A ERSF-VIPA framework: scalable wildlife movement modelling for conflict mitigation
1. Effective conservation planning and conflict mitigation can hinge on accurately modelling wildlife movement paths (WMPs), yet progress is hindered by both a shortage of reliable methods and limited data. The critical challenge, therefore, is to devise limited-data models that faithfully reproduce...
Uložené v:
| Vydané v: | Movement ecology Ročník 13; číslo 1; s. 78 - 14 |
|---|---|
| Hlavní autori: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
BioMed Central
30.10.2025
BioMed Central Ltd BMC |
| Predmet: | |
| ISSN: | 2051-3933, 2051-3933 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | 1. Effective conservation planning and conflict mitigation can hinge on accurately modelling wildlife movement paths (WMPs), yet progress is hindered by both a shortage of reliable methods and limited data. The critical challenge, therefore, is to devise limited-data models that faithfully reproduce elusive species’ movements and deliver actionable insights for human–wildlife conflict management. 2. We introduce the Enhanced Resource Selection Function–Vector-network Iterative Pathfinding Algorithm (ERSF-VIPA), a novel framework for simulating WMPs with limited data. Drawing on historical occurrence records of Asian elephants (
Elephas maximus
), we assume individuals make rational, goal-driven decisions based on local environmental knowledge. The ERSF employs a random forest on a hexagonal grid to estimate nonlinear resource-selection probabilities, while VIPA conducts an iterative, node-to-node search across that hexagonal vector network—scoring each candidate by combining selection probability with cubic distance coefficients to ensure ecological validity and energetic efficiency. 3. The model demonstrates high accuracy, with 90.3% of the 68 simulated paths approximating the observed paths with an average maximum deviation of 418 m. These findings underscore the model’s robustness and its capacity to translate limited tracking data into actionable insights for conservation. 4. ERSF-VIPA operates using only coarse, non-continuous historical data that lack precise timestamps or spatial accuracy. By operating with minimal data requirements, ERSF-VIPA demonstrates exceptional extensibility and broad applicability for reconstructing movement paths of elusive wildlife species. Its proven accuracy in simulating Asian elephant paths further positions it as a potentially powerful decision-support framework for real-time animal monitoring and proactive human–wildlife conflict mitigation. |
|---|---|
| AbstractList | 1. Effective conservation planning and conflict mitigation can hinge on accurately modelling wildlife movement paths (WMPs), yet progress is hindered by both a shortage of reliable methods and limited data. The critical challenge, therefore, is to devise limited-data models that faithfully reproduce elusive species' movements and deliver actionable insights for human-wildlife conflict management. 2. We introduce the Enhanced Resource Selection Function-Vector-network Iterative Pathfinding Algorithm (ERSF-VIPA), a novel framework for simulating WMPs with limited data. Drawing on historical occurrence records of Asian elephants (Elephas maximus), we assume individuals make rational, goal-driven decisions based on local environmental knowledge. The ERSF employs a random forest on a hexagonal grid to estimate nonlinear resource-selection probabilities, while VIPA conducts an iterative, node-to-node search across that hexagonal vector network-scoring each candidate by combining selection probability with cubic distance coefficients to ensure ecological validity and energetic efficiency. 3. The model demonstrates high accuracy, with 90.3% of the 68 simulated paths approximating the observed paths with an average maximum deviation of 418 m. These findings underscore the model's robustness and its capacity to translate limited tracking data into actionable insights for conservation. 4. ERSF-VIPA operates using only coarse, non-continuous historical data that lack precise timestamps or spatial accuracy. By operating with minimal data requirements, ERSF-VIPA demonstrates exceptional extensibility and broad applicability for reconstructing movement paths of elusive wildlife species. Its proven accuracy in simulating Asian elephant paths further positions it as a potentially powerful decision-support framework for real-time animal monitoring and proactive human-wildlife conflict mitigation. 1. Effective conservation planning and conflict mitigation can hinge on accurately modelling wildlife movement paths (WMPs), yet progress is hindered by both a shortage of reliable methods and limited data. The critical challenge, therefore, is to devise limited-data models that faithfully reproduce elusive species' movements and deliver actionable insights for human-wildlife conflict management. 2. We introduce the Enhanced Resource Selection Function-Vector-network Iterative Pathfinding Algorithm (ERSF-VIPA), a novel framework for simulating WMPs with limited data. Drawing on historical occurrence records of Asian elephants (Elephas maximus), we assume individuals make rational, goal-driven decisions based on local environmental knowledge. The ERSF employs a random forest on a hexagonal grid to estimate nonlinear resource-selection probabilities, while VIPA conducts an iterative, node-to-node search across that hexagonal vector network--scoring each candidate by combining selection probability with cubic distance coefficients to ensure ecological validity and energetic efficiency. 3. The model demonstrates high accuracy, with 90.3% of the 68 simulated paths approximating the observed paths with an average maximum deviation of 418 m. These findings underscore the model's robustness and its capacity to translate limited tracking data into actionable insights for conservation. 4. ERSF-VIPA operates using only coarse, non-continuous historical data that lack precise timestamps or spatial accuracy. By operating with minimal data requirements, ERSF-VIPA demonstrates exceptional extensibility and broad applicability for reconstructing movement paths of elusive wildlife species. Its proven accuracy in simulating Asian elephant paths further positions it as a potentially powerful decision-support framework for real-time animal monitoring and proactive human-wildlife conflict mitigation. Keywords: Asian elephants (elephas maximus), Enhanced resource selection function-vector network iterative pathfinding algorithm, Human-wildlife conflict, Limited data, Wildlife movement path prediction 1. Effective conservation planning and conflict mitigation can hinge on accurately modelling wildlife movement paths (WMPs), yet progress is hindered by both a shortage of reliable methods and limited data. The critical challenge, therefore, is to devise limited-data models that faithfully reproduce elusive species’ movements and deliver actionable insights for human–wildlife conflict management. 2. We introduce the Enhanced Resource Selection Function–Vector-network Iterative Pathfinding Algorithm (ERSF-VIPA), a novel framework for simulating WMPs with limited data. Drawing on historical occurrence records of Asian elephants ( Elephas maximus ), we assume individuals make rational, goal-driven decisions based on local environmental knowledge. The ERSF employs a random forest on a hexagonal grid to estimate nonlinear resource-selection probabilities, while VIPA conducts an iterative, node-to-node search across that hexagonal vector network—scoring each candidate by combining selection probability with cubic distance coefficients to ensure ecological validity and energetic efficiency. 3. The model demonstrates high accuracy, with 90.3% of the 68 simulated paths approximating the observed paths with an average maximum deviation of 418 m. These findings underscore the model’s robustness and its capacity to translate limited tracking data into actionable insights for conservation. 4. ERSF-VIPA operates using only coarse, non-continuous historical data that lack precise timestamps or spatial accuracy. By operating with minimal data requirements, ERSF-VIPA demonstrates exceptional extensibility and broad applicability for reconstructing movement paths of elusive wildlife species. Its proven accuracy in simulating Asian elephant paths further positions it as a potentially powerful decision-support framework for real-time animal monitoring and proactive human–wildlife conflict mitigation. Abstract 1. Effective conservation planning and conflict mitigation can hinge on accurately modelling wildlife movement paths (WMPs), yet progress is hindered by both a shortage of reliable methods and limited data. The critical challenge, therefore, is to devise limited-data models that faithfully reproduce elusive species’ movements and deliver actionable insights for human–wildlife conflict management. 2. We introduce the Enhanced Resource Selection Function–Vector-network Iterative Pathfinding Algorithm (ERSF-VIPA), a novel framework for simulating WMPs with limited data. Drawing on historical occurrence records of Asian elephants (Elephas maximus), we assume individuals make rational, goal-driven decisions based on local environmental knowledge. The ERSF employs a random forest on a hexagonal grid to estimate nonlinear resource-selection probabilities, while VIPA conducts an iterative, node-to-node search across that hexagonal vector network—scoring each candidate by combining selection probability with cubic distance coefficients to ensure ecological validity and energetic efficiency. 3. The model demonstrates high accuracy, with 90.3% of the 68 simulated paths approximating the observed paths with an average maximum deviation of 418 m. These findings underscore the model’s robustness and its capacity to translate limited tracking data into actionable insights for conservation. 4. ERSF-VIPA operates using only coarse, non-continuous historical data that lack precise timestamps or spatial accuracy. By operating with minimal data requirements, ERSF-VIPA demonstrates exceptional extensibility and broad applicability for reconstructing movement paths of elusive wildlife species. Its proven accuracy in simulating Asian elephant paths further positions it as a potentially powerful decision-support framework for real-time animal monitoring and proactive human–wildlife conflict mitigation. 1. Effective conservation planning and conflict mitigation can hinge on accurately modelling wildlife movement paths (WMPs), yet progress is hindered by both a shortage of reliable methods and limited data. The critical challenge, therefore, is to devise limited-data models that faithfully reproduce elusive species' movements and deliver actionable insights for human-wildlife conflict management. 2. We introduce the Enhanced Resource Selection Function-Vector-network Iterative Pathfinding Algorithm (ERSF-VIPA), a novel framework for simulating WMPs with limited data. Drawing on historical occurrence records of Asian elephants (Elephas maximus), we assume individuals make rational, goal-driven decisions based on local environmental knowledge. The ERSF employs a random forest on a hexagonal grid to estimate nonlinear resource-selection probabilities, while VIPA conducts an iterative, node-to-node search across that hexagonal vector network-scoring each candidate by combining selection probability with cubic distance coefficients to ensure ecological validity and energetic efficiency. 3. The model demonstrates high accuracy, with 90.3% of the 68 simulated paths approximating the observed paths with an average maximum deviation of 418 m. These findings underscore the model's robustness and its capacity to translate limited tracking data into actionable insights for conservation. 4. ERSF-VIPA operates using only coarse, non-continuous historical data that lack precise timestamps or spatial accuracy. By operating with minimal data requirements, ERSF-VIPA demonstrates exceptional extensibility and broad applicability for reconstructing movement paths of elusive wildlife species. Its proven accuracy in simulating Asian elephant paths further positions it as a potentially powerful decision-support framework for real-time animal monitoring and proactive human-wildlife conflict mitigation.1. Effective conservation planning and conflict mitigation can hinge on accurately modelling wildlife movement paths (WMPs), yet progress is hindered by both a shortage of reliable methods and limited data. The critical challenge, therefore, is to devise limited-data models that faithfully reproduce elusive species' movements and deliver actionable insights for human-wildlife conflict management. 2. We introduce the Enhanced Resource Selection Function-Vector-network Iterative Pathfinding Algorithm (ERSF-VIPA), a novel framework for simulating WMPs with limited data. Drawing on historical occurrence records of Asian elephants (Elephas maximus), we assume individuals make rational, goal-driven decisions based on local environmental knowledge. The ERSF employs a random forest on a hexagonal grid to estimate nonlinear resource-selection probabilities, while VIPA conducts an iterative, node-to-node search across that hexagonal vector network-scoring each candidate by combining selection probability with cubic distance coefficients to ensure ecological validity and energetic efficiency. 3. The model demonstrates high accuracy, with 90.3% of the 68 simulated paths approximating the observed paths with an average maximum deviation of 418 m. These findings underscore the model's robustness and its capacity to translate limited tracking data into actionable insights for conservation. 4. ERSF-VIPA operates using only coarse, non-continuous historical data that lack precise timestamps or spatial accuracy. By operating with minimal data requirements, ERSF-VIPA demonstrates exceptional extensibility and broad applicability for reconstructing movement paths of elusive wildlife species. Its proven accuracy in simulating Asian elephant paths further positions it as a potentially powerful decision-support framework for real-time animal monitoring and proactive human-wildlife conflict mitigation. |
| ArticleNumber | 78 |
| Audience | Academic |
| Author | Yang, Yin Chen, Xiaoyi Chapman, Colin A. Wang, Xiaohuan Yang, Feiling Kong, Dejun Li, Jie Li, Xiao Cao, Xinyu Qiao, Ruijing |
| Author_xml | – sequence: 1 givenname: Xiaoyi surname: Chen fullname: Chen, Xiaoyi organization: Institute of International Rivers and Eco-Security, Yunnan University, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, State Key Laboratory of Vegetation Structure, Functions and Construction (VegLab), Yunnan University – sequence: 2 givenname: Jie surname: Li fullname: Li, Jie email: jie_li@ynu.edu.cn organization: Institute of International Rivers and Eco-Security, Yunnan University, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, State Key Laboratory of Vegetation Structure, Functions and Construction (VegLab), Yunnan University – sequence: 3 givenname: Xinyu surname: Cao fullname: Cao, Xinyu organization: Institute of International Rivers and Eco-Security, Yunnan University, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, State Key Laboratory of Vegetation Structure, Functions and Construction (VegLab), Yunnan University – sequence: 4 givenname: Yin surname: Yang fullname: Yang, Yin organization: Institute of International Rivers and Eco-Security, Yunnan University, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, State Key Laboratory of Vegetation Structure, Functions and Construction (VegLab), Yunnan University – sequence: 5 givenname: Colin A. surname: Chapman fullname: Chapman, Colin A. organization: Biology Department, Vancouver Island University, School of Life Sciences, University of KwaZulu-Natal, Shaanxi Key Laboratory for Animal Conservation, Northwest University – sequence: 6 givenname: Xiao surname: Li fullname: Li, Xiao organization: School of Statistics and Mathematics, Yunnan University of Finance and Economics – sequence: 7 givenname: Ruijing surname: Qiao fullname: Qiao, Ruijing organization: Institute of International Rivers and Eco-Security, Yunnan University, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, State Key Laboratory of Vegetation Structure, Functions and Construction (VegLab), Yunnan University – sequence: 8 givenname: Xiaohuan surname: Wang fullname: Wang, Xiaohuan organization: Institute of International Rivers and Eco-Security, Yunnan University, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, State Key Laboratory of Vegetation Structure, Functions and Construction (VegLab), Yunnan University – sequence: 9 givenname: Feiling surname: Yang fullname: Yang, Feiling organization: Institute of International Rivers and Eco-Security, Yunnan University, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, State Key Laboratory of Vegetation Structure, Functions and Construction (VegLab), Yunnan University – sequence: 10 givenname: Dejun surname: Kong fullname: Kong, Dejun email: kongdj@ynu.edu.cn organization: School of Ecology and Environmental Science, Yunnan University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41163125$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kl1rFTEQhoNUbK39A17IgjfebM3XJrveHUqrBwqKVW9DNjtZctxNarKnxX_vtFuLgphcZBie92UmM8_JQUwRCHnJ6CljrXpbJJWK15Q3NaWKYvSEHHHasFp0Qhz8ER-Sk1J2FE-nKdftM3IoGVOC8eaIXG2q889XF_W37adN5bOd4Tbl7--q4uxk-wmq2zANU_BQzekGZogLBgNMU4hj5VOuXIp-Cg7TYQmjXUKKL8hTb6cCJw_vMfl6cf7l7EN9-fH99mxzWTup9VI3PfXgqXSSWqU1VjRwPvAGNFfd4DqrgUmlXNd727q-7R2XmmkroO1RxcUx2a6-Q7I7c53DbPNPk2ww94mUR2PzEtwERjUAauhAWgey7VXvQaIFbaRopG0ter1Zva5z-rGHspg5FId92ghpX4zgSnWaiZYh-npFR4vOIfq0ZOvucLNpFUOCCoXU6T8ovAPMAT8NfMD8X4JXDxXs-xmGx35-zwoBvgIup1Iy-EeEUXO3E2bdCYM7Ye53wlAUiVVUEI4jZLNL-xxxLP9T_QIEjbWr |
| Cites_doi | 10.1111/ecog.07421 10.3390/s24175643 10.1186/2051-3933-2-4 10.1007/s10661-024-13110-2 10.48550/arXiv.2403.14151 10.1093/gji/ggab247 10.3390/ani12081018 10.3390/ijgi11060329 10.3724/SP.J.1003.2014.14203 10.3390/ijgi8020063 10.1017/S1367943003003421 10.3390/electronics12010201 10.3389/fevo.2021.681704 10.3390/ijgi13050166 10.1186/s40462-024-00476-8 10.1002/ecy.3473 10.1016/j.cub.2018.04.043 10.1111/1365-2656.12080 10.1023/A:1010933404324 10.1016/j.chaos.2022.112420 10.3390/drones7110680 10.1016/j.cie.2022.108123 10.1890/11-0326.1 10.1007/s00163-016-0226-3 10.1111/1365-2656.12386 10.1111/cobi.12475 10.1111/2041-210X.13685 10.1126/science.aaa2478 10.3390/land11111957 10.3390/d16050260 10.1111/2041-210X.13904 10.1002/inc3.10 10.17521/cjpe.2019.0165 10.1111/j.1365-2656.2009.01534.x 10.3390/su15065033 10.1371/journal.pone.0193049 10.1186/s40462-022-00316-7 10.1016/j.ecoinf.2023.102018 10.9734/ijecc/2023/v13i103004 10.1111/j.1600-0587.2012.07608.x 10.1002/rse2.269 10.7717/peerj.6791 10.1098/rspb.2006.3486 10.1016/j.ecolmodel.2007.03.041 10.1109/NNICE61279.2024.10498463 10.1890/07-1861.1 10.11609/jott.4467.11.13.14643-14654 10.1007/978-4-431-87771-4_19 10.3389/fevo.2021.724887 10.1186/s12898-020-00319-1 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). COPYRIGHT 2025 BioMed Central Ltd. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: COPYRIGHT 2025 BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION NPM 7X8 DOA |
| DOI | 10.1186/s40462-025-00602-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Ecology |
| EISSN | 2051-3933 |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_65ee6d9e4ace48b6bfe44c2054354a8a A861813036 41163125 10_1186_s40462_025_00602_0 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 0R~ 2XV 5VS 7XC 8FE 8FH AAFWJ AAHBH AAJSJ AASML ACGFS ADBBV ADRAZ ADUKV AEUYN AFFHD AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ASPBG ATCPS BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC C6C CCPQU DIK EBLON EBS ECGQY EYRJQ GROUPED_DOAJ HCIFZ HYE IAO IEP IHR ITC KQ8 LK8 M7P M~E OK1 PATMY PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PYCSY RBZ ROL RPM RSV SOJ AAYXX CITATION NPM 7X8 |
| ID | FETCH-LOGICAL-c477t-5b0fef04c40a677163d22d25e7269dc9a7e1466c9bfa8cb8bc24717a3e8b04c23 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001604098700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2051-3933 |
| IngestDate | Mon Nov 10 19:21:18 EST 2025 Thu Oct 30 17:17:35 EDT 2025 Wed Nov 05 19:54:27 EST 2025 Tue Nov 04 05:29:19 EST 2025 Mon Nov 03 02:06:00 EST 2025 Wed Nov 05 20:34:19 EST 2025 Thu Oct 30 01:15:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Wildlife movement path prediction Human-wildlife conflict ) Enhanced resource selection function–vector network iterative pathfinding algorithm Asian elephants Limited data Asian elephants (elephas maximus) |
| Language | English |
| License | 2025. The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c477t-5b0fef04c40a677163d22d25e7269dc9a7e1466c9bfa8cb8bc24717a3e8b04c23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1186/s40462-025-00602-0 |
| PMID | 41163125 |
| PQID | 3266971381 |
| PQPubID | 23479 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_65ee6d9e4ace48b6bfe44c2054354a8a proquest_miscellaneous_3266971381 gale_infotracmisc_A861813036 gale_infotracacademiconefile_A861813036 pubmed_primary_41163125 crossref_primary_10_1186_s40462_025_00602_0 springer_journals_10_1186_s40462_025_00602_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-30 |
| PublicationDateYYYYMMDD | 2025-10-30 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Movement ecology |
| PublicationTitleAbbrev | Mov Ecol |
| PublicationTitleAlternate | Mov Ecol |
| PublicationYear | 2025 |
| Publisher | BioMed Central BioMed Central Ltd BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
| References | BT McClintock (602_CR4) 2023; 104 BH McRae (602_CR14) 2008; 89 BT McClintock (602_CR42) 2012; 82 I Sebsibe (602_CR52) 2022; 22 L Ong (602_CR45) 2021; 12 P Palencia (602_CR9) 2022; 8 C Li (602_CR18) 2022; 168 H Thurfjell (602_CR17) 2014; 2 602_CR48 SA Cushman (602_CR3) 2010 RK Thakur (602_CR46) 2022; 59 Y Du (602_CR22) 2023; 15 S Li (602_CR37) 2014; 22 K Singh (602_CR47) 2022; 162 DD Hofmann (602_CR6) 2024; 12 MA Lewis (602_CR40) 2021; 9 GS Malley (602_CR44) 2022 WH Xiao (602_CR10) 2020; 44 J He (602_CR53) 2019; 8 B Goodheart (602_CR5) 2022; 10 T Kashetsky (602_CR41) 2021; 9 Q Huang (602_CR19) 2024; 16 RJ Fletcher (602_CR28) 2019; 29 D Zhao (602_CR34) 2024; 24 602_CR20 SK Chaudhary (602_CR36) 2024; 196 602_CR7 P Leimgruber (602_CR24) 2003; 6 HL Larsen (602_CR8) 2023; 7 K Bod’ová (602_CR50) 2018; 13 A Proença-Ferreira (602_CR12) 2023; 75 L Breiman (602_CR26) 2001; 45 PD McLoughlin (602_CR27) 2010; 277 V Kumar (602_CR21) 2023; 13 CPD Birch (602_CR31) 2007; 206 M Panzacchi (602_CR13) 2016; 85 602_CR32 S Unnithan Kumar (602_CR51) 2022; 11 S Koch (602_CR30) 2015; 79 M Ali (602_CR35) 2022; 12 P Bogiatzis (602_CR49) 2021; 227 A Campos-Arceiz (602_CR38) 2022; 1 DC Wynn (602_CR33) 2017; 28 P Fernando (602_CR39) 2011; 35 R Engler (602_CR11) 2012; 35 VR Goswami (602_CR25) 2015; 29 602_CR2 MS Boyce (602_CR15) 2002; 157 C Huang (602_CR23) 2019; 7 602_CR1 JR Potts (602_CR16) 2022; 13 R Ball (602_CR43) 2022; 12 MB Hooten (602_CR29) 2013; 82 |
| References_xml | – ident: 602_CR1 doi: 10.1111/ecog.07421 – volume: 24 start-page: 5643 issue: 17 year: 2024 ident: 602_CR34 publication-title: Sensors doi: 10.3390/s24175643 – volume: 2 start-page: 4 issue: 1 year: 2014 ident: 602_CR17 publication-title: Mov Ecol doi: 10.1186/2051-3933-2-4 – volume: 196 start-page: 936 year: 2024 ident: 602_CR36 publication-title: Environ Monit Assess doi: 10.1007/s10661-024-13110-2 – ident: 602_CR48 doi: 10.48550/arXiv.2403.14151 – volume: 227 start-page: 669 issue: 1 year: 2021 ident: 602_CR49 publication-title: Geophys J Int doi: 10.1093/gji/ggab247 – volume: 12 start-page: 1018 issue: 8 year: 2022 ident: 602_CR43 publication-title: Animals doi: 10.3390/ani12081018 – volume: 11 start-page: 329 issue: 6 year: 2022 ident: 602_CR51 publication-title: ISPRS Int J Geo-Inf doi: 10.3390/ijgi11060329 – volume-title: Exploring the intersection between land use dynamics, habitat connectivity and human-elephant interactions in shared landscapes year: 2022 ident: 602_CR44 – volume: 22 start-page: 685 issue: 6 year: 2014 ident: 602_CR37 publication-title: Biodivers Sci doi: 10.3724/SP.J.1003.2014.14203 – volume: 8 start-page: 63 issue: 2 year: 2019 ident: 602_CR53 publication-title: ISPRS Int J Geo-Inf doi: 10.3390/ijgi8020063 – volume: 6 start-page: 347 issue: 4 year: 2003 ident: 602_CR24 publication-title: Anim Conserv doi: 10.1017/S1367943003003421 – volume: 12 start-page: 201 issue: 1 year: 2022 ident: 602_CR35 publication-title: Electronics doi: 10.3390/electronics12010201 – volume: 9 start-page: 681704 year: 2021 ident: 602_CR40 publication-title: Front Ecol Evol doi: 10.3389/fevo.2021.681704 – volume: 79 start-page: 652 issue: 4 year: 2015 ident: 602_CR30 publication-title: J Wildl Manag doi: 10.3390/ijgi13050166 – volume: 157 start-page: 281 issue: 2–3 year: 2002 ident: 602_CR15 publication-title: Ecol Modell doi: 10.3390/ani12081018 – volume: 12 start-page: 37 issue: 1 year: 2024 ident: 602_CR6 publication-title: Mov Ecol doi: 10.1186/s40462-024-00476-8 – volume: 104 start-page: e3473 issue: 5 year: 2023 ident: 602_CR4 publication-title: Ecology doi: 10.1002/ecy.3473 – ident: 602_CR2 doi: 10.1016/j.cub.2018.04.043 – volume: 82 start-page: 1146 issue: 6 year: 2013 ident: 602_CR29 publication-title: The J Anim Ecol doi: 10.1111/1365-2656.12080 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 602_CR26 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 162 start-page: 112420 year: 2022 ident: 602_CR47 publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2022.112420 – volume: 7 start-page: 680 issue: 11 year: 2023 ident: 602_CR8 publication-title: Drones doi: 10.3390/drones7110680 – volume: 168 start-page: 108123 year: 2022 ident: 602_CR18 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2022.108123 – volume: 82 start-page: 335 issue: 3 year: 2012 ident: 602_CR42 publication-title: Ecol Monogr doi: 10.1890/11-0326.1 – volume: 28 start-page: 153 year: 2017 ident: 602_CR33 publication-title: Res Eng Des doi: 10.1007/s00163-016-0226-3 – volume: 85 start-page: 32 issue: 1 year: 2016 ident: 602_CR13 publication-title: The J Anim Ecol doi: 10.1111/1365-2656.12386 – volume: 29 start-page: 1100 issue: 4 year: 2015 ident: 602_CR25 publication-title: Conserv Biol doi: 10.1111/cobi.12475 – volume: 12 start-page: 2042 issue: 10 year: 2021 ident: 602_CR45 publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.13685 – ident: 602_CR7 doi: 10.1126/science.aaa2478 – ident: 602_CR20 doi: 10.3390/land11111957 – volume: 16 start-page: 260 issue: 5 year: 2024 ident: 602_CR19 publication-title: Diversity doi: 10.3390/d16050260 – volume: 13 start-page: 1805 issue: 8 year: 2022 ident: 602_CR16 publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.13904 – volume: 1 start-page: 40 issue: 1 year: 2022 ident: 602_CR38 publication-title: Intgr Conserv doi: 10.1002/inc3.10 – volume: 44 start-page: 409 issue: 4 year: 2020 ident: 602_CR10 publication-title: Chin J Plant Ecol doi: 10.17521/cjpe.2019.0165 – volume: 29 start-page: e01954 issue: 6 year: 2019 ident: 602_CR28 publication-title: Ecol Appl doi: 10.1111/j.1365-2656.2009.01534.x – volume: 15 start-page: 5033 issue: 6 year: 2023 ident: 602_CR22 publication-title: Sustainability doi: 10.3390/su15065033 – volume: 13 start-page: e0193049 issue: 3 year: 2018 ident: 602_CR50 publication-title: PLoS One doi: 10.1371/journal.pone.0193049 – volume: 35 start-page: 15 year: 2011 ident: 602_CR39 publication-title: Gajah – volume: 10 start-page: 16 issue: 1 year: 2022 ident: 602_CR5 publication-title: Mov Ecol doi: 10.1186/s40462-022-00316-7 – volume: 75 start-page: 102018 year: 2023 ident: 602_CR12 publication-title: Ecol Inf doi: 10.1016/j.ecoinf.2023.102018 – volume: 13 start-page: 3355 issue: 10 year: 2023 ident: 602_CR21 publication-title: Int J Environ Clim Change doi: 10.9734/ijecc/2023/v13i103004 – volume: 35 start-page: 872 issue: 10 year: 2012 ident: 602_CR11 publication-title: Ecography doi: 10.1111/j.1600-0587.2012.07608.x – volume: 8 start-page: 670 issue: 5 year: 2022 ident: 602_CR9 publication-title: Remote Sens Ecol Conserv doi: 10.1002/rse2.269 – volume: 7 start-page: e6791 year: 2019 ident: 602_CR23 publication-title: PeerJ doi: 10.7717/peerj.6791 – volume: 277 start-page: 1449 issue: 1686 year: 2010 ident: 602_CR27 publication-title: Proc R Soc B: Biol Sci doi: 10.1098/rspb.2006.3486 – volume: 206 start-page: 347 issue: 3–4 year: 2007 ident: 602_CR31 publication-title: Ecol Modell doi: 10.1016/j.ecolmodel.2007.03.041 – ident: 602_CR32 doi: 10.1109/NNICE61279.2024.10498463 – volume: 89 start-page: 2712 issue: 10 year: 2008 ident: 602_CR14 publication-title: Ecology doi: 10.1890/07-1861.1 – volume: 59 start-page: 678 issue: 3 year: 2022 ident: 602_CR46 publication-title: J Educ Chang Appl Ecol doi: 10.11609/jott.4467.11.13.14643-14654 – start-page: 349 volume-title: Spatial complexity, informatics, and wildlife conservation year: 2010 ident: 602_CR3 doi: 10.1007/978-4-431-87771-4_19 – volume: 9 start-page: 724887 year: 2021 ident: 602_CR41 publication-title: Front Ecol Evol doi: 10.3389/fevo.2021.724887 – volume: 22 start-page: 113 issue: 1 year: 2022 ident: 602_CR52 publication-title: BMC Ecol Evol doi: 10.1186/s12898-020-00319-1 |
| SSID | ssj0000970278 |
| Score | 2.3123877 |
| Snippet | 1. Effective conservation planning and conflict mitigation can hinge on accurately modelling wildlife movement paths (WMPs), yet progress is hindered by both a... Abstract 1. Effective conservation planning and conflict mitigation can hinge on accurately modelling wildlife movement paths (WMPs), yet progress is hindered... |
| SourceID | doaj proquest gale pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 78 |
| SubjectTerms | Algorithms Animal Ecology Asian elephants (elephas maximus) Biomedical and Life Sciences Conflict management Conservation Biology/Ecology Enhanced resource selection function–vector network iterative pathfinding algorithm Human-wildlife conflict Life Sciences Limited data Methodology Protection and preservation Terrestial Ecology Wildlife Wildlife movement path prediction |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA5SFPpSvLajVSIIPujQ2UwmF99W2UVBSrEqfQu5woKdlZ1pof_eczIzZVdBX3wbJhlIzknyfZnkfIeQV6GxKXBUALDS4q8bXzrRzMoAWO5sw2SIWWf2szw9VRcX-mwr1RfeCRvkgQfDnYgmRhF05NZHrpxwKXLuGTCNuuFWZWpUSb21mcprsJZ4pDZFyShx0nEMwywxeytqkMDTDhJlwf4_l-UtXPrtoDTjz_I-ORiJI50PDX5A7sT2Ibm3yKLTN4_I-Zwuvpwvy--fzuY0TTeu3tEOfIDRURQ4cfixSpFerrNEeE9zEhyMRqdAXKkf40Po5WqQ3Vi3j8m35eLrh4_lmDCh9FzKvmxclWKquOeVFRJ2QnVgLLAmSiZ08NrKCAuj8Nolq7xTzjPAJmnrqBx8xeonZK9dt_GIUO8B2SywhcASj7XUsk51452T3s4qHwryZjKe-TnoYpi8n1DCDKY2YGqTTW2qgrxH-97WRE3r_AI8bUZPm395uiCv0TsGZ16_sd6OAQTQYNSwMnMlgK4gJBfkeKcmzBi_U_xy8q_BIrxm1sb1VWeAywoN23Y1K8jh4PjbNvMZ2BPoYEHeTiPBjPO9-0vXn_6Prj8j-wxHLmJmdUz2-s1VfE7u-ut-1W1e5KH_CwK7BDg priority: 102 providerName: Directory of Open Access Journals |
| Title | A ERSF-VIPA framework: scalable wildlife movement modelling for conflict mitigation |
| URI | https://link.springer.com/article/10.1186/s40462-025-00602-0 https://www.ncbi.nlm.nih.gov/pubmed/41163125 https://www.proquest.com/docview/3266971381 https://doaj.org/article/65ee6d9e4ace48b6bfe44c2054354a8a |
| Volume | 13 |
| WOSCitedRecordID | wos001604098700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 2051-3933 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970278 issn: 2051-3933 databaseCode: RBZ dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2051-3933 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970278 issn: 2051-3933 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2051-3933 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970278 issn: 2051-3933 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2051-3933 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970278 issn: 2051-3933 databaseCode: M7P dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database (subscripiton) customDbUrl: eissn: 2051-3933 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970278 issn: 2051-3933 databaseCode: PATMY dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2051-3933 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970278 issn: 2051-3933 databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2051-3933 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970278 issn: 2051-3933 databaseCode: PIMPY dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2051-3933 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970278 issn: 2051-3933 databaseCode: RSV dateStart: 20131201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB-8O4V78duzei4RBB-02G3TJPVtT3bxQJeyq8f6FPJVWfC6su0J_vdO0nZxVQR9K_mAdDKT3ySZ-QXgmc1VZalnAFBc-aMbE2uWj2OLWK5VnnLrAs_sOz6fi9WqKPuksGaIdh-uJMNKHcxasFcN9XmUsX9-1ZOI4NcBHCHcCf9gw2J5sTtZSQrur9OGDJk_dt1DoUDW__uS_BMm_XJJGrBnduv_Rn0bbva-Jpl0ynEHrrn6LtyYBp7q7_dgOSHTxXIWX5yXE1INQVqvSYPT5hOqCLrR9su6cuRyE1jFWxLezfEJ7AR9XWL6lBJyue6YOjb1ffg4m3548zbu31iIDeW8jXOdVK5KqKGJYhw3T5lNU5vmjqessKZQ3OFaykyhKyWMFtqkCGdcZU5o7JVmD-Cw3tTuIRBjEAwVOhg2rajLeMGzKsuN1tyocWJsBC8GmcuvHZWGDFsQwWQnJolikkFMMongzE_LrqWnwQ4Fm-1n2VuVZLlzzBaOKuOo0ExXjuKg0A3NcqqEiuC5n1TpjbXdKqP6nAMcsKe9khPB0MPxKB7B6V5LNDKzV_10UAvpq3xkWu02V41E95cVuNMX4whOOn3ZjZmOUZ7oQUbwclAO2S8RzV9-_dG_NX8Mx6nXLw-oySkcttsr9wSum2_tutmO4ICvxAiOzqbzcjEKRw4jH-BaYll5_r78NArW8wNBew1w |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB-0KvWlfmts1RUEH2wwl2x2N3075Y4Wz6P0aunbsl-RgzaRSyr43zu7SY6eiqBvIdmFyezM_GY_5rcAb2yuSks9A4Diyi_dmFizfBRbxHKt8pRbF3hmZ3w-F-fnxXFfFNYMp92HLckQqYNbC_a-ob6OMvbXr3oSEXy6CbcoIpZnzD9ZnK1XVpKC--20oULmj103UCiQ9f8ekq9h0i-bpAF7pvf-T-r7sNPnmmTcGccDuOGqh3BnEniqfzyCxZhMThbT-OzoeEzK4ZDWAWlw2HxBFcE02l4sS0cu68Aq3pJwb44vYCeY6xLTl5SQy2XH1FFXj-HLdHL68TDu71iIDeW8jXOdlK5MqKGJYhwnT5lNU5vmjqessKZQ3GEsZabQpRJGC21ShDOuMic09kqzJ7BV1ZV7BsQYBEOFCYZNS-oyXvCszHKjNTdqlBgbwbtB5_JbR6UhwxREMNmpSaKaZFCTTCL44Idl3dLTYIcX9eqr7L1Kstw5ZgtHlXFUaKZLR1EoTEOznCqhInjrB1V6Z21Xyqi-5gAF9rRXciwYZjgexSPY22iJTmY2Pr8ezEL6T_5kWuXqq0Zi-ssKnOmLUQRPO3tZy0xHqE_MICPYH4xD9iGi-cuvP_-35q9g-_D080zOjuafduFu6m3Ng2uyB1vt6sq9gNvme7tsVi-Dn_wERhgKNg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_0_MAXvz2rp0YQfPDKdds0aX1bdRcPj2Vx9bi3kK_Kwl332PYE_3tn0na5VRHEt9IkkExmMr8kM78AvHK5rhwnBgAtNR3d2NiIfBQ79OVG56l0PvDMHsnZrDg5KeeXsvhDtPtwJdnlNBBLU90enLuqM_FCHDSccipjeoqVCEXw6ypc4xRIT_v1xfHmlCUpJV2tDdkyf2y65ZECcf_vy_Ml__TLhWnwQ9M7_z-Cu3C7x6Bs3CnNPbji6_twYxL4q388gMWYTT4vpvHx4XzMqiF46y1rcDop0YohvHany8qzs1VgG29ZeE-HEtsZYmBm-1QTdrbsGDxW9UP4Op18ef8x7t9eiC2Xso1zk1S-SrjliRYSN1WZS1OX5l6monS21NLjGitsaSpdWFMYm6KbkzrzhcFWafYIdupV7R8DsxadpEbg4dKK-0yWMquy3BojrR4l1kXwZpC_Ou8oNlTYmhRCdWJSKCYVxKSSCN7RFG1qEj12-LFaf1O9tSmRey9c6bm2nhdGmMpz7BTC0yznutARvKYJVmTE7Vpb3eciYIeJDkuNC4HIh7x7BHtbNdH47Fbxy0FFFBVRxFrtVxeNQlgsSjlCQBTBbqc7mz7zEcoTkWUE-4OiqH7paP4y9Cf_Vv0F3Jx_mKqjw9mnp3ArJVUjn5vswU67vvDP4Lr93i6b9fNgMj8BKpYTGg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+ERSF-VIPA+framework%3A+scalable+wildlife+movement+modelling+for+conflict+mitigation&rft.jtitle=Movement+ecology&rft.au=Chen%2C+Xiaoyi&rft.au=Li%2C+Jie&rft.au=Cao%2C+Xinyu&rft.au=Yang%2C+Yin&rft.date=2025-10-30&rft.pub=BioMed+Central+Ltd&rft.issn=2051-3933&rft.eissn=2051-3933&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1186%2Fs40462-025-00602-0&rft.externalDocID=A861813036 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-3933&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-3933&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-3933&client=summon |