Genetic association testing using the GENESIS R/Bioconductor package

The Genomic Data Storage (GDS) format provides efficient storage and retrieval of genotypes measured by microarrays and sequencing. We developed GENESIS to perform various single- and aggregate-variant association tests using genotype data stored in GDS format. GENESIS implements highly flexible mix...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Bioinformatics (Oxford, England) Ročník 35; číslo 24; s. 5346 - 5348
Hlavní autori: Gogarten, Stephanie M, Sofer, Tamar, Chen, Han, Yu, Chaoyu, Brody, Jennifer A, Thornton, Timothy A, Rice, Kenneth M, Conomos, Matthew P
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Oxford University Press 15.12.2019
Predmet:
ISSN:1367-4803, 1367-4811, 1367-4811
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The Genomic Data Storage (GDS) format provides efficient storage and retrieval of genotypes measured by microarrays and sequencing. We developed GENESIS to perform various single- and aggregate-variant association tests using genotype data stored in GDS format. GENESIS implements highly flexible mixed models, allowing for different link functions, multiple variance components and phenotypic heteroskedasticity. GENESIS integrates cohesively with other R/Bioconductor packages to build a complete genomic analysis workflow entirely within the R environment. https://bioconductor.org/packages/GENESIS; vignettes included. Supplementary data are available at Bioinformatics online.
AbstractList The Genomic Data Storage (GDS) format provides efficient storage and retrieval of genotypes measured by microarrays and sequencing. We developed GENESIS to perform various single- and aggregate-variant association tests using genotype data stored in GDS format. GENESIS implements highly flexible mixed models, allowing for different link functions, multiple variance components and phenotypic heteroskedasticity. GENESIS integrates cohesively with other R/Bioconductor packages to build a complete genomic analysis workflow entirely within the R environment. https://bioconductor.org/packages/GENESIS; vignettes included. Supplementary data are available at Bioinformatics online.
The Genomic Data Storage (GDS) format provides efficient storage and retrieval of genotypes measured by microarrays and sequencing. We developed GENESIS to perform various single- and aggregate-variant association tests using genotype data stored in GDS format. GENESIS implements highly flexible mixed models, allowing for different link functions, multiple variance components and phenotypic heteroskedasticity. GENESIS integrates cohesively with other R/Bioconductor packages to build a complete genomic analysis workflow entirely within the R environment.SUMMARYThe Genomic Data Storage (GDS) format provides efficient storage and retrieval of genotypes measured by microarrays and sequencing. We developed GENESIS to perform various single- and aggregate-variant association tests using genotype data stored in GDS format. GENESIS implements highly flexible mixed models, allowing for different link functions, multiple variance components and phenotypic heteroskedasticity. GENESIS integrates cohesively with other R/Bioconductor packages to build a complete genomic analysis workflow entirely within the R environment.https://bioconductor.org/packages/GENESIS; vignettes included.AVAILABILITY AND IMPLEMENTATIONhttps://bioconductor.org/packages/GENESIS; vignettes included.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Author Sofer, Tamar
Rice, Kenneth M
Yu, Chaoyu
Chen, Han
Thornton, Timothy A
Conomos, Matthew P
Brody, Jennifer A
Gogarten, Stephanie M
AuthorAffiliation 1 Department of Biostatistics, University of Washington , Seattle, WA, USA
5 Center for Precision Health, School of Public Health and School of Biomedical Informatics, The University of Texas Health Science Center at Houston , Houston, TX 77030, USA
3 Department of Biostatistics, Harvard T. H. Chan School of Public Health , Boston, MA, USA
2 Division of Sleep and Circadian Disorders, Department of Medicine , Brigham and Women's Hospital, Boston, MA, USA
4 Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences , School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
6 Cardiovascular Health Research Unit, Department of Medicine, University of Washington , Seattle, WA, USA
AuthorAffiliation_xml – name: 4 Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences , School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
– name: 6 Cardiovascular Health Research Unit, Department of Medicine, University of Washington , Seattle, WA, USA
– name: 1 Department of Biostatistics, University of Washington , Seattle, WA, USA
– name: 2 Division of Sleep and Circadian Disorders, Department of Medicine , Brigham and Women's Hospital, Boston, MA, USA
– name: 5 Center for Precision Health, School of Public Health and School of Biomedical Informatics, The University of Texas Health Science Center at Houston , Houston, TX 77030, USA
– name: 3 Department of Biostatistics, Harvard T. H. Chan School of Public Health , Boston, MA, USA
Author_xml – sequence: 1
  givenname: Stephanie M
  orcidid: 0000-0002-7231-9745
  surname: Gogarten
  fullname: Gogarten, Stephanie M
– sequence: 2
  givenname: Tamar
  orcidid: 0000-0001-8520-8860
  surname: Sofer
  fullname: Sofer, Tamar
– sequence: 3
  givenname: Han
  orcidid: 0000-0002-9510-4923
  surname: Chen
  fullname: Chen, Han
– sequence: 4
  givenname: Chaoyu
  surname: Yu
  fullname: Yu, Chaoyu
– sequence: 5
  givenname: Jennifer A
  surname: Brody
  fullname: Brody, Jennifer A
– sequence: 6
  givenname: Timothy A
  surname: Thornton
  fullname: Thornton, Timothy A
– sequence: 7
  givenname: Kenneth M
  surname: Rice
  fullname: Rice, Kenneth M
– sequence: 8
  givenname: Matthew P
  orcidid: 0000-0001-9744-0851
  surname: Conomos
  fullname: Conomos, Matthew P
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31329242$$D View this record in MEDLINE/PubMed
BookMark eNqFkV9PwyAUxYmZcX_0I2j66EsdlFLamJjonHPJoonTZwKUbmgLs1AT_fR2bi7qiy9cEs75Xe49fdAx1igAjhE8QzDDQ6GtNoWtK-61dEPhP0hC90AP4YSGcYpQZ3eHuAv6zj1DCAkkyQHoYoSjLIqjHrieKKNaQsCds1K3MGsCr5zXZhE0bn36pQom47vxfDoPHoZX2kpr8kZ6WwcrLl_4Qh2C_YKXTh1t6wA83YwfR7fh7H4yHV3OQhlT6kOOE5EqUpBCECwjiASFhCpJUxpxBGMERYozIRSBXHIkipyjNOF5jKIUxxDhAbjYcFeNqFQulfE1L9mq1hWv35nlmv1-MXrJFvaN0QzGkCYt4HQLqO1r007JKu2kKktulG0ci6IEZTROSdZKT3722jX5Xl0rIBuBrK1ztSp2EgTZOiL2OyK2iaj1nf_xSe2_9t5-WZf_uD8B2eygLw
CitedBy_id crossref_primary_10_1038_s41467_023_38800_2
crossref_primary_10_1038_s42003_022_03812_z
crossref_primary_10_1513_AnnalsATS_202403_238OC
crossref_primary_10_1007_s11250_024_04195_5
crossref_primary_10_1093_cercor_bhae234
crossref_primary_10_1073_pnas_2302720120
crossref_primary_10_1186_s12920_025_02105_8
crossref_primary_10_1016_j_ajhg_2025_03_004
crossref_primary_10_1523_JNEUROSCI_1202_23_2023
crossref_primary_10_1002_alz_14356
crossref_primary_10_1038_s41588_023_01596_4
crossref_primary_10_1161_CIRCGEN_121_003532
crossref_primary_10_1186_s13148_023_01589_4
crossref_primary_10_1016_j_xgen_2025_101009
crossref_primary_10_1038_s42003_022_03702_4
crossref_primary_10_1073_pnas_1922927117
crossref_primary_10_1038_s41380_022_01526_6
crossref_primary_10_1038_s41467_022_32009_5
crossref_primary_10_1111_pce_15082
crossref_primary_10_1093_hmg_ddaf007
crossref_primary_10_1371_journal_pone_0264341
crossref_primary_10_1186_s12864_024_11029_z
crossref_primary_10_1186_s12864_025_11407_1
crossref_primary_10_1161_HYPERTENSIONAHA_121_18513
crossref_primary_10_7554_eLife_73475
crossref_primary_10_1186_s13195_022_00962_4
crossref_primary_10_1007_s10592_021_01394_7
crossref_primary_10_1002_alz_13705
crossref_primary_10_1038_s41467_023_42491_0
crossref_primary_10_1038_s44161_023_00346_3
crossref_primary_10_1534_g3_120_401521
crossref_primary_10_1002_alz_14367
crossref_primary_10_1093_hr_uhad076
crossref_primary_10_1111_1365_2656_13314
crossref_primary_10_1186_s13024_024_00747_3
crossref_primary_10_1002_alz_14128
crossref_primary_10_1093_rheumatology_keaf093
crossref_primary_10_1186_s13073_023_01209_z
crossref_primary_10_1002_art_43227
crossref_primary_10_1016_j_ajhg_2022_09_004
crossref_primary_10_1038_s41588_023_01475_y
crossref_primary_10_3389_fnagi_2022_1023493
crossref_primary_10_1111_jbg_12641
crossref_primary_10_1038_s41467_022_31080_2
crossref_primary_10_1093_jxb_erac072
crossref_primary_10_1111_jcpp_13518
crossref_primary_10_1111_mec_15451
crossref_primary_10_1038_s44161_023_00375_y
crossref_primary_10_1177_0271678X211066299
crossref_primary_10_1186_s12864_024_11076_6
crossref_primary_10_1002_alz_70627
crossref_primary_10_1038_s41467_022_35354_7
crossref_primary_10_1038_s42003_023_04520_y
crossref_primary_10_3390_ijms24020898
crossref_primary_10_3390_plants10102219
crossref_primary_10_1094_MPMI_12_21_0307_R
crossref_primary_10_1111_jbg_12759
crossref_primary_10_1007_s11357_021_00376_4
crossref_primary_10_1016_j_gene_2025_149219
crossref_primary_10_1161_JAHA_124_036499
crossref_primary_10_3389_fpls_2022_814178
crossref_primary_10_1038_s41525_025_00509_0
crossref_primary_10_3389_fpls_2022_1012923
crossref_primary_10_1016_j_ajhg_2022_02_013
crossref_primary_10_1038_s41588_021_01011_w
crossref_primary_10_1002_gepi_70013
crossref_primary_10_1111_mec_16648
crossref_primary_10_1002_gepi_70014
crossref_primary_10_1038_s41588_022_01225_6
crossref_primary_10_1128_msystems_00628_24
crossref_primary_10_1111_ocr_12857
crossref_primary_10_3389_fpls_2023_1130814
crossref_primary_10_1513_AnnalsATS_202408_868OC
crossref_primary_10_1093_hr_uhac111
crossref_primary_10_1126_science_abe8457
crossref_primary_10_1038_s41598_022_16442_6
crossref_primary_10_1146_annurev_biodatasci_020722_014310
crossref_primary_10_1002_alz_70489
crossref_primary_10_1007_s10530_022_02840_4
crossref_primary_10_1158_1055_9965_EPI_24_1553
crossref_primary_10_1007_s10519_023_10143_0
crossref_primary_10_1093_hmg_ddac290
crossref_primary_10_1002_gepi_22447
crossref_primary_10_1016_j_xhgg_2025_100487
crossref_primary_10_1161_JAHA_124_036193
crossref_primary_10_1038_s41598_023_32028_2
crossref_primary_10_1172_JCI140073
crossref_primary_10_1093_jxb_erae265
crossref_primary_10_1002_alz_12540
crossref_primary_10_1161_CIRCULATIONAHA_121_057261
crossref_primary_10_1007_s00439_023_02596_4
crossref_primary_10_3390_genes14020385
crossref_primary_10_1093_schbul_sbad088
crossref_primary_10_1073_pnas_2216789120
crossref_primary_10_1038_s41438_021_00617_9
crossref_primary_10_1093_gpbjnl_qzae065
crossref_primary_10_3389_fnagi_2024_1459796
crossref_primary_10_3390_ijms26062443
crossref_primary_10_1002_alz_14045
crossref_primary_10_1002_gepi_22432
crossref_primary_10_1093_nar_gkac966
crossref_primary_10_1016_j_ajhg_2025_08_006
crossref_primary_10_1183_13993003_00062_2024
crossref_primary_10_1093_bib_bbad412
crossref_primary_10_1186_s13195_024_01601_w
crossref_primary_10_3390_ijms26136239
crossref_primary_10_1016_j_neurobiolaging_2022_11_018
crossref_primary_10_1681_ASN_2021050617
crossref_primary_10_1126_science_aaz8528
crossref_primary_10_1002_mds_29508
crossref_primary_10_1002_ana_26153
crossref_primary_10_1038_s41467_025_58574_z
crossref_primary_10_1038_s41592_022_01640_x
crossref_primary_10_1007_s10126_020_09947_6
crossref_primary_10_1016_j_ajhg_2021_12_012
crossref_primary_10_12688_wellcomeopenres_16336_2
crossref_primary_10_1371_journal_pone_0324430
crossref_primary_10_1007_s10519_020_10010_2
crossref_primary_10_1038_s41588_020_0676_4
crossref_primary_10_2337_dc22_2494
crossref_primary_10_1038_s41598_022_16488_6
crossref_primary_10_1016_j_jtha_2025_04_029
crossref_primary_10_1038_s10038_023_01141_5
crossref_primary_10_1093_bib_bbac547
crossref_primary_10_1093_jimmun_vkae062
crossref_primary_10_1016_j_ajhg_2023_09_003
crossref_primary_10_1038_s41467_020_18334_7
crossref_primary_10_15302_J_QB_021_0249
crossref_primary_10_1007_s00406_022_01432_6
crossref_primary_10_1111_1755_0998_70038
crossref_primary_10_1371_journal_pone_0298501
crossref_primary_10_3390_genes13050906
crossref_primary_10_1016_j_ajhg_2022_03_003
crossref_primary_10_1186_s13195_023_01298_3
crossref_primary_10_3390_ijms24010116
crossref_primary_10_1016_j_ajhg_2022_03_007
crossref_primary_10_1038_s41467_024_48507_7
crossref_primary_10_1016_j_landig_2025_03_002
crossref_primary_10_1097_QAD_0000000000003716
crossref_primary_10_3233_ADR_230120
crossref_primary_10_1016_j_ajhg_2024_11_008
crossref_primary_10_1016_j_jaip_2022_10_048
crossref_primary_10_1136_bmjnph_2021_000255
crossref_primary_10_1007_s10519_023_10141_2
crossref_primary_10_1002_gepi_22492
crossref_primary_10_1038_s41467_025_58420_2
crossref_primary_10_1186_s13059_025_03520_x
crossref_primary_10_1002_gepi_22365
crossref_primary_10_1016_j_xhgg_2023_100204
crossref_primary_10_1002_mgg3_70090
crossref_primary_10_1093_hmg_ddad101
crossref_primary_10_1111_eva_13545
crossref_primary_10_3390_ijms25031815
crossref_primary_10_1161_JAHA_123_031377
crossref_primary_10_1182_blood_2021013531
crossref_primary_10_1111_mec_17489
crossref_primary_10_1038_s41588_025_02074_9
crossref_primary_10_1161_STROKEAHA_120_031792
crossref_primary_10_1016_j_ajhg_2024_07_010
crossref_primary_10_3389_fcell_2021_621482
crossref_primary_10_1038_s41467_023_38990_9
crossref_primary_10_1038_s42003_021_01788_w
crossref_primary_10_1016_j_ajhg_2024_07_015
crossref_primary_10_1093_genetics_iyad055
crossref_primary_10_1002_alz_14082
crossref_primary_10_1016_j_aquaculture_2023_740020
crossref_primary_10_1093_hmg_ddaf093
crossref_primary_10_1371_journal_pone_0242364
crossref_primary_10_1093_hmg_ddab252
crossref_primary_10_1111_tpj_15810
crossref_primary_10_1371_journal_pone_0253611
crossref_primary_10_1038_s41467_022_33510_7
crossref_primary_10_1186_s13195_021_00866_9
crossref_primary_10_1038_s41588_023_01553_1
crossref_primary_10_1371_journal_pcbi_1008880
crossref_primary_10_3389_fgene_2022_897210
crossref_primary_10_1002_gepi_22590
crossref_primary_10_1016_j_ebiom_2022_104393
crossref_primary_10_1002_alz_70583
crossref_primary_10_1016_j_ebiom_2022_104288
crossref_primary_10_1001_jama_2023_0268
crossref_primary_10_1111_mec_17224
crossref_primary_10_1016_j_jalz_2019_07_016
crossref_primary_10_1094_PHYTO_04_20_0112_FI
crossref_primary_10_1161_CIRCGEN_120_003300
crossref_primary_10_1371_journal_pone_0288701
crossref_primary_10_1002_alz_70237
crossref_primary_10_3390_genes13010106
crossref_primary_10_1111_mec_15712
crossref_primary_10_1016_j_ajhg_2021_04_003
crossref_primary_10_1016_j_ajhg_2024_08_023
crossref_primary_10_1038_s41588_024_01894_5
crossref_primary_10_1371_journal_ppat_1011114
crossref_primary_10_1002_gepi_22610
crossref_primary_10_3390_genes16070793
crossref_primary_10_1371_journal_pone_0324006
crossref_primary_10_1016_j_smallrumres_2023_107053
crossref_primary_10_1161_CIRCGEN_122_003975
crossref_primary_10_1038_s41588_023_01342_w
crossref_primary_10_3390_genes14051053
crossref_primary_10_1093_gigascience_giaf049
crossref_primary_10_1161_CIRCGEN_122_003858
crossref_primary_10_1038_s41593_024_01773_6
crossref_primary_10_3389_fimmu_2024_1359178
crossref_primary_10_3389_fgene_2022_911010
crossref_primary_10_1038_s42003_023_04838_7
crossref_primary_10_1038_s43588_024_00764_8
crossref_primary_10_1080_15563650_2022_2117053
crossref_primary_10_1111_ahg_12587
crossref_primary_10_1161_CIRCGEN_123_004314
crossref_primary_10_1186_s12859_024_05908_1
crossref_primary_10_1186_s12864_023_09757_9
crossref_primary_10_1093_brain_awaf019
crossref_primary_10_1186_s40246_025_00791_0
crossref_primary_10_1038_s41467_022_28648_3
crossref_primary_10_1371_journal_pcbi_1012626
crossref_primary_10_1186_s13024_023_00633_4
crossref_primary_10_1073_pnas_2404848121
crossref_primary_10_1016_j_ajhg_2024_08_004
crossref_primary_10_1093_bioinformatics_btae410
crossref_primary_10_1007_s11357_024_01286_x
crossref_primary_10_1111_eci_13699
crossref_primary_10_1172_JCI179822
crossref_primary_10_1007_s10072_025_08393_3
crossref_primary_10_1038_s41398_020_00930_2
crossref_primary_10_1093_pcp_pcaa125
crossref_primary_10_1002_hbm_26579
crossref_primary_10_1038_s41586_023_05806_1
crossref_primary_10_1016_j_neurobiolaging_2020_10_003
crossref_primary_10_1002_alz_70681
crossref_primary_10_1161_HYPERTENSIONAHA_124_23400
crossref_primary_10_1002_tpg2_70005
crossref_primary_10_1038_s41438_020_0291_7
crossref_primary_10_1371_journal_pbio_3003367
crossref_primary_10_1038_s41598_024_62945_9
crossref_primary_10_1167_iovs_63_8_17
crossref_primary_10_1097_QAD_0000000000003428
crossref_primary_10_1038_s41467_021_23655_2
crossref_primary_10_1093_pcp_pcaa019
crossref_primary_10_1016_j_xgen_2025_100784
crossref_primary_10_3390_genes16060640
Cites_doi 10.1093/bioinformatics/bts606
10.2307/2533274
10.1016/j.ajhg.2018.12.012
10.1016/j.ajhg.2015.12.001
10.1093/biostatistics/kxs014
10.1007/978-0-387-73186-5_3
10.1002/gepi.21896
10.1016/j.ajhg.2015.11.022
10.1093/bioinformatics/bts610
10.1016/j.ajhg.2017.05.014
10.1038/ng.2892
10.1093/bioinformatics/btx145
10.1002/gepi.21703
10.1080/01621459.1993.10594284
10.1038/s41588-018-0184-y
10.1016/j.ajhg.2016.02.012
10.1002/gepi.22136
10.1016/j.ajhg.2011.05.029
10.2307/2531445
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2019
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
– notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/bioinformatics/btz567
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
EndPage 5348
ExternalDocumentID PMC7904076
31329242
10_1093_bioinformatics_btz567
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL120393
– fundername: NHLBI NIH HHS
  grantid: U01 HL137162
– fundername: ; ; ;
– fundername: ; ;
– fundername: ; ;
  grantid: 3R01HL-120393-02S1; U01HL137162
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
5PM
EJD
ID FETCH-LOGICAL-c477t-a36b8e5f5fb53c201b7057ec7872a10410b839bbe50aca1bfda186ad412834013
ISICitedReferencesCount 275
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000509361200046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4803
1367-4811
IngestDate Thu Aug 21 18:24:07 EDT 2025
Fri Jul 11 16:53:36 EDT 2025
Thu Apr 03 07:04:46 EDT 2025
Sat Nov 29 03:49:15 EST 2025
Tue Nov 18 21:17:01 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c477t-a36b8e5f5fb53c201b7057ec7872a10410b839bbe50aca1bfda186ad412834013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9744-0851
0000-0002-9510-4923
0000-0002-7231-9745
0000-0001-8520-8860
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7904076
PMID 31329242
PQID 2261974859
PQPubID 23479
PageCount 3
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7904076
proquest_miscellaneous_2261974859
pubmed_primary_31329242
crossref_primary_10_1093_bioinformatics_btz567
crossref_citationtrail_10_1093_bioinformatics_btz567
PublicationCentury 2000
PublicationDate 2019-12-15
PublicationDateYYYYMMDD 2019-12-15
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2019
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Conomos (2023013108412918000_btz567-B6) 2015; 39
Chen (2023013108412918000_btz567-B3) 2013; 37
Conomos (2023013108412918000_btz567-B8) 2016; 98
Zheng (2023013108412918000_btz567-B19) 2017; 33
Chen (2023013108412918000_btz567-B5) 2019; 104
Bates (2023013108412918000_btz567-B1) 2018
Gilmour (2023013108412918000_btz567-B10) 1995; 51
Snijders (2023013108412918000_btz567-B16) 2008
O’Connell (2023013108412918000_btz567-B15) 2014
Chen (2023013108412918000_btz567-B4) 2016; 98
Wu (2023013108412918000_btz567-B18) 2011; 89
Lee (2023013108412918000_btz567-B13) 2012; 13
Zheng (2023013108412918000_btz567-B20) 2012; 28
Zhou (2023013108412918000_btz567-B21) 2018; 50
Lumley (2023013108412918000_btz567-B14) 2018; 42
Conomos (2023013108412918000_btz567-B7) 2016; 98
Thompson (2023013108412918000_btz567-B17) 1990; 46
Breslow (2023013108412918000_btz567-B2) 1993; 88
Gogarten (2023013108412918000_btz567-B11) 2012; 28
Kircher (2023013108412918000_btz567-B12) 2014; 46
Dey (2023013108412918000_btz567-B9) 2017; 101
References_xml – volume: 28
  start-page: 3326
  year: 2012
  ident: 2023013108412918000_btz567-B20
  article-title: A high-performance computing toolset for relatedness and principal component analysis of SNP data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts606
– volume: 51
  start-page: 1440
  year: 1995
  ident: 2023013108412918000_btz567-B10
  article-title: Average information REML: an efficient algorithm for variance parameter estimation in linear mixed models
  publication-title: Biometrics
  doi: 10.2307/2533274
– volume-title: MMAP User Guide
  year: 2014
  ident: 2023013108412918000_btz567-B15
– volume: 104
  start-page: 260
  year: 2019
  ident: 2023013108412918000_btz567-B5
  article-title: Efficient variant set mixed model association tests for continuous and binary traits in large-scale whole genome sequencing studies
  publication-title: Am. J. Hum. Genet
  doi: 10.1016/j.ajhg.2018.12.012
– volume: 98
  start-page: 165
  year: 2016
  ident: 2023013108412918000_btz567-B7
  article-title: Genetic diversity and association studies in us Hispanic/Latino populations: applications in the Hispanic Community Health Study/Study of Latinos
  publication-title: Am. J. Hum. Genet
  doi: 10.1016/j.ajhg.2015.12.001
– volume: 13
  start-page: 762
  year: 2012
  ident: 2023013108412918000_btz567-B13
  article-title: Optimal tests for rare variant effects in sequencing association studies
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxs014
– start-page: 141
  volume-title: Handbook of Multilevel Analysis
  year: 2008
  ident: 2023013108412918000_btz567-B16
  doi: 10.1007/978-0-387-73186-5_3
– volume: 39
  start-page: 276
  year: 2015
  ident: 2023013108412918000_btz567-B6
  article-title: Robust inference of population structure for ancestry prediction and correction of stratification in the presence of relatedness
  publication-title: Genet. Epidemiol
  doi: 10.1002/gepi.21896
– volume: 98
  start-page: 127
  year: 2016
  ident: 2023013108412918000_btz567-B8
  article-title: Model-free estimation of recent genetic relatedness
  publication-title: Am. J. Hum. Genet
  doi: 10.1016/j.ajhg.2015.11.022
– volume: 28
  start-page: 3329
  year: 2012
  ident: 2023013108412918000_btz567-B11
  article-title: GWASTools: an R/Bioconductor package for quality control and analysis of genome-wide association studies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts610
– volume: 101
  start-page: 37
  year: 2017
  ident: 2023013108412918000_btz567-B9
  article-title: A fast and accurate algorithm to test for binary phenotypes and its application to PheWAS
  publication-title: Am. J. Hum. Genet
  doi: 10.1016/j.ajhg.2017.05.014
– volume: 46
  start-page: 310.
  year: 2014
  ident: 2023013108412918000_btz567-B12
  article-title: A general framework for estimating the relative pathogenicity of human genetic variants
  publication-title: Nat. Genet
  doi: 10.1038/ng.2892
– volume: 33
  start-page: 2251
  year: 2017
  ident: 2023013108412918000_btz567-B19
  article-title: SeqArray—a storage-efficient high-performance data format for WGS variant calls
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx145
– volume: 37
  start-page: 196
  year: 2013
  ident: 2023013108412918000_btz567-B3
  article-title: Sequence kernel association test for quantitative traits in family samples
  publication-title: Genet. Epidemiol
  doi: 10.1002/gepi.21703
– year: 2018
  ident: 2023013108412918000_btz567-B1
– volume: 88
  start-page: 9
  year: 1993
  ident: 2023013108412918000_btz567-B2
  article-title: Approximate inference in generalized linear mixed models
  publication-title: J. Am. Stat. Assoc
  doi: 10.1080/01621459.1993.10594284
– volume: 50
  start-page: 1335
  year: 2018
  ident: 2023013108412918000_btz567-B21
  article-title: Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies
  publication-title: Nat. Genet
  doi: 10.1038/s41588-018-0184-y
– volume: 98
  start-page: 653
  year: 2016
  ident: 2023013108412918000_btz567-B4
  article-title: Control for population structure and relatedness for binary traits in genetic association studies via logistic mixed models
  publication-title: Am. J. Hum. Genet
  doi: 10.1016/j.ajhg.2016.02.012
– volume: 42
  start-page: 516
  year: 2018
  ident: 2023013108412918000_btz567-B14
  article-title: FastSKAT: sequence kernel association tests for very large sets of markers
  publication-title: Genet. Epidemiol
  doi: 10.1002/gepi.22136
– volume: 89
  start-page: 82
  year: 2011
  ident: 2023013108412918000_btz567-B18
  article-title: Rare-variant association testing for sequencing data with the sequence kernel association test
  publication-title: Am. J. Hum. Genet
  doi: 10.1016/j.ajhg.2011.05.029
– volume: 46
  start-page: 399
  year: 1990
  ident: 2023013108412918000_btz567-B17
  article-title: Pedigree analysis for quantitative traits: variance components without matrix inversion
  publication-title: Biometrics
  doi: 10.2307/2531445
SSID ssj0005056
Score 2.6811147
Snippet The Genomic Data Storage (GDS) format provides efficient storage and retrieval of genotypes measured by microarrays and sequencing. We developed GENESIS to...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5346
SubjectTerms Applications Notes
Genetic Testing
Genome
Genomics
Sequence Analysis
Software
Title Genetic association testing using the GENESIS R/Bioconductor package
URI https://www.ncbi.nlm.nih.gov/pubmed/31329242
https://www.proquest.com/docview/2261974859
https://pubmed.ncbi.nlm.nih.gov/PMC7904076
Volume 35
WOSCitedRecordID wos000509361200046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20220930
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECWcdEEuRfe6S6ACvRmKLUoUyWORLuklLRIXcE8CSVGJ0UQybClw-vUditTWoGh76EUwRIuC-Z5GM_TMG4TeKMVjrE1yK42VH4mA-BKnkc9ZSsAdzwghsm42QY-P2WLBv4xGVVMLc3VB85xtt3z1X6GGcwC2KZ39B7jbSeEEfAbQ4Qiww_GvgDdC0rUKa7fwk9JoaeRnk2rTVEeZlLXTT6eTE5OevSwgKjbCr8V6AjH0dzFMEIJxp69aazobgdJtkxPvmoD0NhQ-FmcmTzRvc8hMEXuvbXGROZaIS9FmBh-6IpGjjqzfKpcOUFxX_b2JoG6sYKszD7S1p6GRVWfOnjqDa_VJHLFw1DOfJLT7kTfsutW8koOfa06UP4jt5tEDdnVZI2s0KSG4xN2Lrk0_bIZ20C1MCTfGcP550WUGgVPYFHvxcDq869Tecw_dbWYZejQ3wpRfs2177sv8Prrn4g7vreXLAzTS-UN0x3YivX6E3jnWeD3WeI41Xs0aD1jjOdZ4J9M-ZzzHmcfo64f388Mj3zXY8FVEaemLMJZMk4xkkoQKAJQU3HetwIhjAXF6MJPgP0upyUwoEcgsFQGLRRqBUxOawPwJ2s2LXD9DHk3xLOZU8RnB4IFjCc85izUEHyLgTKZjFDWLlCinPm-aoFwkNgsiTIbLnNhlHqOD9rKVlV_50wWvGwQSMJTm3y-R66LaJNjsFdCIET5GTy0i7ZQNlGNEB1i1XzAi7MORfHlei7FTDq9BGj__7Zwv0F73aLxEu-W60q_QbXVVLjfrfbRDF2y_5t9P46injA
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+association+testing+using+the+GENESIS+R%2FBioconductor+package&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Gogarten%2C+Stephanie+M&rft.au=Sofer%2C+Tamar&rft.au=Chen%2C+Han&rft.au=Yu%2C+Chaoyu&rft.date=2019-12-15&rft.eissn=1367-4811&rft.volume=35&rft.issue=24&rft.spage=5346&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtz567&rft_id=info%3Apmid%2F31329242&rft.externalDocID=31329242
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon