Sensitivity of air quality model responses to emission changes: comparison of results based on four EU inventories through FAIRMODE benchmarking methodology

Despite the application of an increasingly strict EU air quality legislation, air quality remains problematic in large parts of Europe. To support the abatement of these remaining problems, a better understanding of the potential impacts of emission abatement measures on air quality is required, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geoscientific Model Development Jg. 17; H. 2; S. 587 - 606
Hauptverfasser: de Meij, Alexander, Cuvelier, Cornelis, Thunis, Philippe, Pisoni, Enrico, Bessagnet, Bertrand
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Katlenburg-Lindau Copernicus GmbH 25.01.2024
Copernicus Publications
Schlagworte:
ISSN:1991-9603, 1991-959X, 1991-962X, 1991-9603, 1991-962X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Despite the application of an increasingly strict EU air quality legislation, air quality remains problematic in large parts of Europe. To support the abatement of these remaining problems, a better understanding of the potential impacts of emission abatement measures on air quality is required, and air chemistry transport models (CTMs) are the main instrument to perform emission reduction scenarios. In this study, we study the robustness of the model responses to emission reductions when emission input is changed. We investigate how inconsistencies in emissions impact the modelling responses in the case of emission reduction scenarios. Based on EMEP simulations over Europe fed by four emission inventories – EDGAR 5.0, EMEP-GNFR, CAMS 2.2.1 and CAMS version 4.2 (including condensables) – we reduce anthropogenic emissions in six cities (Brussels, Madrid, Rome, Bucharest, Berlin and Stockholm) and two regions (Po Valley in Italy and Malopolska in Poland) and study the variability in the concentration reductions obtained with these four emission inventories. Our study reveals that the impact of reducing aerosol precursors on PM10 concentrations result in different potentials and potencies, differences that are mainly explained by differences in emission quantities, differences in their spatial distributions as well as in their sector allocation. In general, the variability among models is larger for concentration changes (potentials) than for absolute concentrations. Similar total precursor emissions can, however, hide large variations in sectorial allocation that can lead to large impacts on potency given their different vertical distribution. Primary particulate matter (PPM) appears to be the precursor leading to the major differences in terms of potentials. From an emission inventory viewpoint, this work indicates that the most efficient actions to improve the robustness of the modelling responses to emission changes would be to better assess the sectorial share and total quantities of PPM emissions. From a modelling point of view, NOx responses are the more challenging and require caution because of their non-linearity. For O3, we find that the relationship between emission reduction and O3 concentration change shows the largest non-linearity for NOx (concentration increase) and a quasi-linear behaviour for volatile organic compounds (concentration decrease). We also emphasise the importance of accurate ratios of emitted precursors since these lead to changes in chemical regimes, directly affecting the responses of O3 or PM10 concentrations to emission reductions.
AbstractList Despite the application of an increasingly strict EU air quality legislation, air quality remains problematic in large parts of Europe. To support the abatement of these remaining problems, a better understanding of the potential impacts of emission abatement measures on air quality is required, and air chemistry transport models (CTMs) are the main instrument to perform emission reduction scenarios. In this study, we study the robustness of the model responses to emission reductions when emission input is changed. We investigate how inconsistencies in emissions impact the modelling responses in the case of emission reduction scenarios. Based on EMEP simulations over Europe fed by four emission inventories – EDGAR 5.0, EMEP-GNFR, CAMS 2.2.1 and CAMS version 4.2 (including condensables) – we reduce anthropogenic emissions in six cities (Brussels, Madrid, Rome, Bucharest, Berlin and Stockholm) and two regions (Po Valley in Italy and Malopolska in Poland) and study the variability in the concentration reductions obtained with these four emission inventories. Our study reveals that the impact of reducing aerosol precursors on PM10 concentrations result in different potentials and potencies, differences that are mainly explained by differences in emission quantities, differences in their spatial distributions as well as in their sector allocation. In general, the variability among models is larger for concentration changes (potentials) than for absolute concentrations. Similar total precursor emissions can, however, hide large variations in sectorial allocation that can lead to large impacts on potency given their different vertical distribution. Primary particulate matter (PPM) appears to be the precursor leading to the major differences in terms of potentials. From an emission inventory viewpoint, this work indicates that the most efficient actions to improve the robustness of the modelling responses to emission changes would be to better assess the sectorial share and total quantities of PPM emissions. From a modelling point of view, NOx responses are the more challenging and require caution because of their non-linearity. For O3, we find that the relationship between emission reduction and O3 concentration change shows the largest non-linearity for NOx (concentration increase) and a quasi-linear behaviour for volatile organic compounds (concentration decrease). We also emphasise the importance of accurate ratios of emitted precursors since these lead to changes in chemical regimes, directly affecting the responses of O3 or PM10 concentrations to emission reductions.
Despite the application of an increasingly strict EU air quality legislation, air quality remains problematic in large parts of Europe. To support the abatement of these remaining problems, a better understanding of the potential impacts of emission abatement measures on air quality is required, and air chemistry transport models (CTMs) are the main instrument to perform emission reduction scenarios. In this study, we study the robustness of the model responses to emission reductions when emission input is changed. We investigate how inconsistencies in emissions impact the modelling responses in the case of emission reduction scenarios. Based on EMEP simulations over Europe fed by four emission inventories - EDGAR 5.0, EMEP-GNFR, CAMS 2.2.1 and CAMS version 4.2 (including condensables) - we reduce anthropogenic emissions in six cities (Brussels, Madrid, Rome, Bucharest, Berlin and Stockholm) and two regions (Po Valley in Italy and Malopolska in Poland) and study the variability in the concentration reductions obtained with these four emission inventories.
Despite the application of an increasingly strict EU air quality legislation, air quality remains problematic in large parts of Europe. To support the abatement of these remaining problems, a better understanding of the potential impacts of emission abatement measures on air quality is required, and air chemistry transport models (CTMs) are the main instrument to perform emission reduction scenarios. In this study, we study the robustness of the model responses to emission reductions when emission input is changed. We investigate how inconsistencies in emissions impact the modelling responses in the case of emission reduction scenarios. Based on EMEP simulations over Europe fed by four emission inventories – EDGAR 5.0, EMEP-GNFR, CAMS 2.2.1 and CAMS version 4.2 (including condensables) – we reduce anthropogenic emissions in six cities (Brussels, Madrid, Rome, Bucharest, Berlin and Stockholm) and two regions (Po Valley in Italy and Malopolska in Poland) and study the variability in the concentration reductions obtained with these four emission inventories. Our study reveals that the impact of reducing aerosol precursors on PM 10 concentrations result in different potentials and potencies, differences that are mainly explained by differences in emission quantities, differences in their spatial distributions as well as in their sector allocation. In general, the variability among models is larger for concentration changes (potentials) than for absolute concentrations. Similar total precursor emissions can, however, hide large variations in sectorial allocation that can lead to large impacts on potency given their different vertical distribution. Primary particulate matter (PPM) appears to be the precursor leading to the major differences in terms of potentials. From an emission inventory viewpoint, this work indicates that the most efficient actions to improve the robustness of the modelling responses to emission changes would be to better assess the sectorial share and total quantities of PPM emissions. From a modelling point of view, NOx responses are the more challenging and require caution because of their non-linearity. For O 3 , we find that the relationship between emission reduction and O 3 concentration change shows the largest non-linearity for NOx (concentration increase) and a quasi-linear behaviour for volatile organic compounds (concentration decrease). We also emphasise the importance of accurate ratios of emitted precursors since these lead to changes in chemical regimes, directly affecting the responses of O 3 or PM 10 concentrations to emission reductions.
Despite the application of an increasingly strict EU air quality legislation, air quality remains problematic in large parts of Europe. To support the abatement of these remaining problems, a better understanding of the potential impacts of emission abatement measures on air quality is required, and air chemistry transport models (CTMs) are the main instrument to perform emission reduction scenarios. In this study, we study the robustness of the model responses to emission reductions when emission input is changed. We investigate how inconsistencies in emissions impact the modelling responses in the case of emission reduction scenarios. Based on EMEP simulations over Europe fed by four emission inventories - EDGAR 5.0, EMEP-GNFR, CAMS 2.2.1 and CAMS version 4.2 (including condensables) - we reduce anthropogenic emissions in six cities (Brussels, Madrid, Rome, Bucharest, Berlin and Stockholm) and two regions (Po Valley in Italy and Malopolska in Poland) and study the variability in the concentration reductions obtained with these four emission inventories. Our study reveals that the impact of reducing aerosol precursors on PM.sub.10 concentrations result in different potentials and potencies, differences that are mainly explained by differences in emission quantities, differences in their spatial distributions as well as in their sector allocation. In general, the variability among models is larger for concentration changes (potentials) than for absolute concentrations. Similar total precursor emissions can, however, hide large variations in sectorial allocation that can lead to large impacts on potency given their different vertical distribution. Primary particulate matter (PPM) appears to be the precursor leading to the major differences in terms of potentials. From an emission inventory viewpoint, this work indicates that the most efficient actions to improve the robustness of the modelling responses to emission changes would be to better assess the sectorial share and total quantities of PPM emissions. From a modelling point of view, NO.sub.x responses are the more challenging and require caution because of their non-linearity. For O.sub.3, we find that the relationship between emission reduction and O.sub.3 concentration change shows the largest non-linearity for NO.sub.x (concentration increase) and a quasi-linear behaviour for volatile organic compounds (concentration decrease). We also emphasise the importance of accurate ratios of emitted precursors since these lead to changes in chemical regimes, directly affecting the responses of O.sub.3 or PM.sub.10 concentrations to emission reductions.
Audience Academic
Author Pisoni, Enrico
Cuvelier, Cornelis
de Meij, Alexander
Thunis, Philippe
Bessagnet, Bertrand
Author_xml – sequence: 1
  givenname: Alexander
  orcidid: 0000-0003-3799-7951
  surname: de Meij
  fullname: de Meij, Alexander
– sequence: 2
  givenname: Cornelis
  surname: Cuvelier
  fullname: Cuvelier, Cornelis
– sequence: 3
  givenname: Philippe
  surname: Thunis
  fullname: Thunis, Philippe
– sequence: 4
  givenname: Enrico
  surname: Pisoni
  fullname: Pisoni, Enrico
– sequence: 5
  givenname: Bertrand
  surname: Bessagnet
  fullname: Bessagnet, Bertrand
BookMark eNp1Ul1vFCEUnZia2FaffSXxyYdpYb4A3zZ1q5vUNGntM2H4mGWdgS0wjftf_LHedTW6RuEBODnnAPees-LEB2-K4jXBFy3hzeUw6ZLQsmW0rHDVPCtOCeek5B2uT_7YvyjOUtpg3HHa0dPi273xyWX35PIOBYuki-hxluP-OAVtRhRN2gafTEI5IDO5lFzwSK2lH0x6h1SYtjK6BBjIgTyPOaFeJqMRYDbMES0fkPNPxucQ3d5nHcM8rNH1YnX36fb9EvXGq_Uk4xfnBzSZvA46jGHYvSyeWzkm8-rnel48XC8_X30sb24_rK4WN6VqKM3w65oQqi23miqlmsZUsmU1JzBY1RqjrMWkb3DLLePM2J7WTFvZ9J3uW9nW58Xq4KuD3IhtdPCWnQjSiR9AiIOQMTs1GtFWNWaSWY473Ehec6k63KsO4KqvSQdebw5e2xgeZ5Oy2EAJPDxfVJww0tKG8N-sQYKp8zbkKBUUV4kFZbjBNe4IsC7-wYKpoQ8K2m8d4EeCt0cC4GTzNQ9yTkms7u-Oue2Bq2JIKRorlMsyQ3PhEjcKgsU-VwJyJQgVkCuxzxXoLv_S_SrY_xTfAdsb0lI
CitedBy_id crossref_primary_10_3390_rs16132447
crossref_primary_10_1016_j_envres_2024_119112
crossref_primary_10_3390_atmos15111358
crossref_primary_10_5194_acp_24_11545_2024
crossref_primary_10_5194_gmd_18_4231_2025
Cites_doi 10.5194/acp-9-6611-2009
10.1016/j.atmosenv.2006.07.039
10.1016/j.aeaoa.2019.100018
10.1016/j.atmosenv.2015.04.016
10.5194/essd-10-1987-2018
10.1016/j.atmosenv.2008.12.036
10.1016/j.envsoft.2011.07.012
10.1016/j.envint.2021.106699
10.1029/1998JD100096
10.5194/egusphere-2023-1257-supplement
10.1021/acs.est.7b01975
10.5194/acp-21-18195-2021
10.1016/j.aeaoa.2021.100111
10.5194/acp-12-7825-2012
10.5094/APR.2015.048
10.5194/gmd-15-5271-2022
10.1029/2010JD014435
10.3390/app12094257
10.1016/j.atmosres.2007.02.001
10.5194/essd-11-959-2019
10.5194/acp-14-10963-2014
10.1021/es048664m
10.5194/essd-14-491-2022
10.1007/s11869-014-0279-2
10.5194/acp-17-12813-2017
10.1016/j.atmosenv.2014.12.057
10.1016/j.atmosenv.2014.11.033
10.1016/j.atmosenv.2019.117119
10.1007/s11869-013-0211-1
10.1016/j.atmosenv.2006.09.001
10.1038/s41597-020-0462-2
10.5194/acp-21-9309-2021
10.1016/j.atmosenv.2017.10.032
10.3390/su11072054
10.1016/j.serj.2016.04.006
10.1007/s00703-018-0632-3
ContentType Journal Article
Copyright COPYRIGHT 2024 Copernicus GmbH
2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 Copernicus GmbH
– notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7TG
7TN
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L6V
L7M
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.5194/gmd-17-587-2024
DatabaseName CrossRef
Gale In Context: Science
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef




Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Chemistry
EISSN 1991-9603
1991-962X
EndPage 606
ExternalDocumentID oai_doaj_org_article_52308a8f90604a939ac60bc62302b316
A780403061
10_5194_gmd_17_587_2024
GeographicLocations Poland
Italy
Bucharest Romania
Romania
Europe
Po Valley
GeographicLocations_xml – name: Po Valley
– name: Poland
– name: Romania
– name: Bucharest Romania
– name: Europe
– name: Italy
GroupedDBID 5VS
8R4
8R5
AAFWJ
AAYXX
ABDBF
ACUHS
ADBBV
AENEX
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
ESX
GROUPED_DOAJ
H13
IAO
IEA
IEP
ISR
ITC
KQ8
OK1
P2P
Q2X
RKB
RNS
TR2
TUS
7TG
7TN
7UA
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L6V
L7M
LK5
M7R
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PROAC
PTHSS
ID FETCH-LOGICAL-c477t-173117df9fd7ccc44e2a58391111825eecff01b4059f898efb738dfa4b6db5a53
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001168767200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1991-9603
1991-959X
1991-962X
IngestDate Fri Oct 03 12:48:39 EDT 2025
Fri Jul 25 12:25:01 EDT 2025
Mon Oct 20 23:09:57 EDT 2025
Mon Oct 20 17:09:03 EDT 2025
Thu Oct 16 16:19:21 EDT 2025
Sat Nov 29 05:38:06 EST 2025
Tue Nov 18 20:44:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-173117df9fd7ccc44e2a58391111825eecff01b4059f898efb738dfa4b6db5a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3799-7951
OpenAccessLink https://doaj.org/article/52308a8f90604a939ac60bc62302b316
PQID 2918157419
PQPubID 105726
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_52308a8f90604a939ac60bc62302b316
proquest_journals_2918157419
gale_infotracmisc_A780403061
gale_infotracacademiconefile_A780403061
gale_incontextgauss_ISR_A780403061
crossref_citationtrail_10_5194_gmd_17_587_2024
crossref_primary_10_5194_gmd_17_587_2024
PublicationCentury 2000
PublicationDate 2024-01-25
PublicationDateYYYYMMDD 2024-01-25
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-25
  day: 25
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Geoscientific Model Development
PublicationYear 2024
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref46
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref8
  doi: 10.5194/acp-9-6611-2009
– ident: ref32
  doi: 10.1016/j.atmosenv.2006.07.039
– ident: ref27
  doi: 10.1016/j.aeaoa.2019.100018
– ident: ref37
  doi: 10.1016/j.atmosenv.2015.04.016
– ident: ref5
  doi: 10.5194/essd-10-1987-2018
– ident: ref9
  doi: 10.1016/j.atmosenv.2008.12.036
– ident: ref1
  doi: 10.1016/j.envsoft.2011.07.012
– ident: ref3
  doi: 10.1016/j.envint.2021.106699
– ident: ref24
  doi: 10.1029/1998JD100096
– ident: ref42
  doi: 10.5194/egusphere-2023-1257-supplement
– ident: ref46
  doi: 10.1021/acs.est.7b01975
– ident: ref25
– ident: ref40
  doi: 10.5194/acp-21-18195-2021
– ident: ref39
  doi: 10.1016/j.aeaoa.2021.100111
– ident: ref31
  doi: 10.5194/acp-12-7825-2012
– ident: ref26
  doi: 10.5094/APR.2015.048
– ident: ref41
  doi: 10.5194/gmd-15-5271-2022
– ident: ref45
  doi: 10.1029/2010JD014435
– ident: ref12
  doi: 10.3390/app12094257
– ident: ref34
– ident: ref15
– ident: ref30
– ident: ref13
– ident: ref7
  doi: 10.1016/j.atmosres.2007.02.001
– ident: ref44
– ident: ref19
  doi: 10.5194/essd-11-959-2019
– ident: ref23
  doi: 10.5194/acp-14-10963-2014
– ident: ref4
  doi: 10.1021/es048664m
– ident: ref22
  doi: 10.5194/essd-14-491-2022
– ident: ref20
  doi: 10.1007/s11869-014-0279-2
– ident: ref21
– ident: ref28
  doi: 10.5194/acp-17-12813-2017
– ident: ref36
  doi: 10.1016/j.atmosenv.2014.12.057
– ident: ref10
  doi: 10.1016/j.atmosenv.2014.11.033
– ident: ref17
  doi: 10.1016/j.atmosenv.2019.117119
– ident: ref35
  doi: 10.1007/s11869-013-0211-1
– ident: ref33
  doi: 10.1016/j.atmosenv.2006.09.001
– ident: ref6
  doi: 10.1038/s41597-020-0462-2
– ident: ref18
– ident: ref38
  doi: 10.5194/acp-21-9309-2021
– ident: ref43
  doi: 10.1016/j.atmosenv.2017.10.032
– ident: ref2
  doi: 10.3390/su11072054
– ident: ref16
– ident: ref29
  doi: 10.1016/j.serj.2016.04.006
– ident: ref11
  doi: 10.1007/s00703-018-0632-3
– ident: ref14
SSID ssj0069767
ssj0069768
Score 2.3730648
Snippet Despite the application of an increasingly strict EU air quality legislation, air quality remains problematic in large parts of Europe. To support the...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 587
SubjectTerms Aerosols
Air
Air pollution
Air quality
Air quality management
Air quality measurements
Air quality models
Anthropogenic factors
Benchmarks
Chemistry
Comparative analysis
Emission analysis
Emission inventories
Emission measurements
Emissions
Emissions (Pollution)
Emissions control
Human influences
Legislation
Methods
Modelling
Nitrogen compounds
Nitrogen oxides
Nonlinearity
Organic compounds
Outdoor air quality
Particulate emissions
Particulate matter
Particulate matter emissions
Pollutants
Precursors
Robustness
Spatial distribution
Suspended particulate matter
Variability
Vertical distribution
VOCs
Volatile organic compounds
SummonAdditionalLinks – databaseName: Copernicus Publications
  dbid: RKB
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQVSQuUF4iUNAIIcFlaez1Zm1uARKoBAWlFOVmeb12G6nNouwGqf-FH8uMvY3IoeIA192x4p2x5-GMv4-xF1YoLmun6K9Bm0lMWbNqWFSZcDl6BpWrOjbRfP9UHh2p-Vx__YPqi3rCEjxwUtwBnVoqq4ImlBerc23daFg5jNpDUeWcwLZxGdKWnBGHW_LBIwyykVaF-np0oecJ1AezFXlwelFn6JkL3FxY-MuteBRh-69zzjHiTO_8w1z32O0-zYRxGnKX3fDLe-zmh0jje3mf_TqmvvVEHAFNALtYQbpeeQmRGwdWqXfWt9A1QJxwdKoG6Zpw-wbchr6QhqPw-rxrgUJiDfgs4O_D5AQWsaW9oXIcekYgmI4PZ5-_vJ9AhRvk7MLGw3pITNZxeg_YyXTy7d3HrOdpyJwsyw61mXNe1kGHunTOSemFLTDxIm-MBaj3LoQhrzA11EFp5UNV4hoIVlajuipskT9kO8tm6R8xEFqUPHgvCoLV4dISgpos3Sh3gQthB-z1lbWM60HMiUvj3GAxQ-Y1aF7DS4PmNWTeAXu1GfAj4XdcL_qWLLoRI-Dt-ABNbHoTm7-ZeMCe0-IxBK2xpN6dU7tuW3N4PDNjwnqiEo0P2MteKDQ4e2f7qxCoA0Lj2pLc35JEc7vt11dr1PS-pzVCY9ZWoPr04__xRU_YLdIOHTuJYp_tdKu1f8p23c9u0a6exW33G5oXK8k
  priority: 102
  providerName: Copernicus Gesellschaft
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagBdELjwLqQkEWQoJLaOI8HHNB27ILlWCpthTtzXIce1mp3ZQki9T_wo9lxnEW9lAuHJNMIicznhlPxt9HyEvF8igpdY6_BlWQQMoaFGFaBEzH4BnyOC9dE823T3wyyWczceILbo1vq-x9onPUZaWxRn7ABMSiFOKfeHf5I0DWKPy76ik0bpJtRCoDO98-HE1Opr0vziDY8r8P3M44bPYRGZt1SD-QwiQH84syAHedwoxjIUs2gpTD8r_OY7swNL73vy9wn9z1CSgddhbzgNwwy11y56jnfdsltz84st-rh-TXKXa3d_QStLJULWrabcK8oo5Bh9Zdh61paFtRfALW3mi3mbh5S_Wa5BBvB-HVedtQDJwlhXMWxkJHZ3ThGt8rXLRTzxtEx8Pj6ecv70e0gGn0_UK5kj7t-K7d8B6Rs_Ho69HHwLM5BDrhvIXPG0cRL62wJddaJ4lhKoX0DH02LFON0daGUQEJpLC5yI0tOFiKVUmRlUWq0vgx2VpWS7NHKBOMR9YYliL4TpQoxFlLuM5ibSPG1IC86dUntYc6R8aNcwlLHtS3BH3LiEvQt0R9D8jr9Q2XHcrH9aKHaA9rMYTndieqei79bJdYas9VbgVCEykRC6WzsNCQaoasiKNsQF6gNUkE4Fhih89crZpGHp9O5RARoXAhFw3IKy9kKxi9Vn7DBHwDxOzakNzfkAR1683LvUVK76Ea-cccn_z78lOyg--NZSeW7pOttl6ZZ-SW_tkumvq5n3C_AXz3Mfs
  priority: 102
  providerName: ProQuest
Title Sensitivity of air quality model responses to emission changes: comparison of results based on four EU inventories through FAIRMODE benchmarking methodology
URI https://www.proquest.com/docview/2918157419
https://doaj.org/article/52308a8f90604a939ac60bc62302b316
Volume 17
WOSCitedRecordID wos001168767200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus Publications
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069767
  issn: 1991-9603
  databaseCode: RKB
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069767
  issn: 1991-9603
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: BFMQW
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: PCBAR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: M7S
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: PIMPY
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQAhIXxKcoLJWFkOASNnacOubWQgsVbKlaFpWT5Tj2Umm3RU2KtP-FH8uMnVb0sOLCse5EcWYm4xln_B4hLw0vmKhsgZ8GTSIgZU3KNC8TbjOIDEVWVKGJ5ttnOZkUi4Wa_kX1hT1hER44Ku4Edy0LU3iFKC9GZcrYXlpaWLVTXmYsgG2nUu2KqRiDe7DIBloV7OtRuVpEUB_IVsTJ-WWVQGTO4eWCwl8crEcBtv-64BxWnNE9crdNFWk_TvE-ueFWD8jtD4GK9-oh-T3H3vNI_kDXnprlhsYjklc08NvQTex_dTVt1hR53XBnjMajvvVbavcUhHg5CG8vmprislZRGPNwfzo8o8vQlr7Gkpq2rD501B_PTr-8H9ISnPzHpQkb7jSyUYfpPSJno-HXdx-TlmshsULKBjSSMSYrr3wlrbVCOG5ySJ4wokIR6Zz1PmUlpHfKF6pwvpRgR29E2avK3OTZY3K0Wq_cE0K54pJ553iO0DhMGERBE9L2MusZ56ZD3uw0rm0LRI58GBcaChI0kQYTaSY1mEijiTrk9f6CnxGD43rRAZpwL4bg2WEAXEq3LqX_5VId8gIdQCM8xgr7b87Ntq71eD7TfcRrwjKLdcirVsivYfbWtMcZQAeIqHUgeXwgCea2h3_v_Ey38aPWXEHmlYP61NP_8UTPyB3UDm4d8fyYHDWbrXtObtlfzbLedMnNwXAynXXDK9TF7tc5jE3Hp9Pv8Gv2afAH7H4fqA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamDjReuAwQhQEWAsFLWOI4cYKEUNlaVq0t1S6oPBnHsUulrRlNC-p_4TfwGzknl0IfxtseeExyElnOudk-5_sIea5Y5PFUR3g0qBwOKauTuEHiMO2DZ4j8KC2KaD71xGAQjUbxcIP8qnthsKyy9omFo04zjXvkuyyGWBRA_IvfXXxzkDUKT1drCo1SLQ7N8gcs2fK33X34vy8Y67RP9g6cilXA0VyIueMJ3_NEamObCq0154apANIE9B2wXDJGW-t6CSQysY3iyNhEwIit4kmYJoFClghw-ZsclN1tkM1htz_8XPv-EIK7-Pui6MTD4qI4ZKMSWQhSJr47Pk9hIE4AFs5cxteCYsEdcFmEKMJe59b_NmG3yc0qwaat0iLukA0z3SZbezWv3Ta5_qEgM17eJT-PsXq_pM-gmaVqMqNlk-mSFgxBdFZWEJuczjOKX8C9RVo2S-dvqF6ROOLrILw4m-cUE4OUwj0LY6HtUzopCvsz3JSgFS8S7bS6R_2P-22agJv4eq6KIwta8nkXw7tHTq9kmu6TxjSbmgeEspgJzxrDAgQX8rhCHDkudOhr6zGmmuR1rS5SV1DuyChyJmFJh_olQb-kJyTol0T9apJXqxcuShSTy0Xfo_6txBB-vLiRzcay8mYSjxIiFdkYoZdU7MdKh26iIZV2WeJ7YZM8Q-2VCDAyxQqmsVrkueweH8kWIl7hQtVrkpeVkM1g9FpVDSEwB4hJtia5syYJv1uvP64tQFYeOJd_1P_hvx8_JVsHJ_2e7HUHh4_IDZwD3GJjwQ5pzGcL85hc09_nk3z2pDJ2Sr5ctbn8BqvSkBk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELaqlteFRwERKGAhEFyWxN6Hd5EQSpsEopYQ9YFyM16vHSK12ZJNQPkv_BJ-HTPe3UAO5dYDx-yOo5F3nvbMfIQ8VzxmQaZjvBpUXgAhq5e2wtTj2gfLEPtx5opoPh-IwSAejZLhBvlV98JgWWVtE52hznKNZ-RNnoAvCsH_JU1blUUMO7135988RJDCm9YaTqMUkX2z_AHpW_G234Fv_YLzXvd474NXIQx4OhBi7jHhMyYym9hMaK2DwHAVQsiAdgRSJ2O0tS2WQlCT2DiJjU0FcG9VkEZZGipEjADzvyVgBSR-W7vdwfCw9gMROHrx9w_XlYeFRknER-WUIQifgub4LANGvBC0nbd4sOYgHY7ARd7CucDerf95826Tm1XgTdulptwhG2a6Ta7v1Xh32-TqewdyvLxLfh5hVX8Jq0FzS9VkRsvm0yV1yEF0VlYWm4LOc4r_gGeOtGyiLt5QvQJ3xOVAvDidFxQDhozCMwu80O4JnbiC_xwPK2iFl0R77f7hx0-dLk3BfHw9U-4qg5Y43469e-TkUrbpPtmc5lPzgFCecMGsMTzEoUMsUDhfLhA68rVlnKsGeV2LjtTViHdEGjmVkOqhrEmQNcmEBFmTKGsN8mq14LycbnIx6S7K4ooMx5K7B_lsLCsrJ_GKIVaxTXAkk0r8ROmolWoIsVs89VnUIM9QkiUOHpmiFI7Voihk_-hQtnESFiawrEFeVkQ2B-61qhpFYA9wVtka5c4aJXxuvf661gZZWeZC_lGFh_9-_ZRcAx2RB_3B_iNyA7cAT954uEM257OFeUyu6O_zSTF7Uuk9JV8uW1t-A7fQmLM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+of+air+quality+model+responses+to+emission+changes%3A+comparison+of+results+based+on+four+EU+inventories+through+FAIRMODE+benchmarking+methodology&rft.jtitle=Geoscientific+model+development&rft.au=de+Meij%2C+Alexander&rft.au=Cuvelier%2C+Cornelis&rft.au=Thunis%2C+Philippe&rft.au=Pisoni%2C+Enrico&rft.date=2024-01-25&rft.issn=1991-9603&rft.eissn=1991-9603&rft.volume=17&rft.issue=2&rft.spage=587&rft.epage=606&rft_id=info:doi/10.5194%2Fgmd-17-587-2024&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_gmd_17_587_2024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1991-9603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1991-9603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1991-9603&client=summon