Block clustering based on difference of convex functions (DC) programming and DC algorithms

We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework, which traditionally requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty in DC programming...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neural computation Ročník 25; číslo 10; s. 2776
Hlavní autori: Le, Hoai Minh, Le Thi, Hoai An, Dinh, Tao Pham, Huynh, Van Ngai
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.10.2013
Predmet:
ISSN:1530-888X, 1530-888X
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework, which traditionally requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty in DC programming are developed to build an appropriate equivalent DC program of the block clustering problem. They lead to an elegant and explicit DCA scheme for the resulting DC program. Computational experiments show the robustness and efficiency of the proposed algorithm and its superiority over standard algorithms such as two-mode K-means, two-mode fuzzy clustering, and block classification EM.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1530-888X
1530-888X
DOI:10.1162/NECO_a_00490