.nanolett.5b00616 10.1002/adfm.200304399 10.1021/acs.jpclett.5b01666 10.1038/ncomms9238 10.1016/j.carbon.2016.04.060 10.1039/C5RA01180A 10.1039/c0cs00126k 10.1039/C5NR08677A 10.1038/ncomms6757 10.1039/C5RA27840F 10.1038/srep03826 10.1002/adma.201502238 10.1038/nature04855 10.1126/science.aaa0472 10.1038/natrevmats.2016.100 10.1126/science.286.5441.945 10.1039/C4CP03533J 10.1039/C6TA02851A 10.1021/acs.nanolett.5b01166 10.1039/C6CP01994C 10.1021/acsphotonics.6b00391 10.1126/science.aad1818 10.1002/adma.201601235 10.1073/pnas.0502848102 10.1002/cssc.201600679 10.1021/acs.nanolett.5b03061 10.1002/adfm.200600351 10.1021/acs.nanolett.6b03782 10.1039/C5CC02282G 10.1039/C4NR02065K 10.1021/nl0803702 10.1002/adma.201503461 10.1039/C5TC03342J 10.1038/ncomms3885 10.1021/acsnano.5b04995 10.1016/j.jssc.2013.07.008 10.1007/s12274-016-1413-2 10.1002/anie.200702506 10.1021/acsami.7b04616 10.1002/adma.201601603 10.1021/acs.accounts.5b00483 10.1126/science.1243982 10.1002/adma.201600064 10.1039/C6TC02097F 10.1021/ja809598r 10.1002/adma.201605993 10.1038/ncomms9724 10.1002/adma.201204979 10.1021/nn5041922 10.1063/1.4864778 10.1021/nn3035765 10.1002/adma.200390108 10.1002/adma.201405116 10.1002/adom.201600327 10.1002/adfm.201201008 10.1007/s11664-016-4536-z 10.1039/C5CE02531A 10.1021/acsnano.6b00272 10.1021/nl070111x 10.1002/adma.201305929 10.1016/j.nanoen.2016.09.035 10.1063/1.108863 10.1126/science.1254050 10.1039/C4CS00458B 10.1002/asia.201600430 10.1038/nmat1849 10.1002/adma.201405217 10.1038/nphoton.2015.175 10.1002/anie.201411956 10.1021/acs.nanolett.7b00166 10.1021/ja00124a012 |
| ContentType | Journal Article |
| Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| DOI | 10.1002/smll.201702107 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1613-6829 |
| EndPage | n/a |
| ExternalDocumentID | 28895306 10_1002_smll_201702107 SMLL201702107 |
| Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: Jiangsu Science and Technology Committee funderid: BK20140009 – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions – fundername: National Natural Science Foundation of China funderid: 51772197; 51422206; 51372159; 51502184 |
| GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AAMMB AANHP AAYXX ACBWZ ACRPL ACYXJ ADNMO AEFGJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN BDRZF CITATION FEDTE GODZA HVGLF LH4 AAYOK NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| ID | FETCH-LOGICAL-c4787-a5f8ef8b381c17152f9e4ff885d53bc3208453290b74fbbaae557a79b376c9433 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 439 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414374700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1613-6810 1613-6829 |
| IngestDate | Sun Nov 09 09:56:28 EST 2025 Fri Jul 25 12:05:24 EDT 2025 Thu Apr 03 07:05:13 EDT 2025 Sat Nov 29 03:27:28 EST 2025 Tue Nov 18 22:33:44 EST 2025 Wed Jan 22 16:50:54 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 41 |
| Keywords | perovskites photodetectors optical sensors flexible self-powered |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4787-a5f8ef8b381c17152f9e4ff885d53bc3208453290b74fbbaae557a79b376c9433 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| PMID | 28895306 |
| PQID | 1958633419 |
| PQPubID | 1046358 |
| PageCount | 22 |
| ParticipantIDs | proquest_miscellaneous_1938187027 proquest_journals_1958633419 pubmed_primary_28895306 crossref_citationtrail_10_1002_smll_201702107 crossref_primary_10_1002_smll_201702107 wiley_primary_10_1002_smll_201702107_SMLL201702107 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-11-00 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-00 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
| PublicationTitleAlternate | Small |
| PublicationYear | 2017 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2010; 10 2002; 14 2007; 107 1991; 113 2013; 4 2014; 26 1999; 286 2016; 30 2014; 24 1996; 79 2013; 8 2013; 5 2012; 12 2014; 136 1997; 9 1990; 42 2017; 848 2015; 137 2009; 94 2005; 102 2014; 16 2014; 14 2007; 6 2007; 7 2016; 49 2010; 5 2012; 22 2006; 442 1994; 76 2016; 45 2007; 17 2009; 64 2015; 51 2013; 501 2015; 54 2016; 10 2013; 342 2016; 18 2016; 16 2016; 11 2015; 350 2016; 4 2017; 50 2016; 6 2016; 7 2016; 3 2008; 47 2005; 4 2003; 27 2015; 517 2016; 28 2012; 116 2016; 26 2016; 8 2016; 9 2017; 5 2017; 42 2017; 8 2013; 25 2017; 2 1993; 62 2015; 347 2016; 109 2013; 205 2003; 15 2008; 8 2016; 105 2007; 32 2017; 9 2014; 5 2014; 4 2014; 2 2017; 38 2015; 44 2011; 23 2014; 9 2014; 8 2014; 7 2014; 6 2012; 338 2009; 324 2015; 2 2015; 1 2015; 15 2015; 14 2015; 6 2015; 5 2015; 3 2011; 40 2015; 10 1995; 117 2016; 52 2017; 29 2017; 692 2009; 131 2015; 9 2015; 7 2016; 55 2015; 27 2017; 17 2004; 14 2017; 11 2017; 10 2017; 13 2009; 9 2017 2016; 138 1998; 105 2012; 6 2012; 7 2014; 345 2014; 104 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_158_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_135_1 e_1_2_10_173_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_51_1 e_1_2_10_147_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_101_1 e_1_2_10_185_1 e_1_2_10_41_1 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_52_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_148_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_186_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_42_1 e_1_2_10_190_1 e_1_2_10_91_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_175_1 e_1_2_10_30_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_187_1 e_1_2_10_164_1 e_1_2_10_43_1 e_1_2_10_20_1 Meng L. (e_1_2_10_56_1) 2017; 29 e_1_2_10_130_1 e_1_2_10_92_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_191_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_31_1 e_1_2_10_188_1 e_1_2_10_81_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_180_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_89_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_116_1 e_1_2_10_192_1 e_1_2_10_55_1 e_1_2_10_78_1 e_1_2_10_154_1 e_1_2_10_32_1 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_189_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_105_1 e_1_2_10_181_1 e_1_2_10_67_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_178_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_193_1 e_1_2_10_94_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_79_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 Wang H. (e_1_2_10_174_1) 2012; 12 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_182_1 e_1_2_10_83_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_179_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_171_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_119_1 e_1_2_10_145_1 e_1_2_10_168_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_183_1 e_1_2_10_160_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_108_1 e_1_2_10_157_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_50_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_62_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_184_1 e_1_2_10_47_1 |
| References_xml | – volume: 54 start-page: 5693 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 25 start-page: 4267 year: 2013 publication-title: Adv. Mater. – volume: 14 start-page: 557 year: 2015 publication-title: Nat. Mater. – volume: 347 start-page: 519 year: 2015 publication-title: Science – volume: 7 start-page: 1003 year: 2007 publication-title: Nano Lett. – volume: 8 start-page: 497 year: 2013 publication-title: Nat. Nanotechnol. – volume: 28 start-page: 3683 year: 2016 publication-title: Adv. Mater. – volume: 28 start-page: 7799 year: 2016 publication-title: Adv. Mater. – volume: 10 start-page: 5113 year: 2016 publication-title: ACS Nano – volume: 8 start-page: 31289 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 2885 year: 2013 publication-title: Nat. Commun. – volume: 6 start-page: 8238 year: 2015 publication-title: Nat. Commun. – volume: 10 start-page: 2117 year: 2010 publication-title: Nano Lett. – volume: 9 start-page: 687 year: 2014 publication-title: Nat. Nanotechnol. – volume: 22 start-page: 3326 year: 2012 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 16563 year: 2015 publication-title: Sci. Rep. – volume: 1 start-page: e1500613 year: 2015 publication-title: Sci. Adv. – volume: 347 start-page: 967 year: 2015 publication-title: Science – volume: 286 start-page: 945 year: 1999 publication-title: Science – volume: 6 start-page: 9127 year: 2014 publication-title: Nanoscale – volume: 8 start-page: 10640 year: 2014 publication-title: ACS Nano – volume: 18 start-page: 4405 year: 2016 publication-title: CrystEngComm – volume: 24 start-page: 151 year: 2014 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 2244 year: 2017 publication-title: Nano Res. – volume: 27 start-page: 2804 year: 2015 publication-title: Adv. Mater. – volume: 205 start-page: 39 year: 2013 publication-title: J. Solid State Chem. – volume: 6 start-page: 8724 year: 2015 publication-title: Nat. Commun. – volume: 9 start-page: 6178 year: 2015 publication-title: ACS Nano – volume: 28 start-page: 3528 year: 2016 publication-title: Adv. Mater. – volume: 7 start-page: 703 year: 2015 publication-title: Nat. Chem. – volume: 45 start-page: 655 year: 2016 publication-title: Chem. Soc. Rev. – volume: 104 start-page: 063903 year: 2014 publication-title: Appl. Phys. Lett. – volume: 9 start-page: 1567 year: 2017 publication-title: Nanoscale – volume: 9 start-page: 18977 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 2201 year: 2016 publication-title: Adv. Mater. – volume: 113 start-page: 2328 year: 1991 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1602639 year: 2017 publication-title: Adv. Mater. – volume: 7 start-page: 1377 year: 2014 publication-title: Energy Environ. Sci. – volume: 16 start-page: 7710 year: 2016 publication-title: Nano Lett. – volume: 28 start-page: 8144 year: 2016 publication-title: Adv. Mater. – volume: 27 start-page: 2311 year: 2015 publication-title: Adv. Mater. – volume: 3 start-page: 1500392 year: 2016 publication-title: Adv. Sci. – volume: 14 start-page: 6761 year: 2014 publication-title: Nano Lett. – volume: 4 start-page: 86 year: 2005 publication-title: Nat. Mater. – volume: 4 start-page: 11 year: 2016 publication-title: J. Mater. Chem. C – volume: 10 start-page: 1047 year: 2016 publication-title: Laser Photonics Rev. – volume: 136 start-page: 12130 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 6411 year: 2015 publication-title: Adv. Mater. – volume: 47 start-page: 58 year: 2008 publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: e328 year: 2016 publication-title: NPG Asia Mater. – volume: 116 start-page: 4267 year: 2012 publication-title: J. Phys. Chem. C – volume: 16 start-page: 7446 year: 2016 publication-title: Nano Lett. – volume: 5 start-page: 21859 year: 2015 publication-title: RSC Adv. – volume: 3 start-page: 6600 year: 2015 publication-title: J. Mater. Chem. C – volume: 5 start-page: 263 year: 2013 publication-title: Nat. Chem. – volume: 10 start-page: 355 year: 2015 publication-title: Nano Today – volume: 5 start-page: 391 year: 2010 publication-title: Nat. Nanotechnol. – volume: 27 start-page: 41 year: 2015 publication-title: Adv. Mater. – volume: 7 start-page: 11105 year: 2016 publication-title: Nat. Commun. – volume: 14 start-page: 636 year: 2015 publication-title: Nat. Mater. – volume: 342 start-page: 344 year: 2013 publication-title: Science – volume: 7 start-page: 363 year: 2012 publication-title: Nat. Nanotechnol. – volume: 15 start-page: 3833 year: 2015 publication-title: Nano Lett. – volume: 2 start-page: 1117 year: 2015 publication-title: ACS Photonics – volume: 324 start-page: 1530 year: 2009 publication-title: Science – volume: 5 start-page: 1600468 year: 2017 publication-title: Adv. Opt. Mater. – volume: 5 start-page: 5757 year: 2014 publication-title: Nat. Commun. – volume: 14 start-page: 158 year: 2002 publication-title: Adv. Mater. – volume: 10 start-page: 6623 year: 2016 publication-title: ACS Nano – volume: 9 start-page: 11310 year: 2015 publication-title: ACS Nano – volume: 4 start-page: 7302 year: 2016 publication-title: J. Mater. Chem. C – volume: 3 start-page: 2197 year: 2016 publication-title: ACS Photonics – volume: 27 start-page: 2060 year: 2015 publication-title: Adv. Mater. – volume: 10 start-page: 6816 year: 2016 publication-title: ACS Nano – volume: 30 start-page: 27 year: 2016 publication-title: Nano Energy – volume: 14 start-page: 5995 year: 2014 publication-title: Nano Lett. – volume: 109 start-page: 233303 year: 2016 publication-title: Appl. Phys. Lett. – volume: 52 start-page: 13637 year: 2016 publication-title: Chem. Commun. – volume: 8 start-page: 7036 year: 2016 publication-title: Nanoscale – volume: 44 start-page: 720 year: 2015 publication-title: Chem. Lett. – volume: 17 start-page: 1795 year: 2007 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 1603836 year: 2017 publication-title: Adv. Mater. – volume: 6 start-page: 535 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 2 start-page: 1592 year: 2014 publication-title: J. Mater. Chem. C – volume: 8 start-page: 737 year: 2014 publication-title: Nat. Photonics – volume: 105 start-page: 353 year: 2016 publication-title: Carbon – volume: 8 start-page: 188 year: 2013 publication-title: Nano Res. Lett. – volume: 517 start-page: 476 year: 2015 publication-title: Nature – volume: 16 start-page: 871 year: 2016 publication-title: Nano Lett. – volume: 55 start-page: 11945 year: 2016 publication-title: Angew. Chem. Int. Ed. – volume: 24 start-page: 7373 year: 2014 publication-title: Adv. Funct. Mater. – volume: 442 start-page: 180 year: 2006 publication-title: Nature – volume: 2 start-page: 16100 year: 2017 publication-title: Nat. Rev. Mater. – volume: 10 start-page: 585 year: 2016 publication-title: Nat. Photonics – volume: 8 start-page: 33273 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 9713 year: 2016 publication-title: Adv. Mater. – volume: 14 start-page: 38 year: 2004 publication-title: Adv. Funct. Mater. – volume: 18 start-page: 23174 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 10 start-page: 6808 year: 2016 publication-title: ACS Nano – volume: 42 start-page: 11099 year: 1990 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 4 start-page: 10700 year: 2016 publication-title: J. Mater. Chem. A – volume: 26 start-page: 4213 year: 2016 publication-title: Adv. Funct. Mater. – volume: 347 start-page: 522 year: 2015 publication-title: Science – volume: 338 start-page: 643 year: 2012 publication-title: Science – volume: 4 start-page: 8373 year: 2016 publication-title: J. Mater. Chem. C – volume: 42 start-page: 203 year: 2017 publication-title: Org. Electron. – volume: 10 start-page: 3536 year: 2016 publication-title: ACS Nano – volume: 94 start-page: 191103 year: 2009 publication-title: Appl. Phys. Lett. – volume: 23 start-page: 649 year: 2011 publication-title: Adv. Mater. – volume: 27 start-page: 1912 year: 2015 publication-title: Adv. Mater. – volume: 9 start-page: 679 year: 2015 publication-title: Nat. Photonics – volume: 9 start-page: 2572 year: 2016 publication-title: ChemSusChem – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 094002 year: 2017 publication-title: J. Phys. D: Appl. Phys. – volume: 28 start-page: 5969 year: 2016 publication-title: Adv. Mater. – volume: 692 start-page: 589 year: 2017 publication-title: J. Alloys Compd. – volume: 26 start-page: 4653 year: 2014 publication-title: Adv. Mater. – volume: 15 start-page: 464 year: 2003 publication-title: Adv. Mater. – volume: 5 start-page: 2927 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 12 start-page: 4764 year: 2012 publication-title: Nano Lett. – volume: 38 start-page: 011004 year: 2017 publication-title: J. Semicond. – volume: 11 start-page: 2675 year: 2016 publication-title: Chem. — Asian J. – volume: 350 start-page: 1222 year: 2015 publication-title: Science – volume: 4 start-page: 9172 year: 2016 publication-title: J. Mater. Chem. C – volume: 8 start-page: 1649 year: 2008 publication-title: Nano Lett. – volume: 5 start-page: 5404 year: 2014 publication-title: Nat. Commun. – volume: 8 start-page: 4015 year: 2014 publication-title: ACS Nano – volume: 51 start-page: 9659 year: 2015 publication-title: Chem. Commun. – volume: 11 start-page: 5766 year: 2017 publication-title: ACS Nano – volume: 4 start-page: 630 year: 2016 publication-title: J. Mater. Chem. C – volume: 105 start-page: 253 year: 1998 publication-title: Solid State Commun. – volume: 8 start-page: 133 year: 2014 publication-title: Nat. Photonics – volume: 6 start-page: 9229 year: 2012 publication-title: ACS Nano – volume: 17 start-page: 523 year: 2017 publication-title: Nano Lett. – volume: 5 start-page: 4175 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 45 start-page: 3278 year: 2016 publication-title: J. Electron. Mater. – volume: 138 start-page: 16612 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 62 start-page: 585 year: 1993 publication-title: Appl. Phys. Lett. – volume: 15 start-page: 7963 year: 2015 publication-title: Nano Lett. – volume: 27 start-page: 59 year: 2003 publication-title: Prog. Quantum Electron. – volume: 8 start-page: 2522 year: 2017 publication-title: Chem. Sci. – volume: 345 start-page: 295 year: 2014 publication-title: Science – volume: 15 start-page: 4571 year: 2015 publication-title: Nano Lett. – volume: 8 start-page: 7377 year: 2016 publication-title: Nanoscale – volume: 342 start-page: 341 year: 2013 publication-title: Science – volume: 3 start-page: 16445 year: 2015 publication-title: J. Mater. Chem. A – volume: 3 start-page: 21760 year: 2015 publication-title: J. Mater. Chem. A – volume: 28 start-page: 10794 year: 2016 publication-title: Adv. Mater. – volume: 4 start-page: 3826 year: 2014 publication-title: Sci. Rep. – volume: 26 start-page: 2137 year: 2014 publication-title: Adv. Mater. – volume: 8 start-page: 5350 year: 2016 publication-title: Nanoscale – volume: 345 start-page: 542 year: 2014 publication-title: Science – volume: 8 start-page: 10947 year: 2014 publication-title: ACS Nano – volume: 848 start-page: 106 year: 2017 publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A – volume: 9 start-page: 3354 year: 2009 publication-title: Nano Lett. – volume: 40 start-page: 2986 year: 2011 publication-title: Chem. Soc. Rev. – volume: 137 start-page: 16008 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 107 start-page: 1324 year: 2007 publication-title: Chem. Rev. – volume: 16 start-page: 22122 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 9 start-page: 1164 year: 1997 publication-title: Adv. Mater. – volume: 5 start-page: 11830 year: 2015 publication-title: Sci. Rep. – volume: 9 start-page: 687 year: 2015 publication-title: Nat. Photonics – volume: 76 start-page: 1363 year: 1994 publication-title: J. Appl. Phys. – volume: 32 start-page: 99 year: 2007 publication-title: MRS Bull. – volume: 9 start-page: 2597 year: 2016 publication-title: ChemSusChem – volume: 6 start-page: 19834 year: 2016 publication-title: Sci. Rep. – volume: 28 start-page: 566 year: 2016 publication-title: Adv. Mater. – volume: 7 start-page: 4163 year: 2015 publication-title: Nanoscale – volume: 117 start-page: 5297 year: 1995 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 3781 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 28 start-page: 2253 year: 2016 publication-title: Adv. Mater. – volume: 17 start-page: 2482 year: 2017 publication-title: Nano Lett. – volume: 79 start-page: 7433 year: 1996 publication-title: J. Appl. Phys. – volume: 27 start-page: 1414 year: 2015 publication-title: Adv. Mater. – volume: 10 start-page: 333 year: 2016 publication-title: Nat. Photonics – volume: 54 start-page: 8208 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 1829 year: 2016 publication-title: Adv. Opt. Mater. – volume: 6 start-page: 183 year: 2007 publication-title: Nat. Mater. – volume: 13 start-page: 1701042 year: 2017 publication-title: Small – volume: 49 start-page: 545 year: 2016 publication-title: Acc. Chem. Res. – volume: 5 start-page: 1501520 year: 2015 publication-title: Adv. Energy Mater. – volume: 9 start-page: 444 year: 2015 publication-title: Nat. Photonics – volume: 26 start-page: 1296 year: 2016 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 6205 year: 2016 publication-title: RSC Adv. – volume: 8 start-page: 23868 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 110 year: 2015 publication-title: Photonics Res. – volume: 18 start-page: 4476 year: 2016 publication-title: CrystEngComm – volume: 64 start-page: 33 year: 2009 publication-title: Mater. Sci. Eng., R – year: 2017 – volume: 8 start-page: 445 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 102 start-page: 10451 year: 2005 publication-title: Proc. Natl. Acad. Sci. USA – volume: 29 start-page: 1605993 year: 2017 publication-title: Adv. Mater. – volume: 501 start-page: 395 year: 2013 publication-title: Nature – ident: e_1_2_10_166_1 doi: 10.1002/adma.201600468 – ident: e_1_2_10_168_1 doi: 10.1557/mrs2007.41 – ident: e_1_2_10_68_1 doi: 10.1016/S0038-1098(97)10085-0 – ident: e_1_2_10_124_1 doi: 10.1038/srep16563 – ident: e_1_2_10_89_1 doi: 10.1039/C6CC06425F – ident: e_1_2_10_148_1 doi: 10.1021/acsnano.5b01480 – ident: e_1_2_10_179_1 doi: 10.1038/ncomms11105 – ident: e_1_2_10_136_1 doi: 10.1039/C4NR06982J – ident: e_1_2_10_97_1 doi: 10.1021/acsnano.7b01351 – ident: e_1_2_10_163_1 doi: 10.1002/adma.201600992 – ident: e_1_2_10_187_1 doi: 10.1021/acsami.6b08318 – ident: e_1_2_10_9_1 doi: 10.1038/nmat1276 – ident: e_1_2_10_62_1 doi: 10.1039/C6TC02818G – ident: e_1_2_10_64_1 doi: 10.1038/nmat4271 – ident: e_1_2_10_73_1 doi: 10.1016/j.orgel.2016.12.042 – ident: e_1_2_10_88_1 doi: 10.1016/j.nantod.2015.04.009 – ident: e_1_2_10_188_1 doi: 10.1039/C5NR08277C – ident: e_1_2_10_191_1 doi: 10.1002/smll.201701042 – ident: e_1_2_10_131_1 doi: 10.1021/nl5020684 – ident: e_1_2_10_86_1 doi: 10.1039/C6CE00655H – ident: e_1_2_10_17_1 doi: 10.1002/adma.201003156 – ident: e_1_2_10_190_1 doi: 10.1021/acsami.6b09502 – ident: e_1_2_10_129_1 doi: 10.1016/j.nima.2016.12.062 – ident: e_1_2_10_141_1 doi: 10.1126/sciadv.1500613 – ident: e_1_2_10_20_1 doi: 10.1021/ja506265h – ident: e_1_2_10_49_1 doi: 10.1021/acsami.6b10034 – ident: e_1_2_10_72_1 doi: 10.1002/adma.201603573 – ident: e_1_2_10_5_1 doi: 10.1016/S0079-6727(02)00024-1 – ident: e_1_2_10_169_1 doi: 10.1021/jp209999j – ident: e_1_2_10_110_1 doi: 10.1021/acsphotonics.5b00164 – ident: e_1_2_10_167_1 doi: 10.1016/j.mser.2009.02.001 – ident: e_1_2_10_82_1 doi: 10.1038/am.2016.167 – ident: e_1_2_10_55_1 doi: 10.1039/C5NR05604G – ident: e_1_2_10_99_1 doi: 10.1021/jacs.5b11199 – ident: e_1_2_10_102_1 doi: 10.1002/adfm.201504477 – ident: e_1_2_10_41_1 doi: 10.1021/jz501392m – ident: e_1_2_10_154_1 doi: 10.1039/C5TA05470B – ident: e_1_2_10_34_1 doi: 10.1126/science.1243167 – ident: e_1_2_10_122_1 doi: 10.1002/adma.201505002 – ident: e_1_2_10_101_1 doi: 10.1002/adfm.201402020 – ident: e_1_2_10_156_1 doi: 10.1038/nnano.2010.78 – ident: e_1_2_10_93_1 doi: 10.1021/jz501983v – ident: e_1_2_10_27_1 doi: 10.1021/jacs.6b11683 – volume: 29 start-page: 1603836 year: 2017 ident: e_1_2_10_56_1 publication-title: Adv. Mater. – ident: e_1_2_10_145_1 doi: 10.1038/nnano.2012.60 – ident: e_1_2_10_130_1 doi: 10.1002/adom.201600468 – ident: e_1_2_10_170_1 doi: 10.1186/1556-276X-8-188 – ident: e_1_2_10_83_1 doi: 10.1039/C5TC03417E – ident: e_1_2_10_46_1 doi: 10.1126/science.1228604 – ident: e_1_2_10_118_1 doi: 10.1126/science.aaa2725 – ident: e_1_2_10_25_1 doi: 10.1103/PhysRevB.42.11099 – ident: e_1_2_10_50_1 doi: 10.1038/nphoton.2013.342 – ident: e_1_2_10_143_1 doi: 10.1039/c3tc32123a – ident: e_1_2_10_52_1 – ident: e_1_2_10_138_1 doi: 10.1021/acs.nanolett.6b03119 – ident: e_1_2_10_137_1 doi: 10.1021/acs.nanolett.6b04587 – ident: e_1_2_10_108_1 doi: 10.1002/adma.201500099 – ident: e_1_2_10_119_1 doi: 10.1126/science.aaa5760 – ident: e_1_2_10_90_1 doi: 10.1039/C6SC04474C – ident: e_1_2_10_43_1 doi: 10.1038/nature14133 – ident: e_1_2_10_139_1 doi: 10.1021/acs.nanolett.5b03504 – ident: e_1_2_10_4_1 doi: 10.1063/1.358463 – ident: e_1_2_10_133_1 doi: 10.1002/adma.201505126 – ident: e_1_2_10_117_1 doi: 10.1002/adma.19970091508 – ident: e_1_2_10_94_1 doi: 10.1002/adfm.201302090 – ident: e_1_2_10_54_1 doi: 10.1016/j.jallcom.2016.09.076 – ident: e_1_2_10_126_1 doi: 10.1038/nphoton.2015.82 – ident: e_1_2_10_84_1 doi: 10.1088/1674-4926/38/1/011004 – ident: e_1_2_10_78_1 doi: 10.1063/1.4971772 – ident: e_1_2_10_177_1 doi: 10.1002/anie.201503153 – ident: e_1_2_10_182_1 doi: 10.1021/acsnano.6b02442 – ident: e_1_2_10_66_1 doi: 10.1021/nl503057g – ident: e_1_2_10_67_1 doi: 10.1021/nn504856g – ident: e_1_2_10_63_1 doi: 10.1038/nmat4291 – ident: e_1_2_10_80_1 doi: 10.1002/lpor.201600215 – ident: e_1_2_10_186_1 doi: 10.1021/jz502717g – ident: e_1_2_10_175_1 doi: 10.1021/cr050149z – ident: e_1_2_10_1_1 doi: 10.1063/1.362677 – ident: e_1_2_10_10_1 doi: 10.1021/nl901637u – ident: e_1_2_10_38_1 doi: 10.1039/c4ee00168k – ident: e_1_2_10_140_1 doi: 10.1021/acsnano.5b07791 – ident: e_1_2_10_70_1 doi: 10.1002/aenm.201501520 – ident: e_1_2_10_181_1 doi: 10.1038/nchem.2324 – ident: e_1_2_10_8_1 doi: 10.1021/nl1006432 – ident: e_1_2_10_92_1 doi: 10.1002/adma.201306281 – ident: e_1_2_10_173_1 doi: 10.1038/nchem.1589 – ident: e_1_2_10_111_1 doi: 10.1038/ncomms6404 – ident: e_1_2_10_165_1 doi: 10.1002/anie.201603557 – ident: e_1_2_10_151_1 doi: 10.1039/C6NR06636D – ident: e_1_2_10_112_1 doi: 10.1039/C5TC00673B – ident: e_1_2_10_13_1 doi: 10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W – ident: e_1_2_10_103_1 doi: 10.1002/adfm.201600405 – ident: e_1_2_10_153_1 doi: 10.1039/C6TC03592B – ident: e_1_2_10_144_1 doi: 10.1038/nnano.2013.100 – ident: e_1_2_10_87_1 doi: 10.1002/advs.201500392 – ident: e_1_2_10_16_1 doi: 10.1063/1.3133358 – ident: e_1_2_10_147_1 doi: 10.1038/srep11830 – volume: 12 start-page: 4764 year: 2012 ident: e_1_2_10_174_1 publication-title: Nano Lett. – ident: e_1_2_10_58_1 doi: 10.1038/nnano.2014.149 – ident: e_1_2_10_45_1 doi: 10.1246/cl.150175 – ident: e_1_2_10_7_1 doi: 10.1021/nn501001j – ident: e_1_2_10_51_1 doi: 10.1039/C5TA03686K – ident: e_1_2_10_76_1 doi: 10.1021/acs.jpclett.6b02423 – ident: e_1_2_10_59_1 doi: 10.1002/adma.201405044 – ident: e_1_2_10_109_1 doi: 10.1021/acsnano.6b02425 – ident: e_1_2_10_113_1 doi: 10.1038/nphoton.2015.156 – ident: e_1_2_10_98_1 doi: 10.1038/srep19834 – ident: e_1_2_10_128_1 doi: 10.1038/nphoton.2016.139 – ident: e_1_2_10_164_1 doi: 10.1002/adma.201600069 – ident: e_1_2_10_36_1 doi: 10.1038/nphoton.2014.171 – ident: e_1_2_10_160_1 doi: 10.1002/adma.201402271 – ident: e_1_2_10_172_1 doi: 10.1126/science.1158877 – ident: e_1_2_10_127_1 doi: 10.1038/nphoton.2016.41 – ident: e_1_2_10_184_1 doi: 10.1002/cssc.201600868 – ident: e_1_2_10_39_1 doi: 10.1038/nature12509 – ident: e_1_2_10_26_1 doi: 10.1021/ja00006a076 – ident: e_1_2_10_33_1 doi: 10.1126/science.1254763 – ident: e_1_2_10_61_1 doi: 10.1021/acsnano.6b01540 – ident: e_1_2_10_74_1 doi: 10.1002/adma.201602639 – ident: e_1_2_10_150_1 doi: 10.1364/PRJ.3.000110 – ident: e_1_2_10_142_1 doi: 10.1088/1361-6463/aa5623 – ident: e_1_2_10_105_1 doi: 10.1002/adma.201405171 – ident: e_1_2_10_69_1 doi: 10.1021/acs.nanolett.5b00616 – ident: e_1_2_10_19_1 doi: 10.1002/adfm.200304399 – ident: e_1_2_10_121_1 doi: 10.1021/acs.jpclett.5b01666 – ident: e_1_2_10_114_1 doi: 10.1038/ncomms9238 – ident: e_1_2_10_189_1 doi: 10.1016/j.carbon.2016.04.060 – ident: e_1_2_10_95_1 doi: 10.1039/C5RA01180A – ident: e_1_2_10_11_1 doi: 10.1039/c0cs00126k – ident: e_1_2_10_162_1 doi: 10.1039/C5NR08677A – ident: e_1_2_10_47_1 doi: 10.1038/ncomms6757 – ident: e_1_2_10_193_1 doi: 10.1039/C5RA27840F – ident: e_1_2_10_146_1 doi: 10.1038/srep03826 – ident: e_1_2_10_116_1 doi: 10.1002/adma.201502238 – ident: e_1_2_10_2_1 doi: 10.1038/nature04855 – ident: e_1_2_10_35_1 doi: 10.1126/science.aaa0472 – ident: e_1_2_10_71_1 doi: 10.1038/natrevmats.2016.100 – ident: e_1_2_10_48_1 doi: 10.1126/science.286.5441.945 – ident: e_1_2_10_31_1 doi: 10.1039/C4CP03533J – ident: e_1_2_10_183_1 doi: 10.1039/C6TA02851A – ident: e_1_2_10_65_1 doi: 10.1021/acs.nanolett.5b01166 – ident: e_1_2_10_178_1 doi: 10.1039/C6CP01994C – ident: e_1_2_10_115_1 doi: 10.1021/acsphotonics.6b00391 – ident: e_1_2_10_53_1 doi: 10.1126/science.aad1818 – ident: e_1_2_10_104_1 doi: 10.1002/adma.201601235 – ident: e_1_2_10_149_1 doi: 10.1073/pnas.0502848102 – ident: e_1_2_10_180_1 doi: 10.1002/cssc.201600679 – ident: e_1_2_10_134_1 doi: 10.1021/acs.nanolett.5b03061 – ident: e_1_2_10_12_1 doi: 10.1002/adfm.200600351 – ident: e_1_2_10_79_1 doi: 10.1021/acs.nanolett.6b03782 – ident: e_1_2_10_161_1 doi: 10.1039/C5CC02282G – ident: e_1_2_10_42_1 doi: 10.1039/C4NR02065K – ident: e_1_2_10_15_1 doi: 10.1021/nl0803702 – ident: e_1_2_10_100_1 doi: 10.1002/adma.201503461 – ident: e_1_2_10_192_1 doi: 10.1039/C5TC03342J – ident: e_1_2_10_185_1 doi: 10.1038/ncomms3885 – ident: e_1_2_10_107_1 doi: 10.1021/acsnano.5b04995 – ident: e_1_2_10_91_1 doi: 10.1016/j.jssc.2013.07.008 – ident: e_1_2_10_159_1 doi: 10.1007/s12274-016-1413-2 – ident: e_1_2_10_176_1 doi: 10.1002/anie.200702506 – ident: e_1_2_10_29_1 doi: 10.1021/acsami.7b04616 – ident: e_1_2_10_132_1 doi: 10.1002/adma.201601603 – ident: e_1_2_10_85_1 doi: 10.1021/acs.accounts.5b00483 – ident: e_1_2_10_37_1 doi: 10.1126/science.1243982 – ident: e_1_2_10_60_1 doi: 10.1002/adma.201600064 – ident: e_1_2_10_158_1 doi: 10.1039/C6TC02097F – ident: e_1_2_10_30_1 doi: 10.1021/ja809598r – ident: e_1_2_10_75_1 doi: 10.1002/adma.201605993 – ident: e_1_2_10_123_1 doi: 10.1038/ncomms9724 – ident: e_1_2_10_18_1 doi: 10.1002/adma.201204979 – ident: e_1_2_10_32_1 doi: 10.1021/nn5041922 – ident: e_1_2_10_40_1 doi: 10.1063/1.4864778 – ident: e_1_2_10_157_1 doi: 10.1021/nn3035765 – ident: e_1_2_10_24_1 doi: 10.1002/adma.200390108 – ident: e_1_2_10_106_1 doi: 10.1002/adma.201405116 – ident: e_1_2_10_120_1 doi: 10.1002/adom.201600327 – ident: e_1_2_10_23_1 doi: 10.1002/adfm.201201008 – ident: e_1_2_10_22_1 doi: 10.1007/s11664-016-4536-z – ident: e_1_2_10_125_1 doi: 10.1039/C5CE02531A – ident: e_1_2_10_6_1 doi: 10.1021/acsnano.6b00272 – ident: e_1_2_10_14_1 doi: 10.1021/nl070111x – ident: e_1_2_10_21_1 doi: 10.1002/adma.201305929 – ident: e_1_2_10_77_1 doi: 10.1016/j.nanoen.2016.09.035 – ident: e_1_2_10_3_1 doi: 10.1063/1.108863 – ident: e_1_2_10_44_1 doi: 10.1126/science.1254050 – ident: e_1_2_10_81_1 doi: 10.1039/C4CS00458B – ident: e_1_2_10_96_1 doi: 10.1002/asia.201600430 – ident: e_1_2_10_171_1 doi: 10.1038/nmat1849 – ident: e_1_2_10_57_1 doi: 10.1002/adma.201405217 – ident: e_1_2_10_155_1 doi: 10.1038/nphoton.2015.175 – ident: e_1_2_10_135_1 doi: 10.1002/anie.201411956 – ident: e_1_2_10_152_1 doi: 10.1021/acs.nanolett.7b00166 – ident: e_1_2_10_28_1 doi: 10.1021/ja00124a012 |
| SSID | ssj0031247 |
| Score | 2.6669776 |
| SecondaryResourceType | review_article |
| Snippet | Hybrid organic–inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and... Hybrid organic-inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| SubjectTerms | Absorptivity Carrier mobility Configuration management Diffusion length Electrical properties flexible Heterostructures Nanotechnology Optical properties optical sensors Optoelectronic devices Perovskite structure Perovskites photodetectors Photometers self‐powered |
| Title | Hybrid Organic–Inorganic Perovskite Photodetectors |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201702107 https://www.ncbi.nlm.nih.gov/pubmed/28895306 https://www.proquest.com/docview/1958633419 https://www.proquest.com/docview/1938187027 |
| Volume | 13 |
| WOSCitedRecordID | wos000414374700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1613-6829 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031247 issn: 1613-6810 databaseCode: DRFUL dateStart: 20050101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxwxFD7o6kN9UKtV1xsjFHwK7uYySR5FuyisstQK-zbkSgs6Izur0Lf-h_7D_hKTmdnRpUjBvs0wJ5mQ5Jzz5YTzHYDPNvVB0bREjluGqFUpkpRLpFMX0KsM1hCbqtgEv74W47Ecvcrir_kh2oBb1IzKXkcFV7o8eSENLe_v4tVBn8dTC1-EJRw2L-vA0vnXwe1wZo1J8F9VgZXgtlDk3poRN_bwyXwP847pL7Q5D14r7zNY-_9xr8NqgzyT03qrfIQFl2_Ayis-wk2gFz9jAldSJ2iaP79-X-Z12SeTjNykeCpjrDcZfS-mhXXTKuBffoLbwZdvZxeoKauATGTiQYp54bzQwVebPg_-20tHvReCWUa0IbgnKCNY9jSnXmulHGNccamDLTKSErIFnbzI3Q4kTNmARwTpeSqptUSkqTdCOY-V4ravu4Bmc5qZhnM8lr64y2q2ZJzF2cja2ejCcSv_ULNtvCm5P1uirNG6MovEOSmJDHVdOGo_B32JlyAqd8VjlIkYJXQSutiul7b9FRZCsnCG6gKuVvAfY8hurobD9m33PY324EN8rpMb96EznTy6A1g2T9Mf5eQQFvlYHDY7-hmN6_Ta |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dStxAFD5YFVov1FZbt7U2guDV4G4yk5m5LLbLinFZqoJ3YX5RsEnZrELv-g59wz5J5yTZ2KVIQXqZZDIZzv-cyfkOwIFNfVA0LYnjlhFqVUok5ZLo1IXoVQZrGJu62QQfj8XVlZy0fxNiLUyDD9El3FAzanuNCo4J6aMH1NDq6y2eHQw4blv4M1ihQZaCkK98-jK8zObmOAkOrO6wEvwWQfCtOXJjPz5anGHRM_0Vbi5Gr7X7GW78h4Vvwnobe0YfG2F5CUuueAVrfyASbgEdfccSrqgp0TS_fvw8KZrGTyaauGl5X2G2N5pcl7PSulmd8q-24XL4-eJ4RNrGCsQgFg9RzAvnhQ7e2gx48OBeOuq9EMyyRJsk7gvKklj2Nadea6UcY1xxqYM1MpImyWtYLsrC7UDElA0RiUj6nkpqbWBA6o1QzsdKcTvQPSBzouamRR3H5he3eYOXHOdIjbyjRg8Ou_HfGryNR0fuznmUt3pX5QidkyaIUdeD_e5x0Bg8BlGFK-9wDEYpYZIwxZuGt92nYiEkC7uoHsQ1C_-xhvz8LMu6q7dPeekDPB9dnGV5djI-fQcv8H5T6rgLy7PpnXsPq-Z-dlNN91rB_g18lPfi |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEB_asxR9aO2HetXaFAp9WrzL7mZ3H4t6KL0eh63gW9hPLGgil1Pwzf-h_2H_ku4kuehRSqH0MclksuzsfOxs5jcAH1wWoqIZRbxwnDCnM6KYUMRkPkavKlrD1NbNJsRkIs_O1LT9mxBrYRp8iC7hhppR22tUcH_lwt49amh1eYFnB0OB2xbxGFYYdpLpwcrByeh0vDDHNDqwusNK9FsEwbcWyI2DdG-Zw7Jn-i3cXI5ea_czev4fBr4Oz9rYM_nULJYX8MgXL2HtASLhK2BHt1jClTQlmvbn3Y_jomn8ZJOpn5U3FWZ7k-l5OS-dn9cp_-o1nI4Ov-0fkbaxArGIxUM0D9IHaaK3tkMRPXhQnoUgJXecGkvTgWScpmpgBAvGaO05F1ooE62RVYzSDegVZeG3IOHaxYhE0kFgijlHZZYFK7UPqdbCDU0fyGJSc9uijmPzi4u8wUtOc5yNvJuNPnzs6K8avI0_Uu4sZJS3elflCJ2TUcSo68P77nHUGDwG0YUvr5EGo5TIJLLYbGTbfSqVUvG4i-pDWovwL2PIv34Zj7urN__y0jt4Oj0Y5ePjyedtWMXbTaXjDvTms2v_Fp7Ym_n3arbbrutfEm_3XQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Organic-Inorganic+Perovskite+Photodetectors&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Tian%2C+Wei&rft.au=Zhou%2C+Huanping&rft.au=Li%2C+Liang&rft.date=2017-11-01&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=13&rft.issue=41&rft_id=info:doi/10.1002%2Fsmll.201702107&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |