Block clustering based on difference of convex functions (DC) programming and DC algorithms

We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework, which traditionally requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty in DC programming...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computation Ročník 25; číslo 10; s. 2776
Hlavní autoři: Le, Hoai Minh, Le Thi, Hoai An, Dinh, Tao Pham, Huynh, Van Ngai
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.10.2013
Témata:
ISSN:1530-888X, 1530-888X
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework, which traditionally requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty in DC programming are developed to build an appropriate equivalent DC program of the block clustering problem. They lead to an elegant and explicit DCA scheme for the resulting DC program. Computational experiments show the robustness and efficiency of the proposed algorithm and its superiority over standard algorithms such as two-mode K-means, two-mode fuzzy clustering, and block classification EM.
AbstractList We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework, which traditionally requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty in DC programming are developed to build an appropriate equivalent DC program of the block clustering problem. They lead to an elegant and explicit DCA scheme for the resulting DC program. Computational experiments show the robustness and efficiency of the proposed algorithm and its superiority over standard algorithms such as two-mode K-means, two-mode fuzzy clustering, and block classification EM.We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework, which traditionally requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty in DC programming are developed to build an appropriate equivalent DC program of the block clustering problem. They lead to an elegant and explicit DCA scheme for the resulting DC program. Computational experiments show the robustness and efficiency of the proposed algorithm and its superiority over standard algorithms such as two-mode K-means, two-mode fuzzy clustering, and block classification EM.
We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework, which traditionally requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty in DC programming are developed to build an appropriate equivalent DC program of the block clustering problem. They lead to an elegant and explicit DCA scheme for the resulting DC program. Computational experiments show the robustness and efficiency of the proposed algorithm and its superiority over standard algorithms such as two-mode K-means, two-mode fuzzy clustering, and block classification EM.
Author Le, Hoai Minh
Dinh, Tao Pham
Huynh, Van Ngai
Le Thi, Hoai An
Author_xml – sequence: 1
  givenname: Hoai Minh
  surname: Le
  fullname: Le, Hoai Minh
  email: minh.le@univ-lorraine.fr
  organization: Laboratory of Theoretical and Applied Computer Science, University of Lorraine, 57045 Metz, France. minh.le@univ-lorraine.fr
– sequence: 2
  givenname: Hoai An
  surname: Le Thi
  fullname: Le Thi, Hoai An
– sequence: 3
  givenname: Tao Pham
  surname: Dinh
  fullname: Dinh, Tao Pham
– sequence: 4
  givenname: Van Ngai
  surname: Huynh
  fullname: Huynh, Van Ngai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23777526$$D View this record in MEDLINE/PubMed
BookMark eNpNkD1PwzAYhC1URGlhY0YeyxB4bceOM0JaPqSKLiAhMUS2Y5dAYpc4QfDvKaJITHfDc6fTTdDIB28ROiFwToigF_eLYlWqEiDNYQ8dEs4gkVI-jf75MZrE-AoAggA_QGPKsizjVByi56smmDdsmiH2tqv9GmsVbYWDx1XtnO2sNxYHh03wH_YTu8Gbvg4-4tm8OMObLqw71bY_QeUrPC-watahq_uXNh6hfaeaaI93OkWP14uH4jZZrm7uistlYtIs6xMDwCG3glmmpKu4rKiAVDuV64xRl7sUtGHE0ZwKxam20mhtiBTaVIILTqdo9tu7XfM-2NiXbR2NbRrlbRhiSVIGLBdUyC16ukMH3dqq3HR1q7qv8u8Q-g3gl2Re
CitedBy_id crossref_primary_10_1007_s10489_016_0778_y
crossref_primary_10_1007_s10898_023_01272_1
crossref_primary_10_1162_NECO_a_00836
crossref_primary_10_1109_ACCESS_2024_3458808
crossref_primary_10_1007_s10618_014_0369_7
crossref_primary_10_1007_s10107_018_1235_y
crossref_primary_10_1016_j_ejor_2014_11_031
crossref_primary_10_3233_JIFS_179358
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1162/NECO_a_00490
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Computer Science
EISSN 1530-888X
ExternalDocumentID 23777526
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.4S
.DC
0R~
123
36B
4.4
41~
53G
6IK
AAFWJ
AAJGR
AALMD
ABAZT
ABDBF
ABDNZ
ABEFU
ABIVO
ABJNI
ABVLG
ACGFO
ACUHS
ACYGS
ADIYS
ADMLS
AEGXH
AEILP
AENEX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
AVWKF
AZFZN
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
CGR
COF
CS3
CUY
CVF
DU5
EAP
EAS
EBC
EBD
EBS
ECM
ECS
EDO
EIF
EJD
EMB
EMK
EMOBN
EPL
EPS
EST
ESX
F5P
FEDTE
FNEHJ
HVGLF
HZ~
H~9
I-F
IPLJI
JAVBF
MCG
MINIK
MKJ
NPM
O9-
OCL
P2P
PK0
PQQKQ
RMI
SV3
TUS
WG8
WH7
XJE
ZWS
7X8
ID FETCH-LOGICAL-c477t-c00509e63e3a8fd58d2604bfa9b732f9f40bc31f2926a52be8cbbc186bcd65652
IEDL.DBID 7X8
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000323822800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-888X
IngestDate Fri Sep 05 08:29:11 EDT 2025
Mon Jul 21 06:04:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-c00509e63e3a8fd58d2604bfa9b732f9f40bc31f2926a52be8cbbc186bcd65652
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23777526
PQID 1430396268
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1430396268
pubmed_primary_23777526
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural computation
PublicationTitleAlternate Neural Comput
PublicationYear 2013
SSID ssj0006105
Score 2.1380363
Snippet We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework,...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2776
SubjectTerms Algorithms
Artificial Intelligence
Brain Neoplasms - pathology
Cluster Analysis
Computer Simulation
Databases, Factual
Fuzzy Logic
Humans
Lung Neoplasms - pathology
Neoplasms - pathology
Problem Solving
Software
Title Block clustering based on difference of convex functions (DC) programming and DC algorithms
URI https://www.ncbi.nlm.nih.gov/pubmed/23777526
https://www.proquest.com/docview/1430396268
Volume 25
WOSCitedRecordID wos000323822800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFA1qXbixvq0vIrjQRWibTJKZlei0xY21C4UBF0OeKrYz1bbi55vMg64Ewc3sAiFzb865uYd7ALjAJpBEMow0JQoFIrJIdglDETeOrweuzKWl2QQfDsMkiUbVg9usklXWd2JxUetc-TfytsP1Dokc_Q6vpx_Iu0b57mplobEKGsRRGR_VPFlOC2elhNEldQe5Si-phe8Mt4f9-CEVadH4-p1cFiAzaP53e1tgs6KX8KaMh22wYrId0KytG2CVybvg-daB2DtU44UflODgC3o40zDPYG2ZogzMLSxU6d_Qw18RofCyF1_BStU18QtFpmEvhmL84vYzf53M9sDToP8Y36HKZwGpgPM5UsUQGMOIISK0mobaFTmBtCKSnGAb2aAjFelaHGEmKJYmVFKqbsik0o4OUrwP1rI8M4cAGiskDZhWVsuAKuObgJQaHEktHZFTLXBeH1_q4tg3J0Rm8sUsXR5gCxyU_yCdlgM3Ukw45xSzoz-sPgYb2DtWFHq7E9CwLovNKVhXX_O32edZESDuOxzd_wDHcsaZ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Block+clustering+based+on+difference+of+convex+functions+%28DC%29+programming+and+DC+algorithms&rft.jtitle=Neural+computation&rft.au=Le%2C+Hoai+Minh&rft.au=Le+Thi%2C+Hoai+An&rft.au=Dinh%2C+Tao+Pham&rft.au=Huynh%2C+Van+Ngai&rft.date=2013-10-01&rft.issn=1530-888X&rft.eissn=1530-888X&rft.volume=25&rft.issue=10&rft.spage=2776&rft_id=info:doi/10.1162%2FNECO_a_00490&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-888X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-888X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-888X&client=summon