Ensuring medical AI safety: interpretability-driven detection and mitigation of spurious model behavior and associated data
Deep neural networks are increasingly employed in high-stakes medical applications, despite their tendency for shortcut learning in the presence of spurious correlations, which can have potentially fatal consequences in practice. Whereas a multitude of works address either the detection or mitigatio...
Uloženo v:
| Vydáno v: | Machine learning Ročník 114; číslo 9; s. 206 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.09.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 0885-6125, 1573-0565 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Deep neural networks are increasingly employed in high-stakes medical applications, despite their tendency for shortcut learning in the presence of spurious correlations, which can have potentially fatal consequences in practice. Whereas a multitude of works address either the detection or mitigation of such shortcut behavior in isolation, the Reveal2Revise approach provides a comprehensive bias mitigation framework combining these steps. However, effectively addressing these biases often requires substantial labeling efforts from domain experts. In this work, we review the steps of the Reveal2Revise framework and enhance it with semi-automated interpretability-based bias annotation capabilities. This includes methods for the sample- and feature-level bias annotation, providing valuable information for bias mitigation methods to unlearn the undesired shortcut behavior. We show the applicability of the framework using four medical datasets across two modalities, featuring controlled and real-world spurious correlations caused by data artifacts. We successfully identify and mitigate these biases in VGG16, ResNet50, and contemporary Vision Transformer models, ultimately increasing their robustness and applicability for real-world medical tasks. Our code is available at
https://github.com/frederikpahde/medical-ai-safety
. |
|---|---|
| AbstractList | Deep neural networks are increasingly employed in high-stakes medical applications, despite their tendency for shortcut learning in the presence of spurious correlations, which can have potentially fatal consequences in practice. Whereas a multitude of works address either the detection or mitigation of such shortcut behavior in isolation, the Reveal2Revise approach provides a comprehensive bias mitigation framework combining these steps. However, effectively addressing these biases often requires substantial labeling efforts from domain experts. In this work, we review the steps of the Reveal2Revise framework and enhance it with semi-automated interpretability-based bias annotation capabilities. This includes methods for the sample- and feature-level bias annotation, providing valuable information for bias mitigation methods to unlearn the undesired shortcut behavior. We show the applicability of the framework using four medical datasets across two modalities, featuring controlled and real-world spurious correlations caused by data artifacts. We successfully identify and mitigate these biases in VGG16, ResNet50, and contemporary Vision Transformer models, ultimately increasing their robustness and applicability for real-world medical tasks. Our code is available at https://github.com/frederikpahde/medical-ai-safety.Deep neural networks are increasingly employed in high-stakes medical applications, despite their tendency for shortcut learning in the presence of spurious correlations, which can have potentially fatal consequences in practice. Whereas a multitude of works address either the detection or mitigation of such shortcut behavior in isolation, the Reveal2Revise approach provides a comprehensive bias mitigation framework combining these steps. However, effectively addressing these biases often requires substantial labeling efforts from domain experts. In this work, we review the steps of the Reveal2Revise framework and enhance it with semi-automated interpretability-based bias annotation capabilities. This includes methods for the sample- and feature-level bias annotation, providing valuable information for bias mitigation methods to unlearn the undesired shortcut behavior. We show the applicability of the framework using four medical datasets across two modalities, featuring controlled and real-world spurious correlations caused by data artifacts. We successfully identify and mitigate these biases in VGG16, ResNet50, and contemporary Vision Transformer models, ultimately increasing their robustness and applicability for real-world medical tasks. Our code is available at https://github.com/frederikpahde/medical-ai-safety. Deep neural networks are increasingly employed in high-stakes medical applications, despite their tendency for shortcut learning in the presence of spurious correlations, which can have potentially fatal consequences in practice. Whereas a multitude of works address either the detection or mitigation of such shortcut behavior in isolation, the Reveal2Revise approach provides a comprehensive bias mitigation framework combining these steps. However, effectively addressing these biases often requires substantial labeling efforts from domain experts. In this work, we review the steps of the Reveal2Revise framework and enhance it with semi-automated interpretability-based bias annotation capabilities. This includes methods for the sample- and feature-level bias annotation, providing valuable information for bias mitigation methods to unlearn the undesired shortcut behavior. We show the applicability of the framework using four medical datasets across two modalities, featuring controlled and real-world spurious correlations caused by data artifacts. We successfully identify and mitigate these biases in VGG16, ResNet50, and contemporary Vision Transformer models, ultimately increasing their robustness and applicability for real-world medical tasks. Our code is available at https://github.com/frederikpahde/medical-ai-safety. Deep neural networks are increasingly employed in high-stakes medical applications, despite their tendency for shortcut learning in the presence of spurious correlations, which can have potentially fatal consequences in practice. Whereas a multitude of works address either the detection or mitigation of such shortcut behavior in isolation, the Reveal2Revise approach provides a comprehensive bias mitigation framework combining these steps. However, effectively addressing these biases often requires substantial labeling efforts from domain experts. In this work, we review the steps of the Reveal2Revise framework and enhance it with semi-automated interpretability-based bias annotation capabilities. This includes methods for the sample- and feature-level bias annotation, providing valuable information for bias mitigation methods to unlearn the undesired shortcut behavior. We show the applicability of the framework using four medical datasets across two modalities, featuring controlled and real-world spurious correlations caused by data artifacts. We successfully identify and mitigate these biases in VGG16, ResNet50, and contemporary Vision Transformer models, ultimately increasing their robustness and applicability for real-world medical tasks. Our code is available at https://github.com/frederikpahde/medical-ai-safety . |
| ArticleNumber | 206 |
| Author | Pahde, Frederik Samek, Wojciech Lapuschkin, Sebastian Wiegand, Thomas |
| Author_xml | – sequence: 1 givenname: Frederik surname: Pahde fullname: Pahde, Frederik organization: Fraunhofer Heinrich Hertz Institute – sequence: 2 givenname: Thomas surname: Wiegand fullname: Wiegand, Thomas organization: Fraunhofer Heinrich Hertz Institute, Technische Universität Berlin, BIFOLD – Berlin Institute for the Foundations of Learning and Data – sequence: 3 givenname: Sebastian surname: Lapuschkin fullname: Lapuschkin, Sebastian email: sebastian.lapuschkin@hhi.fraunhofer.de organization: Fraunhofer Heinrich Hertz Institute, Technological University Dublin – sequence: 4 givenname: Wojciech surname: Samek fullname: Samek, Wojciech email: wojciech.samek@hhi.fraunhofer.de organization: Fraunhofer Heinrich Hertz Institute, Technische Universität Berlin, BIFOLD – Berlin Institute for the Foundations of Learning and Data |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40814399$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1v1DAYhC1URLeFP8ABWeLCJeCvJA4XVFWlrVSJC5wtx36zdZXYwXa2WvHn8e6WAj30ZFl-ZjSj8Qk68sEDQm8p-UgJaT8lSrpOVITVFWkkF9X9C7SidcsrUjf1EVoRKeuqoaw-Ricp3RFCWCObV-hYEEkF77oV-nXh0xKdX-MJrDN6xGfXOOkB8vYzdj5DnCNk3bvR5W1lo9uAxxYymOyCx9pbPLns1np_DQNOc7ELS8JTsDDiHm71xoW4J3VKwTidwWKrs36NXg56TPDm4TxFP75efD-_qm6-XV6fn91URrRtrizlQA1ncuhsw8TQW6Cak4b2UlsKohlaSlrZDFxLyxugjHBBB8k703eScX6Kvhx856UvLQ34HPWo5ugmHbcqaKf-f_HuVq3DRlHGBW_5zuHDg0MMPxdIWU0uGRhH7aF0VZzxriSgNSvo-yfoXViiL_12lJS0FYQU6t2_kR6z_BmmAOwAmBhSijA8IpSo3frqsL4q66v9-uq-iOQTkXF5v0yp5cbnpfwgTfPuN0D8G_sZ1W-9f8bh |
| CitedBy_id | crossref_primary_10_1111_jsr_70044 |
| Cites_doi | 10.1109/JBHI.2020.3022989 10.1609/aaai.v38i19.30096 10.1109/ICCV51070.2023.01851 10.1038/s42256-020-0212-3 10.1162/coli_a_00422 10.1038/s42256-025-01084-w 10.1023/A:1022627411411 10.1109/CVPR.2019.00065 10.1145/3514221.3517886 10.1007/978-3-031-73016-0_20 10.24963/ijcai.2017/371 10.1109/CVPR52729.2023.00266 10.5281/zenodo.4414861 10.1109/ISBI.2018.8363547 10.1038/s41467-023-39902-7 10.1371/journal.pmed.1002683 10.1109/ICCV.2017.74 10.1038/s41597-020-0495-6 10.18653/v1/2020.acl-main.647 10.1109/CVPRW63382.2024.00357 10.1007/978-3-031-43895-0_56 10.1109/CVPR.2016.319 10.1371/journal.pone.0130140 10.1109/CVPRW50498.2020.00378 10.23915/distill.00024.001 10.1109/ICNN.1995.488997 10.1016/j.ejca.2019.04.001 10.21105/joss.00861 10.1109/CVPR.2018.00910 10.1038/s42256-023-00711-8 10.1109/CVPRW63382.2024.00353 10.1038/s41467-019-08987-4 10.1016/j.compbiomed.2024.108525 10.1007/978-3-031-44067-0_26 10.1145/342009.335388 10.1016/j.inffus.2021.07.015 10.1109/CVPR.2009.5206848 10.1016/B978-0-44-340553-2.00008-3 10.1038/s42256-020-00257-z 10.1038/sdata.2018.161 10.1038/s41597-020-00622-y 10.1073/pnas.1907375117 10.23915/distill.00007 10.1038/s42256-021-00338-7 10.1609/aaai.v33i01.3301590 10.1109/CVPR.2016.90 10.1016/j.media.2021.102305 10.1609/aaai.v35i13.17389 10.1109/TPAMI.2012.120 10.1111/j.1469-1809.1936.tb02137.x |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 The Author(s) 2025. The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 5PM |
| DOI | 10.1007/s10994-025-06834-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Computer and Information Systems Abstracts CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0565 |
| ExternalDocumentID | PMC12343733 40814399 10_1007_s10994_025_06834_w |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: HORIZON EUROPE European Research Council grantid: 101093003 funderid: https://doi.org/10.13039/100019180 – fundername: Horizon 2020 grantid: 965221 funderid: https://doi.org/10.13039/501100007601 – fundername: Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut HHI (1050) – fundername: Bundesministerium für Bildung und Forschung grantid: 01IS18025A, 01IS180371I funderid: https://doi.org/10.13039/501100002347 – fundername: Deutsche Forschungsgemeinschaft grantid: KI-FOR 5363 − project ID: 459422098 funderid: https://doi.org/10.13039/501100001659 |
| GroupedDBID | -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 29M 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADIMF ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BENPR BGNMA BSONS C6C CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9O PF- PT4 QM1 QN7 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TAE TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX VC2 W23 W48 WH7 WIP WK8 YLTOR Z45 Z8Z ZMTXR -Y2 1SB 2.D 28- 2P1 2VQ 5QI 6TJ 88I 8AO 8FE 8FG AAEWM AAOBN AARHV AAYTO AAYXX ABQSL ABULA ABUWG ACBXY ADHKG ADMLS AEBTG AEFIE AEKMD AFEXP AFFHD AFGCZ AFKRA AGQPQ AJBLW AMVHM ARCSS AZQEC BBWZM BDATZ BGLVJ BPHCQ CAG CCPQU CITATION COF DWQXO EJD FINBP FSGXE GNUQQ H13 I-F ITG ITH K6V K7- KOW M2P MVM N2Q NDZJH O9- OVD P62 PHGZM PHGZT PQGLB PQQKQ PROAC Q2X QF4 QO4 R4E RNI RZC RZE S26 S28 SCJ SCLPG T16 TEORI UZXMN VFIZW NPM XJT 7SC 8FD JQ2 L7M L~C L~D 7X8 5PM |
| ID | FETCH-LOGICAL-c477t-d13e1c328f9d624fbde1a3061b8ad1e46f710786f3a8d36e120341f839cb98233 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001548481600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-6125 |
| IngestDate | Tue Nov 04 02:05:02 EST 2025 Fri Aug 15 19:38:56 EDT 2025 Wed Nov 05 08:58:48 EST 2025 Mon Aug 18 01:33:02 EDT 2025 Tue Nov 18 21:13:29 EST 2025 Sat Nov 29 07:33:12 EST 2025 Wed Sep 03 02:47:09 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Explainable artificial intelligence Bias mitigation Data annotation Interpretability Spurious correlations |
| Language | English |
| License | The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c477t-d13e1c328f9d624fbde1a3061b8ad1e46f710786f3a8d36e120341f839cb98233 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Editors: Annalisa Appice, Giuseppina Andresini, Przemyslaw Biecek, Christian Wressnegger. |
| OpenAccessLink | https://link.springer.com/10.1007/s10994-025-06834-w |
| PMID | 40814399 |
| PQID | 3238817400 |
| PQPubID | 54194 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12343733 proquest_miscellaneous_3239786152 proquest_journals_3238817400 pubmed_primary_40814399 crossref_primary_10_1007_s10994_025_06834_w crossref_citationtrail_10_1007_s10994_025_06834_w springer_journals_10_1007_s10994_025_06834_w |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States – name: Dordrecht |
| PublicationTitle | Machine learning |
| PublicationTitleAbbrev | Mach Learn |
| PublicationTitleAlternate | Mach Learn |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | R Achtibat (6834_CR2) 2023; 5 6834_CR70 Y Belinkov (6834_CR8) 2022; 48 S Bach (6834_CR5) 2015; 10 6834_CR35 6834_CR79 6834_CR78 R Achanta (6834_CR3) 2012; 34 6834_CR37 6834_CR36 M Dreyer (6834_CR30) 2024; 38 6834_CR31 6834_CR75 6834_CR33 6834_CR32 6834_CR76 TJ Brinker (6834_CR9) 2019; 113 6834_CR39 B Cassidy (6834_CR22) 2022; 75 RA Fisher (6834_CR38) 1936; 7 6834_CR60 R Wightman (6834_CR80) 2019 6834_CR62 6834_CR61 6834_CR68 6834_CR67 6834_CR26 CJ Anders (6834_CR4) 2022; 77 6834_CR25 6834_CR69 6834_CR20 6834_CR64 6834_CR63 6834_CR66 6834_CR21 6834_CR65 S Lapuschkin (6834_CR51) 2019; 10 6834_CR28 D Slijepcevic (6834_CR71) 2021; 3 6834_CR27 P Tschandl (6834_CR77) 2018; 5 6834_CR50 6834_CR13 6834_CR12 6834_CR56 C Olah (6834_CR59) 2017; 2 N Strodthoff (6834_CR74) 2020; 25 6834_CR14 6834_CR53 6834_CR52 N Otsu (6834_CR57) 1975; 11 6834_CR11 6834_CR55 6834_CR10 6834_CR54 J Crabbé (6834_CR24) 2022; 35 6834_CR17 6834_CR19 R Geirhos (6834_CR41) 2020; 2 H Borgli (6834_CR16) 2020; 7 C Olah (6834_CR58) 2020; 5 P Wagner (6834_CR81) 2024; 176 6834_CR7 S Santurkar (6834_CR73) 2021; 34 6834_CR82 6834_CR40 6834_CR84 6834_CR6 6834_CR46 A Brown (6834_CR15) 2023; 14 6834_CR45 P Schramowski (6834_CR72) 2020; 2 6834_CR1 6834_CR48 AJ DeGrave (6834_CR29) 2021; 3 6834_CR47 6834_CR42 6834_CR86 6834_CR85 R Zhang (6834_CR87) 2021; 35 6834_CR44 6834_CR43 D Bau (6834_CR18) 2020; 117 D Erhan (6834_CR34) 2009; 1341 C Cortes (6834_CR23) 1995; 20 6834_CR49 P Wagner (6834_CR83) 2020; 7 |
| References_xml | – volume: 25 start-page: 1519 issue: 5 year: 2020 ident: 6834_CR74 publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2020.3022989 – volume: 38 start-page: 21046 year: 2024 ident: 6834_CR30 publication-title: AAAI doi: 10.1609/aaai.v38i19.30096 – ident: 6834_CR56 doi: 10.1109/ICCV51070.2023.01851 – volume: 2 start-page: 476 issue: 8 year: 2020 ident: 6834_CR72 publication-title: Nature Machine Intelligence doi: 10.1038/s42256-020-0212-3 – volume: 48 start-page: 207 issue: 1 year: 2022 ident: 6834_CR8 publication-title: Computational Linguistics doi: 10.1162/coli_a_00422 – ident: 6834_CR27 doi: 10.1038/s42256-025-01084-w – ident: 6834_CR50 – volume: 20 start-page: 273 year: 1995 ident: 6834_CR23 publication-title: Machine Learning doi: 10.1023/A:1022627411411 – ident: 6834_CR47 doi: 10.1109/CVPR.2019.00065 – ident: 6834_CR54 – ident: 6834_CR64 doi: 10.1145/3514221.3517886 – ident: 6834_CR82 doi: 10.1007/978-3-031-73016-0_20 – ident: 6834_CR44 – ident: 6834_CR60 – ident: 6834_CR66 doi: 10.24963/ijcai.2017/371 – ident: 6834_CR39 doi: 10.1109/CVPR52729.2023.00266 – year: 2019 ident: 6834_CR80 publication-title: GitHub doi: 10.5281/zenodo.4414861 – ident: 6834_CR21 doi: 10.1109/ISBI.2018.8363547 – ident: 6834_CR68 – volume: 14 start-page: 4314 issue: 1 year: 2023 ident: 6834_CR15 publication-title: Nature Communications doi: 10.1038/s41467-023-39902-7 – ident: 6834_CR6 – ident: 6834_CR35 – ident: 6834_CR12 – ident: 6834_CR85 doi: 10.1371/journal.pmed.1002683 – ident: 6834_CR31 – ident: 6834_CR69 doi: 10.1109/ICCV.2017.74 – volume: 35 start-page: 2590 year: 2022 ident: 6834_CR24 publication-title: NeurIPS – volume: 7 start-page: 1 issue: 1 year: 2020 ident: 6834_CR83 publication-title: Scientific Data doi: 10.1038/s41597-020-0495-6 – ident: 6834_CR65 doi: 10.18653/v1/2020.acl-main.647 – ident: 6834_CR7 doi: 10.1109/CVPRW63382.2024.00357 – ident: 6834_CR26 – ident: 6834_CR61 doi: 10.1007/978-3-031-43895-0_56 – ident: 6834_CR78 – ident: 6834_CR86 doi: 10.1109/CVPR.2016.319 – volume: 10 start-page: 0130140 issue: 7 year: 2015 ident: 6834_CR5 publication-title: PLoS ONE doi: 10.1371/journal.pone.0130140 – ident: 6834_CR43 – ident: 6834_CR17 doi: 10.1109/CVPRW50498.2020.00378 – volume: 5 start-page: 00024 issue: 3 year: 2020 ident: 6834_CR58 publication-title: Distill doi: 10.23915/distill.00024.001 – ident: 6834_CR53 doi: 10.1109/ICNN.1995.488997 – volume: 113 start-page: 47 year: 2019 ident: 6834_CR9 publication-title: European Journal of Cancer doi: 10.1016/j.ejca.2019.04.001 – ident: 6834_CR1 – ident: 6834_CR63 – ident: 6834_CR52 doi: 10.21105/joss.00861 – ident: 6834_CR40 doi: 10.1109/CVPR.2018.00910 – ident: 6834_CR42 – ident: 6834_CR36 – volume: 5 start-page: 1006 issue: 9 year: 2023 ident: 6834_CR2 publication-title: Nature Machine Intelligence doi: 10.1038/s42256-023-00711-8 – ident: 6834_CR25 doi: 10.1109/CVPRW63382.2024.00353 – volume: 10 start-page: 1096 issue: 1 year: 2019 ident: 6834_CR51 publication-title: Nature Communications doi: 10.1038/s41467-019-08987-4 – ident: 6834_CR67 – ident: 6834_CR84 – ident: 6834_CR70 – volume: 176 year: 2024 ident: 6834_CR81 publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2024.108525 – ident: 6834_CR19 – ident: 6834_CR79 – ident: 6834_CR75 – volume: 3 start-page: 1 issue: 2 year: 2021 ident: 6834_CR71 publication-title: ACM Transactions on Computing for Healthcare (HEALTH) – ident: 6834_CR55 doi: 10.1007/978-3-031-44067-0_26 – ident: 6834_CR11 doi: 10.1145/342009.335388 – volume: 77 start-page: 261 year: 2022 ident: 6834_CR4 publication-title: Information Fusion doi: 10.1016/j.inffus.2021.07.015 – ident: 6834_CR28 doi: 10.1109/CVPR.2009.5206848 – ident: 6834_CR32 doi: 10.1016/B978-0-44-340553-2.00008-3 – ident: 6834_CR14 – volume: 2 start-page: 665 issue: 11 year: 2020 ident: 6834_CR41 publication-title: Nature Machine Intelligence doi: 10.1038/s42256-020-00257-z – volume: 5 start-page: 1 issue: 1 year: 2018 ident: 6834_CR77 publication-title: Scientific Data doi: 10.1038/sdata.2018.161 – volume: 7 start-page: 283 issue: 1 year: 2020 ident: 6834_CR16 publication-title: Scientific data doi: 10.1038/s41597-020-00622-y – ident: 6834_CR37 – ident: 6834_CR62 – volume: 117 start-page: 30071 issue: 48 year: 2020 ident: 6834_CR18 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1907375117 – ident: 6834_CR33 – volume: 2 start-page: 7 issue: 11 year: 2017 ident: 6834_CR59 publication-title: Distill doi: 10.23915/distill.00007 – volume: 3 start-page: 610 issue: 7 year: 2021 ident: 6834_CR29 publication-title: Nature Machine Intelligence doi: 10.1038/s42256-021-00338-7 – volume: 1341 start-page: 1 issue: 3 year: 2009 ident: 6834_CR34 publication-title: University of Montreal – ident: 6834_CR10 – ident: 6834_CR48 doi: 10.1609/aaai.v33i01.3301590 – ident: 6834_CR76 – ident: 6834_CR46 doi: 10.1109/CVPR.2016.90 – volume: 75 year: 2022 ident: 6834_CR22 publication-title: Medical Image Analysis doi: 10.1016/j.media.2021.102305 – ident: 6834_CR49 – ident: 6834_CR45 – volume: 35 start-page: 11682 year: 2021 ident: 6834_CR87 publication-title: AAAI doi: 10.1609/aaai.v35i13.17389 – volume: 34 start-page: 2274 issue: 11 year: 2012 ident: 6834_CR3 publication-title: IEEE TPAMI doi: 10.1109/TPAMI.2012.120 – ident: 6834_CR20 – volume: 34 start-page: 23359 year: 2021 ident: 6834_CR73 publication-title: NeurIPS – volume: 11 start-page: 23 issue: 285–296 year: 1975 ident: 6834_CR57 publication-title: Automatica – volume: 7 start-page: 179 issue: 2 year: 1936 ident: 6834_CR38 publication-title: Annals of Eugenics doi: 10.1111/j.1469-1809.1936.tb02137.x – ident: 6834_CR13 |
| SSID | ssj0002686 |
| Score | 2.474371 |
| Snippet | Deep neural networks are increasingly employed in high-stakes medical applications, despite their tendency for shortcut learning in the presence of spurious... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 206 |
| SubjectTerms | Annotations Artifact identification Artificial Intelligence Artificial neural networks Automation Bias Computer Science Control Datasets Identification Localization Machine Learning Mechatronics Medical equipment Melanoma Natural Language Processing (NLP) Neural networks Robotics Simulation and Modeling Subject specialists |
| Title | Ensuring medical AI safety: interpretability-driven detection and mitigation of spurious model behavior and associated data |
| URI | https://link.springer.com/article/10.1007/s10994-025-06834-w https://www.ncbi.nlm.nih.gov/pubmed/40814399 https://www.proquest.com/docview/3238817400 https://www.proquest.com/docview/3239786152 https://pubmed.ncbi.nlm.nih.gov/PMC12343733 |
| Volume | 114 |
| WOSCitedRecordID | wos001548481600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwEB514cCF0rIFSuVK3MBSvCRxuFWoFUhVVbHp3SLHi3hSm1e9pFQVf56xs5RHAYkeI0-c2J7xfCOPvwF4laEXNU6XFN2LpbLOalqzPKfSIXYQVnhjIs_scXFyomaz8nS4FNaO2e7jkWTcqX-57BZpbHkWCqUISa_WYRPdnQoFGz5--jrtvzyP9R3RfDIa_PdwVebPfay6o1sY83aq5G_npdENHW3dbQAP4cEAO8lBryfbsOaaHdgaSzqQwcIfwY_Dpo0XF8l5f4JDDj6QVnvXXb8l8ylBMWbUXlO7DHslsa6LCV0N0Y0l5_OetgMfF560F9jd4rIlseQOGVkBoqQeVMNZEhJVH8OXo8PP797ToT4DNbIoOmqZcMwIrnxpcy59bR3TGIKwWmnLnMw9wpdC5V5oZUXuGE_RZ3qEZKYuFRfiCWw0i8Y9A2KNZHVqveQG48Uy1aGzEOoVrjSZyBJg4zJVZiAvDzU0zqob2uUwuxXObhVnt7pK4PX0zkVP3fFP6d1x9avBjNtKIKBRGLOlaQL7UzMaYDhV0Y3D6QsyGIkjMOQJPO2VZfqcRMAVAr4E1IoaTQKB3Hu1pZl_iyTfiCgC65RI4M2oTTf_9fdhPP8_8Rdwn0eFDElzu7DRLS_dS7hnvnfzdrkH68VM7UXr-gk5zyFn |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bTxUxEJ4omsiLeMUF1Jr4pk22l73xRggE4vHEKBreNt1ewklkDzm7SIh_nmn3AkfURB83ne1u25nON-n0G4C3CXpRbVVB0b0YKqukohVLUyotYgdhhNM68MxOsuk0Pz4uPvWXwpoh2304kgw79Y3LboHGlie-UIqQ9OIu3JPosTxj_ucv38b9l6ehviOaT0K9_-6vyvy-j2V3dAtj3k6V_OW8NLih_bX_G8AjeNjDTrLT6cljuGPrJ7A2lHQgvYU_hZ97dRMuLpLT7gSH7BySRjnbXm6T2ZigGDJqL6lZ-L2SGNuGhK6aqNqQ01lH24GPc0eaM-xuft6QUHKHDKwAQVL1qmEN8Ymqz-Dr_t7R7gHt6zNQLbOspYYJy7TguStMyqWrjGUKQxBW5cowK1OH8CXLUydUbkRqGY_RZzqEZLoqci7Ec1ip57V9AcRoyarYOMk1xotFrHxnPtTLbKETkUTAhmUqdU9e7mtofC-vaZf97JY4u2WY3fIignfjO2cddcdfpbeG1S97M25KgYAmx5gtjiN4MzajAfpTFVVbnD4vg5E4AkMewXqnLOPnJAIuH_BFkC-p0Sjgyb2XW-rZSSD5RkThWadEBO8Hbbr-rz8PY-PfxF_Dg4Ojj5Nycjj9sAmrPCinT6DbgpV2cW5fwn39o501i1fBxq4A_zUjYw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BQagvlLuhBYzEG1hNbOfirSpdUVGtKnGob5HjQ6xEvatNSlX1z3fsHO1SQEI8Rp44sTOT-Uae-QbgTYpeVBlZUnQvmoo6rWmdZBkVBrED19wqFXhmD_PptDg-Lo-uVfGHbPfhSLKrafAsTa7dWWi7c63wLVDastQ3TeGCnt2GO8In0vt4_fO38V_MstDrEU0ppd6X92Uzv59j1TXdwJs30yZ_OTsNLmmy8f-LeQD3ezhKdjv9eQi3jHsEG0OrB9Jb_mO42HdNKGgkJ93JDtk9II20pj1_T2Zj4mLItD2neun_oUSbNiR6OSKdJiezjs4DL-eWNAucbn7akNCKhwxsAUFS9ipjNPEJrE_g62T_y95H2vdtoErkeUt1wk2iOCtsqTMmbK1NIjE0SepC6sSIzCKsyYvMcllonpmExehLLUI1VZcF4_wprLm5M5tAtBJJHWsrmMI4soyln8yHgLkpVcrTCJLhk1WqJzX3vTV-VFd0zH53K9zdKuxudRbB2_GeRUfp8Vfp7UETqt68m4oj0CkwlovjCF6Pw2iY_rRFOoPb52UwQkfAyCJ41inO-DiBQMwHghEUKyo1CnjS79URN_seyL8RaXg2Kh7Bu0Gzrt7rz8t4_m_ir-De0YdJdXgw_bQF6yzops-r24a1dnlqXsBd9bOdNcuXwdwuAe-NLEc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensuring+medical+AI+safety%3A+interpretability-driven+detection+and+mitigation+of+spurious+model+behavior+and+associated+data&rft.jtitle=Machine+learning&rft.au=Pahde%2C+Frederik&rft.au=Wiegand%2C+Thomas&rft.au=Lapuschkin%2C+Sebastian&rft.au=Samek%2C+Wojciech&rft.date=2025-09-01&rft.pub=Springer+US&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=114&rft.issue=9&rft_id=info:doi/10.1007%2Fs10994-025-06834-w&rft.externalDocID=10_1007_s10994_025_06834_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |