Data mining algorithms for bridge health monitoring: Kohonen clustering and LSTM prediction approaches

In recent years, bridge health monitoring system has been widely used to deal with massive data produced with the continuous growth of monitoring time. However, how to effectively use these data to comprehensively analyze the state of a bridge and provide early warning of bridge structure changes is...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of supercomputing Ročník 76; číslo 2; s. 932 - 947
Hlavní autoři: Guo, Aiping, Jiang, Ajuan, Lin, Jie, Li, Xiaoxiao
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.02.2020
Springer Nature B.V
Témata:
ISSN:0920-8542, 1573-0484
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In recent years, bridge health monitoring system has been widely used to deal with massive data produced with the continuous growth of monitoring time. However, how to effectively use these data to comprehensively analyze the state of a bridge and provide early warning of bridge structure changes is an important topic in bridge engineering research. This paper utilizes two algorithms to deal with the massive data, namely Kohonen neural network and long short-term memory (LSTM) neural network. The main contribution of this study is using the two algorithms for health state evaluation of bridges. The Kohonen clustering method is shown to be effective for getting classification pattern in normal operating condition and is straightforward for outliers detection. In addition, the LSTM prediction method has an excellent prediction capability which can be used to predict the future deflection values with good accuracy and mean square error. The predicted deflections agree with the true deflections, which indicate that the LSTM method can be utilized to obtain the deflection value of structure. What’s more, we can observe the changing trend of bridge structure by comparing the predicted value with its limit value under normal operation.
AbstractList In recent years, bridge health monitoring system has been widely used to deal with massive data produced with the continuous growth of monitoring time. However, how to effectively use these data to comprehensively analyze the state of a bridge and provide early warning of bridge structure changes is an important topic in bridge engineering research. This paper utilizes two algorithms to deal with the massive data, namely Kohonen neural network and long short-term memory (LSTM) neural network. The main contribution of this study is using the two algorithms for health state evaluation of bridges. The Kohonen clustering method is shown to be effective for getting classification pattern in normal operating condition and is straightforward for outliers detection. In addition, the LSTM prediction method has an excellent prediction capability which can be used to predict the future deflection values with good accuracy and mean square error. The predicted deflections agree with the true deflections, which indicate that the LSTM method can be utilized to obtain the deflection value of structure. What’s more, we can observe the changing trend of bridge structure by comparing the predicted value with its limit value under normal operation.
Author Li, Xiaoxiao
Lin, Jie
Guo, Aiping
Jiang, Ajuan
Author_xml – sequence: 1
  givenname: Aiping
  surname: Guo
  fullname: Guo, Aiping
  organization: Hubei Communications Investment Intelligent Detection CO., Ltd, School of Civil Engineering and Architecture, Wuhan University of Technology
– sequence: 2
  givenname: Ajuan
  surname: Jiang
  fullname: Jiang, Ajuan
  organization: Hubei Communications Investment Intelligent Detection CO., Ltd
– sequence: 3
  givenname: Jie
  surname: Lin
  fullname: Lin, Jie
  organization: Hubei Communications Investment Intelligent Detection CO., Ltd
– sequence: 4
  givenname: Xiaoxiao
  surname: Li
  fullname: Li, Xiaoxiao
  email: 266937@whut.edu.cn
  organization: School of Computer Science and Technology, Wuhan University of Technology
BookMark eNp9kD1PwzAQhi1UJNrCH2CyxBzwV-KUDZVPUcRAmS3HsRNXqR1sd-DfkzZISAydbrh77r17ZmDivNMAXGJ0jRHiNxFjQniG8CJDFLE8K0_AFOecZoiVbAKmaEFQVuaMnIFZjBuEEKOcToG5l0nCrXXWNVB2jQ82tdsIjQ-wCrZuNGy17FILt97ZNLRdcwtffTvkO6i6XUw6HFhXw9XH-g32QddWJesdlH0fvFStjufg1Mgu6ovfOgefjw_r5XO2en96Wd6tMsU4TxlFvNCoZLIuVaEWnHEqiaoM11RrqYk0hiBW0-ExXhhZ1lVe8apWpjK6UFTSObga9w7BXzsdk9j4XXBDpCA0J5QSTPAwRcYpFXyMQRvRB7uV4VtgJPY-xehTDD7FwacoB6j8Bymb5P7PFKTtjqN0RGO_d6XD31VHqB_39o5Y
CitedBy_id crossref_primary_10_1108_SASBE_02_2024_0059
crossref_primary_10_1016_j_matpr_2021_02_348
crossref_primary_10_1016_j_istruc_2025_108436
crossref_primary_10_1109_JIOT_2023_3272535
crossref_primary_10_3390_app15010231
crossref_primary_10_1016_j_cscm_2025_e04907
crossref_primary_10_3390_su141912282
crossref_primary_10_1007_s11227_020_03328_5
crossref_primary_10_1016_j_engstruct_2021_113490
crossref_primary_10_1007_s13349_024_00833_6
crossref_primary_10_3390_s21030824
crossref_primary_10_1016_j_engstruct_2024_118476
crossref_primary_10_32604_sdhm_2024_048705
crossref_primary_10_1016_j_jcsr_2023_107777
crossref_primary_10_1177_14759217251351533
crossref_primary_10_1109_ACCESS_2024_3365550
crossref_primary_10_1155_2022_4975288
crossref_primary_10_1155_2022_7957878
crossref_primary_10_1016_j_autcon_2021_103941
crossref_primary_10_3390_math10091367
crossref_primary_10_1177_14759217241228150
crossref_primary_10_1016_j_autcon_2023_104913
crossref_primary_10_1016_j_conbuildmat_2023_132596
crossref_primary_10_1155_2022_6526512
crossref_primary_10_1177_1045389X231180040
crossref_primary_10_1007_s10921_022_00899_6
crossref_primary_10_1049_tje2_12203
crossref_primary_10_3390_s22041580
crossref_primary_10_1155_2021_6626024
crossref_primary_10_1080_00207543_2025_2507111
crossref_primary_10_1371_journal_pone_0307721
crossref_primary_10_1007_s12083_021_01121_6
crossref_primary_10_1155_stc_7334196
crossref_primary_10_1155_2022_2266702
crossref_primary_10_1007_s00521_022_07133_4
crossref_primary_10_32604_cmes_2023_022699
crossref_primary_10_1061__ASCE_SU_1943_5428_0000400
crossref_primary_10_1016_j_measurement_2023_112797
crossref_primary_10_1007_s13349_025_00938_6
crossref_primary_10_1016_j_conbuildmat_2022_128786
crossref_primary_10_1177_13694332221133604
crossref_primary_10_4018_JCIT_382564
crossref_primary_10_1016_j_autcon_2022_104168
crossref_primary_10_3390_infrastructures9090161
crossref_primary_10_3390_app122211497
crossref_primary_10_1155_2023_2259575
crossref_primary_10_1080_24705314_2022_2088167
crossref_primary_10_3390_infrastructures8120172
crossref_primary_10_1016_j_asoc_2024_112429
crossref_primary_10_1016_j_measurement_2023_113053
crossref_primary_10_1007_s10291_025_01829_5
Cites_doi 10.1016/B978-0-08-102291-7.00004-6
10.1061/(ASCE)BE.1943-5592.0001003
10.3390/app9010160
10.3390/app9010148
10.1080/10286608.2014.916697
10.1016/j.ymssp.2017.04.022
10.1111/j.1747-1567.1999.tb01320.x
10.3390/rs8060506
10.1016/j.enconman.2018.03.098
10.1016/j.apenergy.2018.05.043
10.1007/s11431-012-4818-5
10.1007/s13349-016-0160-0
10.1007/s10518-015-9810-6
10.1080/10798587.2013.824161
10.3390/app8010115
10.1109/ICETCE.2011.5776369
10.24963/ijcai.2018/476
10.1109/DEXA.2011.80
10.1049/cp:19991218
ContentType Journal Article
Copyright The Author(s) 2019
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s11227-019-03045-8
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 947
ExternalDocumentID 10_1007_s11227_019_03045_8
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c477t-3076e084ad8c6c97473a2cbf7e3eeae2aff204d357376fa8db5b7bdcfbfe6c3a3
IEDL.DBID RSV
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000493254500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Thu Sep 25 00:51:13 EDT 2025
Tue Nov 18 21:42:55 EST 2025
Sat Nov 29 04:27:38 EST 2025
Fri Feb 21 02:27:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Health monitoring
Long short-term memory
Kohonen clustering
Structural assessment
Time series
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-3076e084ad8c6c97473a2cbf7e3eeae2aff204d357376fa8db5b7bdcfbfe6c3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s11227-019-03045-8
PQID 2352332121
PQPubID 2043774
PageCount 16
ParticipantIDs proquest_journals_2352332121
crossref_primary_10_1007_s11227_019_03045_8
crossref_citationtrail_10_1007_s11227_019_03045_8
springer_journals_10_1007_s11227_019_03045_8
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Chen, Zeng, Zhou, Du, Lu (CR17) 2018; 165
Zhou, Li, Li, Duan (CR4) 2018; 8
Li, Ding, Wang, Guo (CR1) 2012; 55
Worden, Cross (CR2) 2018; 98
Bayraktar, Altunişik, Sevim, Özşahin (CR12) 2014; 31
Khosravi, Machado, Nunes (CR18) 2018; 224
CR5
CR19
Diez, Khoa, Alamdari, Wang, Chen, Runcie (CR15) 2016; 6
Xia, Cheng, Zhang, Zhu (CR3) 2016; 22
CR16
Sevim, Atamturktur, Altunişik, Bayraktar (CR13) 2016; 14
Lyu, Lu, Mou (CR21) 2016; 8
CR11
CR22
CR10
CR20
Cornwell, Farrar, Doebling, Sohn (CR9) 1999; 23
Alokita, Rahul, Jayakrishna, Kar, Rajesh, Thirumalini, Manikandan, Jawaid, Thariq, Saba (CR6) 2019
Carnevale, Collina, Peirlinck (CR8) 2019; 9
Yang, Zhou, Zhou, Chen (CR14) 2013; 19
Zambon, Vidović, Strauss, Matos (CR7) 2019; 9
S Alokita (3045_CR6) 2019
J Chen (3045_CR17) 2018; 165
G Zhou (3045_CR4) 2018; 8
3045_CR10
3045_CR20
K Worden (3045_CR2) 2018; 98
A Khosravi (3045_CR18) 2018; 224
I Zambon (3045_CR7) 2019; 9
A Bayraktar (3045_CR12) 2014; 31
M Carnevale (3045_CR8) 2019; 9
A Li (3045_CR1) 2012; 55
A Diez (3045_CR15) 2016; 6
3045_CR19
H Lyu (3045_CR21) 2016; 8
Q Xia (3045_CR3) 2016; 22
3045_CR11
B Sevim (3045_CR13) 2016; 14
3045_CR22
P Cornwell (3045_CR9) 1999; 23
J Yang (3045_CR14) 2013; 19
3045_CR16
3045_CR5
References_xml – ident: CR22
– start-page: 53
  year: 2019
  end-page: 73
  ident: CR6
  article-title: Recent advances and trends in structural health monitoring
  publication-title: Structural health monitoring of biocomposites, fibre-reinforced composites and hybrid composites
  doi: 10.1016/B978-0-08-102291-7.00004-6
– ident: CR19
– volume: 22
  start-page: 04016124
  issue: 3
  year: 2016
  ident: CR3
  article-title: In-service condition assessment of a long-span suspension bridge using temperature-induced strain data
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0001003
– volume: 9
  start-page: 160
  issue: 1
  year: 2019
  ident: CR8
  article-title: A feasibility study of the drive-by method for damage detection in railway bridges
  publication-title: Appl Sci
  doi: 10.3390/app9010160
– volume: 9
  start-page: 148
  issue: 1
  year: 2019
  ident: CR7
  article-title: Condition prediction of existing concrete bridges as a combination of visual inspection and analytical models of deterioration
  publication-title: Appl Sci
  doi: 10.3390/app9010148
– ident: CR16
– ident: CR10
– ident: CR11
– volume: 31
  start-page: 347
  issue: 4
  year: 2014
  end-page: 366
  ident: CR12
  article-title: Environmental effects on the dynamic characteristics of the Gülburnu Highway Bridge
  publication-title: Civ Eng Environ Syst
  doi: 10.1080/10286608.2014.916697
– volume: 98
  start-page: 139
  year: 2018
  end-page: 156
  ident: CR2
  article-title: On switching response surface models, with applications to the structural health monitoring of bridges
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.04.022
– volume: 23
  start-page: 45
  issue: 6
  year: 1999
  end-page: 48
  ident: CR9
  article-title: Environmental variability of modal properties
  publication-title: Exp Tech
  doi: 10.1111/j.1747-1567.1999.tb01320.x
– volume: 8
  start-page: 506
  issue: 6
  year: 2016
  ident: CR21
  article-title: Learning a transferable change rule from a recurrent neural network for land cover change detection
  publication-title: Remote Sens
  doi: 10.3390/rs8060506
– volume: 165
  start-page: 681
  year: 2018
  end-page: 695
  ident: CR17
  article-title: Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization
  publication-title: Energy Convers manag
  doi: 10.1016/j.enconman.2018.03.098
– volume: 224
  start-page: 550
  year: 2018
  end-page: 566
  ident: CR18
  article-title: Time-series prediction of wind speed using machine learning algorithms: a case study Osorio wind farm, Brazil
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.05.043
– volume: 55
  start-page: 2212
  issue: 8
  year: 2012
  end-page: 2224
  ident: CR1
  article-title: Analysis and assessment of bridge health monitoring mass data—progress in research/development of “structural health monitoring”
  publication-title: Sci China Technol Sci
  doi: 10.1007/s11431-012-4818-5
– volume: 6
  start-page: 429
  issue: 3
  year: 2016
  end-page: 445
  ident: CR15
  article-title: A clustering approach for structural health monitoring on bridges
  publication-title: J Civ Struct Health Monit
  doi: 10.1007/s13349-016-0160-0
– ident: CR5
– volume: 14
  start-page: 241
  issue: 1
  year: 2016
  end-page: 259
  ident: CR13
  article-title: Ambient vibration testing and seismic behavior of historical arch bridges under near and far fault ground motions
  publication-title: Bull Earthq Eng
  doi: 10.1007/s10518-015-9810-6
– volume: 19
  start-page: 305
  issue: 3
  year: 2013
  end-page: 314
  ident: CR14
  article-title: Prediction of bridge monitoring information chaotic using time series theory by multi-step BP and RBF neural networks
  publication-title: Intell Autom Soft Comput
  doi: 10.1080/10798587.2013.824161
– volume: 8
  start-page: 115
  issue: 1
  year: 2018
  ident: CR4
  article-title: Structural health monitoring and time-dependent effects analysis of self-anchored suspension bridge with extra-wide concrete girder
  publication-title: Appl Sci
  doi: 10.3390/app8010115
– ident: CR20
– volume: 6
  start-page: 429
  issue: 3
  year: 2016
  ident: 3045_CR15
  publication-title: J Civ Struct Health Monit
  doi: 10.1007/s13349-016-0160-0
– volume: 224
  start-page: 550
  year: 2018
  ident: 3045_CR18
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.05.043
– volume: 19
  start-page: 305
  issue: 3
  year: 2013
  ident: 3045_CR14
  publication-title: Intell Autom Soft Comput
  doi: 10.1080/10798587.2013.824161
– ident: 3045_CR10
  doi: 10.1109/ICETCE.2011.5776369
– ident: 3045_CR16
– volume: 22
  start-page: 04016124
  issue: 3
  year: 2016
  ident: 3045_CR3
  publication-title: J Bridge Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0001003
– volume: 8
  start-page: 506
  issue: 6
  year: 2016
  ident: 3045_CR21
  publication-title: Remote Sens
  doi: 10.3390/rs8060506
– ident: 3045_CR11
– volume: 165
  start-page: 681
  year: 2018
  ident: 3045_CR17
  publication-title: Energy Convers manag
  doi: 10.1016/j.enconman.2018.03.098
– volume: 23
  start-page: 45
  issue: 6
  year: 1999
  ident: 3045_CR9
  publication-title: Exp Tech
  doi: 10.1111/j.1747-1567.1999.tb01320.x
– volume: 98
  start-page: 139
  year: 2018
  ident: 3045_CR2
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.04.022
– ident: 3045_CR20
– volume: 8
  start-page: 115
  issue: 1
  year: 2018
  ident: 3045_CR4
  publication-title: Appl Sci
  doi: 10.3390/app8010115
– volume: 31
  start-page: 347
  issue: 4
  year: 2014
  ident: 3045_CR12
  publication-title: Civ Eng Environ Syst
  doi: 10.1080/10286608.2014.916697
– ident: 3045_CR19
  doi: 10.24963/ijcai.2018/476
– ident: 3045_CR5
  doi: 10.1109/DEXA.2011.80
– start-page: 53
  volume-title: Structural health monitoring of biocomposites, fibre-reinforced composites and hybrid composites
  year: 2019
  ident: 3045_CR6
  doi: 10.1016/B978-0-08-102291-7.00004-6
– volume: 14
  start-page: 241
  issue: 1
  year: 2016
  ident: 3045_CR13
  publication-title: Bull Earthq Eng
  doi: 10.1007/s10518-015-9810-6
– volume: 9
  start-page: 148
  issue: 1
  year: 2019
  ident: 3045_CR7
  publication-title: Appl Sci
  doi: 10.3390/app9010148
– volume: 9
  start-page: 160
  issue: 1
  year: 2019
  ident: 3045_CR8
  publication-title: Appl Sci
  doi: 10.3390/app9010160
– ident: 3045_CR22
  doi: 10.1049/cp:19991218
– volume: 55
  start-page: 2212
  issue: 8
  year: 2012
  ident: 3045_CR1
  publication-title: Sci China Technol Sci
  doi: 10.1007/s11431-012-4818-5
SSID ssj0004373
Score 2.4929185
Snippet In recent years, bridge health monitoring system has been widely used to deal with massive data produced with the continuous growth of monitoring time....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 932
SubjectTerms Algorithms
Bridges
Clustering
Compilers
Computer Science
Data analysis
Data mining
Deflection
Engineering research
Interpreters
Neural networks
Outliers (statistics)
Predictions
Processor Architectures
Programming Languages
Structural health monitoring
Title Data mining algorithms for bridge health monitoring: Kohonen clustering and LSTM prediction approaches
URI https://link.springer.com/article/10.1007/s11227-019-03045-8
https://www.proquest.com/docview/2352332121
Volume 76
WOSCitedRecordID wos000493254500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals - Owned
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcODCeIrBQDlwg0pr0zYpNwRMSMCE2EC7VYmbsElbN60dv58kbalAgATnJpFlx7Fd-7MROuUACnyTU48gcPxIuE4kXeIIbV8jAYJwzu2wCdrrseEweixBYVlV7V6lJO1LXYPdXM8zZZKRY9N7DltFa9rcMTOw4an_UqMhSZFXjnRgxALfK6Ey35_x2RzVPuaXtKi1Nt3m_-jcQpuld4kvi-uwjVZkuoOa1eQGXCryLlLXPOd4aodDYD55nS3G-WiaYe3B4gLChQuAJJ5anTcEXOC72WiWyhTDZGnaK9i9aYLv-4MHPF-YjI-RMq7alMtsDz13bwZXt045ccEBn9Lc_IgKZYf5PGEQggk1CPdAKCqJlFx6XCmv4yckoPpdUpwlIhBUJKCEkiEQTvZRI9WUHCBMJVMgXBCUBAYuy0MWUZnw0O-oBDq8hdyK8TGU7cjNVIxJXDdSNoyMNSNjy8iYtdDZx5550Yzj19XtSp5xqZhZ7GmHkxBtr90WOq_kV3_--bTDvy0_QhueicxtfXcbNfLFUh6jdXjLx9nixF7Yd4z05po
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT-MwDLf4ku5e-DzEuB3kgTeotDZtk_J2OkBDjOl0G2hvVeImgLR1aC3395Ok7VUgDgmem0SWHcd27Z8NcCQQNYY2p55g5IWJ9L1E-dSTxr4mEiUVQrhhE2w45JNJ8rsGhRVNtXuTknQvdQt284PAlkkmnkvveXwZVkNjsWzH_D-j2xYNSau8cmICIx6FQQ2VefuMl-ao9TFfpUWdtbnY-Bydm7Bee5fkZ3UdtmBJ5duw0UxuILUi74A-E6UgMzccgojp3XzxUN7PCmI8WFJBuEgFkCQzp_OWgFNyNb-f5yonOH2y7RXc3jwjg9H4mjwubMbHSpk0bcpV8Q1uLs7Hv_pePXHBw5Cx0v6IilWPhyLjGKMNNagIUGqmqFJCBULroBdmNGLmXdKCZzKSTGaopVYxUkF3YSU3lOwBYYprlD5KRiMLlxUxT5jKRBz2dIY90QG_YXyKdTtyOxVjmraNlC0jU8PI1DEy5R04_rfnsWrG8e7qbiPPtFbMIg2Mw0mpsdd-B04a-bWf_3_a_seWH8KX_vh6kA4uh1ff4Wtgo3RX692FlXLxpH7AGv4tH4rFgbu8z2TM6X4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIMSF8RTjmQM3qFibtkm5IWACARMSD3GrEjdhSFs3bYXfT5O2FBAgIc5NIitOYrv29xlgTyBq9E1OPcLA8SPpOpFyqSNz-xpJlFQIYZtNsG6XPz5GNx9Q_LbavUpJFpgGw9KUZoejRB_WwDfX80zJZOTYVJ_Dp2HGN4X0Jl6_faiRkbTIMUd5kMQD3ythM9-v8dk01f7mlxSptTyd5v9lXoSF0uskx8UxWYIplS5Ds-roQMoLvgL6VGSCDGzTCCL6T8Pxc9YbTEju2ZIC2kUK4CQZ2LfACHNELoe9YapSgv0XQ7tg56YJubq9uyajsckEGe2Tir5cTVbhvnN2d3LulJ0YHPQZy8wPqlC1uS8SjiGaEIQKD6VmiiollCe09tp-QgOWv1da8EQGkskEtdQqRCroGjTSXJJ1IExxjdJFyWhgYLQi5BFTiQj9tk6wLVrgVkqIsaQpN90y-nFNsGw2Ms43MrYbGfMW7L_PGRUkHb-O3qp0G5cXdhJ7uSNKaW7H3RYcVLqsP_-82sbfhu_C3M1pJ7666F5uwrxngndbAr4FjWz8orZhFl-z58l4x57jN5zT8mI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+mining+algorithms+for+bridge+health+monitoring%3A+Kohonen+clustering+and+LSTM+prediction+approaches&rft.jtitle=The+Journal+of+supercomputing&rft.au=Guo%2C+Aiping&rft.au=Jiang%2C+Ajuan&rft.au=Lin%2C+Jie&rft.au=Li%2C+Xiaoxiao&rft.date=2020-02-01&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=76&rft.issue=2&rft.spage=932&rft.epage=947&rft_id=info:doi/10.1007%2Fs11227-019-03045-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_019_03045_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon