Nanometre optical coatings based on strong interference effects in highly absorbing media
Optical coatings usually consist of many multilayers of thin films to achieve the desired properties. A new approach using interference effects between an absorbing dielectric film and a metallic substrate now enables ultrathin optical coatings that could also find applications as thin solar cells o...
Uloženo v:
| Vydáno v: | Nature materials Ročník 12; číslo 1; s. 20 - 24 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
01.01.2013
Nature Publishing Group |
| Témata: | |
| ISSN: | 1476-1122, 1476-4660, 1476-4660 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Optical coatings usually consist of many multilayers of thin films to achieve the desired properties. A new approach using interference effects between an absorbing dielectric film and a metallic substrate now enables ultrathin optical coatings that could also find applications as thin solar cells or photodetectors.
Optical coatings, which consist of one or more films of dielectric or metallic materials, are widely used in applications ranging from mirrors to eyeglasses and photography lenses
1
,
2
. Many conventional dielectric coatings rely on Fabry–Perot-type interference, involving multiple optical passes through transparent layers with thicknesses of the order of the wavelength to achieve functionalities such as anti-reflection, high-reflection and dichroism. Highly absorbing dielectrics are typically not used because it is generally accepted that light propagation through such media destroys interference effects. We show that under appropriate conditions interference can instead persist in ultrathin, highly absorbing films of a few to tens of nanometres in thickness, and demonstrate a new type of optical coating comprising such a film on a metallic substrate, which selectively absorbs various frequency ranges of the incident light. These coatings have a low sensitivity to the angle of incidence and require minimal amounts of absorbing material that can be as thin as 5–20 nm for visible light. This technology has the potential for a variety of applications from ultrathin photodetectors and solar cells to optical filters, to labelling, and even the visual arts and jewellery. |
|---|---|
| AbstractList | Optical coatings, which consist of one or more films of dielectric or metallic materials, are widely used in applications ranging from mirrors to eyeglasses and photography lenses. Many conventional dielectric coatings rely on Fabry-Perot-type interference, involving multiple optical passes through transparent layers with thicknesses of the order of the wavelength to achieve functionalities such as anti-reflection, high-reflection and dichroism. Highly absorbing dielectrics are typically not used because it is generally accepted that light propagation through such media destroys interference effects. We show that under appropriate conditions interference can instead persist in ultrathin, highly absorbing films of a few to tens of nanometres in thickness, and demonstrate a new type of optical coating comprising such a film on a metallic substrate, which selectively absorbs various frequency ranges of the incident light. These coatings have a low sensitivity to the angle of incidence and require minimal amounts of absorbing material that can be as thin as 5-20 nm for visible light. This technology has the potential for a variety of applications from ultrathin photodetectors and solar cells to optical filters, to labelling, and even the visual arts and jewellery. Optical coatings, which consist of one or more films of dielectric or metallic materials, are widely used in applications ranging from mirrors to eyeglasses and photography lenses. Many conventional dielectric coatings rely on Fabry-Perot-type interference, involving multiple optical passes through transparent layers with thicknesses of the order of the wavelength to achieve functionalities such as anti-reflection, high-reflection and dichroism. Highly absorbing dielectrics are typically not used because it is generally accepted that light propagation through such media destroys interference effects. We show that under appropriate conditions interference can instead persist in ultrathin, highly absorbing films of a few to tens of nanometres in thickness, and demonstrate a new type of optical coating comprising such a film on a metallic substrate, which selectively absorbs various frequency ranges of the incident light. These coatings have a low sensitivity to the angle of incidence and require minimal amounts of absorbing material that can be as thin as 5-20nm for visible light. This technology has the potential for a variety of applications from ultrathin photodetectors and solar cells to optical filters, to labelling, and even the visual arts and jewellery. Optical coatings, which consist of one or more films of dielectric or metallic materials, are widely used in applications ranging from mirrors to eyeglasses and photography lenses. Many conventional dielectric coatings rely on Fabry-Perot-type interference, involving multiple optical passes through transparent layers with thicknesses of the order of the wavelength to achieve functionalities such as anti-reflection, high-reflection and dichroism. Highly absorbing dielectrics are typically not used because it is generally accepted that light propagation through such media destroys interference effects. We show that under appropriate conditions interference can instead persist in ultrathin, highly absorbing films of a few to tens of nanometres in thickness, and demonstrate a new type of optical coating comprising such a film on a metallic substrate, which selectively absorbs various frequency ranges of the incident light. These coatings have a low sensitivity to the angle of incidence and require minimal amounts of absorbing material that can be as thin as 5-20 nm for visible light. This technology has the potential for a variety of applications from ultrathin photodetectors and solar cells to optical filters, to labelling, and even the visual arts and jewellery.Optical coatings, which consist of one or more films of dielectric or metallic materials, are widely used in applications ranging from mirrors to eyeglasses and photography lenses. Many conventional dielectric coatings rely on Fabry-Perot-type interference, involving multiple optical passes through transparent layers with thicknesses of the order of the wavelength to achieve functionalities such as anti-reflection, high-reflection and dichroism. Highly absorbing dielectrics are typically not used because it is generally accepted that light propagation through such media destroys interference effects. We show that under appropriate conditions interference can instead persist in ultrathin, highly absorbing films of a few to tens of nanometres in thickness, and demonstrate a new type of optical coating comprising such a film on a metallic substrate, which selectively absorbs various frequency ranges of the incident light. These coatings have a low sensitivity to the angle of incidence and require minimal amounts of absorbing material that can be as thin as 5-20 nm for visible light. This technology has the potential for a variety of applications from ultrathin photodetectors and solar cells to optical filters, to labelling, and even the visual arts and jewellery. Optical coatings, which consist of one or more films of dielectric or metallic materials, are widely used in applications ranging from mirrors to eyeglasses and photography lenses. Many conventional dielectric coatings rely on Fabry-Perot-type interference, involving multiple optical passes through transparent layers with thicknesses of the order of the wavelength to achieve functionalities such as anti-reflection, high-reflection and dichroism. Highly absorbing dielectrics are typically not used because it is generally accepted that light propagation through such media destroys interference effects. We show that under appropriate conditions interference can instead persist in ultrathin, highly absorbing films of a few to tens of nanometres in thickness, and demonstrate a new type of optical coating comprising such a film on a metallic substrate, which selectively absorbs various frequency ranges of the incident light. These coatings have a low sensitivity to the angle of incidence and require minimal amounts of absorbing material that can be as thin as 5-20nm for visible light. This technology has the potential for a variety of applications from ultrathin photodetectors and solar cells to optical filters, to labelling, and even the visual arts and jewellery. [PUBLICATION ABSTRACT] Optical coatings usually consist of many multilayers of thin films to achieve the desired properties. A new approach using interference effects between an absorbing dielectric film and a metallic substrate now enables ultrathin optical coatings that could also find applications as thin solar cells or photodetectors. Optical coatings, which consist of one or more films of dielectric or metallic materials, are widely used in applications ranging from mirrors to eyeglasses and photography lenses 1 , 2 . Many conventional dielectric coatings rely on Fabry–Perot-type interference, involving multiple optical passes through transparent layers with thicknesses of the order of the wavelength to achieve functionalities such as anti-reflection, high-reflection and dichroism. Highly absorbing dielectrics are typically not used because it is generally accepted that light propagation through such media destroys interference effects. We show that under appropriate conditions interference can instead persist in ultrathin, highly absorbing films of a few to tens of nanometres in thickness, and demonstrate a new type of optical coating comprising such a film on a metallic substrate, which selectively absorbs various frequency ranges of the incident light. These coatings have a low sensitivity to the angle of incidence and require minimal amounts of absorbing material that can be as thin as 5–20 nm for visible light. This technology has the potential for a variety of applications from ultrathin photodetectors and solar cells to optical filters, to labelling, and even the visual arts and jewellery. |
| Author | Genevet, Patrice Blanchard, Romain Capasso, Federico Kats, Mikhail A. |
| Author_xml | – sequence: 1 givenname: Mikhail A. surname: Kats fullname: Kats, Mikhail A. organization: School of Engineering and Applied Sciences, Harvard University – sequence: 2 givenname: Romain surname: Blanchard fullname: Blanchard, Romain organization: School of Engineering and Applied Sciences, Harvard University – sequence: 3 givenname: Patrice surname: Genevet fullname: Genevet, Patrice organization: School of Engineering and Applied Sciences, Harvard University – sequence: 4 givenname: Federico surname: Capasso fullname: Capasso, Federico email: capasso@seas.harvard.edu organization: School of Engineering and Applied Sciences, Harvard University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23064496$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0U1rHCEYB3ApW5pNUugnKEIvyWFT30adYwl5g6W9tIeeBsd53BhmdKvuYb99DNk0YQnsyQf5Pfro_xjNQgyA0BdKLijh-nuYTOFC8A9oToWSCyElme1qShk7Qsc5PxDCaNPIT-iIcSKFaOUc_f1pQpygJMBxXbw1I7bRFB9WGfcmw4BjwLmkGFbYhwLJQYJgAYNzYEuum_jer-7HLTZ9jqmvnXiCwZtT9NGZMcPn3XqC_lxf_b68XSx_3dxd_lgurFCqLJykmjA9tE0vpRJ6YECaOmYvNK-FAKNEa3s-mEG3VkvXKj7QQSvnOGhL-Qk6ez53neK_DeTSTT5bGEcTIG5yR6WiglDW6MOU00a2VHBymDJBWiI0faLf9uhD3KRQ31yVFlwxzVRVX3dq09f_6dbJTyZtu5coXm-0KeacwP0nlHRPKXcvKVd6sUetLzW0GEoyfnyv4fy5IdczwwrSmxH37SPnLrWH |
| CitedBy_id | crossref_primary_10_1002_sdtp_13044 crossref_primary_10_1515_nanoph_2020_0366 crossref_primary_10_1002_lpor_201400026 crossref_primary_10_1002_lpor_202500881 crossref_primary_10_1039_C9NR04759J crossref_primary_10_3390_nano14060530 crossref_primary_10_1002_adma_202302028 crossref_primary_10_1002_adom_201800656 crossref_primary_10_1016_j_solmat_2022_111952 crossref_primary_10_1038_s41563_024_02042_4 crossref_primary_10_1002_adom_201801747 crossref_primary_10_1016_j_nanoen_2020_105048 crossref_primary_10_1002_adfm_202311845 crossref_primary_10_1103_PhysRevApplied_9_054018 crossref_primary_10_1002_adom_202300674 crossref_primary_10_1080_09205071_2015_1073124 crossref_primary_10_1039_D5NR01391G crossref_primary_10_3390_nano10061133 crossref_primary_10_1038_srep08157 crossref_primary_10_1109_JPHOTOV_2015_2478063 crossref_primary_10_3390_s19194103 crossref_primary_10_1016_j_apsusc_2015_07_087 crossref_primary_10_1002_adom_201900028 crossref_primary_10_3390_photonics10090966 crossref_primary_10_1016_j_cej_2021_128930 crossref_primary_10_1007_s11082_017_0998_3 crossref_primary_10_1002_adma_202304699 crossref_primary_10_1007_s12274_021_3388_x crossref_primary_10_1016_j_elspec_2017_06_004 crossref_primary_10_1364_JOSAB_31_0000A6 crossref_primary_10_1002_advs_201903125 crossref_primary_10_1002_smsc_202400174 crossref_primary_10_1038_nnano_2015_228 crossref_primary_10_1002_adom_201600078 crossref_primary_10_1002_adma_201503281 crossref_primary_10_3390_mi11010110 crossref_primary_10_1515_nanoph_2024_0029 crossref_primary_10_1002_pssa_201900677 crossref_primary_10_3788_PI_2024_R07 crossref_primary_10_1063_1_4788930 crossref_primary_10_1103_PhysRevApplied_3_037001 crossref_primary_10_1155_2019_2329168 crossref_primary_10_1002_smtd_202402182 crossref_primary_10_1016_j_ijheatmasstransfer_2017_04_085 crossref_primary_10_1002_adma_202108013 crossref_primary_10_1016_j_matlet_2015_03_129 crossref_primary_10_1088_1361_6463_aac47c crossref_primary_10_1515_nanoph_2020_0264 crossref_primary_10_1088_0022_3727_49_42_425106 crossref_primary_10_1038_s41598_020_74893_1 crossref_primary_10_1016_j_pmatsci_2023_101088 crossref_primary_10_1016_j_apsusc_2020_146804 crossref_primary_10_1016_j_optmat_2025_117483 crossref_primary_10_1103_PhysRevLett_130_196901 crossref_primary_10_1142_S0217979225400624 crossref_primary_10_1039_C8NR05884A crossref_primary_10_3390_ma16062350 crossref_primary_10_1038_s41565_021_00891_7 crossref_primary_10_1088_1361_6463_abbfc6 crossref_primary_10_1039_C7NR00327G crossref_primary_10_1088_1742_6596_1829_1_012031 crossref_primary_10_1016_j_surfcoat_2024_131009 crossref_primary_10_1038_s41377_021_00529_2 crossref_primary_10_3938_jkps_76_911 crossref_primary_10_1016_j_optmat_2021_110847 crossref_primary_10_1088_2040_8978_17_1_015002 crossref_primary_10_1002_adom_201700830 crossref_primary_10_1016_j_optlastec_2022_108772 crossref_primary_10_1016_j_optlastec_2021_107026 crossref_primary_10_1109_JPHOT_2018_2796566 crossref_primary_10_1364_JOSAB_33_002649 crossref_primary_10_1186_s11671_017_2048_2 crossref_primary_10_1063_5_0175803 crossref_primary_10_1063_1_4939296 crossref_primary_10_1039_C8CS00067K crossref_primary_10_1002_adom_202001367 crossref_primary_10_1007_s00396_021_04834_5 crossref_primary_10_1038_nature13487 crossref_primary_10_3390_nano8090645 crossref_primary_10_1016_j_optlastec_2017_12_004 crossref_primary_10_1038_s41467_023_39602_2 crossref_primary_10_1063_1_4919106 crossref_primary_10_1088_1361_6501_ab9fd8 crossref_primary_10_1002_adma_202108128 crossref_primary_10_1007_s12596_023_01295_7 crossref_primary_10_1063_5_0138336 crossref_primary_10_3390_app9132727 crossref_primary_10_1016_j_compositesa_2023_107532 crossref_primary_10_1515_nanoph_2020_0440 crossref_primary_10_1088_2399_6528_ac59d0 crossref_primary_10_1016_j_optmat_2023_114667 crossref_primary_10_1038_s41598_018_20879_z crossref_primary_10_1038_srep17060 crossref_primary_10_1109_LPT_2015_2432756 crossref_primary_10_1515_nanoph_2019_0171 crossref_primary_10_1007_s11082_018_1427_y crossref_primary_10_1109_JPHOTOV_2014_2350693 crossref_primary_10_1088_1361_6633_ac45f9 crossref_primary_10_1002_adom_202301678 crossref_primary_10_1016_j_physrep_2023_01_001 crossref_primary_10_1016_j_nanoen_2021_106855 crossref_primary_10_1038_s41598_019_43539_2 crossref_primary_10_1016_j_tsf_2015_07_019 crossref_primary_10_1002_adom_202401450 crossref_primary_10_34133_research_0719 crossref_primary_10_1088_1361_6633_abb56e crossref_primary_10_1364_JOSAB_35_002294 crossref_primary_10_1088_1361_6633_aa8732 crossref_primary_10_1063_1_4932017 crossref_primary_10_1007_s12274_016_1122_x crossref_primary_10_1016_j_optlastec_2025_112838 crossref_primary_10_3390_nano11092320 crossref_primary_10_1016_j_scriptamat_2021_114101 crossref_primary_10_1186_2193_1801_3_284 crossref_primary_10_1002_adfm_202419378 crossref_primary_10_1038_s41598_019_51165_1 crossref_primary_10_1088_1361_6463_ac7c9d crossref_primary_10_3390_photonics8040114 crossref_primary_10_1002_adom_201801709 crossref_primary_10_1088_1361_6463_acc7b3 crossref_primary_10_1002_solr_202200766 crossref_primary_10_1007_s40843_016_0129_7 crossref_primary_10_1016_j_ceramint_2020_07_315 crossref_primary_10_1038_srep08467 crossref_primary_10_1002_lpor_202200303 crossref_primary_10_1038_s41467_020_17015_9 crossref_primary_10_1109_ACCESS_2020_2989516 crossref_primary_10_1109_LED_2019_2910064 crossref_primary_10_1515_nanoph_2016_0010 crossref_primary_10_1002_pssa_201800940 crossref_primary_10_1063_1_4883494 crossref_primary_10_1515_nanoph_2020_0106 crossref_primary_10_1002_adom_201500690 crossref_primary_10_1016_j_apmt_2024_102267 crossref_primary_10_1016_j_matt_2024_11_023 crossref_primary_10_1016_j_jqsrt_2018_02_037 crossref_primary_10_1103_PhysRevResearch_2_043349 crossref_primary_10_1038_s41598_022_18259_9 crossref_primary_10_3390_ma9060497 crossref_primary_10_1088_1361_6528_ab674e crossref_primary_10_1038_s41598_019_41915_6 crossref_primary_10_1002_adom_202402643 crossref_primary_10_29026_oea_2025_240091 crossref_primary_10_1002_adma_202109546 crossref_primary_10_1111_cote_12466 crossref_primary_10_3390_photonics9060402 crossref_primary_10_1016_j_optlastec_2022_108697 crossref_primary_10_1038_s41378_023_00609_w crossref_primary_10_1364_AO_410211 crossref_primary_10_1007_s11708_018_0542_6 crossref_primary_10_1016_j_optlastec_2022_108579 crossref_primary_10_1038_lsa_2016_233 crossref_primary_10_1117_1_AP_6_3_036001 crossref_primary_10_1007_s10854_019_02701_2 crossref_primary_10_1038_s41566_024_01590_0 crossref_primary_10_1117_1_JOM_4_2_020901 crossref_primary_10_1002_adom_202301577 crossref_primary_10_1038_srep34030 crossref_primary_10_1109_TNANO_2021_3112704 crossref_primary_10_1002_adom_202300481 crossref_primary_10_1016_j_nanoen_2019_103998 crossref_primary_10_1016_j_nanoen_2021_105872 crossref_primary_10_1002_adom_201900018 crossref_primary_10_1016_j_jclepro_2020_125328 crossref_primary_10_1002_adom_201400105 crossref_primary_10_1063_1_4943186 crossref_primary_10_1038_s41598_021_84889_0 crossref_primary_10_1103_PhysRevApplied_7_034001 crossref_primary_10_1002_adma_202416314 crossref_primary_10_3390_nano13192726 crossref_primary_10_1016_j_optcom_2014_02_046 crossref_primary_10_1002_sdtp_11702 crossref_primary_10_1073_pnas_1307222110 crossref_primary_10_1002_adma_201705876 crossref_primary_10_1109_JSEN_2023_3347223 crossref_primary_10_1088_2053_1591_ac3042 crossref_primary_10_1007_s40843_021_1955_0 crossref_primary_10_1063_1_4833537 crossref_primary_10_1038_srep15754 crossref_primary_10_1063_1_5009945 crossref_primary_10_1039_D3QM01340E crossref_primary_10_1063_1_5017574 crossref_primary_10_1038_s41467_024_46851_2 crossref_primary_10_1002_adpr_202200137 crossref_primary_10_1002_adom_202400429 crossref_primary_10_1016_j_optlastec_2020_106895 crossref_primary_10_1515_nanoph_2024_0541 crossref_primary_10_1016_j_optmat_2019_109370 crossref_primary_10_1039_C5CP02564H crossref_primary_10_1002_er_5040 crossref_primary_10_1557_jmr_2015_100 crossref_primary_10_1016_j_optcom_2013_08_062 crossref_primary_10_1515_nanoph_2016_0109 crossref_primary_10_1364_AO_56_004375 crossref_primary_10_1007_s40684_021_00324_9 crossref_primary_10_3390_coatings9060393 crossref_primary_10_1016_j_optlastec_2022_108002 crossref_primary_10_1063_1_4867646 crossref_primary_10_1063_1_4811521 crossref_primary_10_1515_nanoph_2023_0723 crossref_primary_10_1016_j_jallcom_2025_181525 crossref_primary_10_1103_PhysRevApplied_14_024009 crossref_primary_10_3390_mi13071084 crossref_primary_10_1063_1_5121328 crossref_primary_10_1515_nanoph_2024_0538 crossref_primary_10_3103_S106287382370449X crossref_primary_10_3390_nano10122557 crossref_primary_10_1002_advs_202413027 crossref_primary_10_1088_0256_307X_32_7_074204 crossref_primary_10_3390_ma12010143 crossref_primary_10_1038_s41467_023_36578_x crossref_primary_10_1016_j_optmat_2021_111899 crossref_primary_10_1002_adma_201802781 crossref_primary_10_1002_adpr_202000147 crossref_primary_10_1016_j_applthermaleng_2025_126031 crossref_primary_10_1111_cote_12301 crossref_primary_10_1038_s41467_020_20300_2 crossref_primary_10_3390_coatings10010071 crossref_primary_10_3390_photonics4020035 crossref_primary_10_1002_adma_202007345 crossref_primary_10_1002_adom_202000679 crossref_primary_10_1002_adma_201704333 crossref_primary_10_3390_photonics11121149 crossref_primary_10_3390_polym10070756 crossref_primary_10_1088_1361_6528_ab5d42 crossref_primary_10_1039_C8RA07363E crossref_primary_10_1063_1_4819491 crossref_primary_10_1002_adma_202417511 crossref_primary_10_1515_nanoph_2022_0063 crossref_primary_10_1016_j_apsusc_2019_143575 crossref_primary_10_1186_s43074_022_00061_5 crossref_primary_10_1088_1674_1056_22_10_107801 crossref_primary_10_1103_PhysRevApplied_16_044041 crossref_primary_10_1002_adpr_202200102 crossref_primary_10_3390_ma13235417 crossref_primary_10_1002_advs_202000978 crossref_primary_10_1016_j_ijleo_2018_12_187 crossref_primary_10_1002_pip_3665 crossref_primary_10_1002_adpr_202000050 crossref_primary_10_1109_JPHOT_2018_2876397 crossref_primary_10_1002_adom_201900739 crossref_primary_10_3390_app8091445 crossref_primary_10_1109_JPHOT_2018_2824313 crossref_primary_10_1515_nanoph_2024_0471 crossref_primary_10_1063_1_4939969 crossref_primary_10_1063_5_0153206 crossref_primary_10_1038_s41467_020_17313_2 crossref_primary_10_1063_5_0138290 crossref_primary_10_1515_nanoph_2022_0051 crossref_primary_10_1002_adom_202302130 crossref_primary_10_1364_AO_55_009237 crossref_primary_10_1038_srep09285 crossref_primary_10_1016_j_ceramint_2015_03_002 crossref_primary_10_1109_JPHOT_2022_3155715 crossref_primary_10_1038_srep32589 crossref_primary_10_1002_adfm_201601764 crossref_primary_10_1002_lpor_201600098 crossref_primary_10_1016_j_heliyon_2024_e35507 crossref_primary_10_1016_j_mtcomm_2022_104864 crossref_primary_10_1002_adma_201506238 crossref_primary_10_1002_adom_202001307 crossref_primary_10_1002_aisy_202100182 crossref_primary_10_1088_1674_1056_27_12_124202 crossref_primary_10_1364_AO_57_003385 crossref_primary_10_1039_D4LF00421C crossref_primary_10_1063_1_5085715 crossref_primary_10_3390_photonics7030057 crossref_primary_10_1063_1_4943089 crossref_primary_10_1016_j_jallcom_2018_10_233 crossref_primary_10_1002_adfm_201806181 crossref_primary_10_1039_C8NR09983A crossref_primary_10_1002_lpor_201800076 crossref_primary_10_1002_adom_201700222 crossref_primary_10_1155_2017_2361042 crossref_primary_10_1016_j_cej_2025_161418 crossref_primary_10_3390_app6090239 crossref_primary_10_1002_gch2_201800032 crossref_primary_10_3390_coatings14101298 crossref_primary_10_1038_srep12788 crossref_primary_10_1002_adma_201601204 crossref_primary_10_1038_srep29195 crossref_primary_10_1016_j_nanoen_2016_05_013 crossref_primary_10_1364_AO_56_009779 crossref_primary_10_3390_coatings8050183 crossref_primary_10_1016_j_optlastec_2024_110731 crossref_primary_10_1016_j_nanoen_2024_110483 crossref_primary_10_1038_s41467_020_15116_z crossref_primary_10_1016_j_solmat_2025_113813 crossref_primary_10_1002_adma_201402117 crossref_primary_10_1007_s00339_023_06841_5 crossref_primary_10_1063_1_4879829 crossref_primary_10_1364_AO_54_003868 crossref_primary_10_1002_adom_201901626 crossref_primary_10_1016_j_snb_2016_02_138 crossref_primary_10_1002_er_4375 crossref_primary_10_1016_j_chemosphere_2021_129719 crossref_primary_10_1039_C8NR06597G crossref_primary_10_1002_adom_201700368 crossref_primary_10_1016_j_tsf_2022_139232 crossref_primary_10_1002_adom_202100417 crossref_primary_10_1063_1_5016990 crossref_primary_10_1103_PhysRevApplied_15_064007 crossref_primary_10_1109_JPHOT_2016_2609143 crossref_primary_10_1126_science_1231254 crossref_primary_10_1038_s41598_022_23119_7 crossref_primary_10_1016_j_optlaseng_2024_108328 crossref_primary_10_1002_lpor_201600285 crossref_primary_10_1109_JSTQE_2019_2900607 crossref_primary_10_1038_srep39206 crossref_primary_10_1007_s40843_020_1628_6 crossref_primary_10_1002_adom_202303263 crossref_primary_10_1002_adfm_202314434 crossref_primary_10_1016_j_optlastec_2020_106129 crossref_primary_10_1016_j_optcom_2023_129743 crossref_primary_10_1088_1361_6633_aa8372 crossref_primary_10_1002_adma_201305793 crossref_primary_10_1002_adma_201706696 crossref_primary_10_1002_advs_202204469 crossref_primary_10_1016_j_jallcom_2017_08_265 crossref_primary_10_1002_adom_202303138 crossref_primary_10_1039_C8NH00368H crossref_primary_10_3390_ma12071050 crossref_primary_10_1002_advs_201800836 crossref_primary_10_1063_1_5119406 crossref_primary_10_1016_j_optlastec_2025_113289 crossref_primary_10_1016_j_optcom_2014_07_004 crossref_primary_10_1038_s41427_018_0043_4 crossref_primary_10_1002_smll_201703920 crossref_primary_10_1002_adom_201700029 crossref_primary_10_1002_lpor_202400255 crossref_primary_10_1039_D3NR00526G crossref_primary_10_1002_adfm_201904453 crossref_primary_10_1002_adma_202503587 crossref_primary_10_1016_j_jcis_2022_09_046 crossref_primary_10_1002_adfm_202006854 crossref_primary_10_1038_lsa_2014_96 crossref_primary_10_1063_1_4884936 crossref_primary_10_1038_srep18605 crossref_primary_10_1109_JPHOTOV_2022_3150726 crossref_primary_10_1038_s41598_017_04660_2 crossref_primary_10_1039_D1RA07394J crossref_primary_10_1016_j_optcom_2025_132110 crossref_primary_10_1002_adom_202400921 crossref_primary_10_1088_1361_6528_ab8325 crossref_primary_10_1002_adom_201900849 crossref_primary_10_1002_admt_202000367 crossref_primary_10_1002_adom_202100645 crossref_primary_10_1364_PRJ_415141 crossref_primary_10_1088_1361_6528_ab746f crossref_primary_10_1109_MNANO_2019_2916113 crossref_primary_10_1209_0295_5075_ad12a2 crossref_primary_10_1002_adma_201505806 crossref_primary_10_1016_j_physb_2025_417085 crossref_primary_10_1063_5_0028535 crossref_primary_10_1016_j_carbpol_2023_120895 crossref_primary_10_1103_PhysRevApplied_22_L061001 crossref_primary_10_1063_1_5017704 crossref_primary_10_1063_1_4961368 crossref_primary_10_1364_PRJ_6_000492 crossref_primary_10_1002_adom_201900735 crossref_primary_10_1016_j_physrep_2016_04_004 crossref_primary_10_1038_s41598_019_46413_3 crossref_primary_10_1021_acsami_5c06067 crossref_primary_10_1038_s41598_017_13837_8 crossref_primary_10_1039_C8CS00206A crossref_primary_10_1063_5_0030684 crossref_primary_10_1002_adma_201606876 crossref_primary_10_1038_s41598_019_49906_3 crossref_primary_10_1002_adom_201400386 crossref_primary_10_1002_adma_201903787 crossref_primary_10_1002_adom_201700284 crossref_primary_10_1364_PRJ_438095 crossref_primary_10_1016_j_solmat_2024_112849 crossref_primary_10_1209_0295_5075_118_47006 crossref_primary_10_1002_aenm_202200713 crossref_primary_10_1002_adom_201700166 crossref_primary_10_1038_srep13384 crossref_primary_10_1007_s12596_019_00576_4 crossref_primary_10_1038_s41598_019_40001_1 crossref_primary_10_1016_j_mattod_2023_08_001 crossref_primary_10_1051_epjam_2019017 crossref_primary_10_1088_1361_6528_aaac72 crossref_primary_10_1063_1_4820147 crossref_primary_10_1002_adma_202102451 crossref_primary_10_1016_j_mtener_2025_101867 crossref_primary_10_1038_s41427_018_0011_z crossref_primary_10_1088_2053_1583_aab0cf crossref_primary_10_1109_LPT_2017_2693443 crossref_primary_10_1038_nmat3839 crossref_primary_10_1109_LPT_2017_2786475 crossref_primary_10_1515_nanoph_2023_0067 crossref_primary_10_1002_lpor_202402107 crossref_primary_10_1109_LPT_2016_2531102 crossref_primary_10_1016_j_solmat_2020_110839 crossref_primary_10_1515_nanoph_2019_0500 crossref_primary_10_1002_adfm_202507056 crossref_primary_10_3390_photonics12080740 crossref_primary_10_1016_j_nanoen_2018_06_036 crossref_primary_10_1039_D5MH01090J crossref_primary_10_1088_2053_1583_3_2_025017 crossref_primary_10_3390_app9183886 crossref_primary_10_1016_j_matdes_2022_110719 crossref_primary_10_1002_lpor_202300551 crossref_primary_10_1038_s42005_023_01380_0 crossref_primary_10_1002_admi_201701637 crossref_primary_10_1016_j_solener_2018_01_010 crossref_primary_10_1021_acsami_4c20865 crossref_primary_10_1063_1_4896527 crossref_primary_10_1038_srep32515 crossref_primary_10_1016_j_matchemphys_2023_128425 crossref_primary_10_35848_1347_4065_acc594 crossref_primary_10_1038_s41598_017_08342_x crossref_primary_10_1063_1_4973530 crossref_primary_10_1002_smll_201604298 crossref_primary_10_1021_acs_nanolett_4c05724 crossref_primary_10_1364_JOSAB_35_001780 crossref_primary_10_1016_j_optmat_2019_109445 crossref_primary_10_26599_NR_2025_94907005 crossref_primary_10_1038_natrevmats_2016_88 crossref_primary_10_1002_adma_202303502 crossref_primary_10_1063_1_4992045 crossref_primary_10_1016_j_saa_2019_117550 crossref_primary_10_1109_LPT_2013_2264047 crossref_primary_10_3390_nano13010134 crossref_primary_10_1002_adom_202101930 crossref_primary_10_1016_j_apsusc_2018_07_017 crossref_primary_10_1063_1_5086792 crossref_primary_10_1063_5_0176144 crossref_primary_10_1364_JOSAB_33_001075 crossref_primary_10_1038_srep11045 crossref_primary_10_3390_nano10081554 crossref_primary_10_1088_1361_6463_aadca2 crossref_primary_10_1002_smtd_201600064 crossref_primary_10_1016_j_ccr_2025_216913 crossref_primary_10_1002_lpor_202401723 crossref_primary_10_3390_nano9070963 crossref_primary_10_1002_adom_202501930 crossref_primary_10_1002_lpor_202400994 crossref_primary_10_1016_j_cap_2015_04_044 crossref_primary_10_1088_0022_3727_47_37_374003 crossref_primary_10_1002_adom_201801229 crossref_primary_10_1016_j_optcom_2020_126351 crossref_primary_10_1364_AO_53_008104 crossref_primary_10_1063_1_4929432 crossref_primary_10_1038_s41377_023_01308_x crossref_primary_10_1038_srep22963 crossref_primary_10_1021_acs_nanolett_4c06040 crossref_primary_10_1007_s11468_025_03287_8 crossref_primary_10_1038_srep04192 crossref_primary_10_1002_lpor_201900063 crossref_primary_10_1109_JSTQE_2020_3011678 crossref_primary_10_1038_s41893_022_01023_2 crossref_primary_10_1002_adma_202001388 crossref_primary_10_1515_nanoph_2020_0651 crossref_primary_10_1186_s11671_018_2629_8 crossref_primary_10_1016_j_apsusc_2022_154244 crossref_primary_10_1038_s41467_023_36275_9 crossref_primary_10_1002_adom_202101118 crossref_primary_10_1109_JPHOT_2020_2994647 crossref_primary_10_1016_j_mtphys_2025_101665 crossref_primary_10_1021_acsphotonics_5c00315 crossref_primary_10_1038_s41467_021_21499_4 crossref_primary_10_1016_j_solmat_2022_111688 crossref_primary_10_1063_1_4824371 crossref_primary_10_1103_PhysRevApplied_8_014009 crossref_primary_10_1002_adom_201600110 crossref_primary_10_1021_jacs_5c06430 crossref_primary_10_1038_srep20659 crossref_primary_10_1088_2053_1591_abd8a1 crossref_primary_10_1016_j_solmat_2015_07_032 crossref_primary_10_1038_s41565_020_00841_9 crossref_primary_10_1109_TTHZ_2013_2238631 crossref_primary_10_3390_photonics10010070 crossref_primary_10_1002_adom_202402293 crossref_primary_10_1088_1361_6641_ad4dd8 crossref_primary_10_1002_adfm_202102183 crossref_primary_10_1002_lpor_201700028 crossref_primary_10_1002_pip_3802 crossref_primary_10_1088_1361_6528_aad110 crossref_primary_10_1515_nanoph_2024_0090 crossref_primary_10_1002_adom_202001082 crossref_primary_10_1002_adom_201500651 crossref_primary_10_1063_1_4976684 crossref_primary_10_1002_pssa_202100424 crossref_primary_10_1002_advs_202002419 crossref_primary_10_1140_epjd_s10053_023_00674_w crossref_primary_10_1016_j_nanoen_2016_08_020 crossref_primary_10_1016_j_applthermaleng_2025_127801 crossref_primary_10_1002_aenm_201301938 crossref_primary_10_1016_j_optcom_2020_125483 crossref_primary_10_1002_cnma_202100060 crossref_primary_10_1007_s11468_019_01095_5 crossref_primary_10_1016_j_solener_2018_09_009 crossref_primary_10_1002_adom_202202011 crossref_primary_10_1002_smll_202202005 crossref_primary_10_1002_smll_202201036 crossref_primary_10_1038_lsa_2016_156 crossref_primary_10_1063_1_4795286 crossref_primary_10_1002_adom_201801214 crossref_primary_10_1063_1_4904027 crossref_primary_10_1016_j_optmat_2018_04_054 crossref_primary_10_1002_adom_201600452 crossref_primary_10_1016_j_spmi_2020_106579 crossref_primary_10_1002_adpr_202400194 crossref_primary_10_1002_j_2168_0159_2014_tb00205_x crossref_primary_10_1016_j_optmat_2025_116776 crossref_primary_10_1002_adom_202101342 crossref_primary_10_3390_coatings10030218 crossref_primary_10_1038_s41565_021_00883_7 crossref_primary_10_1016_j_solener_2022_07_026 crossref_primary_10_1016_j_solener_2017_12_021 crossref_primary_10_1063_5_0033312 crossref_primary_10_1515_nanoph_2023_0102 crossref_primary_10_1002_adom_201801660 crossref_primary_10_1002_adom_202101546 crossref_primary_10_1109_JLT_2015_2404860 crossref_primary_10_1038_s41467_018_02860_6 crossref_primary_10_1007_s11664_020_08088_9 crossref_primary_10_1016_j_jallcom_2025_182199 crossref_primary_10_1038_s41377_022_00883_9 crossref_primary_10_1016_j_nanoen_2017_02_027 crossref_primary_10_1016_j_materresbull_2016_07_001 crossref_primary_10_1002_admt_201800478 crossref_primary_10_1002_adom_201600287 crossref_primary_10_1016_j_apmt_2021_101238 crossref_primary_10_1038_nphoton_2017_126 crossref_primary_10_1016_j_solener_2024_112997 crossref_primary_10_1088_1742_6596_1879_3_032086 crossref_primary_10_1002_adfm_201908592 crossref_primary_10_1038_s41467_022_32987_6 crossref_primary_10_1016_j_jobe_2020_101336 crossref_primary_10_1364_PRJ_539592 crossref_primary_10_1038_srep25011 crossref_primary_10_1002_adma_202300179 crossref_primary_10_1088_2040_8986_aa5c07 crossref_primary_10_1063_1_4943654 crossref_primary_10_1515_nanoph_2021_0064 crossref_primary_10_1021_acs_nanolett_4c02963 crossref_primary_10_1038_s41566_022_00970_8 crossref_primary_10_1063_1_4978931 crossref_primary_10_1088_1742_6596_1676_1_012108 crossref_primary_10_29026_oea_2025_250031 crossref_primary_10_1007_s12274_021_3942_6 crossref_primary_10_1002_adom_201900196 crossref_primary_10_1002_adfm_201910555 crossref_primary_10_1002_sstr_202000057 crossref_primary_10_1021_acsaom_4c00521 crossref_primary_10_1117_1_OE_63_9_091605 crossref_primary_10_1186_s11671_020_03471_1 crossref_primary_10_1002_pssr_202500245 crossref_primary_10_1002_pssr_202500246 crossref_primary_10_1007_s12274_023_5870_0 crossref_primary_10_1109_ACCESS_2020_3012486 crossref_primary_10_1002_adom_201800672 crossref_primary_10_1038_srep07511 crossref_primary_10_1016_j_optmat_2024_115060 crossref_primary_10_1063_1_4818916 crossref_primary_10_1038_srep15137 crossref_primary_10_1364_AO_55_002024 crossref_primary_10_29026_oea_2024_230033 crossref_primary_10_1021_acsnano_5c07948 crossref_primary_10_1002_adpr_202300324 crossref_primary_10_1109_TED_2025_3578409 crossref_primary_10_1002_aelm_202400977 crossref_primary_10_1103_PhysRevX_3_041004 crossref_primary_10_1016_j_optcom_2023_129364 crossref_primary_10_1039_C9EE02986A crossref_primary_10_1109_JPHOT_2019_2945492 crossref_primary_10_1109_JSTQE_2021_3069495 crossref_primary_10_1063_1_4767646 crossref_primary_10_1063_1_4941690 crossref_primary_10_1038_lsa_2016_194 crossref_primary_10_1038_s41467_024_54623_1 crossref_primary_10_1080_21663831_2022_2055436 crossref_primary_10_1016_j_ceramint_2020_04_300 crossref_primary_10_1109_JPHOTOV_2021_3110311 crossref_primary_10_3390_electronics11193030 crossref_primary_10_1039_C4CP04717F crossref_primary_10_1038_srep09929 crossref_primary_10_1002_adpr_202100153 crossref_primary_10_1016_j_snb_2018_01_137 crossref_primary_10_1038_lsa_2014_42 crossref_primary_10_1002_adfm_202305734 crossref_primary_10_1016_j_optcom_2014_12_029 crossref_primary_10_3103_S1068337220020073 crossref_primary_10_1002_smll_201600528 crossref_primary_10_1088_1402_4896_adb21d crossref_primary_10_1002_adom_201601103 crossref_primary_10_1016_j_cjph_2020_12_007 crossref_primary_10_1515_nanoph_2023_0595 |
| Cites_doi | 10.1126/science.282.5394.1679 10.1063/1.1729543 10.1063/1.2834902 10.1103/PhysRevB.72.195422 10.1126/science.1137014 10.1364/AO.20.000074 10.1109/68.43343 10.1109/3.83412 10.1063/1.360322 10.1016/j.mser.2010.04.001 10.1088/0022-3719/7/13/017 10.1364/OE.19.023279 10.1002/pssa.2211190118 10.1016/j.tsf.2008.04.060 10.1364/AO.33.000026 10.1887/0750306882 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2012 Copyright Nature Publishing Group Jan 2013 |
| Copyright_xml | – notice: Springer Nature Limited 2012 – notice: Copyright Nature Publishing Group Jan 2013 |
| DBID | AAYXX CITATION NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 7U5 L7M |
| DOI | 10.1038/nmat3443 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection ProQuest Health & Medical Collection Medical Database Science Database Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | PubMed Materials Research Database Materials Research Database MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1476-4660 |
| EndPage | 24 |
| ExternalDocumentID | 2884518361 23064496 10_1038_nmat3443 |
| Genre | Journal Article |
| GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ACSTC AFANA AFFHD ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB ABFSG AEZWR AFHIU AHWEU AIXLP NFIDA NPM 7SR 7XB 8BQ 8FD 8FK JG9 K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 7U5 L7M PUEGO |
| ID | FETCH-LOGICAL-c477t-f618028d95b66748d2e05155b4830514ea749cb3dad89c86f973d1d87ff3e8c13 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 905 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000312593600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1476-1122 1476-4660 |
| IngestDate | Thu Oct 02 19:29:21 EDT 2025 Wed Oct 01 13:43:38 EDT 2025 Sun Nov 09 11:53:39 EST 2025 Sun Nov 30 04:20:21 EST 2025 Mon Jul 21 05:57:15 EDT 2025 Tue Nov 18 21:58:41 EST 2025 Sat Nov 29 03:30:22 EST 2025 Fri Feb 21 02:40:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c477t-f618028d95b66748d2e05155b4830514ea749cb3dad89c86f973d1d87ff3e8c13 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PMID | 23064496 |
| PQID | 1284372827 |
| PQPubID | 23500 |
| PageCount | 5 |
| ParticipantIDs | proquest_miscellaneous_1671401258 proquest_miscellaneous_1315691430 proquest_miscellaneous_1240904810 proquest_journals_1284372827 pubmed_primary_23064496 crossref_primary_10_1038_nmat3443 crossref_citationtrail_10_1038_nmat3443 springer_journals_10_1038_nmat3443 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-01-01 |
| PublicationDateYYYYMMDD | 2013-01-01 |
| PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature materials |
| PublicationTitleAbbrev | Nature Mater |
| PublicationTitleAlternate | Nat Mater |
| PublicationYear | 2013 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | YanRHSimesRJColdrenLAElectroabsorptive Fabry–Perot reflection modulators with asymmetric mirrorsIEEE Photon. Technol. Lett.1989127327510.1109/68.43343 UnluMSStriteSResonant cavity enhanced photonic devicesJ. Appl. Phys.19957860763910.1063/1.360322 ChattopadhyaySAnti-reflecting and photonic nanostructuresMater. Sci. Eng. R20106913510.1016/j.mser.2010.04.001 LewisNSToward cost-effective solar energy useScience20073157988011:CAS:528:DC%2BD2sXhsVShsrs%3D10.1126/science.1137014 CardonaMHarbekeGAbsorption spectrum of germanium and zinc-blende-type materials at energies higher than the fundamental absorption edgeJ. Appl. Phys.19633481381810.1063/1.1729543 ZhangJContinuous metal plasmonic frequency selective surfacesOpt. Express20111923279232851:CAS:528:DC%2BC3MXhsFKqtbjE10.1364/OE.19.023279 VorobyevAYGuoCEnhanced absorptance of gold following multipulse femtosecond laser ablationPhys. Rev. B20057219542210.1103/PhysRevB.72.195422 BornMWolfEPrinciples of Optics2003 GiresFTournoisPInterferometre utilisable pour la compression d’impulsions lumineuses modulees en frequenceC. R. Acad. Sci. Paris196425861126615 MacleodHAThin-film Optical Filters198610.1887/0750306882 FinkYA dielectric omnidirectional reflectorScience1998282167916821:CAS:528:DyaK1cXnslGhtLg%3D10.1126/science.282.5394.1679 DobrowolskiJAVersatile computer program for absorbing optical thin film systemsAppl. Opt.19812074811:CAS:528:DyaL3MXlsFejtw%3D%3D10.1364/AO.20.000074 HilfikerJNSurvey of methods to characterize thin absorbing films with spectroscopic ellipsometryThin Solid Films2008516797979891:CAS:528:DC%2BD1cXhtVygt7bJ10.1016/j.tsf.2008.04.060 RobustoPFBrausteinROptical measurements of the surface plasmon of indium tin oxidePhys. Status Solidi19901191551681:CAS:528:DyaK3cXkvVOhs7g%3D10.1002/pssa.2211190118 YehPOptical Waves in Layered Media2005 BlyVTCoxJTInfrared absorber for ferroelectric detectorsAppl. Opt.19943326301:CAS:528:DyaK2cXivVCisro%3D10.1364/AO.33.000026 GervaisFPiriouBAnharmonicity in several-polar-mode crystals: adjusting phonon self-energy of LO and TO modes in Al2O3 and TiO2 to fit infrared reflectivityJ. Phys. C19747237423861:CAS:528:DyaE2cXkvVeqtro%3D10.1088/0022-3719/7/13/017 KishinoKSelim UnluMChyiJ-IReedJArsenaultLMorkocHResonant cavity-enhanced (RCE) photodetectorsIEEE J. Quantum Electron.199127202520341:CAS:528:DyaK3MXlslSnurg%3D10.1109/3.83412 VorobyevAYGuoCColorizing metals with femtosecond laser pulsesAppl. Phys. Lett.20089204191410.1063/1.2834902 WangXZhangDZhangHMaYJiangJZTuning color by pore depth of metal-coated porous aluminaNanotechnology201122305206 AY Vorobyev (BFnmat3443_CR16) 2008; 92 F Gires (BFnmat3443_CR6) 1964; 258 Y Fink (BFnmat3443_CR3) 1998; 282 RH Yan (BFnmat3443_CR7) 1989; 1 X Wang (BFnmat3443_CR17) 2011; 22 K Kishino (BFnmat3443_CR8) 1991; 27 J Zhang (BFnmat3443_CR14) 2011; 19 M Cardona (BFnmat3443_CR13) 1963; 34 M Born (BFnmat3443_CR5) 2003 S Chattopadhyay (BFnmat3443_CR18) 2010; 69 JA Dobrowolski (BFnmat3443_CR4) 1981; 20 VT Bly (BFnmat3443_CR10) 1994; 33 AY Vorobyev (BFnmat3443_CR15) 2005; 72 HA Macleod (BFnmat3443_CR1) 1986 MS Unlu (BFnmat3443_CR9) 1995; 78 PF Robusto (BFnmat3443_CR11) 1990; 119 P Yeh (BFnmat3443_CR2) 2005 F Gervais (BFnmat3443_CR12) 1974; 7 JN Hilfiker (BFnmat3443_CR20) 2008; 516 NS Lewis (BFnmat3443_CR19) 2007; 315 21719962 - Nanotechnology. 2011 Jul 29;22(30):305306 22109206 - Opt Express. 2011 Nov 7;19(23):23279-85 20309069 - Appl Opt. 1981 Jan 1;20(1):74-81 9831553 - Science. 1998 Nov 27;282(5394):1679-82 20861981 - Appl Opt. 1994 Jan 1;33(1):26-30 17289986 - Science. 2007 Feb 9;315(5813):798-801 |
| References_xml | – reference: VorobyevAYGuoCColorizing metals with femtosecond laser pulsesAppl. Phys. Lett.20089204191410.1063/1.2834902 – reference: GiresFTournoisPInterferometre utilisable pour la compression d’impulsions lumineuses modulees en frequenceC. R. Acad. Sci. Paris196425861126615 – reference: ChattopadhyaySAnti-reflecting and photonic nanostructuresMater. Sci. Eng. R20106913510.1016/j.mser.2010.04.001 – reference: LewisNSToward cost-effective solar energy useScience20073157988011:CAS:528:DC%2BD2sXhsVShsrs%3D10.1126/science.1137014 – reference: UnluMSStriteSResonant cavity enhanced photonic devicesJ. Appl. Phys.19957860763910.1063/1.360322 – reference: RobustoPFBrausteinROptical measurements of the surface plasmon of indium tin oxidePhys. Status Solidi19901191551681:CAS:528:DyaK3cXkvVOhs7g%3D10.1002/pssa.2211190118 – reference: DobrowolskiJAVersatile computer program for absorbing optical thin film systemsAppl. Opt.19812074811:CAS:528:DyaL3MXlsFejtw%3D%3D10.1364/AO.20.000074 – reference: KishinoKSelim UnluMChyiJ-IReedJArsenaultLMorkocHResonant cavity-enhanced (RCE) photodetectorsIEEE J. Quantum Electron.199127202520341:CAS:528:DyaK3MXlslSnurg%3D10.1109/3.83412 – reference: BlyVTCoxJTInfrared absorber for ferroelectric detectorsAppl. Opt.19943326301:CAS:528:DyaK2cXivVCisro%3D10.1364/AO.33.000026 – reference: VorobyevAYGuoCEnhanced absorptance of gold following multipulse femtosecond laser ablationPhys. Rev. B20057219542210.1103/PhysRevB.72.195422 – reference: YanRHSimesRJColdrenLAElectroabsorptive Fabry–Perot reflection modulators with asymmetric mirrorsIEEE Photon. Technol. Lett.1989127327510.1109/68.43343 – reference: CardonaMHarbekeGAbsorption spectrum of germanium and zinc-blende-type materials at energies higher than the fundamental absorption edgeJ. Appl. Phys.19633481381810.1063/1.1729543 – reference: MacleodHAThin-film Optical Filters198610.1887/0750306882 – reference: YehPOptical Waves in Layered Media2005 – reference: FinkYA dielectric omnidirectional reflectorScience1998282167916821:CAS:528:DyaK1cXnslGhtLg%3D10.1126/science.282.5394.1679 – reference: HilfikerJNSurvey of methods to characterize thin absorbing films with spectroscopic ellipsometryThin Solid Films2008516797979891:CAS:528:DC%2BD1cXhtVygt7bJ10.1016/j.tsf.2008.04.060 – reference: BornMWolfEPrinciples of Optics2003 – reference: ZhangJContinuous metal plasmonic frequency selective surfacesOpt. Express20111923279232851:CAS:528:DC%2BC3MXhsFKqtbjE10.1364/OE.19.023279 – reference: GervaisFPiriouBAnharmonicity in several-polar-mode crystals: adjusting phonon self-energy of LO and TO modes in Al2O3 and TiO2 to fit infrared reflectivityJ. Phys. C19747237423861:CAS:528:DyaE2cXkvVeqtro%3D10.1088/0022-3719/7/13/017 – reference: WangXZhangDZhangHMaYJiangJZTuning color by pore depth of metal-coated porous aluminaNanotechnology201122305206 – volume: 282 start-page: 1679 year: 1998 ident: BFnmat3443_CR3 publication-title: Science doi: 10.1126/science.282.5394.1679 – volume: 34 start-page: 813 year: 1963 ident: BFnmat3443_CR13 publication-title: J. Appl. Phys. doi: 10.1063/1.1729543 – volume: 258 start-page: 6112 year: 1964 ident: BFnmat3443_CR6 publication-title: C. R. Acad. Sci. Paris – volume: 92 start-page: 041914 year: 2008 ident: BFnmat3443_CR16 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2834902 – volume-title: Optical Waves in Layered Media year: 2005 ident: BFnmat3443_CR2 – volume: 72 start-page: 195422 year: 2005 ident: BFnmat3443_CR15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.195422 – volume: 315 start-page: 798 year: 2007 ident: BFnmat3443_CR19 publication-title: Science doi: 10.1126/science.1137014 – volume: 20 start-page: 74 year: 1981 ident: BFnmat3443_CR4 publication-title: Appl. Opt. doi: 10.1364/AO.20.000074 – volume: 1 start-page: 273 year: 1989 ident: BFnmat3443_CR7 publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/68.43343 – volume: 22 start-page: 305206 year: 2011 ident: BFnmat3443_CR17 publication-title: Nanotechnology – volume: 27 start-page: 2025 year: 1991 ident: BFnmat3443_CR8 publication-title: IEEE J. Quantum Electron. doi: 10.1109/3.83412 – volume: 78 start-page: 607 year: 1995 ident: BFnmat3443_CR9 publication-title: J. Appl. Phys. doi: 10.1063/1.360322 – volume: 69 start-page: 1 year: 2010 ident: BFnmat3443_CR18 publication-title: Mater. Sci. Eng. R doi: 10.1016/j.mser.2010.04.001 – volume: 7 start-page: 2374 year: 1974 ident: BFnmat3443_CR12 publication-title: J. Phys. C doi: 10.1088/0022-3719/7/13/017 – volume: 19 start-page: 23279 year: 2011 ident: BFnmat3443_CR14 publication-title: Opt. Express doi: 10.1364/OE.19.023279 – volume-title: Principles of Optics year: 2003 ident: BFnmat3443_CR5 – volume: 119 start-page: 155 year: 1990 ident: BFnmat3443_CR11 publication-title: Phys. Status Solidi doi: 10.1002/pssa.2211190118 – volume: 516 start-page: 7979 year: 2008 ident: BFnmat3443_CR20 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2008.04.060 – volume: 33 start-page: 26 year: 1994 ident: BFnmat3443_CR10 publication-title: Appl. Opt. doi: 10.1364/AO.33.000026 – volume-title: Thin-film Optical Filters year: 1986 ident: BFnmat3443_CR1 doi: 10.1887/0750306882 – reference: 17289986 - Science. 2007 Feb 9;315(5813):798-801 – reference: 21719962 - Nanotechnology. 2011 Jul 29;22(30):305306 – reference: 20861981 - Appl Opt. 1994 Jan 1;33(1):26-30 – reference: 9831553 - Science. 1998 Nov 27;282(5394):1679-82 – reference: 20309069 - Appl Opt. 1981 Jan 1;20(1):74-81 – reference: 22109206 - Opt Express. 2011 Nov 7;19(23):23279-85 |
| SSID | ssj0021556 |
| Score | 2.6163514 |
| Snippet | Optical coatings usually consist of many multilayers of thin films to achieve the desired properties. A new approach using interference effects between an... Optical coatings, which consist of one or more films of dielectric or metallic materials, are widely used in applications ranging from mirrors to eyeglasses... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 20 |
| SubjectTerms | 639/301/119/544 639/624/1075/401 Absorbing Absorption Biomaterials Coatings Condensed Matter Physics Dielectrics Filters Interference Jewelry Labelling letter Materials Science Media Metals Nanotechnology Optical and Electronic Materials Optical coatings Photography Solar cells Thin film coatings |
| Title | Nanometre optical coatings based on strong interference effects in highly absorbing media |
| URI | https://link.springer.com/article/10.1038/nmat3443 https://www.ncbi.nlm.nih.gov/pubmed/23064496 https://www.proquest.com/docview/1284372827 https://www.proquest.com/docview/1240904810 https://www.proquest.com/docview/1315691430 https://www.proquest.com/docview/1671401258 |
| Volume | 12 |
| WOSCitedRecordID | wos000312593600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1476-4660 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: M7S dateStart: 20020901 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4660 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: 7X7 dateStart: 20020901 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1476-4660 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: KB. dateStart: 20020901 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4660 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: BENPR dateStart: 20020901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1476-4660 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: M2P dateStart: 20020901 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7y6KE5tOl7m2RRS6EnN1lLsaRTaEpCoHRZ-oDtydgjORRSe2NvCv33ndHK27QJe8nFYHswkqV5j74BeENGgEQ0KvGKuEkdKpWUmS8Sg9rqEnUx8i40m9DjsZlO7SQG3LpYVtnLxCCoXYMcI99nOSo1OQj6aHaZcNcozq7GFhrrsMkoCWko3fuydLhIVy5OF-ksIbsi7cFnpdmvyR6USsl_1dENG_NGfjSondOHdx3wNjyIBqd4v9ghj2DN149h6xoM4RP4TiK2-ennrRfNLMS2BTYF10N3grWcE00tOo6ZnwuGl2jjGUERi0HooWDY44vfoii7piVn-1yEIylP4dvpydcPZ0lsuZCg0nqeVBkjwhlnD8uM25C41IcmMKUykpHSfaGVxVK6whmLJquslm7kjK4q6Q2O5DPYqJvavwBhvauw0iTAHKoDT8Q4StGVaZUaLDAbwNv-z-cY8ci5LcZFHvLi0uT9Gg3g1ZJytsDguIVmt1-FPHJhl_9dAvrE8jXxDydFito3V0xDHi6D5hysoJHk5VqyLFfRZAx9SOaiGcDzxeZZDja4ecrSlF_3u-naIP-bycvVM9mB-2noyMFRoF3YmLdXfg_u4a_5j64dwrqe6nA1Q9g8PhlPPtPdx-N3dP2UToaBP_4AUTAVQw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Pb9UwDLfGhgQcGH8GvDEgINBO1faarEkOCE2DadPGE4chPU5d66QIabSP9g20L8VnnJ22b4Ohd9uBa-tGce04dhz_DPCanACJaFTkFa0mtaVUlCc-iwxqq3PU2dC70GxCj0ZmPLafFuB3XwvD1yp7mxgMtauQz8g32I5KTQGCfjf5EXHXKM6u9i00WrU48Ge_KGRr3u6_J_m-iePdD0c7e1HXVSBCpfU0KhIGPTPObuUJd9pwsQ99TnJlJIOB-0wri7l0mTMWTVJYLd3QGV0U0hscShr3BiyRHdd8hUyPLwI8GqWtZtJJRH5M3IPdSrNRkv8plZJ_bn9XfNor-diwze0u_28_6B7c7Rxqsd2ugPuw4MsHcOcSzOJD-EJbSPXdT2svqkk4uxdYZXzfuxG8iztRlaLhnMBXwfAZdVcDKbrLLvRQMKzzyZnI8qaqc_pShJKbFfh8Lbw9gsWyKv0TENa7AgtNBtqh2vREjMMYXR4XscEMkwGs95JOscNb57YfJ2nI-0uT9joxgJczykmLMfIPmrVe6mlnZZr0QuQ0xOw12QdO-mSlr06ZhiJ4BgXanEMjKYq35DnPo0kY2pHcYTOAx62yziYbwlhlieVXvfZemuRfnKzO5-QF3No7-niYHu6PDp7C7Th0H-ETrzVYnNan_hncxJ_Tb039PKw9AcfXrcvnKG9rXQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAceEMXChgE4hRtN_bG9gEhRFlRFVZ7AKmc0mTsIKSSbJMtVf9afx0zTrIUivbWA9dkYnni8Tw8428AXpATIBGNiryi3aTGSkV54rPIoLY6R52NvAvNJvR0avb27GwNTvu7MFxW2evEoKhdhXxGPmQ9KjUFCHpYdGURs-3Jm_lhxB2kONPat9NoRWTXnxxT-Na83tmmtX4Zx5P3n999iLoOAxEqrRdRkTAAmnF2nCfcdcPFPvQ8yZWRDAzuM60s5tJlzlg0SWG1dCNndFFIb3AkadxLcFmr8Zh316d4tgz2aJT2ZpNOIvJp4h74VpphSb6oVEr-aQrP-bfncrPB5E1u_s8_6xbc6Bxt8bbdGbdhzZd34PoZ-MW78JVMS_XDL2ovqnk40xdYZVwH3gi27k5UpWg4V_BNMKxG3d2NFF0RDD0UDPd8cCKyvKnqnL4U4SrOPfhyIbzdh_WyKv0GCOtdgYUmxe1QbXkixlGMLo-L2GCGyQBe9aueYofDzu1ADtJQDyBN2svHAJ4tKect9sg_aDZ7CUg77dOkv5efhli-Jr3ByaCs9NUR01Bkz2BBWytoJEX3ljzqVTQJQz6Sm2wG8KAV3OVkQ3irLLH8vJfkM5P8i5OHqzl5CldJhNOPO9PdR3AtDk1J-CBsE9YX9ZF_DFfw5-J7Uz8J21DA_kWL8i_GnnQq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanometre+optical+coatings+based+on+strong+interference+effects+in+highly+absorbing+media&rft.jtitle=Nature+materials&rft.au=Kats%2C+Mikhail+A.&rft.au=Blanchard%2C+Romain&rft.au=Genevet%2C+Patrice&rft.au=Capasso%2C+Federico&rft.date=2013-01-01&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=12&rft.issue=1&rft.spage=20&rft.epage=24&rft_id=info:doi/10.1038%2Fnmat3443&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_nmat3443 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |