SpateCV: cross-modality alignment regularization of cell types improves spatial gene imputation for spatial transcriptomics

Background The integration of single-cell RNA sequencing (scRNA-seq) and high-resolution spatial transcriptomics (ST) could improve our understanding of both tissue architecture and cellular heterogeneity simultaneously. The key to accomplishing this goal mainly relies on effectively co-embedding si...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of translational medicine Ročník 23; číslo 1; s. 1188 - 21
Hlavní autori: Yuan, Jiaqi, Yu, Junhua, Yi, Qianbei, Ye, Zheng, Xu, Peng, Liu, Wenbin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 29.10.2025
BioMed Central Ltd
BMC
Predmet:
ISSN:1479-5876, 1479-5876
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background The integration of single-cell RNA sequencing (scRNA-seq) and high-resolution spatial transcriptomics (ST) could improve our understanding of both tissue architecture and cellular heterogeneity simultaneously. The key to accomplishing this goal mainly relies on effectively co-embedding similar cells with consistent representations from the two types of data. Methods In this paper, we construct a conditional variational autoencoder (CVAE) architecture, named SpateCV, to explicitly regularize the embedding alignment of similar cells from scRNA-seq and ST data in a shared latent through a clustering loss. Results Benchmark results across twelve datasets demonstrate that SpateCV achieves superior performance in spatial gene imputation and spatial patterns reconstruction. Critically, SpateCV translates this technical accuracy into biological insight. With the imputed genome-wide expression, our method enables the identification of novel spatially differentially expressed genes, such as the astrocyte marker Hepacam, and facilitates the inference of layer-specific intercellular communication networks, identifying corpus callosum cells as key signaling hubs in the mouse visual cortex. Additionally, SpateCV enables the in silico spatial mapping of neuronal subtypes by integrating spatial context into scRNA-seq data. Conclusion SpateCV provides a robust framework for extracting biological knowledge from multimodal spatial-omics data.
AbstractList Background The integration of single-cell RNA sequencing (scRNA-seq) and high-resolution spatial transcriptomics (ST) could improve our understanding of both tissue architecture and cellular heterogeneity simultaneously. The key to accomplishing this goal mainly relies on effectively co-embedding similar cells with consistent representations from the two types of data. Methods In this paper, we construct a conditional variational autoencoder (CVAE) architecture, named SpateCV, to explicitly regularize the embedding alignment of similar cells from scRNA-seq and ST data in a shared latent through a clustering loss. Results Benchmark results across twelve datasets demonstrate that SpateCV achieves superior performance in spatial gene imputation and spatial patterns reconstruction. Critically, SpateCV translates this technical accuracy into biological insight. With the imputed genome-wide expression, our method enables the identification of novel spatially differentially expressed genes, such as the astrocyte marker Hepacam, and facilitates the inference of layer-specific intercellular communication networks, identifying corpus callosum cells as key signaling hubs in the mouse visual cortex. Additionally, SpateCV enables the in silico spatial mapping of neuronal subtypes by integrating spatial context into scRNA-seq data. Conclusion SpateCV provides a robust framework for extracting biological knowledge from multimodal spatial-omics data.
The integration of single-cell RNA sequencing (scRNA-seq) and high-resolution spatial transcriptomics (ST) could improve our understanding of both tissue architecture and cellular heterogeneity simultaneously. The key to accomplishing this goal mainly relies on effectively co-embedding similar cells with consistent representations from the two types of data. In this paper, we construct a conditional variational autoencoder (CVAE) architecture, named SpateCV, to explicitly regularize the embedding alignment of similar cells from scRNA-seq and ST data in a shared latent through a clustering loss. Benchmark results across twelve datasets demonstrate that SpateCV achieves superior performance in spatial gene imputation and spatial patterns reconstruction. Critically, SpateCV translates this technical accuracy into biological insight. With the imputed genome-wide expression, our method enables the identification of novel spatially differentially expressed genes, such as the astrocyte marker Hepacam, and facilitates the inference of layer-specific intercellular communication networks, identifying corpus callosum cells as key signaling hubs in the mouse visual cortex. Additionally, SpateCV enables the in silico spatial mapping of neuronal subtypes by integrating spatial context into scRNA-seq data. SpateCV provides a robust framework for extracting biological knowledge from multimodal spatial-omics data.
Abstract Background The integration of single-cell RNA sequencing (scRNA-seq) and high-resolution spatial transcriptomics (ST) could improve our understanding of both tissue architecture and cellular heterogeneity simultaneously. The key to accomplishing this goal mainly relies on effectively co-embedding similar cells with consistent representations from the two types of data. Methods In this paper, we construct a conditional variational autoencoder (CVAE) architecture, named SpateCV, to explicitly regularize the embedding alignment of similar cells from scRNA-seq and ST data in a shared latent through a clustering loss. Results Benchmark results across twelve datasets demonstrate that SpateCV achieves superior performance in spatial gene imputation and spatial patterns reconstruction. Critically, SpateCV translates this technical accuracy into biological insight. With the imputed genome-wide expression, our method enables the identification of novel spatially differentially expressed genes, such as the astrocyte marker Hepacam, and facilitates the inference of layer-specific intercellular communication networks, identifying corpus callosum cells as key signaling hubs in the mouse visual cortex. Additionally, SpateCV enables the in silico spatial mapping of neuronal subtypes by integrating spatial context into scRNA-seq data. Conclusion SpateCV provides a robust framework for extracting biological knowledge from multimodal spatial-omics data.
Background The integration of single-cell RNA sequencing (scRNA-seq) and high-resolution spatial transcriptomics (ST) could improve our understanding of both tissue architecture and cellular heterogeneity simultaneously. The key to accomplishing this goal mainly relies on effectively co-embedding similar cells with consistent representations from the two types of data. Methods In this paper, we construct a conditional variational autoencoder (CVAE) architecture, named SpateCV, to explicitly regularize the embedding alignment of similar cells from scRNA-seq and ST data in a shared latent through a clustering loss. Results Benchmark results across twelve datasets demonstrate that SpateCV achieves superior performance in spatial gene imputation and spatial patterns reconstruction. Critically, SpateCV translates this technical accuracy into biological insight. With the imputed genome-wide expression, our method enables the identification of novel spatially differentially expressed genes, such as the astrocyte marker Hepacam, and facilitates the inference of layer-specific intercellular communication networks, identifying corpus callosum cells as key signaling hubs in the mouse visual cortex. Additionally, SpateCV enables the in silico spatial mapping of neuronal subtypes by integrating spatial context into scRNA-seq data. Conclusion SpateCV provides a robust framework for extracting biological knowledge from multimodal spatial-omics data. Keywords: Spatial transcriptomics, Single-cell RNA sequencing, Gene imputation, Conditional variational autoencoder (CVAE), Attention mechanism
ArticleNumber 1188
Audience Academic
Author Xu, Peng
Ye, Zheng
Yu, Junhua
Liu, Wenbin
Yuan, Jiaqi
Yi, Qianbei
Author_xml – sequence: 1
  givenname: Jiaqi
  surname: Yuan
  fullname: Yuan, Jiaqi
  organization: Institute of Computational Science and Technology, Guangzhou University
– sequence: 2
  givenname: Junhua
  surname: Yu
  fullname: Yu, Junhua
  organization: Institute of Computational Science and Technology, Guangzhou University
– sequence: 3
  givenname: Qianbei
  surname: Yi
  fullname: Yi, Qianbei
  organization: Institute of Computational Science and Technology, Guangzhou University
– sequence: 4
  givenname: Zheng
  surname: Ye
  fullname: Ye, Zheng
  email: zheng_ye@gzhu.edu.cn
  organization: Institute of Computational Science and Technology, Guangzhou University, School of Computer Science of Information Technology, Qiannan Normal University for Nationalities
– sequence: 5
  givenname: Peng
  surname: Xu
  fullname: Xu, Peng
  email: gdxupeng@gzhu.edu.cn
  organization: Institute of Computational Science and Technology, Guangzhou University, School of Computer Science of Information Technology, Qiannan Normal University for Nationalities
– sequence: 6
  givenname: Wenbin
  orcidid: 0000-0001-9091-3177
  surname: Liu
  fullname: Liu, Wenbin
  email: wbliu6910@gzhu.edu.cn
  organization: Institute of Computational Science and Technology, Guangzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41162996$$D View this record in MEDLINE/PubMed
BookMark eNp9kk2LHCEQhpuwIfuR_IEcQkMuufRGbVvt3JYlHwsLOeTjKo5WNw7dOlE7MMmfT830ZkggBEGlfOrV8q3L6izEAFX1nJJrSpV4nSnrhWwI6xoiGcf5UXVBueybTklx9sf-vLrMeUsIQrx_Up1zSgXre3FR_fy0MwVuv76pbYo5N3N0ZvJlX-M8hhlCqROMy2SS_2GKj6GOQ21hmuqy30Gu_bxL8TtuMup4M9UjBDhEl7LiQ0yns5JMyDb5XYmzt_lp9XgwU4ZnD-tV9eXd28-3H5r7j-_vbm_uG8ulLE3LbctaSxVwA6AYt4IIY5jqNmIjhFFMOQak77hwHaHAQDnV0U5R5ZzqWXtV3a26Lpqt3iU_m7TX0Xh9DMQ0apOKtxNowzYCDOVuMIoba_EO4E6InnadUkOLWq9WLSz72wK56Nnnw3-YAHHJumUISzRGIvpyRUeDyj4MEeu3B1zfKEGlFJJ0SF3_g8LhAP8IDR88xv9KePHwgmUzgzvV89tTBNgKHB1NMJwQSvShcfTaOBobRx8bRxNMatekjHAYIeltXFJAW_6X9QtSyMXr
Cites_doi 10.1038/s41598-019-41695-z
10.1038/s41586-021-03705-x
10.1038/s41592-022-01480-9
10.1038/s41587-021-01001-7
10.1093/bib/bbae571
10.1007/s43032-024-01676-8
10.1038/nature05453
10.1038/s41467-020-20059-6
10.1038/s41467-020-15968-5
10.1126/science.aaa1934
10.1038/s41467-022-33758-z
10.1038/s41586-019-1049-y
10.1016/j.cell.2019.05.006
10.1186/s40364-025-00738-6
10.1093/nar/gkae409
10.1126/science.aat5691
10.1016/j.neuron.2023.05.032
10.1016/j.neuron.2016.10.001
10.1093/nar/gkaf158
10.1016/j.jhep.2005.01.025
10.1038/s41467-020-20343-5
10.1186/s13059-021-02556-z
10.1007/978-3-319-20828-2
10.1038/s41586-019-1506-7
10.1073/pnas.1912459116
10.1007/s00277-025-06387-x
10.1038/s41587-021-01006-2
10.1038/s41586-020-03126-2
10.1038/s41592-021-01336-8
10.1038/s41587-022-01448-2
10.1038/s41592-021-01264-7
10.1007/s11010-014-1991-9
10.1101/2021.04.16.440115
10.1101/576827
10.1038/s41587-021-00830-w
10.1016/j.cell.2018.02.001
10.1126/science.aau5324
10.1007/s10238-025-01751-7
10.1016/j.neuron.2021.05.025
10.1101/718395
10.1038/s41592-022-01575-3
10.61186/ijbc.16.2.84
10.1186/s12859-022-05003-3
10.1186/s13059-021-02565-y
10.1038/s41592-022-01728-4
10.1038/s41596-021-00573-7
10.1186/1750-1326-6-60
10.1101/2021.12.05.471303
10.1101/2020.08.27.268730
10.1016/j.mcn.2008.06.004
10.1126/sciadv.adq3350
10.1038/nmeth.2694
10.1016/j.cell.2019.05.031
10.1038/s41592-018-0229-2
10.1093/nar/gkac889
10.1038/s41587-024-02193-4
ContentType Journal Article
Copyright The Author(s) 2025
COPYRIGHT 2025 BioMed Central Ltd.
Copyright_xml – notice: The Author(s) 2025
– notice: COPYRIGHT 2025 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
NPM
7X8
DOA
DOI 10.1186/s12967-025-07245-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1479-5876
EndPage 21
ExternalDocumentID oai_doaj_org_article_a2b6ea14dfa84acc85be4d66915588f3
A861776705
41162996
10_1186_s12967_025_07245_0
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
0R~
29L
2WC
53G
5VS
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AFFHD
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c477t-34c323c18e4aee824c606aa285b6b66a828d2e09546d501e2e8d8515818dd8923
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001605844500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1479-5876
IngestDate Mon Nov 10 19:20:44 EST 2025
Thu Oct 30 17:10:31 EDT 2025
Sat Nov 29 13:45:44 EST 2025
Sat Nov 29 10:28:43 EST 2025
Mon Nov 03 02:05:55 EST 2025
Wed Nov 05 20:41:18 EST 2025
Thu Oct 30 01:15:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Attention mechanism
Conditional variational autoencoder (CVAE)
Spatial transcriptomics
Single-cell RNA sequencing
Gene imputation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-34c323c18e4aee824c606aa285b6b66a828d2e09546d501e2e8d8515818dd8923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9091-3177
OpenAccessLink https://doaj.org/article/a2b6ea14dfa84acc85be4d66915588f3
PMID 41162996
PQID 3266971297
PQPubID 23479
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_a2b6ea14dfa84acc85be4d66915588f3
proquest_miscellaneous_3266971297
gale_infotracmisc_A861776705
gale_infotracacademiconefile_A861776705
pubmed_primary_41162996
crossref_primary_10_1186_s12967_025_07245_0
springer_journals_10_1186_s12967_025_07245_0
PublicationCentury 2000
PublicationDate 2025-10-29
PublicationDateYYYYMMDD 2025-10-29
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Journal of translational medicine
PublicationTitleAbbrev J Transl Med
PublicationTitleAlternate J Transl Med
PublicationYear 2025
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References SCVD Brink (7245_CR18) 2020; 579
MD Luecken (7245_CR39) 2022; 19
MT Lorincz (7245_CR45) 2009; 40
7245_CR29
7245_CR25
7245_CR24
SA Aghapour (7245_CR3) 2024; 16
7245_CR27
7245_CR26
7245_CR21
P Rautenstrauch (7245_CR41) 2024; 52
7245_CR64
7245_CR23
7245_CR22
7245_CR66
B Li (7245_CR68) 2022; 19
Z Cang (7245_CR54) 2023; 20
SJ Wu (7245_CR57) 2023; 111
M Lotfollahi (7245_CR30) 2022; 40
DM Cable (7245_CR44) 2022; 19
T Lohoff (7245_CR60) 2022; 40
S Shah (7245_CR63) 2016; 92
7245_CR19
7245_CR5
7245_CR58
7245_CR16
7245_CR2
7245_CR15
7245_CR9
7245_CR10
T Stuart (7245_CR20) 2019; 177
7245_CR53
7245_CR56
7245_CR6
7245_CR11
7245_CR55
N Moriel (7245_CR14) 2021; 16
DM Cable (7245_CR59) 2022; 40
Z Fan (7245_CR17) 2022; 51
KT Baldwin (7245_CR48) 2021; 109
Y Zhou (7245_CR67) 2020; 11
JR Moffitt (7245_CR7) 2018; 362
VA Traag (7245_CR36) 2019; 9
Z Cang (7245_CR12) 2020; 11
B Gong (7245_CR28) 2021; 22
JD Welch (7245_CR13) 2019; 177
W Xiao (7245_CR8) 2018; 361
7245_CR46
SS Bahreiny (7245_CR51) 2024; 31
AR Wu (7245_CR4) 2014; 11
X Han (7245_CR62) 2018; 172
7245_CR42
B Tan (7245_CR49) 2014; 391
S Jin (7245_CR50) 2024; 10
A Joglekar (7245_CR70) 2021; 12
Y Takei (7245_CR61) 2021; 590
7245_CR1
A Zeisel (7245_CR35) 2015; 347
RD Hodge (7245_CR71) 2019; 573
ES Lein (7245_CR43) 2007; 445
NS Sherafat (7245_CR52) 2025; 25
G Zou (7245_CR31) 2025; 53
7245_CR38
7245_CR37
7245_CR34
7245_CR33
H Li (7245_CR40) 2022; 23
C-HL Eng (7245_CR65) 2019; 568
X Wang (7245_CR69) 2018; 361
MC Moh (7245_CR47) 2005; 42
X Li (7245_CR32) 2024; 25
References_xml – volume: 9
  start-page: 5233
  year: 2019
  ident: 7245_CR36
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-41695-z
– ident: 7245_CR42
  doi: 10.1038/s41586-021-03705-x
– ident: 7245_CR6
– volume: 19
  start-page: 662
  year: 2022
  ident: 7245_CR68
  publication-title: Nat Methods
  doi: 10.1038/s41592-022-01480-9
– volume: 40
  start-page: 121
  year: 2022
  ident: 7245_CR30
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-021-01001-7
– volume: 25
  start-page: bbae571
  year: 2024
  ident: 7245_CR32
  publication-title: Briefings Bioinf
  doi: 10.1093/bib/bbae571
– volume: 31
  start-page: 2957
  year: 2024
  ident: 7245_CR51
  publication-title: Reprod Sci
  doi: 10.1007/s43032-024-01676-8
– volume: 445
  start-page: 168
  year: 2007
  ident: 7245_CR43
  publication-title: Nature
  doi: 10.1038/nature05453
– volume: 11
  start-page: 6322
  year: 2020
  ident: 7245_CR67
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-20059-6
– volume: 11
  start-page: 2084
  year: 2020
  ident: 7245_CR12
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-15968-5
– volume: 347
  start-page: 1138
  year: 2015
  ident: 7245_CR35
  publication-title: Science
  doi: 10.1126/science.aaa1934
– ident: 7245_CR37
  doi: 10.1038/s41467-022-33758-z
– volume: 568
  start-page: 235
  year: 2019
  ident: 7245_CR65
  publication-title: Nature
  doi: 10.1038/s41586-019-1049-y
– ident: 7245_CR55
– volume: 177
  start-page: 1873
  year: 2019
  ident: 7245_CR13
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.006
– ident: 7245_CR2
  doi: 10.1186/s40364-025-00738-6
– ident: 7245_CR29
– volume: 52
  start-page: e52
  year: 2024
  ident: 7245_CR41
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkae409
– volume: 361
  start-page: eaat5691
  year: 2018
  ident: 7245_CR69
  publication-title: Science
  doi: 10.1126/science.aat5691
– volume: 111
  start-page: 2675
  year: 2023
  ident: 7245_CR57
  publication-title: Neuron
  doi: 10.1016/j.neuron.2023.05.032
– volume: 92
  start-page: 342
  year: 2016
  ident: 7245_CR63
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.10.001
– volume: 53
  start-page: gkaf158
  year: 2025
  ident: 7245_CR31
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaf158
– ident: 7245_CR21
– volume: 42
  start-page: 833
  year: 2005
  ident: 7245_CR47
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2005.01.025
– volume: 12
  start-page: 463
  year: 2021
  ident: 7245_CR70
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-20343-5
– volume: 22
  start-page: 351
  year: 2021
  ident: 7245_CR28
  publication-title: Genome Biol
  doi: 10.1186/s13059-021-02556-z
– ident: 7245_CR15
  doi: 10.1007/978-3-319-20828-2
– volume: 573
  start-page: 61
  year: 2019
  ident: 7245_CR71
  publication-title: Nature
  doi: 10.1038/s41586-019-1506-7
– volume: 579
  start-page: 1
  year: 2020
  ident: 7245_CR18
  publication-title: Nature
– ident: 7245_CR66
  doi: 10.1073/pnas.1912459116
– ident: 7245_CR1
  doi: 10.1007/s00277-025-06387-x
– ident: 7245_CR56
– volume: 40
  start-page: 74
  year: 2022
  ident: 7245_CR60
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-021-01006-2
– volume: 590
  start-page: 344
  year: 2021
  ident: 7245_CR61
  publication-title: Nature
  doi: 10.1038/s41586-020-03126-2
– volume: 19
  start-page: 41
  year: 2022
  ident: 7245_CR39
  publication-title: Nat Methods
  doi: 10.1038/s41592-021-01336-8
– ident: 7245_CR11
  doi: 10.1038/s41587-022-01448-2
– ident: 7245_CR16
  doi: 10.1038/s41592-021-01264-7
– volume: 391
  start-page: 95
  year: 2014
  ident: 7245_CR49
  publication-title: Mol Cellular Biochem
  doi: 10.1007/s11010-014-1991-9
– ident: 7245_CR22
  doi: 10.1101/2021.04.16.440115
– ident: 7245_CR58
  doi: 10.1101/576827
– volume: 40
  start-page: 517
  year: 2022
  ident: 7245_CR59
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-021-00830-w
– volume: 172
  start-page: 1091
  year: 2018
  ident: 7245_CR62
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.001
– volume: 362
  start-page: 792
  year: 2018
  ident: 7245_CR7
  publication-title: Science
  doi: 10.1126/science.aau5324
– volume: 25
  start-page: 238
  year: 2025
  ident: 7245_CR52
  publication-title: Clin Exp Med
  doi: 10.1007/s10238-025-01751-7
– ident: 7245_CR24
– volume: 109
  start-page: 2427
  year: 2021
  ident: 7245_CR48
  publication-title: Neuron
  doi: 10.1016/j.neuron.2021.05.025
– ident: 7245_CR19
  doi: 10.1101/718395
– volume: 19
  start-page: 1076
  year: 2022
  ident: 7245_CR44
  publication-title: Nat Methods
  doi: 10.1038/s41592-022-01575-3
– volume: 16
  start-page: 84
  year: 2024
  ident: 7245_CR3
  publication-title: Iran J Blood And Cancer
  doi: 10.61186/ijbc.16.2.84
– volume: 23
  start-page: 460
  year: 2022
  ident: 7245_CR40
  publication-title: BMC Bioinf
  doi: 10.1186/s12859-022-05003-3
– ident: 7245_CR38
  doi: 10.1186/s13059-021-02565-y
– ident: 7245_CR53
– volume: 20
  start-page: 218
  year: 2023
  ident: 7245_CR54
  publication-title: Nat Methods
  doi: 10.1038/s41592-022-01728-4
– volume: 16
  start-page: 4177
  year: 2021
  ident: 7245_CR14
  publication-title: Nat Protoc
  doi: 10.1038/s41596-021-00573-7
– ident: 7245_CR27
– ident: 7245_CR34
– ident: 7245_CR46
  doi: 10.1186/1750-1326-6-60
– ident: 7245_CR5
– ident: 7245_CR10
  doi: 10.1101/2021.12.05.471303
– ident: 7245_CR64
  doi: 10.1101/2020.08.27.268730
– ident: 7245_CR9
– volume: 361
  start-page: eaat5691
  year: 2018
  ident: 7245_CR8
  publication-title: Science
  doi: 10.1126/science.aat5691
– volume: 40
  start-page: 1
  year: 2009
  ident: 7245_CR45
  publication-title: Mol Cell Neurosci
  doi: 10.1016/j.mcn.2008.06.004
– volume: 10
  start-page: eadq3350
  year: 2024
  ident: 7245_CR50
  publication-title: Sci Adv
  doi: 10.1126/sciadv.adq3350
– volume: 11
  start-page: 41
  year: 2014
  ident: 7245_CR4
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2694
– ident: 7245_CR33
– ident: 7245_CR26
– volume: 177
  start-page: 1888
  year: 2019
  ident: 7245_CR20
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– ident: 7245_CR25
  doi: 10.1038/s41592-018-0229-2
– volume: 51
  start-page: D1138
  year: 2022
  ident: 7245_CR17
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkac889
– ident: 7245_CR23
  doi: 10.1038/s41587-024-02193-4
SSID ssj0024549
Score 2.440815
Snippet Background The integration of single-cell RNA sequencing (scRNA-seq) and high-resolution spatial transcriptomics (ST) could improve our understanding of both...
Background The integration of single-cell RNA sequencing (scRNA-seq) and high-resolution spatial transcriptomics (ST) could improve our understanding of both...
The integration of single-cell RNA sequencing (scRNA-seq) and high-resolution spatial transcriptomics (ST) could improve our understanding of both tissue...
Abstract Background The integration of single-cell RNA sequencing (scRNA-seq) and high-resolution spatial transcriptomics (ST) could improve our understanding...
SourceID doaj
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 1188
SubjectTerms Anopheles
Attention mechanism
Biomedical and Life Sciences
Biomedicine
Cancer microenvironment
Conditional variational autoencoder (CVAE)
Gene imputation
Gene mutations
Genes
Genetic research
Genetic transcription
Genomics
Health aspects
Identification and classification
Medicine/Public Health
Methods
Neural networks
Neurons
RNA sequencing
Single-cell RNA sequencing
Spatial transcriptomics
Technology application
SummonAdditionalLinks – databaseName: SpringerLink Contemporary (1997 - Present)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RiioutNACaaFyJaQe2ojE8dre3igCcSlCLSBulmM7iAMblOz20j_PjJNsWYoqtZdoFTvJrD2Pb2zPDMAe5dziusxSSieWCp-JdJyFPPWuKh0tuyknYrEJdXqqr67GZ31QWDucdh-2JKOmjmKt5X6LlgmFmsqv4vsFXp_BczR3msTx-4_L3xn20OUZwmOefG7BBMVM_X_q4wcG6dEOaTQ8xy__j-RXsNYDTXbQccY6LIXJBrz41m-lv4ZfVIw4HF5-YZHK9Lb2EZIzvF7HIwKsiXXqmz5Sk9UVo2V-Rqu2LbuJqxH4o6Uz2fgl5MRAd2fd5j5DNDxvm5JFjPqJgqDbN3BxfHR-eJL2lRhSJ5SapoVwBS9croOwIWguHPo91nI9KmUppUW3zfOAaE1IP8rywIP2COVGiAa814ghN2F5Uk_CNrASVYYqg8a-6BlWWWmlKlxVKHTUK6-LBD4Nk2PuuoQbJjoqWppuPA2Op4njabIEvtL8zXtSsux4o26uTS97xvJSBpsLX1ktrHNIdRBeSkqNr3WFn_xIs29IpHE8nO0jE5BgSo5lDjTCPCVVNkpgZ6EniqJbaP4w8I-hJjq_Ngn1rDUIkuVYIfkqga2OseY0izyXCApkAp8HLjK9Imn_8tff_lv3d7DKiRHR7PLxDixPm1nYhRX3c3rTNu-jBN0DJVAWog
  priority: 102
  providerName: Springer Nature
Title SpateCV: cross-modality alignment regularization of cell types improves spatial gene imputation for spatial transcriptomics
URI https://link.springer.com/article/10.1186/s12967-025-07245-0
https://www.ncbi.nlm.nih.gov/pubmed/41162996
https://www.proquest.com/docview/3266971297
https://doaj.org/article/a2b6ea14dfa84acc85be4d66915588f3
Volume 23
WOSCitedRecordID wos001605844500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: RBZ
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: DOA
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: M~E
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1479-5876
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024549
  issn: 1479-5876
  databaseCode: RSV
  dateStart: 20030601
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED8NNqG9TNuALRurjDSJB4hIHNd29wYINB6oKrah8mQ5toN4WIualhf-ee6cpKJD2l72YiW2JZ99Z9-dP34H8JUwt7gus5TgxFLhM5EOspCn3lWlo2035UQMNqGGQz0eD0ZPQn3RnbAGHrgZuEPLSxlsLnxltbDO6X4ZhJeScM21riLOJ1o9nTPVoeyh29M9kdHysEathgsChW5F2gSmK2ooovU_X5OfKKU_Tkmj8jl7C29aq5EdNdS-gxdh8h42Ltpz8U14oMjC4eTqG4vNpb-nPtrXDNObeN7PZjHo_Kx9dsmmFaM9e0ZbsDW7jVsL-FHTBWtsCcUqUO6iOalnaNouy-ak3uJiQy-a6y34dXb68-R72oZVSJ1Qap4WwhW8cLkOwoaguXDoxFjLcWRlKaVFH8zzgKaXkL6f5YEH7dEu66Nq916jQbgN65PpJHwEVuL8V2XQWBfdvCorrVSFqwqFXnfldZHAfjfK5q5BzzDR69DSNDwxyBMTeWKyBI6JEcuahHwdM1AeTCsP5l_ykMAesdHQ_MTxcLZ9ZoAEE9KVOdJosympsn4COys1cV65leLdThAMFdFltEmYLmqDFq8cKCRfJfChkZAlzSLPJWp4mcBBJzKmXRXqv3T90__o-md4zUnEUbPywQ6sz2eL8AVeufv5bT3rwZoaq5jqHrw8Ph2OLntx0uDf6PxidI1_lz-uHgE1LRmB
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VgqAXnoWGFjASEgcakThe28utraiKaFeoLVVvlmM7VQ9sULLLhT_PjJMsXYoqwSVaxU4ya8_jG3tmDPCGam5xXWYplRNLhc9EOs5CnnpXlY6W3ZQT8bAJNZno8_Pxlz4prB2i3Yctyaipo1hr-b5Fy4RCTcev4vsFXm_BbYEWiwL5jk_OflfYQ5dnSI_563NLJihW6r-uj68YpD92SKPh2X_wfyQ_hPs90GQ7HWc8gpUwfQx3j_qt9Cfwkw4jDntnH1ikMv1W-wjJGV4vYogAa-I59U2fqcnqitEyP6NV25ZdxtUI_NFSTDZ-CTkx0N15t7nPEA0v2mZkEaN-oiTodh2-7n883TtI-5MYUieUmqWFcAUvXK6DsCFoLhz6PdZyPSplKaVFt83zgGhNSD_K8sCD9gjlRogGvNeIIZ_C6rSehg1gJaoMVQaNfdEzrLLSSlW4qlDoqFdeFwm8GybHfO8KbpjoqGhpuvE0OJ4mjqfJEtil-Vv0pGLZ8UbdXJhe9ozlpQw2F76yWljnkOogvJRUGl_rCj_5lmbfkEjjeDjbZyYgwVQcy-xohHlKqmyUwNZSTxRFt9T8euAfQ00UvzYN9bw1CJLlWCH5KoFnHWMtaBZ5LhEUyAS2By4yvSJpb_jrz_-t-yu4d3B6dGgOP00-b8IaJ6ZEE8zHW7A6a-bhBdxxP2aXbfMyStMvOOQZhg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9UwDLdgoInL-GaFAUFC4gDV2jQvyeM2Bk8g4GkSMO0WpUk67UA7tX1c-Oex0_axBwgJcamqJFXcxI5_TmIb4CnF3OK6zFIKJ5YKn4l0noU89a4qHW27KSdisgm1XOqTk_nRBS_-eNt9OpIcfBooSlPd75_7ahBxLfc71FIo4JSKFfsS-LwMVwQlDSJ7_dPxz2h7aP5MrjJ__G5DHcWo_b-vzReU0y-npVEJLa7_P_k3YGcEoOxg4JibcCnUt2D743jEfhu-U5LicHj8kkWK06-Nj1Cd4fM0Xh1gbcxf344enKypGG3_M9rN7dhZ3KXAl47uamNPyKGBSlfDoT9DlLyu60lTxnWLnKO7O_Bl8ebz4dt0zNCQOqFUnxbCFbxwuQ7ChqC5cGgPWcv1rJSllBbNOc8Dojgh_SzLAw_aI8SbIUrwXiO2vAtbdVOHXWAlLiWqDBrbosVYZaWVqnBVodCAr7wuEng-TZQ5HwJxmGjAaGmG8TQ4niaOp8kSeEVzuW5JQbRjQdOemlEmjeWlDDYXvrJaWOeQ6iC8lBQyX-sKu3xGnGBI1HE8nB09FpBgCpplDjTCPyVVNktgb6MliqjbqH4y8ZKhKrrXVodm1RkEz3KukHyVwL2BydY0izyXCBZkAi8mjjLjAtP95dfv_1vzx7B99HphPrxbvn8A1zjxJGpmPt-Drb5dhYdw1X3rz7r2URSsH2byImo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SpateCV%3A+cross-modality+alignment+regularization+of+cell+types+improves+spatial+gene+imputation+for+spatial+transcriptomics&rft.jtitle=Journal+of+translational+medicine&rft.au=Jiaqi+Yuan&rft.au=Junhua+Yu&rft.au=Qianbei+Yi&rft.au=Zheng+Ye&rft.date=2025-10-29&rft.pub=BMC&rft.eissn=1479-5876&rft.volume=23&rft.issue=1&rft.spage=1&rft.epage=21&rft_id=info:doi/10.1186%2Fs12967-025-07245-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a2b6ea14dfa84acc85be4d66915588f3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-5876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-5876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-5876&client=summon