Beijing sublineages of Mycobacterium tuberculosis differ in pathogenicity in the guinea pig

The Beijing family of Mycobacterium tuberculosis strains is part of lineage 2 (also known as the East Asian lineage). In clinical studies, we have observed that isolates from the sublineage RD207 of lineage 2 were more readily transmitted among humans. To investigate the basis for this difference, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical and vaccine immunology Jg. 19; H. 8; S. 1227
Hauptverfasser: Kato-Maeda, Midori, Shanley, Crystal A, Ackart, David, Jarlsberg, Leah G, Shang, Shaobin, Obregon-Henao, Andres, Harton, Marisabel, Basaraba, Randall J, Henao-Tamayo, Marcela, Barrozo, Joyce C, Rose, Jordan, Kawamura, L Masae, Coscolla, Mireia, Fofanov, Viacheslav Y, Koshinsky, Heather, Gagneux, Sebastien, Hopewell, Philip C, Ordway, Diane J, Orme, Ian M
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.08.2012
Schlagworte:
ISSN:1556-679X, 1556-679X
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The Beijing family of Mycobacterium tuberculosis strains is part of lineage 2 (also known as the East Asian lineage). In clinical studies, we have observed that isolates from the sublineage RD207 of lineage 2 were more readily transmitted among humans. To investigate the basis for this difference, we tested representative strains with the characteristic Beijing spoligotype from four of the five sublineages of lineage 2 in the guinea pig model and subjected these strains to comparative whole-genome sequencing. The results of these studies showed that all of the clinical strains were capable of growing and causing lung pathology in guinea pigs after low-dose aerosol exposure. Differences between the abilities of the four sublineages to grow in the lungs of these animals were not overt, but members of RD207 were significantly more pathogenic, resulting in severe lung damage. The RD207 strains also induced much higher levels of markers associated with regulatory T cells and showed a significant loss of activated T cells in the lungs over the course of the infections. Whole-genome sequencing of the strains revealed mutations specific for RD207 which may explain this difference. Based on these data, we hypothesize that the sublineages of M. tuberculosis are associated with distinct pathological and clinical phenotypes and that these differences influence the transmissibility of particular M. tuberculosis strains in human populations.
AbstractList The Beijing family of Mycobacterium tuberculosis strains is part of lineage 2 (also known as the East Asian lineage). In clinical studies, we have observed that isolates from the sublineage RD207 of lineage 2 were more readily transmitted among humans. To investigate the basis for this difference, we tested representative strains with the characteristic Beijing spoligotype from four of the five sublineages of lineage 2 in the guinea pig model and subjected these strains to comparative whole-genome sequencing. The results of these studies showed that all of the clinical strains were capable of growing and causing lung pathology in guinea pigs after low-dose aerosol exposure. Differences between the abilities of the four sublineages to grow in the lungs of these animals were not overt, but members of RD207 were significantly more pathogenic, resulting in severe lung damage. The RD207 strains also induced much higher levels of markers associated with regulatory T cells and showed a significant loss of activated T cells in the lungs over the course of the infections. Whole-genome sequencing of the strains revealed mutations specific for RD207 which may explain this difference. Based on these data, we hypothesize that the sublineages of M. tuberculosis are associated with distinct pathological and clinical phenotypes and that these differences influence the transmissibility of particular M. tuberculosis strains in human populations.The Beijing family of Mycobacterium tuberculosis strains is part of lineage 2 (also known as the East Asian lineage). In clinical studies, we have observed that isolates from the sublineage RD207 of lineage 2 were more readily transmitted among humans. To investigate the basis for this difference, we tested representative strains with the characteristic Beijing spoligotype from four of the five sublineages of lineage 2 in the guinea pig model and subjected these strains to comparative whole-genome sequencing. The results of these studies showed that all of the clinical strains were capable of growing and causing lung pathology in guinea pigs after low-dose aerosol exposure. Differences between the abilities of the four sublineages to grow in the lungs of these animals were not overt, but members of RD207 were significantly more pathogenic, resulting in severe lung damage. The RD207 strains also induced much higher levels of markers associated with regulatory T cells and showed a significant loss of activated T cells in the lungs over the course of the infections. Whole-genome sequencing of the strains revealed mutations specific for RD207 which may explain this difference. Based on these data, we hypothesize that the sublineages of M. tuberculosis are associated with distinct pathological and clinical phenotypes and that these differences influence the transmissibility of particular M. tuberculosis strains in human populations.
The Beijing family of Mycobacterium tuberculosis strains is part of lineage 2 (also known as the East Asian lineage). In clinical studies, we have observed that isolates from the sublineage RD207 of lineage 2 were more readily transmitted among humans. To investigate the basis for this difference, we tested representative strains with the characteristic Beijing spoligotype from four of the five sublineages of lineage 2 in the guinea pig model and subjected these strains to comparative whole-genome sequencing. The results of these studies showed that all of the clinical strains were capable of growing and causing lung pathology in guinea pigs after low-dose aerosol exposure. Differences between the abilities of the four sublineages to grow in the lungs of these animals were not overt, but members of RD207 were significantly more pathogenic, resulting in severe lung damage. The RD207 strains also induced much higher levels of markers associated with regulatory T cells and showed a significant loss of activated T cells in the lungs over the course of the infections. Whole-genome sequencing of the strains revealed mutations specific for RD207 which may explain this difference. Based on these data, we hypothesize that the sublineages of M. tuberculosis are associated with distinct pathological and clinical phenotypes and that these differences influence the transmissibility of particular M. tuberculosis strains in human populations.
Author Henao-Tamayo, Marcela
Basaraba, Randall J
Fofanov, Viacheslav Y
Shanley, Crystal A
Obregon-Henao, Andres
Rose, Jordan
Hopewell, Philip C
Gagneux, Sebastien
Barrozo, Joyce C
Coscolla, Mireia
Koshinsky, Heather
Orme, Ian M
Jarlsberg, Leah G
Kawamura, L Masae
Ordway, Diane J
Ackart, David
Harton, Marisabel
Kato-Maeda, Midori
Shang, Shaobin
Author_xml – sequence: 1
  givenname: Midori
  surname: Kato-Maeda
  fullname: Kato-Maeda, Midori
  email: midori.kato-maeda@ucsf.edu
  organization: Curry International Tuberculosis Center, Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, California, USA. midori.kato-maeda@ucsf.edu
– sequence: 2
  givenname: Crystal A
  surname: Shanley
  fullname: Shanley, Crystal A
– sequence: 3
  givenname: David
  surname: Ackart
  fullname: Ackart, David
– sequence: 4
  givenname: Leah G
  surname: Jarlsberg
  fullname: Jarlsberg, Leah G
– sequence: 5
  givenname: Shaobin
  surname: Shang
  fullname: Shang, Shaobin
– sequence: 6
  givenname: Andres
  surname: Obregon-Henao
  fullname: Obregon-Henao, Andres
– sequence: 7
  givenname: Marisabel
  surname: Harton
  fullname: Harton, Marisabel
– sequence: 8
  givenname: Randall J
  surname: Basaraba
  fullname: Basaraba, Randall J
– sequence: 9
  givenname: Marcela
  surname: Henao-Tamayo
  fullname: Henao-Tamayo, Marcela
– sequence: 10
  givenname: Joyce C
  surname: Barrozo
  fullname: Barrozo, Joyce C
– sequence: 11
  givenname: Jordan
  surname: Rose
  fullname: Rose, Jordan
– sequence: 12
  givenname: L Masae
  surname: Kawamura
  fullname: Kawamura, L Masae
– sequence: 13
  givenname: Mireia
  surname: Coscolla
  fullname: Coscolla, Mireia
– sequence: 14
  givenname: Viacheslav Y
  surname: Fofanov
  fullname: Fofanov, Viacheslav Y
– sequence: 15
  givenname: Heather
  surname: Koshinsky
  fullname: Koshinsky, Heather
– sequence: 16
  givenname: Sebastien
  surname: Gagneux
  fullname: Gagneux, Sebastien
– sequence: 17
  givenname: Philip C
  surname: Hopewell
  fullname: Hopewell, Philip C
– sequence: 18
  givenname: Diane J
  surname: Ordway
  fullname: Ordway, Diane J
– sequence: 19
  givenname: Ian M
  surname: Orme
  fullname: Orme, Ian M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22718126$$D View this record in MEDLINE/PubMed
BookMark eNpNkM9LwzAcxYNM3A-9eZYcvXQm6Zp0Rx1TBxMvKoKHkqTfdBltWpvksP_eDid4eo_H4wPvTdHItQ4QuqZkTinL71YfmzkhLCMJZWdoQrOMJ1wsP0f__BhNvd8Tskh5Li7QmDFBc8r4BH09gN1bV2EfVW0dyAo8bg1-OehWSR2gt7HBISrodaxbbz0urTHQY-twJ8OurcBZbcPhGIQd4CoeMbiz1SU6N7L2cHXSGXp_XL-tnpPt69Nmdb9N9EKIkIDSpjRaAwiZKsLNgmtKOddZrnTGcikzLiloIkpKYNhc5oqnSg9jhAJO2Qzd_nK7vv2O4EPRWK-hrqWDNvqCknTgkXRJhurNqRpVA2XR9baR_aH4O4T9AKqfZZw
CitedBy_id crossref_primary_10_1371_journal_pone_0221644
crossref_primary_10_1038_ng_3195
crossref_primary_10_1186_s12866_014_0307_2
crossref_primary_10_7717_peerj_12128
crossref_primary_10_1016_j_vaccine_2015_08_084
crossref_primary_10_1016_j_tube_2018_09_008
crossref_primary_10_3389_fimmu_2024_1427559
crossref_primary_10_3389_fevo_2019_00112
crossref_primary_10_3389_fimmu_2019_02139
crossref_primary_10_1016_j_meegid_2024_105648
crossref_primary_10_1002_eji_201646562
crossref_primary_10_1080_22221751_2021_1967704
crossref_primary_10_1016_j_tube_2015_09_001
crossref_primary_10_1038_ng_2656
crossref_primary_10_1128_msystems_00110_22
crossref_primary_10_1186_s13073_014_0101_7
crossref_primary_10_1016_j_tube_2018_02_003
crossref_primary_10_1016_j_clim_2014_01_010
crossref_primary_10_1128_JCM_01405_15
crossref_primary_10_3390_ijms20010005
crossref_primary_10_1128_JCM_00498_14
crossref_primary_10_1128_microbiolspec_TBTB2_0002_2015
crossref_primary_10_1016_j_jprot_2016_08_022
crossref_primary_10_1038_s41598_020_60560_y
crossref_primary_10_1128_microbiolspec_TBTB2_0027_2016
crossref_primary_10_1128_JCM_03404_12
crossref_primary_10_3390_biomedicines11123110
crossref_primary_10_1016_j_meegid_2015_08_028
crossref_primary_10_2217_fmb_14_29
crossref_primary_10_1080_14760584_2019_1583558
crossref_primary_10_1016_j_tube_2013_08_010
crossref_primary_10_1016_j_tube_2018_06_011
crossref_primary_10_1371_journal_ppat_1005809
crossref_primary_10_1128_IAI_01791_14
crossref_primary_10_1016_j_meegid_2017_10_004
crossref_primary_10_1038_emi_2017_58
crossref_primary_10_1111_imr_12959
crossref_primary_10_1371_journal_pone_0174197
crossref_primary_10_1007_s40265_013_0081_8
crossref_primary_10_1016_j_smim_2014_10_003
crossref_primary_10_1128_IAI_00282_13
crossref_primary_10_1128_IAI_03080_14
crossref_primary_10_1007_s40142_017_0130_9
crossref_primary_10_1164_rccm_201605_1042OC
crossref_primary_10_2147_IDR_S240408
crossref_primary_10_1097_INF_0000000000000915
crossref_primary_10_1164_rccm_201212_2239OC
crossref_primary_10_1128_JCM_02993_14
crossref_primary_10_1371_journal_pone_0136500
crossref_primary_10_1128_spectrum_01392_23
crossref_primary_10_1016_j_tube_2014_08_004
crossref_primary_10_1016_j_vaccine_2013_10_044
crossref_primary_10_3109_23744235_2015_1087649
crossref_primary_10_1189_jlb_4A0614_308RR
crossref_primary_10_1128_microbiolspec_TBTB2_0006_2016
crossref_primary_10_3390_ijms18010019
crossref_primary_10_1128_microbiolspec_TBTB2_0022_2016
crossref_primary_10_1016_j_jcpa_2014_08_007
crossref_primary_10_3389_fcimb_2021_613149
crossref_primary_10_1080_22221751_2022_2037395
crossref_primary_10_1016_j_jtbi_2023_111498
crossref_primary_10_1111_jmp_12030
crossref_primary_10_1016_j_smim_2014_09_012
crossref_primary_10_1016_j_ijantimicag_2016_07_010
crossref_primary_10_1186_s12887_015_0455_z
crossref_primary_10_1155_2019_3980658
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1128/CVI.00250-12
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1556-679X
ExternalDocumentID 22718126
Genre Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R21 AI081959
– fundername: NIAID NIH HHS
  grantid: R21 AI092002
– fundername: NIAID NIH HHS
  grantid: AI081959
– fundername: NIAID NIH HHS
  grantid: AI070456
– fundername: NIAID NIH HHS
  grantid: AI092002
– fundername: NIAID NIH HHS
  grantid: AI090928
– fundername: NIAID NIH HHS
  grantid: R01 AI090928
– fundername: NIAID NIH HHS
  grantid: AI034238
– fundername: NIH HHS
  grantid: DP2 OD006450
– fundername: NIAID NIH HHS
  grantid: R01 AI034238
GroupedDBID ---
.GJ
0R~
29B
2WC
39C
4.4
53G
5GY
5VS
AAUOK
ADBBV
AENEX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
GX1
H13
HYE
HZ~
KQ8
NPM
O9-
RHI
RNS
RPM
RSF
TR2
W2D
W8F
WOQ
7X8
AAFWJ
AAGFI
ID FETCH-LOGICAL-c477t-ebcfdfccee7a3b06f46c1166c58bc528aa56a1ec07d10e112d8b63bc4367be612
IEDL.DBID 7X8
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000307110900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1556-679X
IngestDate Fri Sep 05 11:13:57 EDT 2025
Thu Apr 03 07:02:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-ebcfdfccee7a3b06f46c1166c58bc528aa56a1ec07d10e112d8b63bc4367be612
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://cvi.asm.org/content/cdli/19/8/1227.full.pdf
PMID 22718126
PQID 1031160390
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1031160390
pubmed_primary_22718126
PublicationCentury 2000
PublicationDate 2012-08-01
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Clinical and vaccine immunology
PublicationTitleAlternate Clin Vaccine Immunol
PublicationYear 2012
References 22008214 - BMC Microbiol. 2011;11:231
19251482 - Tuberculosis (Edinb). 2009 May;89(3):203-9
18321783 - Tuberculosis (Edinb). 2008 Jul;88(4):295-306
12505028 - Lancet Infect Dis. 2003 Jan;3(1):13-21
16757603 - J Clin Microbiol. 2006 Jun;44(6):2093-8
17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9
20397946 - Clin Infect Dis. 2010 May 15;50 Suppl 3:S178-83
21737349 - Tuberculosis (Edinb). 2011 Sep;91(5):378-85
17675515 - J Immunol. 2007 Aug 15;179(4):2532-41
14673768 - J Infect Dis. 2003 Dec 15;188(12):1878-84
20392345 - Int J Tuberc Lung Dis. 2010 May;14(5):538-44
15942899 - J Infect Dis. 2005 Jul 1;192(1):98-106
16622237 - Infect Immun. 2006 May;74(5):2985-95
21920450 - Microbes Infect. 2012 Jan;14(1):86-95
15024109 - Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4865-70
5638222 - Arch Environ Health. 1968 Jan;16(1):26-35
19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9
17506895 - BMC Microbiol. 2007;7:39
16477032 - Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2869-73
21622956 - Nucleic Acids Res. 2011 Sep 1;39(16):7316-28
20495566 - Nat Genet. 2010 Jun;42(6):498-503
15364987 - J Clin Microbiol. 2004 Sep;42(9):4040-9
19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60
21570366 - DNA Repair (Amst). 2011 Jun 10;10(6):595-602
7822053 - Infect Immun. 1995 Feb;63(2):741-3
12890325 - Emerg Infect Dis. 2003 Jul;9(7):838-45
18388352 - Am J Respir Crit Care Med. 2008 Jul 1;178(1):96-104
22415304 - FASEB J. 2012 Jun;26(6):2695-711
20659816 - Tuberculosis (Edinb). 2010 Nov;90(6):329-32
21392433 - Emerg Infect Dis. 2011 Mar;17(3):425-31
17552090 - Emerg Infect Dis. 2007 Mar;13(3):380-7
15292265 - J Biol Chem. 2004 Oct 8;279(41):42584-92
11337480 - Genome Res. 2001 May;11(5):863-74
18508930 - Clin Vaccine Immunol. 2008 Aug;15(8):1248-58
21795460 - Clin Vaccine Immunol. 2011 Sep;18(9):1527-35
21366417 - Future Microbiol. 2011 Feb;6(2):161-77
8381814 - J Clin Microbiol. 1993 Feb;31(2):406-9
12832681 - Thorax. 2003 Jul;58(7):618-22
16562710 - Int J Tuberc Lung Dis. 2006 Mar;10(3):297-304
22042400 - J Bras Pneumol. 2011 Sep-Oct;37(5):664-8
18702608 - J Infect Dis. 2008 Oct 1;198(7):1037-43
21378376 - J Infect Dis. 2011 May 1;203(9):1249-55
16000433 - J Clin Microbiol. 2005 Jul;43(7):3185-91
16907905 - Clin Exp Immunol. 2006 Sep;145(3):389-97
18555747 - Tuberculosis (Edinb). 2008 Sep;88(5):430-6
14638775 - Infect Immun. 2003 Dec;71(12):6871-83
16253558 - Tuberculosis (Edinb). 2005 Sep-Nov;85(5-6):295-301
17449476 - J Biol Chem. 2007 Jun 29;282(26):18671-5
19332828 - Microbiology. 2009 Apr;155(Pt 4):1272-81
2915665 - N Engl J Med. 1989 Mar 2;320(9):545-50
19996188 - Eur Respir J. 2010 Aug;36(2):339-47
10760138 - Mol Microbiol. 2000 Mar;35(6):1375-82
22260319 - BMC Infect Dis. 2012;12:10
References_xml – reference: 15024109 - Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4865-70
– reference: 17675515 - J Immunol. 2007 Aug 15;179(4):2532-41
– reference: 21920450 - Microbes Infect. 2012 Jan;14(1):86-95
– reference: 20659816 - Tuberculosis (Edinb). 2010 Nov;90(6):329-32
– reference: 10760138 - Mol Microbiol. 2000 Mar;35(6):1375-82
– reference: 20392345 - Int J Tuberc Lung Dis. 2010 May;14(5):538-44
– reference: 19251482 - Tuberculosis (Edinb). 2009 May;89(3):203-9
– reference: 20397946 - Clin Infect Dis. 2010 May 15;50 Suppl 3:S178-83
– reference: 12890325 - Emerg Infect Dis. 2003 Jul;9(7):838-45
– reference: 18508930 - Clin Vaccine Immunol. 2008 Aug;15(8):1248-58
– reference: 15364987 - J Clin Microbiol. 2004 Sep;42(9):4040-9
– reference: 5638222 - Arch Environ Health. 1968 Jan;16(1):26-35
– reference: 14638775 - Infect Immun. 2003 Dec;71(12):6871-83
– reference: 21737349 - Tuberculosis (Edinb). 2011 Sep;91(5):378-85
– reference: 20495566 - Nat Genet. 2010 Jun;42(6):498-503
– reference: 7822053 - Infect Immun. 1995 Feb;63(2):741-3
– reference: 18555747 - Tuberculosis (Edinb). 2008 Sep;88(5):430-6
– reference: 21392433 - Emerg Infect Dis. 2011 Mar;17(3):425-31
– reference: 18388352 - Am J Respir Crit Care Med. 2008 Jul 1;178(1):96-104
– reference: 12505028 - Lancet Infect Dis. 2003 Jan;3(1):13-21
– reference: 19332828 - Microbiology. 2009 Apr;155(Pt 4):1272-81
– reference: 22260319 - BMC Infect Dis. 2012;12:10
– reference: 22415304 - FASEB J. 2012 Jun;26(6):2695-711
– reference: 8381814 - J Clin Microbiol. 1993 Feb;31(2):406-9
– reference: 21795460 - Clin Vaccine Immunol. 2011 Sep;18(9):1527-35
– reference: 17449476 - J Biol Chem. 2007 Jun 29;282(26):18671-5
– reference: 12832681 - Thorax. 2003 Jul;58(7):618-22
– reference: 22042400 - J Bras Pneumol. 2011 Sep-Oct;37(5):664-8
– reference: 19996188 - Eur Respir J. 2010 Aug;36(2):339-47
– reference: 16757603 - J Clin Microbiol. 2006 Jun;44(6):2093-8
– reference: 22008214 - BMC Microbiol. 2011;11:231
– reference: 18321783 - Tuberculosis (Edinb). 2008 Jul;88(4):295-306
– reference: 19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9
– reference: 11337480 - Genome Res. 2001 May;11(5):863-74
– reference: 14673768 - J Infect Dis. 2003 Dec 15;188(12):1878-84
– reference: 16622237 - Infect Immun. 2006 May;74(5):2985-95
– reference: 21622956 - Nucleic Acids Res. 2011 Sep 1;39(16):7316-28
– reference: 17552090 - Emerg Infect Dis. 2007 Mar;13(3):380-7
– reference: 17506895 - BMC Microbiol. 2007;7:39
– reference: 16253558 - Tuberculosis (Edinb). 2005 Sep-Nov;85(5-6):295-301
– reference: 18702608 - J Infect Dis. 2008 Oct 1;198(7):1037-43
– reference: 21378376 - J Infect Dis. 2011 May 1;203(9):1249-55
– reference: 15292265 - J Biol Chem. 2004 Oct 8;279(41):42584-92
– reference: 21366417 - Future Microbiol. 2011 Feb;6(2):161-77
– reference: 16562710 - Int J Tuberc Lung Dis. 2006 Mar;10(3):297-304
– reference: 16907905 - Clin Exp Immunol. 2006 Sep;145(3):389-97
– reference: 17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9
– reference: 15942899 - J Infect Dis. 2005 Jul 1;192(1):98-106
– reference: 16000433 - J Clin Microbiol. 2005 Jul;43(7):3185-91
– reference: 16477032 - Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2869-73
– reference: 21570366 - DNA Repair (Amst). 2011 Jun 10;10(6):595-602
– reference: 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60
– reference: 2915665 - N Engl J Med. 1989 Mar 2;320(9):545-50
SSID ssj0043687
Score 2.3366568
Snippet The Beijing family of Mycobacterium tuberculosis strains is part of lineage 2 (also known as the East Asian lineage). In clinical studies, we have observed...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1227
SubjectTerms Animals
Disease Models, Animal
Female
Genome, Bacterial
Genotype
Guinea Pigs
Histocytochemistry
Humans
Lung - microbiology
Lung - pathology
Molecular Typing
Mycobacterium tuberculosis - classification
Mycobacterium tuberculosis - genetics
Mycobacterium tuberculosis - isolation & purification
Mycobacterium tuberculosis - pathogenicity
Sequence Analysis, DNA
Tuberculosis - microbiology
Tuberculosis - pathology
Virulence
Title Beijing sublineages of Mycobacterium tuberculosis differ in pathogenicity in the guinea pig
URI https://www.ncbi.nlm.nih.gov/pubmed/22718126
https://www.proquest.com/docview/1031160390
Volume 19
WOSCitedRecordID wos000307110900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Uqnjx_agvVvC6ttkku8lJVCwKtvSgUvBQspvZEtGkNo3Qf-9skupJELzksJAhO5md-ZiZnY-Q8wjdoae9mJkg9JgXC4eFxucMXO6I2PXBicqLwg-y1wsGg7BfJ9zyuq1y7hNLRx1n2ubIW5aOwFIih-3L8QezrFG2ulpTaCyShotQxlq1HHxXEexw9ZJcxfcFEzIczBvfedC6eb6_KOM_s1yUv4HLMsh0Nv77eZtkvYaX9Kqyhy2yAOk2WakIJ2fbZLVbl9J3yMs1JK8Yt2huE1EpoF_JaWZod6bxiJcjnIt3Oi0UTHTxluVJTisyFZqk1PIYZ2h6KGs6swsII-mosGLoOBntkqfO7ePNHauZFpj2pJwyUNrERmPAlJGr2sJ4QuN2hPYDpX0eRJEvIgd0W8ZOG1CBcaCEqzRqWCpAkLRHltIshQNCfaECYUyoRKg8bm_OggugA61RInDeJGdzBQ7Rkm15IkohK_LhjwqbZL_6C8NxNXJjyLm0UEQc_uHtI7KGqIZXXXrHpGHwHMMJWdaf0ySfnJYmgs9ev_sFjIDHUQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beijing+sublineages+of+Mycobacterium+tuberculosis+differ+in+pathogenicity+in+the+guinea+pig&rft.jtitle=Clinical+and+vaccine+immunology&rft.au=Kato-Maeda%2C+Midori&rft.au=Shanley%2C+Crystal+A&rft.au=Ackart%2C+David&rft.au=Jarlsberg%2C+Leah+G&rft.date=2012-08-01&rft.issn=1556-679X&rft.eissn=1556-679X&rft.volume=19&rft.issue=8&rft.spage=1227&rft_id=info:doi/10.1128%2FCVI.00250-12&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-679X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-679X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-679X&client=summon