Compressive Network Analysis

Modern data acquisition routinely produces massive amounts of network data. Though many methods and models have been proposed to analyze such data, the research of network data is largely disconnected with the classical theory of statistical learning and signal processing. In this paper, we present...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control Vol. 59; no. 11; pp. 2946 - 2961
Main Authors: Xiaoye Jiang, Yuan Yao, Han Liu, Guibas, Leonidas
Format: Journal Article
Language:English
Published: United States IEEE 01.11.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9286, 1558-2523
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Modern data acquisition routinely produces massive amounts of network data. Though many methods and models have been proposed to analyze such data, the research of network data is largely disconnected with the classical theory of statistical learning and signal processing. In this paper, we present a new framework for modeling network data, which connects two seemingly different areas: network data analysis and compressed sensing. From a nonparametric perspective, we model an observed network using a large dictionary. In particular, we consider the network clique detection problem and show connections between our formulation with a new algebraic tool, namely Randon basis pursuit in homogeneous spaces. Such a connection allows us to identify rigorous recovery conditions for clique detection problems. Though this paper is mainly conceptual, we also develop practical approximation algorithms for solving empirical problems and demonstrate their usefulness on real-world datasets.
AbstractList Modern data acquisition routinely produces massive amounts of network data. Though many methods and models have been proposed to analyze such data, the research of network data is largely disconnected with the classical theory of statistical learning and signal processing. In this paper, we present a new framework for modeling network data, which connects two seemingly different areas: network data analysis and compressed sensing. From a nonparametric perspective, we model an observed network using a large dictionary. In particular, we consider the network clique detection problem and show connections between our formulation with a new algebraic tool, namely Randon basis pursuit in homogeneous spaces. Such a connection allows us to identify rigorous recovery conditions for clique detection problems. Though this paper is mainly conceptual, we also develop practical approximation algorithms for solving empirical problems and demonstrate their usefulness on real-world datasets.
Modern data acquisition routinely produces massive amounts of network data. Though many methods and models have been proposed to analyze such data, the research of network data is largely disconnected with the classical theory of statistical learning and signal processing. In this paper, we present a new framework for modeling network data, which connects two seemingly different areas: and . From a nonparametric perspective, we model an observed network using a large dictionary. In particular, we consider the network clique detection problem and show connections between our formulation with a new algebraic tool, namely . Such a connection allows us to identify rigorous recovery conditions for clique detection problems. Though this paper is mainly conceptual, we also develop practical approximation algorithms for solving empirical problems and demonstrate their usefulness on real-world datasets.
Modern data acquisition routinely produces massive amounts of network data. Though many methods and models have been proposed to analyze such data, the research of network data is largely disconnected with the classical theory of statistical learning and signal processing. In this paper, we present a new framework for modeling network data, which connects two seemingly different areas: network data analysis and compressed sensing. From a nonparametric perspective, we model an observed network using a large dictionary. In particular, we consider the network clique detection problem and show connections between our formulation with a new algebraic tool, namely Randon basis pursuit in homogeneous spaces. Such a connection allows us to identify rigorous recovery conditions for clique detection problems. Though this paper is mainly conceptual, we also develop practical approximation algorithms for solving empirical problems and demonstrate their usefulness on real-world datasets.Modern data acquisition routinely produces massive amounts of network data. Though many methods and models have been proposed to analyze such data, the research of network data is largely disconnected with the classical theory of statistical learning and signal processing. In this paper, we present a new framework for modeling network data, which connects two seemingly different areas: network data analysis and compressed sensing. From a nonparametric perspective, we model an observed network using a large dictionary. In particular, we consider the network clique detection problem and show connections between our formulation with a new algebraic tool, namely Randon basis pursuit in homogeneous spaces. Such a connection allows us to identify rigorous recovery conditions for clique detection problems. Though this paper is mainly conceptual, we also develop practical approximation algorithms for solving empirical problems and demonstrate their usefulness on real-world datasets.
Author Han Liu
Yuan Yao
Xiaoye Jiang
Guibas, Leonidas
Author_xml – sequence: 1
  surname: Xiaoye Jiang
  fullname: Xiaoye Jiang
  organization: Stanford Univ., Stanford, CA, USA
– sequence: 2
  surname: Yuan Yao
  fullname: Yuan Yao
  email: yuany@math.pku.edu.cn
  organization: Peking Univ., Beijing, China
– sequence: 3
  surname: Han Liu
  fullname: Han Liu
  organization: Princeton Univ., Princeton, NJ, USA
– sequence: 4
  givenname: Leonidas
  surname: Guibas
  fullname: Guibas, Leonidas
  organization: Stanford Univ., Stanford, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25620806$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1LIzEYxsOirFX3LihS8OJlat4kk0kuQinrB8h60XNIM-9odDqpyVTxv9-Udot6cC8JIb_n_XieXbLVhQ4JOQA6AqD67G48GTEKYsR4CRWwH2QAZakKVjK-RQaUgio0U3KH7Kb0lJ9SCPhJdlgpGVVUDsjRJMzmEVPyrzj8g_1biM_DcWfb9-TTPtlubJvw1_reI_cXv-8mV8XN7eX1ZHxTOFFVfVHa6VQ2zllXU9o0jlZaorVVU-dD17ZmsnLawlQ6ja4UVa2aSkl0gjsJCvgeOV_VnS-mM6wddn20rZlHP7Px3QTrzeefzj-ah_BqBM8rMZoLnK4LxPCywNSbmU8O29Z2GBbJgGJSQp5L_B-VgmVvhOYZPfmCPoVFzN4sKZBaAdMqU8cfh99M_c_jDNAV4GJIKWKzQYCaZYwmx2iWMZp1jFkiv0ic723vw3J9334nPFwJPSJu-kilOHDO_wI3Hqib
CODEN IETAA9
CitedBy_id crossref_primary_10_1109_TCNS_2021_3089141
Cites_doi 10.1080/10556780310001607956
10.1145/1117454.1117459
10.1109/TIT.2005.864420
10.1038/30918
10.1007/BF02248731
10.1145/1772690.1772755
10.1111/j.2517-6161.1996.tb02080.x
10.1145/362342.362367
10.1016/0378-8733(87)90015-3
10.1126/science.286.5439.509
10.1109/SFCS.2000.892065
10.1007/BF02294547
10.1090/S0025-5718-08-02189-3
10.1007/3-540-45995-2_51
10.1214/009053606000001523
10.1287/opre.8.1.101
10.1111/j.1467-9868.2007.00581.x
10.5486/PMD.1959.6.3-4.12
10.1103/PhysRevE.71.065103
10.1002/(SICI)1098-2418(199810/12)13:3/4<457::AID-RSA14>3.3.CO;2-K
10.1046/j.0039-0402.2003.00258.x
10.1137/1.9781611973013.8
10.1073/pnas.0601602103
10.1073/pnas.0907096106
10.1017/CBO9780511811395.011
10.1080/0022250X.1971.9989788
10.1214/lnms/1215467407
10.1080/01621459.1981.10477598
10.1038/nature03607
10.1109/TIT.2004.828141
10.1023/A:1011419012209
10.1007/s10618-010-0186-6
10.1109/TIT.2006.871582
10.1002/9781118032701
10.1371/journal.pone.0012528
10.1198/016214502388618906
10.1103/PhysRevE.80.016118
10.1137/S1064827596304010
10.1016/j.crma.2008.03.014
10.1109/TIT.2005.858979
10.1073/pnas.122653799
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2014
2014 IEEE. 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2014
– notice: 2014 IEEE. 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
F28
7X8
5PM
DOI 10.1109/TAC.2014.2351712
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Technology Research Database
PubMed


Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 2961
ExternalDocumentID PMC4301620
3472705221
25620806
10_1109_TAC_2014_2351712
6883133
Genre orig-research
Journal Article
GrantInformation_xml – fundername: ARO
  grantid: W911NF-10-1-0037; W911NF-07-2-0027
– fundername: Google Corporation
– fundername: FDA
  grantid: HHSF223201000072C
– fundername: NSF
  grantid: CCF 1011228
– fundername: NSF
  grantid: III-1116730
– fundername: Hundred Talents Program at Peking University
– fundername: NSFC
  grantid: 61071157; 61370004; 11326038
– fundername: National Basic Research Program of China (973 Program 2011CB825501)
– fundername: Microsoft Research Asia
– fundername: NSF
  grantid: III-1332109; NIH R01MH102339; NIH R01GM083084; R01HG06841
– fundername: NIMH NIH HHS
  grantid: R01 MH102339
– fundername: NIGMS NIH HHS
  grantid: R01 GM083084
– fundername: NHGRI NIH HHS
  grantid: R01 HG006841
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
AAYOK
NPM
PKN
RIG
Z5M
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
F28
7X8
5PM
ID FETCH-LOGICAL-c477t-5abb6fccacd00ffc0796eaa7fdaa79dad267c9a1b6c9ec547d8f786ec43c61813
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344482500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9286
IngestDate Tue Sep 30 16:51:42 EDT 2025
Sun Nov 09 12:30:49 EST 2025
Sun Sep 28 00:43:53 EDT 2025
Mon Jun 30 10:14:25 EDT 2025
Wed Feb 19 01:53:34 EST 2025
Sat Nov 29 05:40:05 EST 2025
Tue Nov 18 22:35:33 EST 2025
Wed Aug 27 02:48:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Clique detection
network data analysis
restricted isometry property
Radon basis pursuit
compressive sensing
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-5abb6fccacd00ffc0796eaa7fdaa79dad267c9a1b6c9ec547d8f786ec43c61813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://doi.org/10.1109/TAC.2014.2351712
PMID 25620806
PQID 1616981298
PQPubID 85475
PageCount 16
ParticipantIDs proquest_journals_1616981298
proquest_miscellaneous_1826610794
crossref_citationtrail_10_1109_TAC_2014_2351712
ieee_primary_6883133
proquest_miscellaneous_1642208493
pubmed_primary_25620806
crossref_primary_10_1109_TAC_2014_2351712
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4301620
PublicationCentury 2000
PublicationDate 2014-Nov.
2014-11-00
2014-Nov
20141101
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-Nov.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationTitleAlternate IEEE Trans Automat Contr
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
ref17
goldenberg (ref24) 2010; 2
lueker (ref36) 0
kleinberg (ref29) 0
ref51
ref50
ref45
ref48
ref47
ref41
ref43
ref49
ref8
ref7
ref9
ref3
ref6
ref5
zhao (ref52) 2006; 7
ref40
diaconis (ref16) 1988
ref35
ref34
ref37
ref31
ref33
ref32
tsaig (ref46) 2006; 52
grimmett (ref25) 1990
ref39
ref38
airoldi (ref2) 2008; 9
abello (ref1) 2002; 2286
ref23
erdös (ref19) 1960; 5
ref26
ref20
ref22
ref21
knuth (ref30) 1993
ref27
jagabathula (ref28) 2008
erdös (ref18) 1959; 6
tibshirani (ref44) 1996; 58
barabasi (ref4) 1999; 286
shi (ref42) 2000; 22
deshpande (ref15) 2013
19658785 - Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jul;80(1 Pt 2):016118
20824084 - PLoS One. 2010 Sep 02;5(9):null
16723398 - Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8577-82
15944704 - Nature. 2005 Jun 9;435(7043):814-8
16089800 - Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 2):065103
12060727 - Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7821-6
19934050 - Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21068-73
21701698 - J Mach Learn Res. 2008 Sep;9:1981-2014
9623998 - Nature. 1998 Jun 4;393(6684):440-2
10521342 - Science. 1999 Oct 15;286(5439):509-12
References_xml – ident: ref37
  doi: 10.1080/10556780310001607956
– volume: 7
  start-page: 2541
  year: 2006
  ident: ref52
  article-title: On model selection consistency of lasso
  publication-title: J Mach Learn Res
– year: 2013
  ident: ref15
  article-title: Finding hidden cliques of size $\sqrt{N/e}$ in nearly linear time
  publication-title: arXiv 1304 7047
– ident: ref41
  doi: 10.1145/1117454.1117459
– ident: ref45
  doi: 10.1109/TIT.2005.864420
– ident: ref49
  doi: 10.1038/30918
– volume: 9
  start-page: 1981
  year: 2008
  ident: ref2
  article-title: Mixed membership stochastic blockmodels
  publication-title: J Mach Learn Res
– ident: ref21
  doi: 10.1007/BF02248731
– ident: ref34
  doi: 10.1145/1772690.1772755
– volume: 58
  start-page: 267
  year: 1996
  ident: ref44
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Roy Statist Soc B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref6
  doi: 10.1145/362342.362367
– volume: 5
  start-page: 17
  year: 1960
  ident: ref19
  article-title: On the evolution of random graphs
  publication-title: Pub Mathemat Inst Hungrian Acad of Sci
– ident: ref47
  doi: 10.1016/0378-8733(87)90015-3
– volume: 286
  start-page: 509
  year: 1999
  ident: ref4
  article-title: Emergence of scaling in random networks
  publication-title: Science
  doi: 10.1126/science.286.5439.509
– ident: ref32
  doi: 10.1109/SFCS.2000.892065
– ident: ref48
  doi: 10.1007/BF02294547
– ident: ref7
  doi: 10.1090/S0025-5718-08-02189-3
– volume: 2286
  start-page: 598
  year: 2002
  ident: ref1
  article-title: Massive quasi-clique detection
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/3-540-45995-2_51
– ident: ref10
  doi: 10.1214/009053606000001523
– ident: ref13
  doi: 10.1287/opre.8.1.101
– volume: 22
  year: 2000
  ident: ref42
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref51
  doi: 10.1111/j.1467-9868.2007.00581.x
– volume: 6
  start-page: 290
  year: 1959
  ident: ref18
  article-title: On random graphs, i
  publication-title: Publicationes Mathematicae
  doi: 10.5486/PMD.1959.6.3-4.12
– ident: ref39
  doi: 10.1103/PhysRevE.71.065103
– ident: ref3
  doi: 10.1002/(SICI)1098-2418(199810/12)13:3/4<457::AID-RSA14>3.3.CO;2-K
– year: 0
  ident: ref29
  article-title: The web as a graph: Measurements, models, methods
  publication-title: Proc Int Computing and Combinatorics Conf
– ident: ref17
  doi: 10.1046/j.0039-0402.2003.00258.x
– year: 1990
  ident: ref25
  publication-title: Disorder in Physical Systems a Volume in Honour of John M Hammersley
– ident: ref14
  doi: 10.1137/1.9781611973013.8
– ident: ref38
  doi: 10.1073/pnas.0601602103
– volume: 2
  year: 2010
  ident: ref24
  article-title: A survey of statistical network models
  publication-title: Found and Trends in Mach Learn
– ident: ref5
  doi: 10.1073/pnas.0907096106
– ident: ref43
  doi: 10.1017/CBO9780511811395.011
– ident: ref35
  doi: 10.1080/0022250X.1971.9989788
– year: 1988
  ident: ref16
  publication-title: Group Representations in Probability and Statistics
  doi: 10.1214/lnms/1215467407
– ident: ref27
  doi: 10.1080/01621459.1981.10477598
– ident: ref40
  doi: 10.1038/nature03607
– ident: ref20
  doi: 10.1109/TIT.2004.828141
– ident: ref23
  doi: 10.1023/A:1011419012209
– ident: ref12
  doi: 10.1007/s10618-010-0186-6
– volume: 52
  start-page: 1289
  year: 2006
  ident: ref46
  article-title: Compressed sensing
  publication-title: IEEE Trans Inform Theory
  doi: 10.1109/TIT.2006.871582
– ident: ref50
  doi: 10.1002/9781118032701
– year: 2008
  ident: ref28
  article-title: Inferring rankings under constrained sensing
  publication-title: Neural Inform Process Syst (NIPS)
– ident: ref31
  doi: 10.1371/journal.pone.0012528
– ident: ref26
  doi: 10.1198/016214502388618906
– ident: ref33
  doi: 10.1103/PhysRevE.80.016118
– ident: ref11
  doi: 10.1137/S1064827596304010
– ident: ref8
  doi: 10.1016/j.crma.2008.03.014
– ident: ref9
  doi: 10.1109/TIT.2005.858979
– year: 1993
  ident: ref30
  publication-title: The Stanford GraphBase A Platform for Combinatorial Computing
– year: 0
  ident: ref36
  article-title: Maximization problems on graphs with edge weights chosen from a normal distribution
  publication-title: ACM Symp Theory of Comput
– ident: ref22
  doi: 10.1073/pnas.122653799
– reference: 19934050 - Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21068-73
– reference: 15944704 - Nature. 2005 Jun 9;435(7043):814-8
– reference: 10521342 - Science. 1999 Oct 15;286(5439):509-12
– reference: 20824084 - PLoS One. 2010 Sep 02;5(9):null
– reference: 16089800 - Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 2):065103
– reference: 21701698 - J Mach Learn Res. 2008 Sep;9:1981-2014
– reference: 19658785 - Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jul;80(1 Pt 2):016118
– reference: 12060727 - Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7821-6
– reference: 16723398 - Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8577-82
– reference: 9623998 - Nature. 1998 Jun 4;393(6684):440-2
SSID ssj0016441
Score 2.1436832
Snippet Modern data acquisition routinely produces massive amounts of network data. Though many methods and models have been proposed to analyze such data, the...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2946
SubjectTerms Algebra
Algorithms
Atmospheric modeling
Automatic control
Communities
Compressed sensing
Computer networks
Data models
Dictionaries
Disengaging
Joints
Network analysis
Networks
Noise
Vectors
Title Compressive Network Analysis
URI https://ieeexplore.ieee.org/document/6883133
https://www.ncbi.nlm.nih.gov/pubmed/25620806
https://www.proquest.com/docview/1616981298
https://www.proquest.com/docview/1642208493
https://www.proquest.com/docview/1826610794
https://pubmed.ncbi.nlm.nih.gov/PMC4301620
Volume 59
WOSCitedRecordID wos000344482500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEL
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB9UfPAezq87r7rKHvgiXN20STPJo4ji0-KDB_tW2mTCCUdXdNe_30nbLe4hwr2UQia0-WWSmWS-AM5VUEjoRVqTDqmqHaZ1YWXKsrsIlFW6JtUWm8Dp1Mxm9n4Dfg2xMETUOp_RZXxtbfl-7pbxqmyijZF8ptqETUTdxWoNFoMo17tdlxdwbgaTpLCTh6vr6MOlLnNZZJjlayKoranykXr5r5fkO7Fzu_t_P7wHX3v1cnzV8cM-bFBzAF_eJR08hFHcAlrv11caTzsv8PEqN8k3-H1783B9l_Y1ElKnEBdpUdUxXMdVzgsRghNoNVUVBs8P6yufa3S2ymrtLLlCoTcBjSanpNMs3eV32GrmDf2AcS6D9sYH5FOOyvOsFiSdqW3Gk6YDygQmK9hK1ycQj3Us_pbtQULYkoEuI9BlD3QCF0OPpy55xie0hxG_ga6HLoHRambKfnW9lKylasuaiTUJ_ByaeV1EY0fV0HwZaXgMwigrP6ExUT1hyFQCR91kD99nVZC7C50ArrHBQBDzcq-3NI9_2vzcijdN7nz88YhOYCeOu4tnHMHW4nlJp7DtXhePL89nzNozc9ay9ht1aPXn
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB_UE9QHz2_r7Xl74Itgd9MmzcejyImHutzDHvhW2mSCwtE9dNe_30nbLa6I4EspZEKbXz5mJvMFcCK8UKgci0uUPhalVXGZGR4T7848JoUsUdTFJtRopO_uzJ8lOOtiYRCxdj7DQXitbfluYmfhqmwoteakUy3Dl0yIlDXRWp3NIHD25tylLZzqzijJzHB8fhG8uMQg5VmiknSBCdVVVd4TMN_6Sb5iPJdfP_fLW7DZCpj982ZFbMMSVjuw8Srt4C70wiFQ-78-Y3_U-IH359lJ9uDv5a_xxVXcVkmIrVBqGmdFGQJ2bGEdY95bpozEolDe0cO4wqVSWVMkpbQGbSaU015piVZwK4m_831YqSYVHkI_5V467bwiPUekaVIy5FaXJqFpk17xCIZz2HLbphAPlSz-5bUqwUxOQOcB6LwFOoLTrsf_Jn3GB7S7Ab-OroUugt58ZvJ2fz3lJKdKQ7KJ0RH87JppZwRzR1HhZBZoaAxMC8M_oNFBQCHIRAQHzWR33ydhkLozGYFaWAYdQcjMvdhSPdzXGboFHZvU-ej9Ef2Atavx7U1-83t0_Q3WAwZNdGMPVqaPM_wOq_Z5-vD0eFwv8BeUpfhG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compressive+Network+Analysis&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Jiang%2C+Xiaoye&rft.au=Yao%2C+Yuan&rft.au=Liu%2C+Han&rft.au=Guibas%2C+Leonidas&rft.date=2014-11-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=59&rft.issue=11&rft.spage=2946&rft.epage=2961&rft_id=info:doi/10.1109%2FTAC.2014.2351712&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon