Data mining algorithms for bridge health monitoring: Kohonen clustering and LSTM prediction approaches
In recent years, bridge health monitoring system has been widely used to deal with massive data produced with the continuous growth of monitoring time. However, how to effectively use these data to comprehensively analyze the state of a bridge and provide early warning of bridge structure changes is...
Saved in:
| Published in: | The Journal of supercomputing Vol. 76; no. 2; pp. 932 - 947 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.02.2020
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0920-8542, 1573-0484 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In recent years, bridge health monitoring system has been widely used to deal with massive data produced with the continuous growth of monitoring time. However, how to effectively use these data to comprehensively analyze the state of a bridge and provide early warning of bridge structure changes is an important topic in bridge engineering research. This paper utilizes two algorithms to deal with the massive data, namely Kohonen neural network and long short-term memory (LSTM) neural network. The main contribution of this study is using the two algorithms for health state evaluation of bridges. The Kohonen clustering method is shown to be effective for getting classification pattern in normal operating condition and is straightforward for outliers detection. In addition, the LSTM prediction method has an excellent prediction capability which can be used to predict the future deflection values with good accuracy and mean square error. The predicted deflections agree with the true deflections, which indicate that the LSTM method can be utilized to obtain the deflection value of structure. What’s more, we can observe the changing trend of bridge structure by comparing the predicted value with its limit value under normal operation. |
|---|---|
| AbstractList | In recent years, bridge health monitoring system has been widely used to deal with massive data produced with the continuous growth of monitoring time. However, how to effectively use these data to comprehensively analyze the state of a bridge and provide early warning of bridge structure changes is an important topic in bridge engineering research. This paper utilizes two algorithms to deal with the massive data, namely Kohonen neural network and long short-term memory (LSTM) neural network. The main contribution of this study is using the two algorithms for health state evaluation of bridges. The Kohonen clustering method is shown to be effective for getting classification pattern in normal operating condition and is straightforward for outliers detection. In addition, the LSTM prediction method has an excellent prediction capability which can be used to predict the future deflection values with good accuracy and mean square error. The predicted deflections agree with the true deflections, which indicate that the LSTM method can be utilized to obtain the deflection value of structure. What’s more, we can observe the changing trend of bridge structure by comparing the predicted value with its limit value under normal operation. |
| Author | Li, Xiaoxiao Lin, Jie Guo, Aiping Jiang, Ajuan |
| Author_xml | – sequence: 1 givenname: Aiping surname: Guo fullname: Guo, Aiping organization: Hubei Communications Investment Intelligent Detection CO., Ltd, School of Civil Engineering and Architecture, Wuhan University of Technology – sequence: 2 givenname: Ajuan surname: Jiang fullname: Jiang, Ajuan organization: Hubei Communications Investment Intelligent Detection CO., Ltd – sequence: 3 givenname: Jie surname: Lin fullname: Lin, Jie organization: Hubei Communications Investment Intelligent Detection CO., Ltd – sequence: 4 givenname: Xiaoxiao surname: Li fullname: Li, Xiaoxiao email: 266937@whut.edu.cn organization: School of Computer Science and Technology, Wuhan University of Technology |
| BookMark | eNp9kD1PwzAQhi1UJNrCH2CyxBzwV-KUDZVPUcRAmS3HsRNXqR1sd-DfkzZISAydbrh77r17ZmDivNMAXGJ0jRHiNxFjQniG8CJDFLE8K0_AFOecZoiVbAKmaEFQVuaMnIFZjBuEEKOcToG5l0nCrXXWNVB2jQ82tdsIjQ-wCrZuNGy17FILt97ZNLRdcwtffTvkO6i6XUw6HFhXw9XH-g32QddWJesdlH0fvFStjufg1Mgu6ovfOgefjw_r5XO2en96Wd6tMsU4TxlFvNCoZLIuVaEWnHEqiaoM11RrqYk0hiBW0-ExXhhZ1lVe8apWpjK6UFTSObga9w7BXzsdk9j4XXBDpCA0J5QSTPAwRcYpFXyMQRvRB7uV4VtgJPY-xehTDD7FwacoB6j8Bymb5P7PFKTtjqN0RGO_d6XD31VHqB_39o5Y |
| CitedBy_id | crossref_primary_10_1108_SASBE_02_2024_0059 crossref_primary_10_1016_j_matpr_2021_02_348 crossref_primary_10_1016_j_istruc_2025_108436 crossref_primary_10_1109_JIOT_2023_3272535 crossref_primary_10_3390_app15010231 crossref_primary_10_1016_j_cscm_2025_e04907 crossref_primary_10_3390_su141912282 crossref_primary_10_1007_s11227_020_03328_5 crossref_primary_10_1016_j_engstruct_2021_113490 crossref_primary_10_1007_s13349_024_00833_6 crossref_primary_10_3390_s21030824 crossref_primary_10_1016_j_engstruct_2024_118476 crossref_primary_10_32604_sdhm_2024_048705 crossref_primary_10_1016_j_jcsr_2023_107777 crossref_primary_10_1177_14759217251351533 crossref_primary_10_1109_ACCESS_2024_3365550 crossref_primary_10_1155_2022_4975288 crossref_primary_10_1155_2022_7957878 crossref_primary_10_1016_j_autcon_2021_103941 crossref_primary_10_3390_math10091367 crossref_primary_10_1177_14759217241228150 crossref_primary_10_1016_j_autcon_2023_104913 crossref_primary_10_1016_j_conbuildmat_2023_132596 crossref_primary_10_1155_2022_6526512 crossref_primary_10_1177_1045389X231180040 crossref_primary_10_1007_s10921_022_00899_6 crossref_primary_10_1049_tje2_12203 crossref_primary_10_3390_s22041580 crossref_primary_10_1155_2021_6626024 crossref_primary_10_1080_00207543_2025_2507111 crossref_primary_10_1371_journal_pone_0307721 crossref_primary_10_1007_s12083_021_01121_6 crossref_primary_10_1155_stc_7334196 crossref_primary_10_1155_2022_2266702 crossref_primary_10_1007_s00521_022_07133_4 crossref_primary_10_32604_cmes_2023_022699 crossref_primary_10_1061__ASCE_SU_1943_5428_0000400 crossref_primary_10_1016_j_measurement_2023_112797 crossref_primary_10_1007_s13349_025_00938_6 crossref_primary_10_1016_j_conbuildmat_2022_128786 crossref_primary_10_1177_13694332221133604 crossref_primary_10_4018_JCIT_382564 crossref_primary_10_1016_j_autcon_2022_104168 crossref_primary_10_3390_infrastructures9090161 crossref_primary_10_3390_app122211497 crossref_primary_10_1155_2023_2259575 crossref_primary_10_1080_24705314_2022_2088167 crossref_primary_10_3390_infrastructures8120172 crossref_primary_10_1016_j_asoc_2024_112429 crossref_primary_10_1016_j_measurement_2023_113053 crossref_primary_10_1007_s10291_025_01829_5 |
| Cites_doi | 10.1016/B978-0-08-102291-7.00004-6 10.1061/(ASCE)BE.1943-5592.0001003 10.3390/app9010160 10.3390/app9010148 10.1080/10286608.2014.916697 10.1016/j.ymssp.2017.04.022 10.1111/j.1747-1567.1999.tb01320.x 10.3390/rs8060506 10.1016/j.enconman.2018.03.098 10.1016/j.apenergy.2018.05.043 10.1007/s11431-012-4818-5 10.1007/s13349-016-0160-0 10.1007/s10518-015-9810-6 10.1080/10798587.2013.824161 10.3390/app8010115 10.1109/ICETCE.2011.5776369 10.24963/ijcai.2018/476 10.1109/DEXA.2011.80 10.1049/cp:19991218 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2019 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION JQ2 |
| DOI | 10.1007/s11227-019-03045-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 947 |
| ExternalDocumentID | 10_1007_s11227_019_03045_8 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS JQ2 |
| ID | FETCH-LOGICAL-c477t-3076e084ad8c6c97473a2cbf7e3eeae2aff204d357376fa8db5b7bdcfbfe6c3a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 68 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000493254500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-8542 |
| IngestDate | Thu Sep 25 00:51:13 EDT 2025 Tue Nov 18 21:42:55 EST 2025 Sat Nov 29 04:27:38 EST 2025 Fri Feb 21 02:27:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Health monitoring Long short-term memory Kohonen clustering Structural assessment Time series |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c477t-3076e084ad8c6c97473a2cbf7e3eeae2aff204d357376fa8db5b7bdcfbfe6c3a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1007/s11227-019-03045-8 |
| PQID | 2352332121 |
| PQPubID | 2043774 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2352332121 crossref_primary_10_1007_s11227_019_03045_8 crossref_citationtrail_10_1007_s11227_019_03045_8 springer_journals_10_1007_s11227_019_03045_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-01 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Chen, Zeng, Zhou, Du, Lu (CR17) 2018; 165 Zhou, Li, Li, Duan (CR4) 2018; 8 Li, Ding, Wang, Guo (CR1) 2012; 55 Worden, Cross (CR2) 2018; 98 Bayraktar, Altunişik, Sevim, Özşahin (CR12) 2014; 31 Khosravi, Machado, Nunes (CR18) 2018; 224 CR5 CR19 Diez, Khoa, Alamdari, Wang, Chen, Runcie (CR15) 2016; 6 Xia, Cheng, Zhang, Zhu (CR3) 2016; 22 CR16 Sevim, Atamturktur, Altunişik, Bayraktar (CR13) 2016; 14 Lyu, Lu, Mou (CR21) 2016; 8 CR11 CR22 CR10 CR20 Cornwell, Farrar, Doebling, Sohn (CR9) 1999; 23 Alokita, Rahul, Jayakrishna, Kar, Rajesh, Thirumalini, Manikandan, Jawaid, Thariq, Saba (CR6) 2019 Carnevale, Collina, Peirlinck (CR8) 2019; 9 Yang, Zhou, Zhou, Chen (CR14) 2013; 19 Zambon, Vidović, Strauss, Matos (CR7) 2019; 9 S Alokita (3045_CR6) 2019 J Chen (3045_CR17) 2018; 165 G Zhou (3045_CR4) 2018; 8 3045_CR10 3045_CR20 K Worden (3045_CR2) 2018; 98 A Khosravi (3045_CR18) 2018; 224 I Zambon (3045_CR7) 2019; 9 A Bayraktar (3045_CR12) 2014; 31 M Carnevale (3045_CR8) 2019; 9 A Li (3045_CR1) 2012; 55 A Diez (3045_CR15) 2016; 6 3045_CR19 H Lyu (3045_CR21) 2016; 8 Q Xia (3045_CR3) 2016; 22 3045_CR11 B Sevim (3045_CR13) 2016; 14 3045_CR22 P Cornwell (3045_CR9) 1999; 23 J Yang (3045_CR14) 2013; 19 3045_CR16 3045_CR5 |
| References_xml | – ident: CR22 – start-page: 53 year: 2019 end-page: 73 ident: CR6 article-title: Recent advances and trends in structural health monitoring publication-title: Structural health monitoring of biocomposites, fibre-reinforced composites and hybrid composites doi: 10.1016/B978-0-08-102291-7.00004-6 – ident: CR19 – volume: 22 start-page: 04016124 issue: 3 year: 2016 ident: CR3 article-title: In-service condition assessment of a long-span suspension bridge using temperature-induced strain data publication-title: J Bridge Eng doi: 10.1061/(ASCE)BE.1943-5592.0001003 – volume: 9 start-page: 160 issue: 1 year: 2019 ident: CR8 article-title: A feasibility study of the drive-by method for damage detection in railway bridges publication-title: Appl Sci doi: 10.3390/app9010160 – volume: 9 start-page: 148 issue: 1 year: 2019 ident: CR7 article-title: Condition prediction of existing concrete bridges as a combination of visual inspection and analytical models of deterioration publication-title: Appl Sci doi: 10.3390/app9010148 – ident: CR16 – ident: CR10 – ident: CR11 – volume: 31 start-page: 347 issue: 4 year: 2014 end-page: 366 ident: CR12 article-title: Environmental effects on the dynamic characteristics of the Gülburnu Highway Bridge publication-title: Civ Eng Environ Syst doi: 10.1080/10286608.2014.916697 – volume: 98 start-page: 139 year: 2018 end-page: 156 ident: CR2 article-title: On switching response surface models, with applications to the structural health monitoring of bridges publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.04.022 – volume: 23 start-page: 45 issue: 6 year: 1999 end-page: 48 ident: CR9 article-title: Environmental variability of modal properties publication-title: Exp Tech doi: 10.1111/j.1747-1567.1999.tb01320.x – volume: 8 start-page: 506 issue: 6 year: 2016 ident: CR21 article-title: Learning a transferable change rule from a recurrent neural network for land cover change detection publication-title: Remote Sens doi: 10.3390/rs8060506 – volume: 165 start-page: 681 year: 2018 end-page: 695 ident: CR17 article-title: Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization publication-title: Energy Convers manag doi: 10.1016/j.enconman.2018.03.098 – volume: 224 start-page: 550 year: 2018 end-page: 566 ident: CR18 article-title: Time-series prediction of wind speed using machine learning algorithms: a case study Osorio wind farm, Brazil publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.05.043 – volume: 55 start-page: 2212 issue: 8 year: 2012 end-page: 2224 ident: CR1 article-title: Analysis and assessment of bridge health monitoring mass data—progress in research/development of “structural health monitoring” publication-title: Sci China Technol Sci doi: 10.1007/s11431-012-4818-5 – volume: 6 start-page: 429 issue: 3 year: 2016 end-page: 445 ident: CR15 article-title: A clustering approach for structural health monitoring on bridges publication-title: J Civ Struct Health Monit doi: 10.1007/s13349-016-0160-0 – ident: CR5 – volume: 14 start-page: 241 issue: 1 year: 2016 end-page: 259 ident: CR13 article-title: Ambient vibration testing and seismic behavior of historical arch bridges under near and far fault ground motions publication-title: Bull Earthq Eng doi: 10.1007/s10518-015-9810-6 – volume: 19 start-page: 305 issue: 3 year: 2013 end-page: 314 ident: CR14 article-title: Prediction of bridge monitoring information chaotic using time series theory by multi-step BP and RBF neural networks publication-title: Intell Autom Soft Comput doi: 10.1080/10798587.2013.824161 – volume: 8 start-page: 115 issue: 1 year: 2018 ident: CR4 article-title: Structural health monitoring and time-dependent effects analysis of self-anchored suspension bridge with extra-wide concrete girder publication-title: Appl Sci doi: 10.3390/app8010115 – ident: CR20 – volume: 6 start-page: 429 issue: 3 year: 2016 ident: 3045_CR15 publication-title: J Civ Struct Health Monit doi: 10.1007/s13349-016-0160-0 – volume: 224 start-page: 550 year: 2018 ident: 3045_CR18 publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.05.043 – volume: 19 start-page: 305 issue: 3 year: 2013 ident: 3045_CR14 publication-title: Intell Autom Soft Comput doi: 10.1080/10798587.2013.824161 – ident: 3045_CR10 doi: 10.1109/ICETCE.2011.5776369 – ident: 3045_CR16 – volume: 22 start-page: 04016124 issue: 3 year: 2016 ident: 3045_CR3 publication-title: J Bridge Eng doi: 10.1061/(ASCE)BE.1943-5592.0001003 – volume: 8 start-page: 506 issue: 6 year: 2016 ident: 3045_CR21 publication-title: Remote Sens doi: 10.3390/rs8060506 – ident: 3045_CR11 – volume: 165 start-page: 681 year: 2018 ident: 3045_CR17 publication-title: Energy Convers manag doi: 10.1016/j.enconman.2018.03.098 – volume: 23 start-page: 45 issue: 6 year: 1999 ident: 3045_CR9 publication-title: Exp Tech doi: 10.1111/j.1747-1567.1999.tb01320.x – volume: 98 start-page: 139 year: 2018 ident: 3045_CR2 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.04.022 – ident: 3045_CR20 – volume: 8 start-page: 115 issue: 1 year: 2018 ident: 3045_CR4 publication-title: Appl Sci doi: 10.3390/app8010115 – volume: 31 start-page: 347 issue: 4 year: 2014 ident: 3045_CR12 publication-title: Civ Eng Environ Syst doi: 10.1080/10286608.2014.916697 – ident: 3045_CR19 doi: 10.24963/ijcai.2018/476 – ident: 3045_CR5 doi: 10.1109/DEXA.2011.80 – start-page: 53 volume-title: Structural health monitoring of biocomposites, fibre-reinforced composites and hybrid composites year: 2019 ident: 3045_CR6 doi: 10.1016/B978-0-08-102291-7.00004-6 – volume: 14 start-page: 241 issue: 1 year: 2016 ident: 3045_CR13 publication-title: Bull Earthq Eng doi: 10.1007/s10518-015-9810-6 – volume: 9 start-page: 148 issue: 1 year: 2019 ident: 3045_CR7 publication-title: Appl Sci doi: 10.3390/app9010148 – volume: 9 start-page: 160 issue: 1 year: 2019 ident: 3045_CR8 publication-title: Appl Sci doi: 10.3390/app9010160 – ident: 3045_CR22 doi: 10.1049/cp:19991218 – volume: 55 start-page: 2212 issue: 8 year: 2012 ident: 3045_CR1 publication-title: Sci China Technol Sci doi: 10.1007/s11431-012-4818-5 |
| SSID | ssj0004373 |
| Score | 2.492992 |
| Snippet | In recent years, bridge health monitoring system has been widely used to deal with massive data produced with the continuous growth of monitoring time.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 932 |
| SubjectTerms | Algorithms Bridges Clustering Compilers Computer Science Data analysis Data mining Deflection Engineering research Interpreters Neural networks Outliers (statistics) Predictions Processor Architectures Programming Languages Structural health monitoring |
| Title | Data mining algorithms for bridge health monitoring: Kohonen clustering and LSTM prediction approaches |
| URI | https://link.springer.com/article/10.1007/s11227-019-03045-8 https://www.proquest.com/docview/2352332121 |
| Volume | 76 |
| WOSCitedRecordID | wos000493254500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86ffDF-YnTKXnwTQNr0rWJb6IOQR3ipuytpPlwg60bbeffb5K2FkUFfW4Sjrtc7q6_-wDglHmxpCyUyHi7EvlhKBBnAUVEkrgbS2ViDu6GTYT9Ph2N2GNZFJZV2e4VJOle6rrYzcPYpkky5OA9RFfBmjF31A5seBq81NWQpMCVmQmMaNfHZanM92d8Nke1j_kFFnXWptf8H51bYLP0LuFlcR22wYpKdkCzmtwAS0XeBfqa5xzO3HAIyKev83SSj2cZNB4sLEq4YFEgCWdO5y0BF_BuPp4nKoFiurTtFdzeRML7wfABLlKL-Fgpw6pNucr2wHPvZnh1i8qJC0gYMeX2R1SgOtTnkopA2FCDcCxiHSqiFFeYa407viTd0LxLmlNp5BnGUuhYq0AQTvZBIzGUHAAYak0w44RgJXyJMaMWkZUCy65ndndawKsYH4myHbmdijGN6kbKlpGRYWTkGBnRFjj72LMomnH8urpdyTMqFTOLsHE4DU0e9lrgvJJf_fnn0w7_tvwIbGAbmbv87jZo5OlSHYN18ZZPsvTEXdh3GtLlMA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50FfTi-sTVVXPwpoVt0kfqTXyguC7iruKtpHmosNuVtvr7TdLWoqig5yZhmMlkZvrNA2A_chNBo1A42tsVjheG3GFRQB0iSOInQuqYg9lhE-FgQB8eopuqKCyvs91rSNK-1E2xm4uxSZOMHAvvOXQW5jxtsUzH_NvhfVMNSUpcOdKBEfU9XJXKfH_GZ3PU-JhfYFFrbc7b_6NzGZYq7xIdl9dhBWZkugrtenIDqhR5DdQpKxia2OEQiI0fp9lz8TTJkfZgUVnChcoCSTSxOm8IOEJX06dpKlPEx6-mvYLdmwrUH46u0UtmEB8jZVS3KZf5Otydn41OLpxq4oLDtZgK8yMqkD3qMUF5wE2oQRjmiQolkZJJzJTCPU8QP9TvkmJUaHmGieAqUTLghJENaKWakk1AoVIER4wQLLknMI6oQWQFx8J39e5eB9ya8TGv2pGbqRjjuGmkbBgZa0bGlpEx7cDBx56XshnHr6u7tTzjSjHzGGuHU9PkYrcDh7X8ms8_n7b1t-V7sHAxuu7H_cvB1TYsYhOl21zvLrSK7FXuwDx_K57zbNde3nfho-gU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIMSF8RTjmQM3qFiTdk25IWACbUxIPMStSvNgk7ZuWjt-P0naUkCAhDg3iSw7D7ufPxvgKHRjQcNAONrbFY4XBNxhYYs6RJDYj4XUMQezzSaCXo8-P4d3H1j8Ntu9hCRzToOp0pRkpxOhTivim4uxSZkMHQv1OXQeFjyTSG_i9funihlJcow51EES9T1c0Ga-X-Pz01T5m18gUvvytOv_l3kVVgqvE53n22QN5mSyDvWyowMqDvgGqEuWMTSyTSMQG76Mp4OsP0qR9mxRTu1COXESjexdYIQ5Q51xf5zIBPHhzJRdsHMTgbr3D7doMjVIkLE-KsuXy3QTHttXDxfXTtGJweHafJn5QdWSTeoxQXmLmxCEMMxjFUgiJZOYKYWbniB-oO8rxajQdg5iwVWsZIsTRraglmhJtgEFShEcMkKw5J7AOKQGqRUcC9_Vs5sNcEsjRLwoU266ZQyjqsCyUWSkFRlZRUa0AcfvcyZ5kY5fR--Vto2KA5tGWDuiWiYXuw04KW1Zff55tZ2_DT-EpbvLdtS96XV2YRmb4N2mgO9BLZvO5D4s8tdskE4P7D5-Aw_j8Pg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+mining+algorithms+for+bridge+health+monitoring%3A+Kohonen+clustering+and+LSTM+prediction+approaches&rft.jtitle=The+Journal+of+supercomputing&rft.au=Guo%2C+Aiping&rft.au=Jiang%2C+Ajuan&rft.au=Lin%2C+Jie&rft.au=Li%2C+Xiaoxiao&rft.date=2020-02-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=76&rft.issue=2&rft.spage=932&rft.epage=947&rft_id=info:doi/10.1007%2Fs11227-019-03045-8&rft.externalDocID=10_1007_s11227_019_03045_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |