A ERSF-VIPA framework: scalable wildlife movement modelling for conflict mitigation

1. Effective conservation planning and conflict mitigation can hinge on accurately modelling wildlife movement paths (WMPs), yet progress is hindered by both a shortage of reliable methods and limited data. The critical challenge, therefore, is to devise limited-data models that faithfully reproduce...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Movement ecology Ročník 13; číslo 1; s. 78 - 14
Hlavní autori: Chen, Xiaoyi, Li, Jie, Cao, Xinyu, Yang, Yin, Chapman, Colin A., Li, Xiao, Qiao, Ruijing, Wang, Xiaohuan, Yang, Feiling, Kong, Dejun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 30.10.2025
BioMed Central Ltd
BMC
Predmet:
ISSN:2051-3933, 2051-3933
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract 1. Effective conservation planning and conflict mitigation can hinge on accurately modelling wildlife movement paths (WMPs), yet progress is hindered by both a shortage of reliable methods and limited data. The critical challenge, therefore, is to devise limited-data models that faithfully reproduce elusive species’ movements and deliver actionable insights for human–wildlife conflict management. 2. We introduce the Enhanced Resource Selection Function–Vector-network Iterative Pathfinding Algorithm (ERSF-VIPA), a novel framework for simulating WMPs with limited data. Drawing on historical occurrence records of Asian elephants ( Elephas maximus ), we assume individuals make rational, goal-driven decisions based on local environmental knowledge. The ERSF employs a random forest on a hexagonal grid to estimate nonlinear resource-selection probabilities, while VIPA conducts an iterative, node-to-node search across that hexagonal vector network—scoring each candidate by combining selection probability with cubic distance coefficients to ensure ecological validity and energetic efficiency. 3. The model demonstrates high accuracy, with 90.3% of the 68 simulated paths approximating the observed paths with an average maximum deviation of 418 m. These findings underscore the model’s robustness and its capacity to translate limited tracking data into actionable insights for conservation. 4. ERSF-VIPA operates using only coarse, non-continuous historical data that lack precise timestamps or spatial accuracy. By operating with minimal data requirements, ERSF-VIPA demonstrates exceptional extensibility and broad applicability for reconstructing movement paths of elusive wildlife species. Its proven accuracy in simulating Asian elephant paths further positions it as a potentially powerful decision-support framework for real-time animal monitoring and proactive human–wildlife conflict mitigation.
AbstractList 1. Effective conservation planning and conflict mitigation can hinge on accurately modelling wildlife movement paths (WMPs), yet progress is hindered by both a shortage of reliable methods and limited data. The critical challenge, therefore, is to devise limited-data models that faithfully reproduce elusive species' movements and deliver actionable insights for human-wildlife conflict management. 2. We introduce the Enhanced Resource Selection Function-Vector-network Iterative Pathfinding Algorithm (ERSF-VIPA), a novel framework for simulating WMPs with limited data. Drawing on historical occurrence records of Asian elephants (Elephas maximus), we assume individuals make rational, goal-driven decisions based on local environmental knowledge. The ERSF employs a random forest on a hexagonal grid to estimate nonlinear resource-selection probabilities, while VIPA conducts an iterative, node-to-node search across that hexagonal vector network-scoring each candidate by combining selection probability with cubic distance coefficients to ensure ecological validity and energetic efficiency. 3. The model demonstrates high accuracy, with 90.3% of the 68 simulated paths approximating the observed paths with an average maximum deviation of 418 m. These findings underscore the model's robustness and its capacity to translate limited tracking data into actionable insights for conservation. 4. ERSF-VIPA operates using only coarse, non-continuous historical data that lack precise timestamps or spatial accuracy. By operating with minimal data requirements, ERSF-VIPA demonstrates exceptional extensibility and broad applicability for reconstructing movement paths of elusive wildlife species. Its proven accuracy in simulating Asian elephant paths further positions it as a potentially powerful decision-support framework for real-time animal monitoring and proactive human-wildlife conflict mitigation.
1. Effective conservation planning and conflict mitigation can hinge on accurately modelling wildlife movement paths (WMPs), yet progress is hindered by both a shortage of reliable methods and limited data. The critical challenge, therefore, is to devise limited-data models that faithfully reproduce elusive species' movements and deliver actionable insights for human-wildlife conflict management. 2. We introduce the Enhanced Resource Selection Function-Vector-network Iterative Pathfinding Algorithm (ERSF-VIPA), a novel framework for simulating WMPs with limited data. Drawing on historical occurrence records of Asian elephants (Elephas maximus), we assume individuals make rational, goal-driven decisions based on local environmental knowledge. The ERSF employs a random forest on a hexagonal grid to estimate nonlinear resource-selection probabilities, while VIPA conducts an iterative, node-to-node search across that hexagonal vector network--scoring each candidate by combining selection probability with cubic distance coefficients to ensure ecological validity and energetic efficiency. 3. The model demonstrates high accuracy, with 90.3% of the 68 simulated paths approximating the observed paths with an average maximum deviation of 418 m. These findings underscore the model's robustness and its capacity to translate limited tracking data into actionable insights for conservation. 4. ERSF-VIPA operates using only coarse, non-continuous historical data that lack precise timestamps or spatial accuracy. By operating with minimal data requirements, ERSF-VIPA demonstrates exceptional extensibility and broad applicability for reconstructing movement paths of elusive wildlife species. Its proven accuracy in simulating Asian elephant paths further positions it as a potentially powerful decision-support framework for real-time animal monitoring and proactive human-wildlife conflict mitigation. Keywords: Asian elephants (elephas maximus), Enhanced resource selection function-vector network iterative pathfinding algorithm, Human-wildlife conflict, Limited data, Wildlife movement path prediction
1. Effective conservation planning and conflict mitigation can hinge on accurately modelling wildlife movement paths (WMPs), yet progress is hindered by both a shortage of reliable methods and limited data. The critical challenge, therefore, is to devise limited-data models that faithfully reproduce elusive species’ movements and deliver actionable insights for human–wildlife conflict management. 2. We introduce the Enhanced Resource Selection Function–Vector-network Iterative Pathfinding Algorithm (ERSF-VIPA), a novel framework for simulating WMPs with limited data. Drawing on historical occurrence records of Asian elephants ( Elephas maximus ), we assume individuals make rational, goal-driven decisions based on local environmental knowledge. The ERSF employs a random forest on a hexagonal grid to estimate nonlinear resource-selection probabilities, while VIPA conducts an iterative, node-to-node search across that hexagonal vector network—scoring each candidate by combining selection probability with cubic distance coefficients to ensure ecological validity and energetic efficiency. 3. The model demonstrates high accuracy, with 90.3% of the 68 simulated paths approximating the observed paths with an average maximum deviation of 418 m. These findings underscore the model’s robustness and its capacity to translate limited tracking data into actionable insights for conservation. 4. ERSF-VIPA operates using only coarse, non-continuous historical data that lack precise timestamps or spatial accuracy. By operating with minimal data requirements, ERSF-VIPA demonstrates exceptional extensibility and broad applicability for reconstructing movement paths of elusive wildlife species. Its proven accuracy in simulating Asian elephant paths further positions it as a potentially powerful decision-support framework for real-time animal monitoring and proactive human–wildlife conflict mitigation.
Abstract 1. Effective conservation planning and conflict mitigation can hinge on accurately modelling wildlife movement paths (WMPs), yet progress is hindered by both a shortage of reliable methods and limited data. The critical challenge, therefore, is to devise limited-data models that faithfully reproduce elusive species’ movements and deliver actionable insights for human–wildlife conflict management. 2. We introduce the Enhanced Resource Selection Function–Vector-network Iterative Pathfinding Algorithm (ERSF-VIPA), a novel framework for simulating WMPs with limited data. Drawing on historical occurrence records of Asian elephants (Elephas maximus), we assume individuals make rational, goal-driven decisions based on local environmental knowledge. The ERSF employs a random forest on a hexagonal grid to estimate nonlinear resource-selection probabilities, while VIPA conducts an iterative, node-to-node search across that hexagonal vector network—scoring each candidate by combining selection probability with cubic distance coefficients to ensure ecological validity and energetic efficiency. 3. The model demonstrates high accuracy, with 90.3% of the 68 simulated paths approximating the observed paths with an average maximum deviation of 418 m. These findings underscore the model’s robustness and its capacity to translate limited tracking data into actionable insights for conservation. 4. ERSF-VIPA operates using only coarse, non-continuous historical data that lack precise timestamps or spatial accuracy. By operating with minimal data requirements, ERSF-VIPA demonstrates exceptional extensibility and broad applicability for reconstructing movement paths of elusive wildlife species. Its proven accuracy in simulating Asian elephant paths further positions it as a potentially powerful decision-support framework for real-time animal monitoring and proactive human–wildlife conflict mitigation.
1. Effective conservation planning and conflict mitigation can hinge on accurately modelling wildlife movement paths (WMPs), yet progress is hindered by both a shortage of reliable methods and limited data. The critical challenge, therefore, is to devise limited-data models that faithfully reproduce elusive species' movements and deliver actionable insights for human-wildlife conflict management. 2. We introduce the Enhanced Resource Selection Function-Vector-network Iterative Pathfinding Algorithm (ERSF-VIPA), a novel framework for simulating WMPs with limited data. Drawing on historical occurrence records of Asian elephants (Elephas maximus), we assume individuals make rational, goal-driven decisions based on local environmental knowledge. The ERSF employs a random forest on a hexagonal grid to estimate nonlinear resource-selection probabilities, while VIPA conducts an iterative, node-to-node search across that hexagonal vector network-scoring each candidate by combining selection probability with cubic distance coefficients to ensure ecological validity and energetic efficiency. 3. The model demonstrates high accuracy, with 90.3% of the 68 simulated paths approximating the observed paths with an average maximum deviation of 418 m. These findings underscore the model's robustness and its capacity to translate limited tracking data into actionable insights for conservation. 4. ERSF-VIPA operates using only coarse, non-continuous historical data that lack precise timestamps or spatial accuracy. By operating with minimal data requirements, ERSF-VIPA demonstrates exceptional extensibility and broad applicability for reconstructing movement paths of elusive wildlife species. Its proven accuracy in simulating Asian elephant paths further positions it as a potentially powerful decision-support framework for real-time animal monitoring and proactive human-wildlife conflict mitigation.1. Effective conservation planning and conflict mitigation can hinge on accurately modelling wildlife movement paths (WMPs), yet progress is hindered by both a shortage of reliable methods and limited data. The critical challenge, therefore, is to devise limited-data models that faithfully reproduce elusive species' movements and deliver actionable insights for human-wildlife conflict management. 2. We introduce the Enhanced Resource Selection Function-Vector-network Iterative Pathfinding Algorithm (ERSF-VIPA), a novel framework for simulating WMPs with limited data. Drawing on historical occurrence records of Asian elephants (Elephas maximus), we assume individuals make rational, goal-driven decisions based on local environmental knowledge. The ERSF employs a random forest on a hexagonal grid to estimate nonlinear resource-selection probabilities, while VIPA conducts an iterative, node-to-node search across that hexagonal vector network-scoring each candidate by combining selection probability with cubic distance coefficients to ensure ecological validity and energetic efficiency. 3. The model demonstrates high accuracy, with 90.3% of the 68 simulated paths approximating the observed paths with an average maximum deviation of 418 m. These findings underscore the model's robustness and its capacity to translate limited tracking data into actionable insights for conservation. 4. ERSF-VIPA operates using only coarse, non-continuous historical data that lack precise timestamps or spatial accuracy. By operating with minimal data requirements, ERSF-VIPA demonstrates exceptional extensibility and broad applicability for reconstructing movement paths of elusive wildlife species. Its proven accuracy in simulating Asian elephant paths further positions it as a potentially powerful decision-support framework for real-time animal monitoring and proactive human-wildlife conflict mitigation.
ArticleNumber 78
Audience Academic
Author Yang, Yin
Chen, Xiaoyi
Chapman, Colin A.
Wang, Xiaohuan
Yang, Feiling
Kong, Dejun
Li, Jie
Li, Xiao
Cao, Xinyu
Qiao, Ruijing
Author_xml – sequence: 1
  givenname: Xiaoyi
  surname: Chen
  fullname: Chen, Xiaoyi
  organization: Institute of International Rivers and Eco-Security, Yunnan University, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, State Key Laboratory of Vegetation Structure, Functions and Construction (VegLab), Yunnan University
– sequence: 2
  givenname: Jie
  surname: Li
  fullname: Li, Jie
  email: jie_li@ynu.edu.cn
  organization: Institute of International Rivers and Eco-Security, Yunnan University, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, State Key Laboratory of Vegetation Structure, Functions and Construction (VegLab), Yunnan University
– sequence: 3
  givenname: Xinyu
  surname: Cao
  fullname: Cao, Xinyu
  organization: Institute of International Rivers and Eco-Security, Yunnan University, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, State Key Laboratory of Vegetation Structure, Functions and Construction (VegLab), Yunnan University
– sequence: 4
  givenname: Yin
  surname: Yang
  fullname: Yang, Yin
  organization: Institute of International Rivers and Eco-Security, Yunnan University, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, State Key Laboratory of Vegetation Structure, Functions and Construction (VegLab), Yunnan University
– sequence: 5
  givenname: Colin A.
  surname: Chapman
  fullname: Chapman, Colin A.
  organization: Biology Department, Vancouver Island University, School of Life Sciences, University of KwaZulu-Natal, Shaanxi Key Laboratory for Animal Conservation, Northwest University
– sequence: 6
  givenname: Xiao
  surname: Li
  fullname: Li, Xiao
  organization: School of Statistics and Mathematics, Yunnan University of Finance and Economics
– sequence: 7
  givenname: Ruijing
  surname: Qiao
  fullname: Qiao, Ruijing
  organization: Institute of International Rivers and Eco-Security, Yunnan University, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, State Key Laboratory of Vegetation Structure, Functions and Construction (VegLab), Yunnan University
– sequence: 8
  givenname: Xiaohuan
  surname: Wang
  fullname: Wang, Xiaohuan
  organization: Institute of International Rivers and Eco-Security, Yunnan University, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, State Key Laboratory of Vegetation Structure, Functions and Construction (VegLab), Yunnan University
– sequence: 9
  givenname: Feiling
  surname: Yang
  fullname: Yang, Feiling
  organization: Institute of International Rivers and Eco-Security, Yunnan University, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, State Key Laboratory of Vegetation Structure, Functions and Construction (VegLab), Yunnan University
– sequence: 10
  givenname: Dejun
  surname: Kong
  fullname: Kong, Dejun
  email: kongdj@ynu.edu.cn
  organization: School of Ecology and Environmental Science, Yunnan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41163125$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1rFTEQhoNUbK39A17IgjfebM3XJrveHUqrBwqKVW9DNjtZctxNarKnxX_vtFuLgphcZBie92UmM8_JQUwRCHnJ6CljrXpbJJWK15Q3NaWKYvSEHHHasFp0Qhz8ER-Sk1J2FE-nKdftM3IoGVOC8eaIXG2q889XF_W37adN5bOd4Tbl7--q4uxk-wmq2zANU_BQzekGZogLBgNMU4hj5VOuXIp-Cg7TYQmjXUKKL8hTb6cCJw_vMfl6cf7l7EN9-fH99mxzWTup9VI3PfXgqXSSWqU1VjRwPvAGNFfd4DqrgUmlXNd727q-7R2XmmkroO1RxcUx2a6-Q7I7c53DbPNPk2ww94mUR2PzEtwERjUAauhAWgey7VXvQaIFbaRopG0ter1Zva5z-rGHspg5FId92ghpX4zgSnWaiZYh-npFR4vOIfq0ZOvucLNpFUOCCoXU6T8ovAPMAT8NfMD8X4JXDxXs-xmGx35-zwoBvgIup1Iy-EeEUXO3E2bdCYM7Ye53wlAUiVVUEI4jZLNL-xxxLP9T_QIEjbWr
Cites_doi 10.1111/ecog.07421
10.3390/s24175643
10.1186/2051-3933-2-4
10.1007/s10661-024-13110-2
10.48550/arXiv.2403.14151
10.1093/gji/ggab247
10.3390/ani12081018
10.3390/ijgi11060329
10.3724/SP.J.1003.2014.14203
10.3390/ijgi8020063
10.1017/S1367943003003421
10.3390/electronics12010201
10.3389/fevo.2021.681704
10.3390/ijgi13050166
10.1186/s40462-024-00476-8
10.1002/ecy.3473
10.1016/j.cub.2018.04.043
10.1111/1365-2656.12080
10.1023/A:1010933404324
10.1016/j.chaos.2022.112420
10.3390/drones7110680
10.1016/j.cie.2022.108123
10.1890/11-0326.1
10.1007/s00163-016-0226-3
10.1111/1365-2656.12386
10.1111/cobi.12475
10.1111/2041-210X.13685
10.1126/science.aaa2478
10.3390/land11111957
10.3390/d16050260
10.1111/2041-210X.13904
10.1002/inc3.10
10.17521/cjpe.2019.0165
10.1111/j.1365-2656.2009.01534.x
10.3390/su15065033
10.1371/journal.pone.0193049
10.1186/s40462-022-00316-7
10.1016/j.ecoinf.2023.102018
10.9734/ijecc/2023/v13i103004
10.1111/j.1600-0587.2012.07608.x
10.1002/rse2.269
10.7717/peerj.6791
10.1098/rspb.2006.3486
10.1016/j.ecolmodel.2007.03.041
10.1109/NNICE61279.2024.10498463
10.1890/07-1861.1
10.11609/jott.4467.11.13.14643-14654
10.1007/978-4-431-87771-4_19
10.3389/fevo.2021.724887
10.1186/s12898-020-00319-1
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
COPYRIGHT 2025 BioMed Central Ltd.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: COPYRIGHT 2025 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
NPM
7X8
DOA
DOI 10.1186/s40462-025-00602-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed




MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 2051-3933
EndPage 14
ExternalDocumentID oai_doaj_org_article_65ee6d9e4ace48b6bfe44c2054354a8a
A861813036
41163125
10_1186_s40462_025_00602_0
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 0R~
2XV
5VS
7XC
8FE
8FH
AAFWJ
AAHBH
AAJSJ
AASML
ACGFS
ADBBV
ADRAZ
ADUKV
AEUYN
AFFHD
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ASPBG
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
C6C
CCPQU
DIK
EBLON
EBS
ECGQY
EYRJQ
GROUPED_DOAJ
HCIFZ
HYE
IAO
IEP
IHR
ITC
KQ8
LK8
M7P
M~E
OK1
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PYCSY
RBZ
ROL
RPM
RSV
SOJ
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c477t-5b0fef04c40a677163d22d25e7269dc9a7e1466c9bfa8cb8bc24717a3e8b04c23
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001604098700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2051-3933
IngestDate Mon Nov 10 19:21:18 EST 2025
Thu Oct 30 17:17:35 EDT 2025
Wed Nov 05 19:54:27 EST 2025
Tue Nov 04 05:29:19 EST 2025
Mon Nov 03 02:06:00 EST 2025
Wed Nov 05 20:34:19 EST 2025
Thu Oct 30 01:15:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Wildlife movement path prediction
Human-wildlife conflict
)
Enhanced resource selection function–vector network iterative pathfinding algorithm
Asian elephants
Limited data
Asian elephants (elephas maximus)
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-5b0fef04c40a677163d22d25e7269dc9a7e1466c9bfa8cb8bc24717a3e8b04c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s40462-025-00602-0
PMID 41163125
PQID 3266971381
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_65ee6d9e4ace48b6bfe44c2054354a8a
proquest_miscellaneous_3266971381
gale_infotracmisc_A861813036
gale_infotracacademiconefile_A861813036
pubmed_primary_41163125
crossref_primary_10_1186_s40462_025_00602_0
springer_journals_10_1186_s40462_025_00602_0
PublicationCentury 2000
PublicationDate 2025-10-30
PublicationDateYYYYMMDD 2025-10-30
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Movement ecology
PublicationTitleAbbrev Mov Ecol
PublicationTitleAlternate Mov Ecol
PublicationYear 2025
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References BT McClintock (602_CR4) 2023; 104
BH McRae (602_CR14) 2008; 89
BT McClintock (602_CR42) 2012; 82
I Sebsibe (602_CR52) 2022; 22
L Ong (602_CR45) 2021; 12
P Palencia (602_CR9) 2022; 8
C Li (602_CR18) 2022; 168
H Thurfjell (602_CR17) 2014; 2
602_CR48
SA Cushman (602_CR3) 2010
RK Thakur (602_CR46) 2022; 59
Y Du (602_CR22) 2023; 15
S Li (602_CR37) 2014; 22
K Singh (602_CR47) 2022; 162
DD Hofmann (602_CR6) 2024; 12
MA Lewis (602_CR40) 2021; 9
GS Malley (602_CR44) 2022
WH Xiao (602_CR10) 2020; 44
J He (602_CR53) 2019; 8
B Goodheart (602_CR5) 2022; 10
T Kashetsky (602_CR41) 2021; 9
Q Huang (602_CR19) 2024; 16
RJ Fletcher (602_CR28) 2019; 29
D Zhao (602_CR34) 2024; 24
602_CR20
SK Chaudhary (602_CR36) 2024; 196
602_CR7
P Leimgruber (602_CR24) 2003; 6
HL Larsen (602_CR8) 2023; 7
K Bod’ová (602_CR50) 2018; 13
A Proença-Ferreira (602_CR12) 2023; 75
L Breiman (602_CR26) 2001; 45
PD McLoughlin (602_CR27) 2010; 277
V Kumar (602_CR21) 2023; 13
CPD Birch (602_CR31) 2007; 206
M Panzacchi (602_CR13) 2016; 85
602_CR32
S Unnithan Kumar (602_CR51) 2022; 11
S Koch (602_CR30) 2015; 79
M Ali (602_CR35) 2022; 12
P Bogiatzis (602_CR49) 2021; 227
A Campos-Arceiz (602_CR38) 2022; 1
DC Wynn (602_CR33) 2017; 28
P Fernando (602_CR39) 2011; 35
R Engler (602_CR11) 2012; 35
VR Goswami (602_CR25) 2015; 29
602_CR2
MS Boyce (602_CR15) 2002; 157
C Huang (602_CR23) 2019; 7
602_CR1
JR Potts (602_CR16) 2022; 13
R Ball (602_CR43) 2022; 12
MB Hooten (602_CR29) 2013; 82
References_xml – ident: 602_CR1
  doi: 10.1111/ecog.07421
– volume: 24
  start-page: 5643
  issue: 17
  year: 2024
  ident: 602_CR34
  publication-title: Sensors
  doi: 10.3390/s24175643
– volume: 2
  start-page: 4
  issue: 1
  year: 2014
  ident: 602_CR17
  publication-title: Mov Ecol
  doi: 10.1186/2051-3933-2-4
– volume: 196
  start-page: 936
  year: 2024
  ident: 602_CR36
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-024-13110-2
– ident: 602_CR48
  doi: 10.48550/arXiv.2403.14151
– volume: 227
  start-page: 669
  issue: 1
  year: 2021
  ident: 602_CR49
  publication-title: Geophys J Int
  doi: 10.1093/gji/ggab247
– volume: 12
  start-page: 1018
  issue: 8
  year: 2022
  ident: 602_CR43
  publication-title: Animals
  doi: 10.3390/ani12081018
– volume: 11
  start-page: 329
  issue: 6
  year: 2022
  ident: 602_CR51
  publication-title: ISPRS Int J Geo-Inf
  doi: 10.3390/ijgi11060329
– volume-title: Exploring the intersection between land use dynamics, habitat connectivity and human-elephant interactions in shared landscapes
  year: 2022
  ident: 602_CR44
– volume: 22
  start-page: 685
  issue: 6
  year: 2014
  ident: 602_CR37
  publication-title: Biodivers Sci
  doi: 10.3724/SP.J.1003.2014.14203
– volume: 8
  start-page: 63
  issue: 2
  year: 2019
  ident: 602_CR53
  publication-title: ISPRS Int J Geo-Inf
  doi: 10.3390/ijgi8020063
– volume: 6
  start-page: 347
  issue: 4
  year: 2003
  ident: 602_CR24
  publication-title: Anim Conserv
  doi: 10.1017/S1367943003003421
– volume: 12
  start-page: 201
  issue: 1
  year: 2022
  ident: 602_CR35
  publication-title: Electronics
  doi: 10.3390/electronics12010201
– volume: 9
  start-page: 681704
  year: 2021
  ident: 602_CR40
  publication-title: Front Ecol Evol
  doi: 10.3389/fevo.2021.681704
– volume: 79
  start-page: 652
  issue: 4
  year: 2015
  ident: 602_CR30
  publication-title: J Wildl Manag
  doi: 10.3390/ijgi13050166
– volume: 157
  start-page: 281
  issue: 2–3
  year: 2002
  ident: 602_CR15
  publication-title: Ecol Modell
  doi: 10.3390/ani12081018
– volume: 12
  start-page: 37
  issue: 1
  year: 2024
  ident: 602_CR6
  publication-title: Mov Ecol
  doi: 10.1186/s40462-024-00476-8
– volume: 104
  start-page: e3473
  issue: 5
  year: 2023
  ident: 602_CR4
  publication-title: Ecology
  doi: 10.1002/ecy.3473
– ident: 602_CR2
  doi: 10.1016/j.cub.2018.04.043
– volume: 82
  start-page: 1146
  issue: 6
  year: 2013
  ident: 602_CR29
  publication-title: The J Anim Ecol
  doi: 10.1111/1365-2656.12080
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 602_CR26
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 162
  start-page: 112420
  year: 2022
  ident: 602_CR47
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2022.112420
– volume: 7
  start-page: 680
  issue: 11
  year: 2023
  ident: 602_CR8
  publication-title: Drones
  doi: 10.3390/drones7110680
– volume: 168
  start-page: 108123
  year: 2022
  ident: 602_CR18
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2022.108123
– volume: 82
  start-page: 335
  issue: 3
  year: 2012
  ident: 602_CR42
  publication-title: Ecol Monogr
  doi: 10.1890/11-0326.1
– volume: 28
  start-page: 153
  year: 2017
  ident: 602_CR33
  publication-title: Res Eng Des
  doi: 10.1007/s00163-016-0226-3
– volume: 85
  start-page: 32
  issue: 1
  year: 2016
  ident: 602_CR13
  publication-title: The J Anim Ecol
  doi: 10.1111/1365-2656.12386
– volume: 29
  start-page: 1100
  issue: 4
  year: 2015
  ident: 602_CR25
  publication-title: Conserv Biol
  doi: 10.1111/cobi.12475
– volume: 12
  start-page: 2042
  issue: 10
  year: 2021
  ident: 602_CR45
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.13685
– ident: 602_CR7
  doi: 10.1126/science.aaa2478
– ident: 602_CR20
  doi: 10.3390/land11111957
– volume: 16
  start-page: 260
  issue: 5
  year: 2024
  ident: 602_CR19
  publication-title: Diversity
  doi: 10.3390/d16050260
– volume: 13
  start-page: 1805
  issue: 8
  year: 2022
  ident: 602_CR16
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.13904
– volume: 1
  start-page: 40
  issue: 1
  year: 2022
  ident: 602_CR38
  publication-title: Intgr Conserv
  doi: 10.1002/inc3.10
– volume: 44
  start-page: 409
  issue: 4
  year: 2020
  ident: 602_CR10
  publication-title: Chin J Plant Ecol
  doi: 10.17521/cjpe.2019.0165
– volume: 29
  start-page: e01954
  issue: 6
  year: 2019
  ident: 602_CR28
  publication-title: Ecol Appl
  doi: 10.1111/j.1365-2656.2009.01534.x
– volume: 15
  start-page: 5033
  issue: 6
  year: 2023
  ident: 602_CR22
  publication-title: Sustainability
  doi: 10.3390/su15065033
– volume: 13
  start-page: e0193049
  issue: 3
  year: 2018
  ident: 602_CR50
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0193049
– volume: 35
  start-page: 15
  year: 2011
  ident: 602_CR39
  publication-title: Gajah
– volume: 10
  start-page: 16
  issue: 1
  year: 2022
  ident: 602_CR5
  publication-title: Mov Ecol
  doi: 10.1186/s40462-022-00316-7
– volume: 75
  start-page: 102018
  year: 2023
  ident: 602_CR12
  publication-title: Ecol Inf
  doi: 10.1016/j.ecoinf.2023.102018
– volume: 13
  start-page: 3355
  issue: 10
  year: 2023
  ident: 602_CR21
  publication-title: Int J Environ Clim Change
  doi: 10.9734/ijecc/2023/v13i103004
– volume: 35
  start-page: 872
  issue: 10
  year: 2012
  ident: 602_CR11
  publication-title: Ecography
  doi: 10.1111/j.1600-0587.2012.07608.x
– volume: 8
  start-page: 670
  issue: 5
  year: 2022
  ident: 602_CR9
  publication-title: Remote Sens Ecol Conserv
  doi: 10.1002/rse2.269
– volume: 7
  start-page: e6791
  year: 2019
  ident: 602_CR23
  publication-title: PeerJ
  doi: 10.7717/peerj.6791
– volume: 277
  start-page: 1449
  issue: 1686
  year: 2010
  ident: 602_CR27
  publication-title: Proc R Soc B: Biol Sci
  doi: 10.1098/rspb.2006.3486
– volume: 206
  start-page: 347
  issue: 3–4
  year: 2007
  ident: 602_CR31
  publication-title: Ecol Modell
  doi: 10.1016/j.ecolmodel.2007.03.041
– ident: 602_CR32
  doi: 10.1109/NNICE61279.2024.10498463
– volume: 89
  start-page: 2712
  issue: 10
  year: 2008
  ident: 602_CR14
  publication-title: Ecology
  doi: 10.1890/07-1861.1
– volume: 59
  start-page: 678
  issue: 3
  year: 2022
  ident: 602_CR46
  publication-title: J Educ Chang Appl Ecol
  doi: 10.11609/jott.4467.11.13.14643-14654
– start-page: 349
  volume-title: Spatial complexity, informatics, and wildlife conservation
  year: 2010
  ident: 602_CR3
  doi: 10.1007/978-4-431-87771-4_19
– volume: 9
  start-page: 724887
  year: 2021
  ident: 602_CR41
  publication-title: Front Ecol Evol
  doi: 10.3389/fevo.2021.724887
– volume: 22
  start-page: 113
  issue: 1
  year: 2022
  ident: 602_CR52
  publication-title: BMC Ecol Evol
  doi: 10.1186/s12898-020-00319-1
SSID ssj0000970278
Score 2.3123877
Snippet 1. Effective conservation planning and conflict mitigation can hinge on accurately modelling wildlife movement paths (WMPs), yet progress is hindered by both a...
Abstract 1. Effective conservation planning and conflict mitigation can hinge on accurately modelling wildlife movement paths (WMPs), yet progress is hindered...
SourceID doaj
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 78
SubjectTerms Algorithms
Animal Ecology
Asian elephants (elephas maximus)
Biomedical and Life Sciences
Conflict management
Conservation Biology/Ecology
Enhanced resource selection function–vector network iterative pathfinding algorithm
Human-wildlife conflict
Life Sciences
Limited data
Methodology
Protection and preservation
Terrestial Ecology
Wildlife
Wildlife movement path prediction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA5SFPpSvLajVSIIPujQ2UwmF99W2UVBSrEqfQu5woKdlZ1pof_eczIzZVdBX3wbJhlIzknyfZnkfIeQV6GxKXBUALDS4q8bXzrRzMoAWO5sw2SIWWf2szw9VRcX-mwr1RfeCRvkgQfDnYgmRhF05NZHrpxwKXLuGTCNuuFWZWpUSb21mcprsJZ4pDZFyShx0nEMwywxeytqkMDTDhJlwf4_l-UtXPrtoDTjz_I-ORiJI50PDX5A7sT2Ibm3yKLTN4_I-Zwuvpwvy--fzuY0TTeu3tEOfIDRURQ4cfixSpFerrNEeE9zEhyMRqdAXKkf40Po5WqQ3Vi3j8m35eLrh4_lmDCh9FzKvmxclWKquOeVFRJ2QnVgLLAmSiZ08NrKCAuj8Nolq7xTzjPAJmnrqBx8xeonZK9dt_GIUO8B2SywhcASj7XUsk51452T3s4qHwryZjKe-TnoYpi8n1DCDKY2YGqTTW2qgrxH-97WRE3r_AI8bUZPm395uiCv0TsGZ16_sd6OAQTQYNSwMnMlgK4gJBfkeKcmzBi_U_xy8q_BIrxm1sb1VWeAywoN23Y1K8jh4PjbNvMZ2BPoYEHeTiPBjPO9-0vXn_6Prj8j-wxHLmJmdUz2-s1VfE7u-ut-1W1e5KH_CwK7BDg
  priority: 102
  providerName: Directory of Open Access Journals
Title A ERSF-VIPA framework: scalable wildlife movement modelling for conflict mitigation
URI https://link.springer.com/article/10.1186/s40462-025-00602-0
https://www.ncbi.nlm.nih.gov/pubmed/41163125
https://www.proquest.com/docview/3266971381
https://doaj.org/article/65ee6d9e4ace48b6bfe44c2054354a8a
Volume 13
WOSCitedRecordID wos001604098700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 2051-3933
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970278
  issn: 2051-3933
  databaseCode: RBZ
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2051-3933
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970278
  issn: 2051-3933
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2051-3933
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970278
  issn: 2051-3933
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2051-3933
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970278
  issn: 2051-3933
  databaseCode: M7P
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database (subscripiton)
  customDbUrl:
  eissn: 2051-3933
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970278
  issn: 2051-3933
  databaseCode: PATMY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2051-3933
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970278
  issn: 2051-3933
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2051-3933
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970278
  issn: 2051-3933
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2051-3933
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970278
  issn: 2051-3933
  databaseCode: RSV
  dateStart: 20131201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB-8O4V78duzei4RBB-02G3TJPVtT3bxQJeyq8f6FPJVWfC6su0J_vdO0nZxVQR9K_mAdDKT3ySZ-QXgmc1VZalnAFBc-aMbE2uWj2OLWK5VnnLrAs_sOz6fi9WqKPuksGaIdh-uJMNKHcxasFcN9XmUsX9-1ZOI4NcBHCHcCf9gw2J5sTtZSQrur9OGDJk_dt1DoUDW__uS_BMm_XJJGrBnduv_Rn0bbva-Jpl0ynEHrrn6LtyYBp7q7_dgOSHTxXIWX5yXE1INQVqvSYPT5hOqCLrR9su6cuRyE1jFWxLezfEJ7AR9XWL6lBJyue6YOjb1ffg4m3548zbu31iIDeW8jXOdVK5KqKGJYhw3T5lNU5vmjqessKZQ3OFaykyhKyWMFtqkCGdcZU5o7JVmD-Cw3tTuIRBjEAwVOhg2rajLeMGzKsuN1tyocWJsBC8GmcuvHZWGDFsQwWQnJolikkFMMongzE_LrqWnwQ4Fm-1n2VuVZLlzzBaOKuOo0ExXjuKg0A3NcqqEiuC5n1TpjbXdKqP6nAMcsKe9khPB0MPxKB7B6V5LNDKzV_10UAvpq3xkWu02V41E95cVuNMX4whOOn3ZjZmOUZ7oQUbwclAO2S8RzV9-_dG_NX8Mx6nXLw-oySkcttsr9wSum2_tutmO4ICvxAiOzqbzcjEKRw4jH-BaYll5_r78NArW8wNBew1w
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB-0KvWlfmts1RUEH2wwl2x2N3075Y4Wz6P0aunbsl-RgzaRSyr43zu7SY6eiqBvIdmFyezM_GY_5rcAb2yuSks9A4Diyi_dmFizfBRbxHKt8pRbF3hmZ3w-F-fnxXFfFNYMp92HLckQqYNbC_a-ob6OMvbXr3oSEXy6CbcoIpZnzD9ZnK1XVpKC--20oULmj103UCiQ9f8ekq9h0i-bpAF7pvf-T-r7sNPnmmTcGccDuOGqh3BnEniqfzyCxZhMThbT-OzoeEzK4ZDWAWlw2HxBFcE02l4sS0cu68Aq3pJwb44vYCeY6xLTl5SQy2XH1FFXj-HLdHL68TDu71iIDeW8jXOdlK5MqKGJYhwnT5lNU5vmjqessKZQ3GEsZabQpRJGC21ShDOuMic09kqzJ7BV1ZV7BsQYBEOFCYZNS-oyXvCszHKjNTdqlBgbwbtB5_JbR6UhwxREMNmpSaKaZFCTTCL44Idl3dLTYIcX9eqr7L1Kstw5ZgtHlXFUaKZLR1EoTEOznCqhInjrB1V6Z21Xyqi-5gAF9rRXciwYZjgexSPY22iJTmY2Pr8ezEL6T_5kWuXqq0Zi-ssKnOmLUQRPO3tZy0xHqE_MICPYH4xD9iGi-cuvP_-35q9g-_D080zOjuafduFu6m3Ng2uyB1vt6sq9gNvme7tsVi-Dn_wERhgKNg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_0_MAXvz2rp0YQfPDKdds0aX1bdRcPj2Vx9bi3kK_Kwl332PYE_3tn0na5VRHEt9IkkExmMr8kM78AvHK5rhwnBgAtNR3d2NiIfBQ79OVG56l0PvDMHsnZrDg5KeeXsvhDtPtwJdnlNBBLU90enLuqM_FCHDSccipjeoqVCEXw6ypc4xRIT_v1xfHmlCUpJV2tDdkyf2y65ZECcf_vy_Ml__TLhWnwQ9M7_z-Cu3C7x6Bs3CnNPbji6_twYxL4q388gMWYTT4vpvHx4XzMqiF46y1rcDop0YohvHany8qzs1VgG29ZeE-HEtsZYmBm-1QTdrbsGDxW9UP4Op18ef8x7t9eiC2Xso1zk1S-SrjliRYSN1WZS1OX5l6monS21NLjGitsaSpdWFMYm6KbkzrzhcFWafYIdupV7R8DsxadpEbg4dKK-0yWMquy3BojrR4l1kXwZpC_Ou8oNlTYmhRCdWJSKCYVxKSSCN7RFG1qEj12-LFaf1O9tSmRey9c6bm2nhdGmMpz7BTC0yznutARvKYJVmTE7Vpb3eciYIeJDkuNC4HIh7x7BHtbNdH47Fbxy0FFFBVRxFrtVxeNQlgsSjlCQBTBbqc7mz7zEcoTkWUE-4OiqH7paP4y9Cf_Vv0F3Jx_mKqjw9mnp3ArJVUjn5vswU67vvDP4Lr93i6b9fNgMj8BKpYTGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+ERSF-VIPA+framework%3A+scalable+wildlife+movement+modelling+for+conflict+mitigation&rft.jtitle=Movement+ecology&rft.au=Chen%2C+Xiaoyi&rft.au=Li%2C+Jie&rft.au=Cao%2C+Xinyu&rft.au=Yang%2C+Yin&rft.date=2025-10-30&rft.pub=BioMed+Central+Ltd&rft.issn=2051-3933&rft.eissn=2051-3933&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1186%2Fs40462-025-00602-0&rft.externalDocID=A861813036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-3933&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-3933&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-3933&client=summon