Nanometre optical coatings based on strong interference effects in highly absorbing media

Optical coatings usually consist of many multilayers of thin films to achieve the desired properties. A new approach using interference effects between an absorbing dielectric film and a metallic substrate now enables ultrathin optical coatings that could also find applications as thin solar cells o...

Full description

Saved in:
Bibliographic Details
Published in:Nature materials Vol. 12; no. 1; pp. 20 - 24
Main Authors: Kats, Mikhail A., Blanchard, Romain, Genevet, Patrice, Capasso, Federico
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01.01.2013
Nature Publishing Group
Subjects:
ISSN:1476-1122, 1476-4660, 1476-4660
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Optical coatings usually consist of many multilayers of thin films to achieve the desired properties. A new approach using interference effects between an absorbing dielectric film and a metallic substrate now enables ultrathin optical coatings that could also find applications as thin solar cells or photodetectors. Optical coatings, which consist of one or more films of dielectric or metallic materials, are widely used in applications ranging from mirrors to eyeglasses and photography lenses 1 , 2 . Many conventional dielectric coatings rely on Fabry–Perot-type interference, involving multiple optical passes through transparent layers with thicknesses of the order of the wavelength to achieve functionalities such as anti-reflection, high-reflection and dichroism. Highly absorbing dielectrics are typically not used because it is generally accepted that light propagation through such media destroys interference effects. We show that under appropriate conditions interference can instead persist in ultrathin, highly absorbing films of a few to tens of nanometres in thickness, and demonstrate a new type of optical coating comprising such a film on a metallic substrate, which selectively absorbs various frequency ranges of the incident light. These coatings have a low sensitivity to the angle of incidence and require minimal amounts of absorbing material that can be as thin as 5–20 nm for visible light. This technology has the potential for a variety of applications from ultrathin photodetectors and solar cells to optical filters, to labelling, and even the visual arts and jewellery.
AbstractList Optical coatings, which consist of one or more films of dielectric or metallic materials, are widely used in applications ranging from mirrors to eyeglasses and photography lenses. Many conventional dielectric coatings rely on Fabry-Perot-type interference, involving multiple optical passes through transparent layers with thicknesses of the order of the wavelength to achieve functionalities such as anti-reflection, high-reflection and dichroism. Highly absorbing dielectrics are typically not used because it is generally accepted that light propagation through such media destroys interference effects. We show that under appropriate conditions interference can instead persist in ultrathin, highly absorbing films of a few to tens of nanometres in thickness, and demonstrate a new type of optical coating comprising such a film on a metallic substrate, which selectively absorbs various frequency ranges of the incident light. These coatings have a low sensitivity to the angle of incidence and require minimal amounts of absorbing material that can be as thin as 5-20 nm for visible light. This technology has the potential for a variety of applications from ultrathin photodetectors and solar cells to optical filters, to labelling, and even the visual arts and jewellery.
Optical coatings, which consist of one or more films of dielectric or metallic materials, are widely used in applications ranging from mirrors to eyeglasses and photography lenses. Many conventional dielectric coatings rely on Fabry-Perot-type interference, involving multiple optical passes through transparent layers with thicknesses of the order of the wavelength to achieve functionalities such as anti-reflection, high-reflection and dichroism. Highly absorbing dielectrics are typically not used because it is generally accepted that light propagation through such media destroys interference effects. We show that under appropriate conditions interference can instead persist in ultrathin, highly absorbing films of a few to tens of nanometres in thickness, and demonstrate a new type of optical coating comprising such a film on a metallic substrate, which selectively absorbs various frequency ranges of the incident light. These coatings have a low sensitivity to the angle of incidence and require minimal amounts of absorbing material that can be as thin as 5-20nm for visible light. This technology has the potential for a variety of applications from ultrathin photodetectors and solar cells to optical filters, to labelling, and even the visual arts and jewellery.
Optical coatings, which consist of one or more films of dielectric or metallic materials, are widely used in applications ranging from mirrors to eyeglasses and photography lenses. Many conventional dielectric coatings rely on Fabry-Perot-type interference, involving multiple optical passes through transparent layers with thicknesses of the order of the wavelength to achieve functionalities such as anti-reflection, high-reflection and dichroism. Highly absorbing dielectrics are typically not used because it is generally accepted that light propagation through such media destroys interference effects. We show that under appropriate conditions interference can instead persist in ultrathin, highly absorbing films of a few to tens of nanometres in thickness, and demonstrate a new type of optical coating comprising such a film on a metallic substrate, which selectively absorbs various frequency ranges of the incident light. These coatings have a low sensitivity to the angle of incidence and require minimal amounts of absorbing material that can be as thin as 5-20 nm for visible light. This technology has the potential for a variety of applications from ultrathin photodetectors and solar cells to optical filters, to labelling, and even the visual arts and jewellery.Optical coatings, which consist of one or more films of dielectric or metallic materials, are widely used in applications ranging from mirrors to eyeglasses and photography lenses. Many conventional dielectric coatings rely on Fabry-Perot-type interference, involving multiple optical passes through transparent layers with thicknesses of the order of the wavelength to achieve functionalities such as anti-reflection, high-reflection and dichroism. Highly absorbing dielectrics are typically not used because it is generally accepted that light propagation through such media destroys interference effects. We show that under appropriate conditions interference can instead persist in ultrathin, highly absorbing films of a few to tens of nanometres in thickness, and demonstrate a new type of optical coating comprising such a film on a metallic substrate, which selectively absorbs various frequency ranges of the incident light. These coatings have a low sensitivity to the angle of incidence and require minimal amounts of absorbing material that can be as thin as 5-20 nm for visible light. This technology has the potential for a variety of applications from ultrathin photodetectors and solar cells to optical filters, to labelling, and even the visual arts and jewellery.
Optical coatings, which consist of one or more films of dielectric or metallic materials, are widely used in applications ranging from mirrors to eyeglasses and photography lenses. Many conventional dielectric coatings rely on Fabry-Perot-type interference, involving multiple optical passes through transparent layers with thicknesses of the order of the wavelength to achieve functionalities such as anti-reflection, high-reflection and dichroism. Highly absorbing dielectrics are typically not used because it is generally accepted that light propagation through such media destroys interference effects. We show that under appropriate conditions interference can instead persist in ultrathin, highly absorbing films of a few to tens of nanometres in thickness, and demonstrate a new type of optical coating comprising such a film on a metallic substrate, which selectively absorbs various frequency ranges of the incident light. These coatings have a low sensitivity to the angle of incidence and require minimal amounts of absorbing material that can be as thin as 5-20nm for visible light. This technology has the potential for a variety of applications from ultrathin photodetectors and solar cells to optical filters, to labelling, and even the visual arts and jewellery. [PUBLICATION ABSTRACT]
Optical coatings usually consist of many multilayers of thin films to achieve the desired properties. A new approach using interference effects between an absorbing dielectric film and a metallic substrate now enables ultrathin optical coatings that could also find applications as thin solar cells or photodetectors. Optical coatings, which consist of one or more films of dielectric or metallic materials, are widely used in applications ranging from mirrors to eyeglasses and photography lenses 1 , 2 . Many conventional dielectric coatings rely on Fabry–Perot-type interference, involving multiple optical passes through transparent layers with thicknesses of the order of the wavelength to achieve functionalities such as anti-reflection, high-reflection and dichroism. Highly absorbing dielectrics are typically not used because it is generally accepted that light propagation through such media destroys interference effects. We show that under appropriate conditions interference can instead persist in ultrathin, highly absorbing films of a few to tens of nanometres in thickness, and demonstrate a new type of optical coating comprising such a film on a metallic substrate, which selectively absorbs various frequency ranges of the incident light. These coatings have a low sensitivity to the angle of incidence and require minimal amounts of absorbing material that can be as thin as 5–20 nm for visible light. This technology has the potential for a variety of applications from ultrathin photodetectors and solar cells to optical filters, to labelling, and even the visual arts and jewellery.
Author Genevet, Patrice
Blanchard, Romain
Capasso, Federico
Kats, Mikhail A.
Author_xml – sequence: 1
  givenname: Mikhail A.
  surname: Kats
  fullname: Kats, Mikhail A.
  organization: School of Engineering and Applied Sciences, Harvard University
– sequence: 2
  givenname: Romain
  surname: Blanchard
  fullname: Blanchard, Romain
  organization: School of Engineering and Applied Sciences, Harvard University
– sequence: 3
  givenname: Patrice
  surname: Genevet
  fullname: Genevet, Patrice
  organization: School of Engineering and Applied Sciences, Harvard University
– sequence: 4
  givenname: Federico
  surname: Capasso
  fullname: Capasso, Federico
  email: capasso@seas.harvard.edu
  organization: School of Engineering and Applied Sciences, Harvard University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23064496$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1rHCEYB3ApW5pNUugnKEIvyWFT30adYwl5g6W9tIeeBsd53BhmdKvuYb99DNk0YQnsyQf5Pfro_xjNQgyA0BdKLijh-nuYTOFC8A9oToWSCyElme1qShk7Qsc5PxDCaNPIT-iIcSKFaOUc_f1pQpygJMBxXbw1I7bRFB9WGfcmw4BjwLmkGFbYhwLJQYJgAYNzYEuum_jer-7HLTZ9jqmvnXiCwZtT9NGZMcPn3XqC_lxf_b68XSx_3dxd_lgurFCqLJykmjA9tE0vpRJ6YECaOmYvNK-FAKNEa3s-mEG3VkvXKj7QQSvnOGhL-Qk6ez53neK_DeTSTT5bGEcTIG5yR6WiglDW6MOU00a2VHBymDJBWiI0faLf9uhD3KRQ31yVFlwxzVRVX3dq09f_6dbJTyZtu5coXm-0KeacwP0nlHRPKXcvKVd6sUetLzW0GEoyfnyv4fy5IdczwwrSmxH37SPnLrWH
CitedBy_id crossref_primary_10_1002_sdtp_13044
crossref_primary_10_1515_nanoph_2020_0366
crossref_primary_10_1002_lpor_201400026
crossref_primary_10_1002_lpor_202500881
crossref_primary_10_1039_C9NR04759J
crossref_primary_10_3390_nano14060530
crossref_primary_10_1002_adma_202302028
crossref_primary_10_1002_adom_201800656
crossref_primary_10_1016_j_solmat_2022_111952
crossref_primary_10_1038_s41563_024_02042_4
crossref_primary_10_1002_adom_201801747
crossref_primary_10_1016_j_nanoen_2020_105048
crossref_primary_10_1002_adfm_202311845
crossref_primary_10_1103_PhysRevApplied_9_054018
crossref_primary_10_1002_adom_202300674
crossref_primary_10_1080_09205071_2015_1073124
crossref_primary_10_1039_D5NR01391G
crossref_primary_10_3390_nano10061133
crossref_primary_10_1038_srep08157
crossref_primary_10_1109_JPHOTOV_2015_2478063
crossref_primary_10_3390_s19194103
crossref_primary_10_1016_j_apsusc_2015_07_087
crossref_primary_10_1002_adom_201900028
crossref_primary_10_3390_photonics10090966
crossref_primary_10_1016_j_cej_2021_128930
crossref_primary_10_1007_s11082_017_0998_3
crossref_primary_10_1002_adma_202304699
crossref_primary_10_1007_s12274_021_3388_x
crossref_primary_10_1016_j_elspec_2017_06_004
crossref_primary_10_1364_JOSAB_31_0000A6
crossref_primary_10_1002_advs_201903125
crossref_primary_10_1002_smsc_202400174
crossref_primary_10_1038_nnano_2015_228
crossref_primary_10_1002_adom_201600078
crossref_primary_10_1002_adma_201503281
crossref_primary_10_3390_mi11010110
crossref_primary_10_1515_nanoph_2024_0029
crossref_primary_10_1002_pssa_201900677
crossref_primary_10_3788_PI_2024_R07
crossref_primary_10_1063_1_4788930
crossref_primary_10_1103_PhysRevApplied_3_037001
crossref_primary_10_1155_2019_2329168
crossref_primary_10_1002_smtd_202402182
crossref_primary_10_1016_j_ijheatmasstransfer_2017_04_085
crossref_primary_10_1002_adma_202108013
crossref_primary_10_1016_j_matlet_2015_03_129
crossref_primary_10_1088_1361_6463_aac47c
crossref_primary_10_1515_nanoph_2020_0264
crossref_primary_10_1088_0022_3727_49_42_425106
crossref_primary_10_1038_s41598_020_74893_1
crossref_primary_10_1016_j_pmatsci_2023_101088
crossref_primary_10_1016_j_apsusc_2020_146804
crossref_primary_10_1016_j_optmat_2025_117483
crossref_primary_10_1103_PhysRevLett_130_196901
crossref_primary_10_1142_S0217979225400624
crossref_primary_10_1039_C8NR05884A
crossref_primary_10_3390_ma16062350
crossref_primary_10_1038_s41565_021_00891_7
crossref_primary_10_1088_1361_6463_abbfc6
crossref_primary_10_1039_C7NR00327G
crossref_primary_10_1088_1742_6596_1829_1_012031
crossref_primary_10_1016_j_surfcoat_2024_131009
crossref_primary_10_1038_s41377_021_00529_2
crossref_primary_10_3938_jkps_76_911
crossref_primary_10_1016_j_optmat_2021_110847
crossref_primary_10_1088_2040_8978_17_1_015002
crossref_primary_10_1002_adom_201700830
crossref_primary_10_1016_j_optlastec_2022_108772
crossref_primary_10_1016_j_optlastec_2021_107026
crossref_primary_10_1109_JPHOT_2018_2796566
crossref_primary_10_1364_JOSAB_33_002649
crossref_primary_10_1186_s11671_017_2048_2
crossref_primary_10_1063_5_0175803
crossref_primary_10_1063_1_4939296
crossref_primary_10_1039_C8CS00067K
crossref_primary_10_1002_adom_202001367
crossref_primary_10_1007_s00396_021_04834_5
crossref_primary_10_1038_nature13487
crossref_primary_10_3390_nano8090645
crossref_primary_10_1016_j_optlastec_2017_12_004
crossref_primary_10_1038_s41467_023_39602_2
crossref_primary_10_1063_1_4919106
crossref_primary_10_1088_1361_6501_ab9fd8
crossref_primary_10_1002_adma_202108128
crossref_primary_10_1007_s12596_023_01295_7
crossref_primary_10_1063_5_0138336
crossref_primary_10_3390_app9132727
crossref_primary_10_1016_j_compositesa_2023_107532
crossref_primary_10_1515_nanoph_2020_0440
crossref_primary_10_1088_2399_6528_ac59d0
crossref_primary_10_1016_j_optmat_2023_114667
crossref_primary_10_1038_s41598_018_20879_z
crossref_primary_10_1038_srep17060
crossref_primary_10_1109_LPT_2015_2432756
crossref_primary_10_1515_nanoph_2019_0171
crossref_primary_10_1007_s11082_018_1427_y
crossref_primary_10_1109_JPHOTOV_2014_2350693
crossref_primary_10_1088_1361_6633_ac45f9
crossref_primary_10_1002_adom_202301678
crossref_primary_10_1016_j_physrep_2023_01_001
crossref_primary_10_1016_j_nanoen_2021_106855
crossref_primary_10_1038_s41598_019_43539_2
crossref_primary_10_1016_j_tsf_2015_07_019
crossref_primary_10_1002_adom_202401450
crossref_primary_10_34133_research_0719
crossref_primary_10_1088_1361_6633_abb56e
crossref_primary_10_1364_JOSAB_35_002294
crossref_primary_10_1088_1361_6633_aa8732
crossref_primary_10_1063_1_4932017
crossref_primary_10_1007_s12274_016_1122_x
crossref_primary_10_1016_j_optlastec_2025_112838
crossref_primary_10_3390_nano11092320
crossref_primary_10_1016_j_scriptamat_2021_114101
crossref_primary_10_1186_2193_1801_3_284
crossref_primary_10_1002_adfm_202419378
crossref_primary_10_1038_s41598_019_51165_1
crossref_primary_10_1088_1361_6463_ac7c9d
crossref_primary_10_3390_photonics8040114
crossref_primary_10_1002_adom_201801709
crossref_primary_10_1088_1361_6463_acc7b3
crossref_primary_10_1002_solr_202200766
crossref_primary_10_1007_s40843_016_0129_7
crossref_primary_10_1016_j_ceramint_2020_07_315
crossref_primary_10_1038_srep08467
crossref_primary_10_1002_lpor_202200303
crossref_primary_10_1038_s41467_020_17015_9
crossref_primary_10_1109_ACCESS_2020_2989516
crossref_primary_10_1109_LED_2019_2910064
crossref_primary_10_1515_nanoph_2016_0010
crossref_primary_10_1002_pssa_201800940
crossref_primary_10_1063_1_4883494
crossref_primary_10_1515_nanoph_2020_0106
crossref_primary_10_1002_adom_201500690
crossref_primary_10_1016_j_apmt_2024_102267
crossref_primary_10_1016_j_matt_2024_11_023
crossref_primary_10_1016_j_jqsrt_2018_02_037
crossref_primary_10_1103_PhysRevResearch_2_043349
crossref_primary_10_1038_s41598_022_18259_9
crossref_primary_10_3390_ma9060497
crossref_primary_10_1088_1361_6528_ab674e
crossref_primary_10_1038_s41598_019_41915_6
crossref_primary_10_1002_adom_202402643
crossref_primary_10_29026_oea_2025_240091
crossref_primary_10_1002_adma_202109546
crossref_primary_10_1111_cote_12466
crossref_primary_10_3390_photonics9060402
crossref_primary_10_1016_j_optlastec_2022_108697
crossref_primary_10_1038_s41378_023_00609_w
crossref_primary_10_1364_AO_410211
crossref_primary_10_1007_s11708_018_0542_6
crossref_primary_10_1016_j_optlastec_2022_108579
crossref_primary_10_1038_lsa_2016_233
crossref_primary_10_1117_1_AP_6_3_036001
crossref_primary_10_1007_s10854_019_02701_2
crossref_primary_10_1038_s41566_024_01590_0
crossref_primary_10_1117_1_JOM_4_2_020901
crossref_primary_10_1002_adom_202301577
crossref_primary_10_1038_srep34030
crossref_primary_10_1109_TNANO_2021_3112704
crossref_primary_10_1002_adom_202300481
crossref_primary_10_1016_j_nanoen_2019_103998
crossref_primary_10_1016_j_nanoen_2021_105872
crossref_primary_10_1002_adom_201900018
crossref_primary_10_1016_j_jclepro_2020_125328
crossref_primary_10_1002_adom_201400105
crossref_primary_10_1063_1_4943186
crossref_primary_10_1038_s41598_021_84889_0
crossref_primary_10_1103_PhysRevApplied_7_034001
crossref_primary_10_1002_adma_202416314
crossref_primary_10_3390_nano13192726
crossref_primary_10_1016_j_optcom_2014_02_046
crossref_primary_10_1002_sdtp_11702
crossref_primary_10_1073_pnas_1307222110
crossref_primary_10_1002_adma_201705876
crossref_primary_10_1109_JSEN_2023_3347223
crossref_primary_10_1088_2053_1591_ac3042
crossref_primary_10_1007_s40843_021_1955_0
crossref_primary_10_1063_1_4833537
crossref_primary_10_1038_srep15754
crossref_primary_10_1063_1_5009945
crossref_primary_10_1039_D3QM01340E
crossref_primary_10_1063_1_5017574
crossref_primary_10_1038_s41467_024_46851_2
crossref_primary_10_1002_adpr_202200137
crossref_primary_10_1002_adom_202400429
crossref_primary_10_1016_j_optlastec_2020_106895
crossref_primary_10_1515_nanoph_2024_0541
crossref_primary_10_1016_j_optmat_2019_109370
crossref_primary_10_1039_C5CP02564H
crossref_primary_10_1002_er_5040
crossref_primary_10_1557_jmr_2015_100
crossref_primary_10_1016_j_optcom_2013_08_062
crossref_primary_10_1515_nanoph_2016_0109
crossref_primary_10_1364_AO_56_004375
crossref_primary_10_1007_s40684_021_00324_9
crossref_primary_10_3390_coatings9060393
crossref_primary_10_1016_j_optlastec_2022_108002
crossref_primary_10_1063_1_4867646
crossref_primary_10_1063_1_4811521
crossref_primary_10_1515_nanoph_2023_0723
crossref_primary_10_1016_j_jallcom_2025_181525
crossref_primary_10_1103_PhysRevApplied_14_024009
crossref_primary_10_3390_mi13071084
crossref_primary_10_1063_1_5121328
crossref_primary_10_1515_nanoph_2024_0538
crossref_primary_10_3103_S106287382370449X
crossref_primary_10_3390_nano10122557
crossref_primary_10_1002_advs_202413027
crossref_primary_10_1088_0256_307X_32_7_074204
crossref_primary_10_3390_ma12010143
crossref_primary_10_1038_s41467_023_36578_x
crossref_primary_10_1016_j_optmat_2021_111899
crossref_primary_10_1002_adma_201802781
crossref_primary_10_1002_adpr_202000147
crossref_primary_10_1016_j_applthermaleng_2025_126031
crossref_primary_10_1111_cote_12301
crossref_primary_10_1038_s41467_020_20300_2
crossref_primary_10_3390_coatings10010071
crossref_primary_10_3390_photonics4020035
crossref_primary_10_1002_adma_202007345
crossref_primary_10_1002_adom_202000679
crossref_primary_10_1002_adma_201704333
crossref_primary_10_3390_photonics11121149
crossref_primary_10_3390_polym10070756
crossref_primary_10_1088_1361_6528_ab5d42
crossref_primary_10_1039_C8RA07363E
crossref_primary_10_1063_1_4819491
crossref_primary_10_1002_adma_202417511
crossref_primary_10_1515_nanoph_2022_0063
crossref_primary_10_1016_j_apsusc_2019_143575
crossref_primary_10_1186_s43074_022_00061_5
crossref_primary_10_1088_1674_1056_22_10_107801
crossref_primary_10_1103_PhysRevApplied_16_044041
crossref_primary_10_1002_adpr_202200102
crossref_primary_10_3390_ma13235417
crossref_primary_10_1002_advs_202000978
crossref_primary_10_1016_j_ijleo_2018_12_187
crossref_primary_10_1002_pip_3665
crossref_primary_10_1002_adpr_202000050
crossref_primary_10_1109_JPHOT_2018_2876397
crossref_primary_10_1002_adom_201900739
crossref_primary_10_3390_app8091445
crossref_primary_10_1109_JPHOT_2018_2824313
crossref_primary_10_1515_nanoph_2024_0471
crossref_primary_10_1063_1_4939969
crossref_primary_10_1063_5_0153206
crossref_primary_10_1038_s41467_020_17313_2
crossref_primary_10_1063_5_0138290
crossref_primary_10_1515_nanoph_2022_0051
crossref_primary_10_1002_adom_202302130
crossref_primary_10_1364_AO_55_009237
crossref_primary_10_1038_srep09285
crossref_primary_10_1016_j_ceramint_2015_03_002
crossref_primary_10_1109_JPHOT_2022_3155715
crossref_primary_10_1038_srep32589
crossref_primary_10_1002_adfm_201601764
crossref_primary_10_1002_lpor_201600098
crossref_primary_10_1016_j_heliyon_2024_e35507
crossref_primary_10_1016_j_mtcomm_2022_104864
crossref_primary_10_1002_adma_201506238
crossref_primary_10_1002_adom_202001307
crossref_primary_10_1002_aisy_202100182
crossref_primary_10_1088_1674_1056_27_12_124202
crossref_primary_10_1364_AO_57_003385
crossref_primary_10_1039_D4LF00421C
crossref_primary_10_1063_1_5085715
crossref_primary_10_3390_photonics7030057
crossref_primary_10_1063_1_4943089
crossref_primary_10_1016_j_jallcom_2018_10_233
crossref_primary_10_1002_adfm_201806181
crossref_primary_10_1039_C8NR09983A
crossref_primary_10_1002_lpor_201800076
crossref_primary_10_1002_adom_201700222
crossref_primary_10_1155_2017_2361042
crossref_primary_10_1016_j_cej_2025_161418
crossref_primary_10_3390_app6090239
crossref_primary_10_1002_gch2_201800032
crossref_primary_10_3390_coatings14101298
crossref_primary_10_1038_srep12788
crossref_primary_10_1002_adma_201601204
crossref_primary_10_1038_srep29195
crossref_primary_10_1016_j_nanoen_2016_05_013
crossref_primary_10_1364_AO_56_009779
crossref_primary_10_3390_coatings8050183
crossref_primary_10_1016_j_optlastec_2024_110731
crossref_primary_10_1016_j_nanoen_2024_110483
crossref_primary_10_1038_s41467_020_15116_z
crossref_primary_10_1016_j_solmat_2025_113813
crossref_primary_10_1002_adma_201402117
crossref_primary_10_1007_s00339_023_06841_5
crossref_primary_10_1063_1_4879829
crossref_primary_10_1364_AO_54_003868
crossref_primary_10_1002_adom_201901626
crossref_primary_10_1016_j_snb_2016_02_138
crossref_primary_10_1002_er_4375
crossref_primary_10_1016_j_chemosphere_2021_129719
crossref_primary_10_1039_C8NR06597G
crossref_primary_10_1002_adom_201700368
crossref_primary_10_1016_j_tsf_2022_139232
crossref_primary_10_1002_adom_202100417
crossref_primary_10_1063_1_5016990
crossref_primary_10_1103_PhysRevApplied_15_064007
crossref_primary_10_1109_JPHOT_2016_2609143
crossref_primary_10_1126_science_1231254
crossref_primary_10_1038_s41598_022_23119_7
crossref_primary_10_1016_j_optlaseng_2024_108328
crossref_primary_10_1002_lpor_201600285
crossref_primary_10_1109_JSTQE_2019_2900607
crossref_primary_10_1038_srep39206
crossref_primary_10_1007_s40843_020_1628_6
crossref_primary_10_1002_adom_202303263
crossref_primary_10_1002_adfm_202314434
crossref_primary_10_1016_j_optlastec_2020_106129
crossref_primary_10_1016_j_optcom_2023_129743
crossref_primary_10_1088_1361_6633_aa8372
crossref_primary_10_1002_adma_201305793
crossref_primary_10_1002_adma_201706696
crossref_primary_10_1002_advs_202204469
crossref_primary_10_1016_j_jallcom_2017_08_265
crossref_primary_10_1002_adom_202303138
crossref_primary_10_1039_C8NH00368H
crossref_primary_10_3390_ma12071050
crossref_primary_10_1002_advs_201800836
crossref_primary_10_1063_1_5119406
crossref_primary_10_1016_j_optlastec_2025_113289
crossref_primary_10_1016_j_optcom_2014_07_004
crossref_primary_10_1038_s41427_018_0043_4
crossref_primary_10_1002_smll_201703920
crossref_primary_10_1002_adom_201700029
crossref_primary_10_1002_lpor_202400255
crossref_primary_10_1039_D3NR00526G
crossref_primary_10_1002_adfm_201904453
crossref_primary_10_1002_adma_202503587
crossref_primary_10_1016_j_jcis_2022_09_046
crossref_primary_10_1002_adfm_202006854
crossref_primary_10_1038_lsa_2014_96
crossref_primary_10_1063_1_4884936
crossref_primary_10_1038_srep18605
crossref_primary_10_1109_JPHOTOV_2022_3150726
crossref_primary_10_1038_s41598_017_04660_2
crossref_primary_10_1039_D1RA07394J
crossref_primary_10_1016_j_optcom_2025_132110
crossref_primary_10_1002_adom_202400921
crossref_primary_10_1088_1361_6528_ab8325
crossref_primary_10_1002_adom_201900849
crossref_primary_10_1002_admt_202000367
crossref_primary_10_1002_adom_202100645
crossref_primary_10_1364_PRJ_415141
crossref_primary_10_1088_1361_6528_ab746f
crossref_primary_10_1109_MNANO_2019_2916113
crossref_primary_10_1209_0295_5075_ad12a2
crossref_primary_10_1002_adma_201505806
crossref_primary_10_1016_j_physb_2025_417085
crossref_primary_10_1063_5_0028535
crossref_primary_10_1016_j_carbpol_2023_120895
crossref_primary_10_1103_PhysRevApplied_22_L061001
crossref_primary_10_1063_1_5017704
crossref_primary_10_1063_1_4961368
crossref_primary_10_1364_PRJ_6_000492
crossref_primary_10_1002_adom_201900735
crossref_primary_10_1016_j_physrep_2016_04_004
crossref_primary_10_1038_s41598_019_46413_3
crossref_primary_10_1021_acsami_5c06067
crossref_primary_10_1038_s41598_017_13837_8
crossref_primary_10_1039_C8CS00206A
crossref_primary_10_1063_5_0030684
crossref_primary_10_1002_adma_201606876
crossref_primary_10_1038_s41598_019_49906_3
crossref_primary_10_1002_adom_201400386
crossref_primary_10_1002_adma_201903787
crossref_primary_10_1002_adom_201700284
crossref_primary_10_1364_PRJ_438095
crossref_primary_10_1016_j_solmat_2024_112849
crossref_primary_10_1209_0295_5075_118_47006
crossref_primary_10_1002_aenm_202200713
crossref_primary_10_1002_adom_201700166
crossref_primary_10_1038_srep13384
crossref_primary_10_1007_s12596_019_00576_4
crossref_primary_10_1038_s41598_019_40001_1
crossref_primary_10_1016_j_mattod_2023_08_001
crossref_primary_10_1051_epjam_2019017
crossref_primary_10_1088_1361_6528_aaac72
crossref_primary_10_1063_1_4820147
crossref_primary_10_1002_adma_202102451
crossref_primary_10_1016_j_mtener_2025_101867
crossref_primary_10_1038_s41427_018_0011_z
crossref_primary_10_1088_2053_1583_aab0cf
crossref_primary_10_1109_LPT_2017_2693443
crossref_primary_10_1038_nmat3839
crossref_primary_10_1109_LPT_2017_2786475
crossref_primary_10_1515_nanoph_2023_0067
crossref_primary_10_1002_lpor_202402107
crossref_primary_10_1109_LPT_2016_2531102
crossref_primary_10_1016_j_solmat_2020_110839
crossref_primary_10_1515_nanoph_2019_0500
crossref_primary_10_1002_adfm_202507056
crossref_primary_10_3390_photonics12080740
crossref_primary_10_1016_j_nanoen_2018_06_036
crossref_primary_10_1039_D5MH01090J
crossref_primary_10_1088_2053_1583_3_2_025017
crossref_primary_10_3390_app9183886
crossref_primary_10_1016_j_matdes_2022_110719
crossref_primary_10_1002_lpor_202300551
crossref_primary_10_1038_s42005_023_01380_0
crossref_primary_10_1002_admi_201701637
crossref_primary_10_1016_j_solener_2018_01_010
crossref_primary_10_1021_acsami_4c20865
crossref_primary_10_1063_1_4896527
crossref_primary_10_1038_srep32515
crossref_primary_10_1016_j_matchemphys_2023_128425
crossref_primary_10_35848_1347_4065_acc594
crossref_primary_10_1038_s41598_017_08342_x
crossref_primary_10_1063_1_4973530
crossref_primary_10_1002_smll_201604298
crossref_primary_10_1021_acs_nanolett_4c05724
crossref_primary_10_1364_JOSAB_35_001780
crossref_primary_10_1016_j_optmat_2019_109445
crossref_primary_10_26599_NR_2025_94907005
crossref_primary_10_1038_natrevmats_2016_88
crossref_primary_10_1002_adma_202303502
crossref_primary_10_1063_1_4992045
crossref_primary_10_1016_j_saa_2019_117550
crossref_primary_10_1109_LPT_2013_2264047
crossref_primary_10_3390_nano13010134
crossref_primary_10_1002_adom_202101930
crossref_primary_10_1016_j_apsusc_2018_07_017
crossref_primary_10_1063_1_5086792
crossref_primary_10_1063_5_0176144
crossref_primary_10_1364_JOSAB_33_001075
crossref_primary_10_1038_srep11045
crossref_primary_10_3390_nano10081554
crossref_primary_10_1088_1361_6463_aadca2
crossref_primary_10_1002_smtd_201600064
crossref_primary_10_1016_j_ccr_2025_216913
crossref_primary_10_1002_lpor_202401723
crossref_primary_10_3390_nano9070963
crossref_primary_10_1002_adom_202501930
crossref_primary_10_1002_lpor_202400994
crossref_primary_10_1016_j_cap_2015_04_044
crossref_primary_10_1088_0022_3727_47_37_374003
crossref_primary_10_1002_adom_201801229
crossref_primary_10_1016_j_optcom_2020_126351
crossref_primary_10_1364_AO_53_008104
crossref_primary_10_1063_1_4929432
crossref_primary_10_1038_s41377_023_01308_x
crossref_primary_10_1038_srep22963
crossref_primary_10_1021_acs_nanolett_4c06040
crossref_primary_10_1007_s11468_025_03287_8
crossref_primary_10_1038_srep04192
crossref_primary_10_1002_lpor_201900063
crossref_primary_10_1109_JSTQE_2020_3011678
crossref_primary_10_1038_s41893_022_01023_2
crossref_primary_10_1002_adma_202001388
crossref_primary_10_1515_nanoph_2020_0651
crossref_primary_10_1186_s11671_018_2629_8
crossref_primary_10_1016_j_apsusc_2022_154244
crossref_primary_10_1038_s41467_023_36275_9
crossref_primary_10_1002_adom_202101118
crossref_primary_10_1109_JPHOT_2020_2994647
crossref_primary_10_1016_j_mtphys_2025_101665
crossref_primary_10_1021_acsphotonics_5c00315
crossref_primary_10_1038_s41467_021_21499_4
crossref_primary_10_1016_j_solmat_2022_111688
crossref_primary_10_1063_1_4824371
crossref_primary_10_1103_PhysRevApplied_8_014009
crossref_primary_10_1002_adom_201600110
crossref_primary_10_1021_jacs_5c06430
crossref_primary_10_1038_srep20659
crossref_primary_10_1088_2053_1591_abd8a1
crossref_primary_10_1016_j_solmat_2015_07_032
crossref_primary_10_1038_s41565_020_00841_9
crossref_primary_10_1109_TTHZ_2013_2238631
crossref_primary_10_3390_photonics10010070
crossref_primary_10_1002_adom_202402293
crossref_primary_10_1088_1361_6641_ad4dd8
crossref_primary_10_1002_adfm_202102183
crossref_primary_10_1002_lpor_201700028
crossref_primary_10_1002_pip_3802
crossref_primary_10_1088_1361_6528_aad110
crossref_primary_10_1515_nanoph_2024_0090
crossref_primary_10_1002_adom_202001082
crossref_primary_10_1002_adom_201500651
crossref_primary_10_1063_1_4976684
crossref_primary_10_1002_pssa_202100424
crossref_primary_10_1002_advs_202002419
crossref_primary_10_1140_epjd_s10053_023_00674_w
crossref_primary_10_1016_j_nanoen_2016_08_020
crossref_primary_10_1016_j_applthermaleng_2025_127801
crossref_primary_10_1002_aenm_201301938
crossref_primary_10_1016_j_optcom_2020_125483
crossref_primary_10_1002_cnma_202100060
crossref_primary_10_1007_s11468_019_01095_5
crossref_primary_10_1016_j_solener_2018_09_009
crossref_primary_10_1002_adom_202202011
crossref_primary_10_1002_smll_202202005
crossref_primary_10_1002_smll_202201036
crossref_primary_10_1038_lsa_2016_156
crossref_primary_10_1063_1_4795286
crossref_primary_10_1002_adom_201801214
crossref_primary_10_1063_1_4904027
crossref_primary_10_1016_j_optmat_2018_04_054
crossref_primary_10_1002_adom_201600452
crossref_primary_10_1016_j_spmi_2020_106579
crossref_primary_10_1002_adpr_202400194
crossref_primary_10_1002_j_2168_0159_2014_tb00205_x
crossref_primary_10_1016_j_optmat_2025_116776
crossref_primary_10_1002_adom_202101342
crossref_primary_10_3390_coatings10030218
crossref_primary_10_1038_s41565_021_00883_7
crossref_primary_10_1016_j_solener_2022_07_026
crossref_primary_10_1016_j_solener_2017_12_021
crossref_primary_10_1063_5_0033312
crossref_primary_10_1515_nanoph_2023_0102
crossref_primary_10_1002_adom_201801660
crossref_primary_10_1002_adom_202101546
crossref_primary_10_1109_JLT_2015_2404860
crossref_primary_10_1038_s41467_018_02860_6
crossref_primary_10_1007_s11664_020_08088_9
crossref_primary_10_1016_j_jallcom_2025_182199
crossref_primary_10_1038_s41377_022_00883_9
crossref_primary_10_1016_j_nanoen_2017_02_027
crossref_primary_10_1016_j_materresbull_2016_07_001
crossref_primary_10_1002_admt_201800478
crossref_primary_10_1002_adom_201600287
crossref_primary_10_1016_j_apmt_2021_101238
crossref_primary_10_1038_nphoton_2017_126
crossref_primary_10_1016_j_solener_2024_112997
crossref_primary_10_1088_1742_6596_1879_3_032086
crossref_primary_10_1002_adfm_201908592
crossref_primary_10_1038_s41467_022_32987_6
crossref_primary_10_1016_j_jobe_2020_101336
crossref_primary_10_1364_PRJ_539592
crossref_primary_10_1038_srep25011
crossref_primary_10_1002_adma_202300179
crossref_primary_10_1088_2040_8986_aa5c07
crossref_primary_10_1063_1_4943654
crossref_primary_10_1515_nanoph_2021_0064
crossref_primary_10_1021_acs_nanolett_4c02963
crossref_primary_10_1038_s41566_022_00970_8
crossref_primary_10_1063_1_4978931
crossref_primary_10_1088_1742_6596_1676_1_012108
crossref_primary_10_29026_oea_2025_250031
crossref_primary_10_1007_s12274_021_3942_6
crossref_primary_10_1002_adom_201900196
crossref_primary_10_1002_adfm_201910555
crossref_primary_10_1002_sstr_202000057
crossref_primary_10_1021_acsaom_4c00521
crossref_primary_10_1117_1_OE_63_9_091605
crossref_primary_10_1186_s11671_020_03471_1
crossref_primary_10_1002_pssr_202500245
crossref_primary_10_1002_pssr_202500246
crossref_primary_10_1007_s12274_023_5870_0
crossref_primary_10_1109_ACCESS_2020_3012486
crossref_primary_10_1002_adom_201800672
crossref_primary_10_1038_srep07511
crossref_primary_10_1016_j_optmat_2024_115060
crossref_primary_10_1063_1_4818916
crossref_primary_10_1038_srep15137
crossref_primary_10_1364_AO_55_002024
crossref_primary_10_29026_oea_2024_230033
crossref_primary_10_1021_acsnano_5c07948
crossref_primary_10_1002_adpr_202300324
crossref_primary_10_1109_TED_2025_3578409
crossref_primary_10_1002_aelm_202400977
crossref_primary_10_1103_PhysRevX_3_041004
crossref_primary_10_1016_j_optcom_2023_129364
crossref_primary_10_1039_C9EE02986A
crossref_primary_10_1109_JPHOT_2019_2945492
crossref_primary_10_1109_JSTQE_2021_3069495
crossref_primary_10_1063_1_4767646
crossref_primary_10_1063_1_4941690
crossref_primary_10_1038_lsa_2016_194
crossref_primary_10_1038_s41467_024_54623_1
crossref_primary_10_1080_21663831_2022_2055436
crossref_primary_10_1016_j_ceramint_2020_04_300
crossref_primary_10_1109_JPHOTOV_2021_3110311
crossref_primary_10_3390_electronics11193030
crossref_primary_10_1039_C4CP04717F
crossref_primary_10_1038_srep09929
crossref_primary_10_1002_adpr_202100153
crossref_primary_10_1016_j_snb_2018_01_137
crossref_primary_10_1038_lsa_2014_42
crossref_primary_10_1002_adfm_202305734
crossref_primary_10_1016_j_optcom_2014_12_029
crossref_primary_10_3103_S1068337220020073
crossref_primary_10_1002_smll_201600528
crossref_primary_10_1088_1402_4896_adb21d
crossref_primary_10_1002_adom_201601103
crossref_primary_10_1016_j_cjph_2020_12_007
crossref_primary_10_1515_nanoph_2023_0595
Cites_doi 10.1126/science.282.5394.1679
10.1063/1.1729543
10.1063/1.2834902
10.1103/PhysRevB.72.195422
10.1126/science.1137014
10.1364/AO.20.000074
10.1109/68.43343
10.1109/3.83412
10.1063/1.360322
10.1016/j.mser.2010.04.001
10.1088/0022-3719/7/13/017
10.1364/OE.19.023279
10.1002/pssa.2211190118
10.1016/j.tsf.2008.04.060
10.1364/AO.33.000026
10.1887/0750306882
ContentType Journal Article
Copyright Springer Nature Limited 2012
Copyright Nature Publishing Group Jan 2013
Copyright_xml – notice: Springer Nature Limited 2012
– notice: Copyright Nature Publishing Group Jan 2013
DBID AAYXX
CITATION
NPM
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
7U5
L7M
DOI 10.1038/nmat3443
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Engineering Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList PubMed
Materials Research Database
Materials Research Database
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1476-4660
EndPage 24
ExternalDocumentID 2884518361
23064496
10_1038_nmat3443
Genre Journal Article
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFS
ACGOD
ACIWK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ACSTC
AFANA
AFFHD
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
ABFSG
AEZWR
AFHIU
AHWEU
AIXLP
NFIDA
NPM
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7U5
L7M
PUEGO
ID FETCH-LOGICAL-c477t-f618028d95b66748d2e05155b4830514ea749cb3dad89c86f973d1d87ff3e8c13
IEDL.DBID M7S
ISICitedReferencesCount 905
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000312593600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1476-1122
1476-4660
IngestDate Thu Oct 02 19:29:21 EDT 2025
Wed Oct 01 13:43:38 EDT 2025
Sun Nov 09 11:53:39 EST 2025
Sun Nov 30 04:20:21 EST 2025
Mon Jul 21 05:57:15 EDT 2025
Tue Nov 18 21:58:41 EST 2025
Sat Nov 29 03:30:22 EST 2025
Fri Feb 21 02:40:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-f618028d95b66748d2e05155b4830514ea749cb3dad89c86f973d1d87ff3e8c13
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 23064496
PQID 1284372827
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_1671401258
proquest_miscellaneous_1315691430
proquest_miscellaneous_1240904810
proquest_journals_1284372827
pubmed_primary_23064496
crossref_primary_10_1038_nmat3443
crossref_citationtrail_10_1038_nmat3443
springer_journals_10_1038_nmat3443
PublicationCentury 2000
PublicationDate 2013-01-01
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature materials
PublicationTitleAbbrev Nature Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2013
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References YanRHSimesRJColdrenLAElectroabsorptive Fabry–Perot reflection modulators with asymmetric mirrorsIEEE Photon. Technol. Lett.1989127327510.1109/68.43343
UnluMSStriteSResonant cavity enhanced photonic devicesJ. Appl. Phys.19957860763910.1063/1.360322
ChattopadhyaySAnti-reflecting and photonic nanostructuresMater. Sci. Eng. R20106913510.1016/j.mser.2010.04.001
LewisNSToward cost-effective solar energy useScience20073157988011:CAS:528:DC%2BD2sXhsVShsrs%3D10.1126/science.1137014
CardonaMHarbekeGAbsorption spectrum of germanium and zinc-blende-type materials at energies higher than the fundamental absorption edgeJ. Appl. Phys.19633481381810.1063/1.1729543
ZhangJContinuous metal plasmonic frequency selective surfacesOpt. Express20111923279232851:CAS:528:DC%2BC3MXhsFKqtbjE10.1364/OE.19.023279
VorobyevAYGuoCEnhanced absorptance of gold following multipulse femtosecond laser ablationPhys. Rev. B20057219542210.1103/PhysRevB.72.195422
BornMWolfEPrinciples of Optics2003
GiresFTournoisPInterferometre utilisable pour la compression d’impulsions lumineuses modulees en frequenceC. R. Acad. Sci. Paris196425861126615
MacleodHAThin-film Optical Filters198610.1887/0750306882
FinkYA dielectric omnidirectional reflectorScience1998282167916821:CAS:528:DyaK1cXnslGhtLg%3D10.1126/science.282.5394.1679
DobrowolskiJAVersatile computer program for absorbing optical thin film systemsAppl. Opt.19812074811:CAS:528:DyaL3MXlsFejtw%3D%3D10.1364/AO.20.000074
HilfikerJNSurvey of methods to characterize thin absorbing films with spectroscopic ellipsometryThin Solid Films2008516797979891:CAS:528:DC%2BD1cXhtVygt7bJ10.1016/j.tsf.2008.04.060
RobustoPFBrausteinROptical measurements of the surface plasmon of indium tin oxidePhys. Status Solidi19901191551681:CAS:528:DyaK3cXkvVOhs7g%3D10.1002/pssa.2211190118
YehPOptical Waves in Layered Media2005
BlyVTCoxJTInfrared absorber for ferroelectric detectorsAppl. Opt.19943326301:CAS:528:DyaK2cXivVCisro%3D10.1364/AO.33.000026
GervaisFPiriouBAnharmonicity in several-polar-mode crystals: adjusting phonon self-energy of LO and TO modes in Al2O3 and TiO2 to fit infrared reflectivityJ. Phys. C19747237423861:CAS:528:DyaE2cXkvVeqtro%3D10.1088/0022-3719/7/13/017
KishinoKSelim UnluMChyiJ-IReedJArsenaultLMorkocHResonant cavity-enhanced (RCE) photodetectorsIEEE J. Quantum Electron.199127202520341:CAS:528:DyaK3MXlslSnurg%3D10.1109/3.83412
VorobyevAYGuoCColorizing metals with femtosecond laser pulsesAppl. Phys. Lett.20089204191410.1063/1.2834902
WangXZhangDZhangHMaYJiangJZTuning color by pore depth of metal-coated porous aluminaNanotechnology201122305206
AY Vorobyev (BFnmat3443_CR16) 2008; 92
F Gires (BFnmat3443_CR6) 1964; 258
Y Fink (BFnmat3443_CR3) 1998; 282
RH Yan (BFnmat3443_CR7) 1989; 1
X Wang (BFnmat3443_CR17) 2011; 22
K Kishino (BFnmat3443_CR8) 1991; 27
J Zhang (BFnmat3443_CR14) 2011; 19
M Cardona (BFnmat3443_CR13) 1963; 34
M Born (BFnmat3443_CR5) 2003
S Chattopadhyay (BFnmat3443_CR18) 2010; 69
JA Dobrowolski (BFnmat3443_CR4) 1981; 20
VT Bly (BFnmat3443_CR10) 1994; 33
AY Vorobyev (BFnmat3443_CR15) 2005; 72
HA Macleod (BFnmat3443_CR1) 1986
MS Unlu (BFnmat3443_CR9) 1995; 78
PF Robusto (BFnmat3443_CR11) 1990; 119
P Yeh (BFnmat3443_CR2) 2005
F Gervais (BFnmat3443_CR12) 1974; 7
JN Hilfiker (BFnmat3443_CR20) 2008; 516
NS Lewis (BFnmat3443_CR19) 2007; 315
21719962 - Nanotechnology. 2011 Jul 29;22(30):305306
22109206 - Opt Express. 2011 Nov 7;19(23):23279-85
20309069 - Appl Opt. 1981 Jan 1;20(1):74-81
9831553 - Science. 1998 Nov 27;282(5394):1679-82
20861981 - Appl Opt. 1994 Jan 1;33(1):26-30
17289986 - Science. 2007 Feb 9;315(5813):798-801
References_xml – reference: VorobyevAYGuoCColorizing metals with femtosecond laser pulsesAppl. Phys. Lett.20089204191410.1063/1.2834902
– reference: GiresFTournoisPInterferometre utilisable pour la compression d’impulsions lumineuses modulees en frequenceC. R. Acad. Sci. Paris196425861126615
– reference: ChattopadhyaySAnti-reflecting and photonic nanostructuresMater. Sci. Eng. R20106913510.1016/j.mser.2010.04.001
– reference: LewisNSToward cost-effective solar energy useScience20073157988011:CAS:528:DC%2BD2sXhsVShsrs%3D10.1126/science.1137014
– reference: UnluMSStriteSResonant cavity enhanced photonic devicesJ. Appl. Phys.19957860763910.1063/1.360322
– reference: RobustoPFBrausteinROptical measurements of the surface plasmon of indium tin oxidePhys. Status Solidi19901191551681:CAS:528:DyaK3cXkvVOhs7g%3D10.1002/pssa.2211190118
– reference: DobrowolskiJAVersatile computer program for absorbing optical thin film systemsAppl. Opt.19812074811:CAS:528:DyaL3MXlsFejtw%3D%3D10.1364/AO.20.000074
– reference: KishinoKSelim UnluMChyiJ-IReedJArsenaultLMorkocHResonant cavity-enhanced (RCE) photodetectorsIEEE J. Quantum Electron.199127202520341:CAS:528:DyaK3MXlslSnurg%3D10.1109/3.83412
– reference: BlyVTCoxJTInfrared absorber for ferroelectric detectorsAppl. Opt.19943326301:CAS:528:DyaK2cXivVCisro%3D10.1364/AO.33.000026
– reference: VorobyevAYGuoCEnhanced absorptance of gold following multipulse femtosecond laser ablationPhys. Rev. B20057219542210.1103/PhysRevB.72.195422
– reference: YanRHSimesRJColdrenLAElectroabsorptive Fabry–Perot reflection modulators with asymmetric mirrorsIEEE Photon. Technol. Lett.1989127327510.1109/68.43343
– reference: CardonaMHarbekeGAbsorption spectrum of germanium and zinc-blende-type materials at energies higher than the fundamental absorption edgeJ. Appl. Phys.19633481381810.1063/1.1729543
– reference: MacleodHAThin-film Optical Filters198610.1887/0750306882
– reference: YehPOptical Waves in Layered Media2005
– reference: FinkYA dielectric omnidirectional reflectorScience1998282167916821:CAS:528:DyaK1cXnslGhtLg%3D10.1126/science.282.5394.1679
– reference: HilfikerJNSurvey of methods to characterize thin absorbing films with spectroscopic ellipsometryThin Solid Films2008516797979891:CAS:528:DC%2BD1cXhtVygt7bJ10.1016/j.tsf.2008.04.060
– reference: BornMWolfEPrinciples of Optics2003
– reference: ZhangJContinuous metal plasmonic frequency selective surfacesOpt. Express20111923279232851:CAS:528:DC%2BC3MXhsFKqtbjE10.1364/OE.19.023279
– reference: GervaisFPiriouBAnharmonicity in several-polar-mode crystals: adjusting phonon self-energy of LO and TO modes in Al2O3 and TiO2 to fit infrared reflectivityJ. Phys. C19747237423861:CAS:528:DyaE2cXkvVeqtro%3D10.1088/0022-3719/7/13/017
– reference: WangXZhangDZhangHMaYJiangJZTuning color by pore depth of metal-coated porous aluminaNanotechnology201122305206
– volume: 282
  start-page: 1679
  year: 1998
  ident: BFnmat3443_CR3
  publication-title: Science
  doi: 10.1126/science.282.5394.1679
– volume: 34
  start-page: 813
  year: 1963
  ident: BFnmat3443_CR13
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1729543
– volume: 258
  start-page: 6112
  year: 1964
  ident: BFnmat3443_CR6
  publication-title: C. R. Acad. Sci. Paris
– volume: 92
  start-page: 041914
  year: 2008
  ident: BFnmat3443_CR16
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2834902
– volume-title: Optical Waves in Layered Media
  year: 2005
  ident: BFnmat3443_CR2
– volume: 72
  start-page: 195422
  year: 2005
  ident: BFnmat3443_CR15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.195422
– volume: 315
  start-page: 798
  year: 2007
  ident: BFnmat3443_CR19
  publication-title: Science
  doi: 10.1126/science.1137014
– volume: 20
  start-page: 74
  year: 1981
  ident: BFnmat3443_CR4
  publication-title: Appl. Opt.
  doi: 10.1364/AO.20.000074
– volume: 1
  start-page: 273
  year: 1989
  ident: BFnmat3443_CR7
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/68.43343
– volume: 22
  start-page: 305206
  year: 2011
  ident: BFnmat3443_CR17
  publication-title: Nanotechnology
– volume: 27
  start-page: 2025
  year: 1991
  ident: BFnmat3443_CR8
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/3.83412
– volume: 78
  start-page: 607
  year: 1995
  ident: BFnmat3443_CR9
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.360322
– volume: 69
  start-page: 1
  year: 2010
  ident: BFnmat3443_CR18
  publication-title: Mater. Sci. Eng. R
  doi: 10.1016/j.mser.2010.04.001
– volume: 7
  start-page: 2374
  year: 1974
  ident: BFnmat3443_CR12
  publication-title: J. Phys. C
  doi: 10.1088/0022-3719/7/13/017
– volume: 19
  start-page: 23279
  year: 2011
  ident: BFnmat3443_CR14
  publication-title: Opt. Express
  doi: 10.1364/OE.19.023279
– volume-title: Principles of Optics
  year: 2003
  ident: BFnmat3443_CR5
– volume: 119
  start-page: 155
  year: 1990
  ident: BFnmat3443_CR11
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssa.2211190118
– volume: 516
  start-page: 7979
  year: 2008
  ident: BFnmat3443_CR20
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2008.04.060
– volume: 33
  start-page: 26
  year: 1994
  ident: BFnmat3443_CR10
  publication-title: Appl. Opt.
  doi: 10.1364/AO.33.000026
– volume-title: Thin-film Optical Filters
  year: 1986
  ident: BFnmat3443_CR1
  doi: 10.1887/0750306882
– reference: 17289986 - Science. 2007 Feb 9;315(5813):798-801
– reference: 21719962 - Nanotechnology. 2011 Jul 29;22(30):305306
– reference: 20861981 - Appl Opt. 1994 Jan 1;33(1):26-30
– reference: 9831553 - Science. 1998 Nov 27;282(5394):1679-82
– reference: 20309069 - Appl Opt. 1981 Jan 1;20(1):74-81
– reference: 22109206 - Opt Express. 2011 Nov 7;19(23):23279-85
SSID ssj0021556
Score 2.6163514
Snippet Optical coatings usually consist of many multilayers of thin films to achieve the desired properties. A new approach using interference effects between an...
Optical coatings, which consist of one or more films of dielectric or metallic materials, are widely used in applications ranging from mirrors to eyeglasses...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20
SubjectTerms 639/301/119/544
639/624/1075/401
Absorbing
Absorption
Biomaterials
Coatings
Condensed Matter Physics
Dielectrics
Filters
Interference
Jewelry
Labelling
letter
Materials Science
Media
Metals
Nanotechnology
Optical and Electronic Materials
Optical coatings
Photography
Solar cells
Thin film coatings
Title Nanometre optical coatings based on strong interference effects in highly absorbing media
URI https://link.springer.com/article/10.1038/nmat3443
https://www.ncbi.nlm.nih.gov/pubmed/23064496
https://www.proquest.com/docview/1284372827
https://www.proquest.com/docview/1240904810
https://www.proquest.com/docview/1315691430
https://www.proquest.com/docview/1671401258
Volume 12
WOSCitedRecordID wos000312593600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: M7S
  dateStart: 20020901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: 7X7
  dateStart: 20020901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: KB.
  dateStart: 20020901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: BENPR
  dateStart: 20020901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: M2P
  dateStart: 20020901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgM98H4slJVBSJxMk4wTOydEUSskxGrFQ1pOUfxIhVSSbbJF4t_j8TpLoWgvXCIlGUV2bM_L4-8DeCFznaB3K7jO6oaLNK25xrLg0qDTuU0MChvIJuRsphaLch4TbkMsqxx1YlDUtjOUIz8kPYrSBwjy9fKcE2sU7a5GCo0d2COUhCyU7n3aBFzeVq5PF8mCe78iG8FnUR223h9EIfBPc3TFx7yyPxrMzsmt_23wbbgZHU72Zj1D7sA1196F_UswhPfgq1ex3Xe36h3rliG3zUxXUz30wMjKWda1bKCc-SkjeIk-nhFksRjEP2QEe3z2k9V66HofbJ-ycCTlPnw5Of789h2PlAvcCClXvCkIEU7ZMtcF0ZDYzAUSGC0UElK6q6UojUZbW1UaVTSlRJtaJZsGnTIpPoDdtmvdI2CuTjFvcu8-pCi8KtEFJk1SSidMo3OBE3g5_vnKRDxyosU4q8K-OKpqHKMJPNtILtcYHP-QORhHoYqrcKh-D4H_xOa1Xz-0KVK3rrsgGR_hEmhOskUGfZRbes9ym0xB0IfeXVQTeLiePJvGhjBPlMUEno-z6VIj_-rJ4-09eQI3ssDIQVmgA9hd9RfuKVw3P1bfhn4KO3Ihw1VNYe_oeDb_6O_eH73y1w_ZfBrWxy-QMhOW
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceD8WChgE4mQ1iZ3YOSCEgKpVy4pDkZZTGj-CkEqyJFtQ_xS_kRkn2RaK9tYD12Ri2ZnxeMYz8w3Ac5WaSKBZwU1SVlzGccmNyDOurPAmdZEV0oVmE2o61bNZ_nENfo21MJRWOerEoKhdY-mOfJP0qFDoIKjX8--cukZRdHVsodGLxa4__okuW_dq5x3y90WSbL3ff7vNh64C3EqlFrzKCPRMuzw1GXXacIkPfU6M1ILAwH2pZG6NcKXTudVZlSvhYqdVVQmvbSxw3AtwEfW4ohQyNTtx8HCUvppJZRztmGQEuxV6s0b7U0gp_jz-zti0Z-Kx4Zjbuv6__aAbcG0wqNmbfgfchDVf34Krp2AWb8NnPEKab37RetbMw909s01J-d4do1PcsaZmHcUEvjCCz2iHGkg2JLvgQ0awzofHrDRd0xr8koWSmzvw6VzWdhfW66b294H5MhZplaJ5FAuJqtJkIqqiXHlpK5NKMYGXI6cLO-CtU9uPwyLE_YUuRpmYwNMl5bzHGPkHzcbI9WLQMl1xwnIcYvka9QMFfcraN0dEgx48gQJFK2gEevE5Ws6raDKCdkRzWE_gXi-sy8kGN1bm2QSejdJ7apJ_reTB6pU8gcvb-x_2ir2d6e5DuJKE7iN047UB64v2yD-CS_bH4mvXPg57j8HBecvyb8-_abA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VglA58Cx0oYBBoJ6iTWIndg4IIcqKqrDaA0jllMaPoEol2SZbUP8av44ZJ1kKRXvrgWsysex4PA_PzDcAL2SiQ45mRaDjogxEFBWB5lkaSMOdTmxouLC-2YScTtXBQTZbg59DLQylVQ4y0QtqWxu6Ix-THOUSHQQ5Lvu0iNnu5PX8JKAOUhRpHdppdCyy785-oPvWvtrbxb1-GceTd5_evg_6DgOBEVIugjIlADRls0Sn1HXDxs73PNFCcQIGd4UUmdHcFlZlRqVlJrmNrJJlyZ0yEcdxr8BVKZKETtfHeLZ09nCUrrJJpgHaNPEAfMvVuEJblAvB_1SFF-zbC7FZr_Imt_7nn3UbbvaGNnvTnYw7sOaqu3DjHPziPfiCqqX-5haNY_Xc3-kzUxeUB94y0u6W1RVrKVbwlRGsRtPXRrI-CQYfMoJ7Pj5jhW7rRuOXzJfibMLnS1nbfViv6sptAXNFxJMyQbMp4gJFqE55WIaZdMKUOhF8BDvDruemx2GndiDHuc8H4Cof-GMEz5aU8w575B802wMH5L30afPf249DLF-j3KBgUFG5-pRo0LMnsKBwBQ1H7z5Di3oVTUqQj2gmqxE86Bh3OVnv3oosHcHzgZPPTfKvlTxcvZKncB1ZOP-wN91_BBuxb0pCF2HbsL5oTt1juGa-L47a5ok_hgwOL5uVfwFtmnJ9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanometre+optical+coatings+based+on+strong+interference+effects+in+highly+absorbing+media&rft.jtitle=Nature+materials&rft.au=Kats%2C+Mikhail+A&rft.au=Blanchard%2C+Romain&rft.au=Genevet%2C+Patrice&rft.au=Capasso%2C+Federico&rft.date=2013-01-01&rft.pub=Nature+Publishing+Group&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=12&rft.issue=1&rft.spage=20&rft_id=info:doi/10.1038%2Fnmat3443&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2884518361
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon