Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-chromosome inactivation

X-chromosome inactivation (XCI) achieves dosage compensation between males and females through the silencing of the majority of genes on one of the female X chromosomes. Thus, the female X chromosomes provide a unique opportunity to study euchromatin and heterochromatin of allelic regions within the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Human molecular genetics Ročník 24; číslo 6; s. 1528
Hlavní autori: Cotton, Allison M, Price, E Magda, Jones, Meaghan J, Balaton, Bradley P, Kobor, Michael S, Brown, Carolyn J
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England 15.03.2015
Predmet:
ISSN:1460-2083, 1460-2083
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract X-chromosome inactivation (XCI) achieves dosage compensation between males and females through the silencing of the majority of genes on one of the female X chromosomes. Thus, the female X chromosomes provide a unique opportunity to study euchromatin and heterochromatin of allelic regions within the same nuclear environment. We examined the interplay of DNA methylation (DNAm) with CpG density, transcriptional activity and chromatin state at genes on the X chromosome using over 1800 female samples analysed with the Illumina Infinium Human Methylation450 BeadChip. DNAm was used to predict an inactivation status for 63 novel transcription start sites (TSSs) across 27 tissues. There was high concordance of inactivation status across tissues, with 62% of TSSs subject to XCI in all 27 tissues examined, whereas 9% escaped from XCI in all tissues, and the remainder showed variable escape from XCI between females in subsets of tissues. Inter-female and twin data supported a model of predominately cis-acting influences on inactivation status. The level of expression from the inactive X relative to the active X correlated with the amount of female promoter DNAm to a threshold of ∼30%, beyond which genes were consistently subject to inactivation. The inactive X showed lower DNAm than the active X at intragenic and intergenic regions for genes subject to XCI, but not at genes that escape from inactivation. Our categorization of genes that escape from X inactivation provides candidates for sex-specific differences in disease.
AbstractList X-chromosome inactivation (XCI) achieves dosage compensation between males and females through the silencing of the majority of genes on one of the female X chromosomes. Thus, the female X chromosomes provide a unique opportunity to study euchromatin and heterochromatin of allelic regions within the same nuclear environment. We examined the interplay of DNA methylation (DNAm) with CpG density, transcriptional activity and chromatin state at genes on the X chromosome using over 1800 female samples analysed with the Illumina Infinium Human Methylation450 BeadChip. DNAm was used to predict an inactivation status for 63 novel transcription start sites (TSSs) across 27 tissues. There was high concordance of inactivation status across tissues, with 62% of TSSs subject to XCI in all 27 tissues examined, whereas 9% escaped from XCI in all tissues, and the remainder showed variable escape from XCI between females in subsets of tissues. Inter-female and twin data supported a model of predominately cis-acting influences on inactivation status. The level of expression from the inactive X relative to the active X correlated with the amount of female promoter DNAm to a threshold of ∼30%, beyond which genes were consistently subject to inactivation. The inactive X showed lower DNAm than the active X at intragenic and intergenic regions for genes subject to XCI, but not at genes that escape from inactivation. Our categorization of genes that escape from X inactivation provides candidates for sex-specific differences in disease.
X-chromosome inactivation (XCI) achieves dosage compensation between males and females through the silencing of the majority of genes on one of the female X chromosomes. Thus, the female X chromosomes provide a unique opportunity to study euchromatin and heterochromatin of allelic regions within the same nuclear environment. We examined the interplay of DNA methylation (DNAm) with CpG density, transcriptional activity and chromatin state at genes on the X chromosome using over 1800 female samples analysed with the Illumina Infinium Human Methylation450 BeadChip. DNAm was used to predict an inactivation status for 63 novel transcription start sites (TSSs) across 27 tissues. There was high concordance of inactivation status across tissues, with 62% of TSSs subject to XCI in all 27 tissues examined, whereas 9% escaped from XCI in all tissues, and the remainder showed variable escape from XCI between females in subsets of tissues. Inter-female and twin data supported a model of predominately cis-acting influences on inactivation status. The level of expression from the inactive X relative to the active X correlated with the amount of female promoter DNAm to a threshold of ∼30%, beyond which genes were consistently subject to inactivation. The inactive X showed lower DNAm than the active X at intragenic and intergenic regions for genes subject to XCI, but not at genes that escape from inactivation. Our categorization of genes that escape from X inactivation provides candidates for sex-specific differences in disease.X-chromosome inactivation (XCI) achieves dosage compensation between males and females through the silencing of the majority of genes on one of the female X chromosomes. Thus, the female X chromosomes provide a unique opportunity to study euchromatin and heterochromatin of allelic regions within the same nuclear environment. We examined the interplay of DNA methylation (DNAm) with CpG density, transcriptional activity and chromatin state at genes on the X chromosome using over 1800 female samples analysed with the Illumina Infinium Human Methylation450 BeadChip. DNAm was used to predict an inactivation status for 63 novel transcription start sites (TSSs) across 27 tissues. There was high concordance of inactivation status across tissues, with 62% of TSSs subject to XCI in all 27 tissues examined, whereas 9% escaped from XCI in all tissues, and the remainder showed variable escape from XCI between females in subsets of tissues. Inter-female and twin data supported a model of predominately cis-acting influences on inactivation status. The level of expression from the inactive X relative to the active X correlated with the amount of female promoter DNAm to a threshold of ∼30%, beyond which genes were consistently subject to inactivation. The inactive X showed lower DNAm than the active X at intragenic and intergenic regions for genes subject to XCI, but not at genes that escape from inactivation. Our categorization of genes that escape from X inactivation provides candidates for sex-specific differences in disease.
Author Price, E Magda
Kobor, Michael S
Brown, Carolyn J
Jones, Meaghan J
Balaton, Bradley P
Cotton, Allison M
Author_xml – sequence: 1
  givenname: Allison M
  surname: Cotton
  fullname: Cotton, Allison M
  organization: Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3, Molecular Epigenetics Group, Life Sciences Institute, Vancouver, BC, Canada V6T 1Z3
– sequence: 2
  givenname: E Magda
  surname: Price
  fullname: Price, E Magda
  organization: Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3, Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada V5Z 4H4, The Child and Family Research Institute, Vancouver, BC, Canada V5Z 4H4
– sequence: 3
  givenname: Meaghan J
  surname: Jones
  fullname: Jones, Meaghan J
  organization: Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3, The Child and Family Research Institute, Vancouver, BC, Canada V5Z 4H4 Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada V5Z 4H4
– sequence: 4
  givenname: Bradley P
  surname: Balaton
  fullname: Balaton, Bradley P
  organization: Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3, Molecular Epigenetics Group, Life Sciences Institute, Vancouver, BC, Canada V6T 1Z3
– sequence: 5
  givenname: Michael S
  surname: Kobor
  fullname: Kobor, Michael S
  organization: Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3, The Child and Family Research Institute, Vancouver, BC, Canada V5Z 4H4 Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada V5Z 4H4
– sequence: 6
  givenname: Carolyn J
  surname: Brown
  fullname: Brown, Carolyn J
  email: carolyn.brown@ubc.ca
  organization: Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3, Molecular Epigenetics Group, Life Sciences Institute, Vancouver, BC, Canada V6T 1Z3, carolyn.brown@ubc.ca
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25381334$$D View this record in MEDLINE/PubMed
BookMark eNpNkE9LxDAQxYOsuH_04geQHD1YN03apD0uq67CoheFvZU0mdpKm6xNKuzJr250V1gYeMPwe_OYmaKRsQYQuozJbUxyNq-797nWQ8qTEzSJE04iSjI2OurHaOrcByExT5g4Q2OasixmLJmg77U02im5BWwrfPe8wB34etdK31iDQ_ka8AarureddbYD3EPVgvIOL7crrMG4xu9ucDUY9WuR7Z4NfoOdlx5wCMCb6GhDY2Rgv_4iztFpJVsHFwedobeH-9flY7R-WT0tF-tIJUL4qBQVj0GUkGmWJiVhJWNahfsyKaosT1NgmhCV80rwtMykCrO8lDxnGaVB6Qxd7_due_s5gPNF1zgFbSsN2MEVMU8Fo4xSEdCrAzqUHehi2zed7HfF_9PoD-YscYo
CitedBy_id crossref_primary_10_1016_j_gene_2019_05_042
crossref_primary_10_1002_ajmg_b_32706
crossref_primary_10_1002_ajmg_a_62669
crossref_primary_10_1038_s41598_023_33002_8
crossref_primary_10_1073_pnas_1806811115
crossref_primary_10_1073_pnas_2024624118
crossref_primary_10_1146_annurev_genet_120116_024611
crossref_primary_10_3389_fphys_2023_1070241
crossref_primary_10_1038_s41597_019_0109_3
crossref_primary_10_1101_gr_275677_121
crossref_primary_10_1186_s13072_021_00428_1
crossref_primary_10_1016_j_ajhg_2015_07_004
crossref_primary_10_1038_s41598_019_40482_0
crossref_primary_10_1002_gepi_22091
crossref_primary_10_1111_cge_13667
crossref_primary_10_3390_cancers16061131
crossref_primary_10_1016_j_molcel_2022_04_022
crossref_primary_10_1016_j_ygeno_2022_110450
crossref_primary_10_1038_s41598_017_11517_1
crossref_primary_10_1186_s12864_017_3866_4
crossref_primary_10_3389_fgene_2020_00101
crossref_primary_10_1080_10715762_2022_2038789
crossref_primary_10_1186_s12864_019_5507_6
crossref_primary_10_1038_s41467_018_05714_3
crossref_primary_10_1126_science_abj5089
crossref_primary_10_3389_fnmol_2022_886729
crossref_primary_10_1016_j_ajhg_2015_12_015
crossref_primary_10_1093_nar_gkz1214
crossref_primary_10_1002_ajmg_c_31799
crossref_primary_10_1186_s13293_021_00381_4
crossref_primary_10_1002_ajmg_c_31672
crossref_primary_10_1016_j_nbd_2018_05_004
crossref_primary_10_3390_genes9050230
crossref_primary_10_1016_j_canlet_2024_217297
crossref_primary_10_1016_j_tig_2016_03_007
crossref_primary_10_3390_bios14120608
crossref_primary_10_1007_s12041_015_0574_1
crossref_primary_10_1016_j_cell_2023_04_014
crossref_primary_10_3390_ijms23169480
crossref_primary_10_1371_journal_pgen_1010556
crossref_primary_10_1038_ejhg_2015_123
crossref_primary_10_1038_s41568_021_00348_y
crossref_primary_10_1186_s40246_018_0141_y
crossref_primary_10_1016_j_livsci_2020_104116
crossref_primary_10_1038_ncomms11021
crossref_primary_10_1261_rna_078926_121
crossref_primary_10_3390_cancers13194807
crossref_primary_10_1002_humu_23373
crossref_primary_10_1038_s41467_024_49847_0
crossref_primary_10_1089_thy_2021_0361
crossref_primary_10_1186_s13148_022_01236_4
crossref_primary_10_3389_fped_2020_00303
crossref_primary_10_1002_ajmg_c_31800
crossref_primary_10_1155_2021_6683460
crossref_primary_10_1038_srep37324
crossref_primary_10_1093_gigascience_gix123
crossref_primary_10_1186_s13293_015_0053_7
crossref_primary_10_1016_j_cell_2024_07_038
crossref_primary_10_1093_molbev_msv225
crossref_primary_10_1146_annurev_psych_122414_033653
crossref_primary_10_1186_s13072_021_00386_8
crossref_primary_10_1186_s13148_021_01019_3
crossref_primary_10_1016_j_jbc_2025_108537
crossref_primary_10_3390_epigenomes7040029
crossref_primary_10_1038_s41598_017_14650_z
crossref_primary_10_1016_j_cub_2025_03_075
crossref_primary_10_1186_s12915_022_01270_x
crossref_primary_10_1186_s13293_018_0165_y
crossref_primary_10_1186_s13039_015_0176_x
crossref_primary_10_1186_s13072_022_00477_0
crossref_primary_10_1289_EHP3441
crossref_primary_10_1186_s40246_023_00484_6
crossref_primary_10_1186_s13293_019_0272_4
crossref_primary_10_1016_j_bbr_2017_12_004
crossref_primary_10_1038_s41598_024_58530_9
crossref_primary_10_3389_fgene_2016_00183
crossref_primary_10_1186_s13072_021_00404_9
crossref_primary_10_1371_journal_pone_0230524
crossref_primary_10_1111_cge_12729
crossref_primary_10_26508_lsa_201900386
crossref_primary_10_1111_evj_13320
crossref_primary_10_3389_fgene_2022_999442
crossref_primary_10_1038_s41587_022_01289_z
crossref_primary_10_1002_ccr3_2051
crossref_primary_10_3389_fnmol_2017_00158
crossref_primary_10_1016_j_ijbiomac_2024_129330
crossref_primary_10_1097_IN9_0000000000000004
crossref_primary_10_1007_s10048_020_00616_3
crossref_primary_10_3389_fgene_2017_00207
crossref_primary_10_1093_eep_dvx013
crossref_primary_10_1002_humu_23670
crossref_primary_10_3389_fphar_2024_1381168
crossref_primary_10_1371_journal_pone_0134155
crossref_primary_10_1111_cge_13908
crossref_primary_10_1038_s41439_024_00277_w
crossref_primary_10_1186_s13073_020_00736_3
crossref_primary_10_3389_fgene_2019_01178
crossref_primary_10_1016_j_earlhumdev_2021_105519
crossref_primary_10_1155_2019_7076513
crossref_primary_10_1093_hmg_ddy444
crossref_primary_10_1111_cge_13507
crossref_primary_10_1038_ejhg_2017_97
crossref_primary_10_1242_dmm_022780
crossref_primary_10_1038_s41598_020_66847_4
crossref_primary_10_1101_gr_277080_122
crossref_primary_10_1186_s13072_017_0130_8
crossref_primary_10_1093_nargab_lqac096
crossref_primary_10_3390_genes13020172
crossref_primary_10_1080_15592294_2024_2305082
crossref_primary_10_1038_s41467_022_34264_y
crossref_primary_10_1136_jmedgenet_2019_106508
crossref_primary_10_1038_nature24265
crossref_primary_10_1093_hmg_ddy039
crossref_primary_10_1038_ejhg_2017_29
crossref_primary_10_1371_journal_ppat_1010014
crossref_primary_10_1042_EBC20190034
crossref_primary_10_1016_j_psj_2024_103977
crossref_primary_10_1186_s13072_021_00407_6
crossref_primary_10_1186_s12882_019_1517_5
crossref_primary_10_1371_journal_pone_0173472
crossref_primary_10_1073_pnas_1611905114
crossref_primary_10_1186_s13293_025_00696_6
crossref_primary_10_1093_nar_gkac123
crossref_primary_10_3389_fcell_2019_00241
crossref_primary_10_1002_slct_202200835
crossref_primary_10_3390_jcm10133000
crossref_primary_10_1038_s41592_020_01000_7
crossref_primary_10_2217_epi_2016_0132
crossref_primary_10_1007_s11596_015_1532_0
crossref_primary_10_1080_15592294_2018_1429857
crossref_primary_10_1038_s41598_018_28356_3
crossref_primary_10_1186_s13148_016_0269_3
crossref_primary_10_1016_j_gde_2020_06_012
crossref_primary_10_1016_j_envint_2022_107183
crossref_primary_10_1186_s13148_017_0370_2
crossref_primary_10_1016_j_gim_2025_101384
crossref_primary_10_1016_j_cca_2017_03_008
crossref_primary_10_1080_15592294_2015_1069461
crossref_primary_10_1186_s12864_015_2034_y
crossref_primary_10_1016_j_jaut_2023_102992
crossref_primary_10_3389_fcell_2019_00219
crossref_primary_10_3389_fcell_2022_1033684
crossref_primary_10_1101_gr_248641_119
crossref_primary_10_1186_s13148_023_01549_y
crossref_primary_10_3389_fgene_2018_00083
crossref_primary_10_1002_cbic_201800310
crossref_primary_10_1126_science_aba3066
crossref_primary_10_1007_s12041_018_0937_5
crossref_primary_10_1038_srep26765
crossref_primary_10_3389_fnmol_2020_602559
crossref_primary_10_1016_j_cels_2022_10_002
crossref_primary_10_1093_hmg_ddaa131
crossref_primary_10_1016_j_gde_2022_101927
crossref_primary_10_1038_s44319_025_00499_1
crossref_primary_10_1016_j_ejmg_2019_103735
crossref_primary_10_1128_MCB_00382_20
crossref_primary_10_1002_ajmg_a_63051
crossref_primary_10_3390_genes11060620
crossref_primary_10_1038_s41577_024_00996_9
crossref_primary_10_1002_ski2_410
crossref_primary_10_1016_j_gep_2018_04_001
crossref_primary_10_1016_j_arabjc_2022_103956
ContentType Journal Article
Copyright The Author 2014. Published by Oxford University Press.
Copyright_xml – notice: The Author 2014. Published by Oxford University Press.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/hmg/ddu564
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1460-2083
ExternalDocumentID 25381334
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Canadian Institutes of Health Research
  grantid: MOP-13690
GroupedDBID ---
-DZ
-E4
.2P
.I3
.XZ
.ZR
0R~
18M
1TH
29I
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
70D
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNHQ
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACPRK
ACUFI
ACUTJ
ACUTO
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFYAG
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHMBA
AHMMS
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BTRTY
BVRKM
C45
CDBKE
CGR
CS3
CUY
CVF
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBS
ECM
EE~
EIF
EJD
EMOBN
F5P
F9B
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IH2
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
NPM
NU-
NVLIB
O9-
OAWHX
OBC
OBOKY
OBS
OCZFY
ODMLO
OEB
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
SJN
TEORI
TJX
TLC
TMA
TR2
W8F
WOQ
X7H
XSW
YAYTL
YKOAZ
YXANX
ZKX
~91
7X8
ID FETCH-LOGICAL-c477t-b7f61e7be8d354b03b33dc1468a7f8955e3d00c96f765b8ac8959ba693822ba62
IEDL.DBID 7X8
ISICitedReferencesCount 191
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000350144200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1460-2083
IngestDate Wed Oct 01 13:29:47 EDT 2025
Mon Jul 21 05:57:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License The Author 2014. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-b7f61e7be8d354b03b33dc1468a7f8955e3d00c96f765b8ac8959ba693822ba62
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4381753
PMID 25381334
PQID 1657323227
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1657323227
pubmed_primary_25381334
PublicationCentury 2000
PublicationDate 2015-03-15
PublicationDateYYYYMMDD 2015-03-15
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Human molecular genetics
PublicationTitleAlternate Hum Mol Genet
PublicationYear 2015
References 24759411 - Nature. 2014 Apr 24;508(7497):494-9
24463464 - Nat Struct Mol Biol. 2014 Feb;21(2):198-206
24076989 - Nat Methods. 2013 Oct;10(10):949-55
23452981 - Epigenetics Chromatin. 2013 Mar 03;6(1):4
17322062 - Science. 2007 Feb 23;315(5815):1141-3
18467348 - Bioinformatics. 2008 Jul 1;24(13):1547-8
17038168 - BMC Bioinformatics. 2006;7:446
18596936 - PLoS One. 2008;3(7):e2553
21378125 - Nucleic Acids Res. 2011 Jul;39(12):5015-24
22522910 - Epigenetics. 2012 Jun 1;7(6):594-605
24304487 - Aging Cell. 2014 Apr;13(2):360-6
16007088 - Nat Genet. 2005 Aug;37(8):853-62
24690455 - Genome Biol. 2014;15(4):r54
21731603 - PLoS One. 2011;6(6):e14821
24913292 - Bioessays. 2014 Aug;36(8):746-56
22946286 - Pediatr Endocrinol Rev. 2012 May;9 Suppl 2:728-32
24733023 - Nat Rev Genet. 2014 Jun;15(6):367-78
22300631 - Genome Res. 2012 Apr;22(4):623-32
6756802 - Cytogenet Cell Genet. 1982;33(4):345-9
24631868 - Biochim Biophys Acta. 2014 Aug;1839(8):627-43
21597963 - Hum Genet. 2011 Aug;130(2):187-201
3791414 - Cell. 1987 Jan 16;48(1):39-46
7079182 - Nucleic Acids Res. 1982 Apr 24;10(8):2709-21
24555846 - Genome Biol. 2014;15(2):R37
19881528 - Nat Genet. 2009 Dec;41(12):1350-3
21441907 - Nature. 2011 May 5;473(7345):43-9
23482648 - Genome Res. 2013 May;23(5):777-88
16432200 - Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1412-7
19151715 - Nat Genet. 2009 Feb;41(2):178-86
23618007 - Epigenetics Chromatin. 2013 Apr 26;6(1):9
15908953 - Nat Genet. 2005 Jun;37(6):620-4
16949791 - Genomics. 2006 Dec;88(6):675-81
10523621 - Mol Cell Biol. 1999 Nov;19(11):7327-35
25074712 - Genome Biol. 2014;15(7):408
9611238 - Nucleic Acids Res. 1998 Jun 15;26(12):2935-40
3262875 - Proc Natl Acad Sci U S A. 1988 Oct;85(20):7657-60
22238395 - J Clin Endocrinol Metab. 2012 Mar;97(3):E460-4
16341221 - Nat Genet. 2006 Jan;38(1):47-53
11752295 - Nucleic Acids Res. 2002 Jan 1;30(1):207-10
15772666 - Nature. 2005 Mar 17;434(7031):400-4
21862626 - Genome Res. 2011 Oct;21(10):1592-600
22841499 - Dev Cell. 2012 Aug 14;23(2):265-79
24158853 - Hum Mol Genet. 2014 Mar 1;23(5):1211-23
1692783 - Chromosoma. 1990 Apr;99(1):18-23
17334365 - Nat Genet. 2007 Apr;39(4):457-66
22703947 - Genome Biol. 2012;13(6):R44
24176135 - Genome Biol. 2013;14(11):R122
17967063 - PLoS Genet. 2007 Oct;3(10):2023-36
24713664 - Eur J Hum Genet. 2014 Dec;22(12):1376-81
9500539 - Nat Genet. 1998 Mar;18(3):212-3
23819640 - Epigenetics Chromatin. 2013 Jul 02;6(1):19
22955620 - Nature. 2012 Sep 6;489(7414):101-8
References_xml – reference: 22522910 - Epigenetics. 2012 Jun 1;7(6):594-605
– reference: 24631868 - Biochim Biophys Acta. 2014 Aug;1839(8):627-43
– reference: 19151715 - Nat Genet. 2009 Feb;41(2):178-86
– reference: 16949791 - Genomics. 2006 Dec;88(6):675-81
– reference: 22238395 - J Clin Endocrinol Metab. 2012 Mar;97(3):E460-4
– reference: 19881528 - Nat Genet. 2009 Dec;41(12):1350-3
– reference: 3791414 - Cell. 1987 Jan 16;48(1):39-46
– reference: 21441907 - Nature. 2011 May 5;473(7345):43-9
– reference: 17322062 - Science. 2007 Feb 23;315(5815):1141-3
– reference: 16341221 - Nat Genet. 2006 Jan;38(1):47-53
– reference: 22955620 - Nature. 2012 Sep 6;489(7414):101-8
– reference: 23452981 - Epigenetics Chromatin. 2013 Mar 03;6(1):4
– reference: 23618007 - Epigenetics Chromatin. 2013 Apr 26;6(1):9
– reference: 23482648 - Genome Res. 2013 May;23(5):777-88
– reference: 18467348 - Bioinformatics. 2008 Jul 1;24(13):1547-8
– reference: 18596936 - PLoS One. 2008;3(7):e2553
– reference: 1692783 - Chromosoma. 1990 Apr;99(1):18-23
– reference: 16432200 - Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1412-7
– reference: 17334365 - Nat Genet. 2007 Apr;39(4):457-66
– reference: 9611238 - Nucleic Acids Res. 1998 Jun 15;26(12):2935-40
– reference: 22703947 - Genome Biol. 2012;13(6):R44
– reference: 24733023 - Nat Rev Genet. 2014 Jun;15(6):367-78
– reference: 16007088 - Nat Genet. 2005 Aug;37(8):853-62
– reference: 24913292 - Bioessays. 2014 Aug;36(8):746-56
– reference: 24463464 - Nat Struct Mol Biol. 2014 Feb;21(2):198-206
– reference: 11752295 - Nucleic Acids Res. 2002 Jan 1;30(1):207-10
– reference: 24690455 - Genome Biol. 2014;15(4):r54
– reference: 24304487 - Aging Cell. 2014 Apr;13(2):360-6
– reference: 6756802 - Cytogenet Cell Genet. 1982;33(4):345-9
– reference: 22300631 - Genome Res. 2012 Apr;22(4):623-32
– reference: 24158853 - Hum Mol Genet. 2014 Mar 1;23(5):1211-23
– reference: 24176135 - Genome Biol. 2013;14(11):R122
– reference: 21731603 - PLoS One. 2011;6(6):e14821
– reference: 24076989 - Nat Methods. 2013 Oct;10(10):949-55
– reference: 17038168 - BMC Bioinformatics. 2006;7:446
– reference: 10523621 - Mol Cell Biol. 1999 Nov;19(11):7327-35
– reference: 15908953 - Nat Genet. 2005 Jun;37(6):620-4
– reference: 15772666 - Nature. 2005 Mar 17;434(7031):400-4
– reference: 24555846 - Genome Biol. 2014;15(2):R37
– reference: 22946286 - Pediatr Endocrinol Rev. 2012 May;9 Suppl 2:728-32
– reference: 21862626 - Genome Res. 2011 Oct;21(10):1592-600
– reference: 9500539 - Nat Genet. 1998 Mar;18(3):212-3
– reference: 21378125 - Nucleic Acids Res. 2011 Jul;39(12):5015-24
– reference: 22841499 - Dev Cell. 2012 Aug 14;23(2):265-79
– reference: 3262875 - Proc Natl Acad Sci U S A. 1988 Oct;85(20):7657-60
– reference: 17967063 - PLoS Genet. 2007 Oct;3(10):2023-36
– reference: 24713664 - Eur J Hum Genet. 2014 Dec;22(12):1376-81
– reference: 25074712 - Genome Biol. 2014;15(7):408
– reference: 7079182 - Nucleic Acids Res. 1982 Apr 24;10(8):2709-21
– reference: 23819640 - Epigenetics Chromatin. 2013 Jul 02;6(1):19
– reference: 21597963 - Hum Genet. 2011 Aug;130(2):187-201
– reference: 24759411 - Nature. 2014 Apr 24;508(7497):494-9
SSID ssj0016437
Score 2.5662065
Snippet X-chromosome inactivation (XCI) achieves dosage compensation between males and females through the silencing of the majority of genes on one of the female X...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1528
SubjectTerms Chromatin - metabolism
Chromosomes, Human, X
CpG Islands
DNA Methylation
DNA, Intergenic
Female
Gene Expression Regulation
Humans
Oligonucleotide Array Sequence Analysis
Organ Specificity
Promoter Regions, Genetic
Transcription, Genetic
X Chromosome Inactivation
Title Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-chromosome inactivation
URI https://www.ncbi.nlm.nih.gov/pubmed/25381334
https://www.proquest.com/docview/1657323227
Volume 24
WOSCitedRecordID wos000350144200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BC6iXAoHStIAWiSOrOF7vw6cqSml7IFEOIPkWeV80h9gpTpBy6l_vjNdRekGqhGTZkrVrW-vxzOd5fYR8DcYYnnjHjNSWZUYIpqXOmcjLVJUyMWnQLdmEmk51UeSzzuHWdGmVO53YKmpXW_SRD4ZSKA7mP1UXqzuGrFEYXe0oNJ6TQw5QBqVaFfsoAgalYnVRAtKg-a49ac4Ht8vfA-c2AjsN_Atatibm6vX_PtwbctyBSzqK0vCWPPNVj7yMdJPbHnk16QLp78j9DyzxxeQnWgd6OR1RpJLexsQ4ChvgQlpQe4vZek299BQsKXr4GzpeXVOHae_r7TeKZjF6E-NYmF_RtkiJwg1owR5dYVFhEUV0Ab8nv66-_xzfsI6LgdlMqTUzKsihV8Zrx0VmEm44dxbrtkoVdC6E5y5JbC6DksLo0sK53JQy54BA4JiekIOqrvwpoUPLhQMgmgbpAS56rTxXAQcby9OQ9smX3SLPQdYxgFFWvt408_0y98mH-Kbmq9iUY56C5ob_7ezsCbPPyRHgHoGpZEPxkRwG-NL9J_LC_l0vmj-fWyGC_XQ2eQC2Q9PP
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landscape+of+DNA+methylation+on+the+X+chromosome+reflects+CpG+density%2C+functional+chromatin+state+and+X-chromosome+inactivation&rft.jtitle=Human+molecular+genetics&rft.au=Cotton%2C+Allison+M&rft.au=Price%2C+E+Magda&rft.au=Jones%2C+Meaghan+J&rft.au=Balaton%2C+Bradley+P&rft.date=2015-03-15&rft.issn=1460-2083&rft.eissn=1460-2083&rft.volume=24&rft.issue=6&rft.spage=1528&rft_id=info:doi/10.1093%2Fhmg%2Fddu564&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-2083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-2083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-2083&client=summon