Sensitivity of air quality model responses to emission changes: comparison of results based on four EU inventories through FAIRMODE benchmarking methodology
Despite the application of an increasingly strict EU air quality legislation, air quality remains problematic in large parts of Europe. To support the abatement of these remaining problems, a better understanding of the potential impacts of emission abatement measures on air quality is required, and...
Gespeichert in:
| Veröffentlicht in: | Geoscientific Model Development Jg. 17; H. 2; S. 587 - 606 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Katlenburg-Lindau
Copernicus GmbH
25.01.2024
Copernicus Publications |
| Schlagworte: | |
| ISSN: | 1991-9603, 1991-959X, 1991-962X, 1991-9603, 1991-962X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Despite the application of an increasingly strict EU air quality legislation, air quality remains problematic in large parts of Europe. To support the abatement of these remaining problems, a better understanding of the potential impacts of emission abatement measures on air quality is required, and air chemistry transport models (CTMs) are the main instrument to perform emission reduction scenarios. In this study, we study the robustness of the model responses to emission reductions when emission input is changed. We investigate how inconsistencies in emissions impact the modelling responses in the case of emission reduction scenarios. Based on EMEP simulations over Europe fed by four emission inventories – EDGAR 5.0, EMEP-GNFR, CAMS 2.2.1 and CAMS version 4.2 (including condensables) – we reduce anthropogenic emissions in six cities (Brussels, Madrid, Rome, Bucharest, Berlin and Stockholm) and two regions (Po Valley in Italy and Malopolska in Poland) and study the variability in the concentration reductions obtained with these four emission inventories. Our study reveals that the impact of reducing aerosol precursors on PM10 concentrations result in different potentials and potencies, differences that are mainly explained by differences in emission quantities, differences in their spatial distributions as well as in their sector allocation. In general, the variability among models is larger for concentration changes (potentials) than for absolute concentrations. Similar total precursor emissions can, however, hide large variations in sectorial allocation that can lead to large impacts on potency given their different vertical distribution. Primary particulate matter (PPM) appears to be the precursor leading to the major differences in terms of potentials. From an emission inventory viewpoint, this work indicates that the most efficient actions to improve the robustness of the modelling responses to emission changes would be to better assess the sectorial share and total quantities of PPM emissions. From a modelling point of view, NOx responses are the more challenging and require caution because of their non-linearity. For O3, we find that the relationship between emission reduction and O3 concentration change shows the largest non-linearity for NOx (concentration increase) and a quasi-linear behaviour for volatile organic compounds (concentration decrease). We also emphasise the importance of accurate ratios of emitted precursors since these lead to changes in chemical regimes, directly affecting the responses of O3 or PM10 concentrations to emission reductions. |
|---|---|
| AbstractList | Despite the application of an increasingly strict EU air quality legislation, air quality remains problematic in large parts of Europe. To support the abatement of these remaining problems, a better understanding of the potential impacts of emission abatement measures on air quality is required, and air chemistry transport models (CTMs) are the main instrument to perform emission reduction scenarios. In this study, we study the robustness of the model responses to emission reductions when emission input is changed. We investigate how inconsistencies in emissions impact the modelling responses in the case of emission reduction scenarios. Based on EMEP simulations over Europe fed by four emission inventories – EDGAR 5.0, EMEP-GNFR, CAMS 2.2.1 and CAMS version 4.2 (including condensables) – we reduce anthropogenic emissions in six cities (Brussels, Madrid, Rome, Bucharest, Berlin and Stockholm) and two regions (Po Valley in Italy and Malopolska in Poland) and study the variability in the concentration reductions obtained with these four emission inventories. Our study reveals that the impact of reducing aerosol precursors on PM10 concentrations result in different potentials and potencies, differences that are mainly explained by differences in emission quantities, differences in their spatial distributions as well as in their sector allocation. In general, the variability among models is larger for concentration changes (potentials) than for absolute concentrations. Similar total precursor emissions can, however, hide large variations in sectorial allocation that can lead to large impacts on potency given their different vertical distribution. Primary particulate matter (PPM) appears to be the precursor leading to the major differences in terms of potentials. From an emission inventory viewpoint, this work indicates that the most efficient actions to improve the robustness of the modelling responses to emission changes would be to better assess the sectorial share and total quantities of PPM emissions. From a modelling point of view, NOx responses are the more challenging and require caution because of their non-linearity. For O3, we find that the relationship between emission reduction and O3 concentration change shows the largest non-linearity for NOx (concentration increase) and a quasi-linear behaviour for volatile organic compounds (concentration decrease). We also emphasise the importance of accurate ratios of emitted precursors since these lead to changes in chemical regimes, directly affecting the responses of O3 or PM10 concentrations to emission reductions. Despite the application of an increasingly strict EU air quality legislation, air quality remains problematic in large parts of Europe. To support the abatement of these remaining problems, a better understanding of the potential impacts of emission abatement measures on air quality is required, and air chemistry transport models (CTMs) are the main instrument to perform emission reduction scenarios. In this study, we study the robustness of the model responses to emission reductions when emission input is changed. We investigate how inconsistencies in emissions impact the modelling responses in the case of emission reduction scenarios. Based on EMEP simulations over Europe fed by four emission inventories - EDGAR 5.0, EMEP-GNFR, CAMS 2.2.1 and CAMS version 4.2 (including condensables) - we reduce anthropogenic emissions in six cities (Brussels, Madrid, Rome, Bucharest, Berlin and Stockholm) and two regions (Po Valley in Italy and Malopolska in Poland) and study the variability in the concentration reductions obtained with these four emission inventories. Despite the application of an increasingly strict EU air quality legislation, air quality remains problematic in large parts of Europe. To support the abatement of these remaining problems, a better understanding of the potential impacts of emission abatement measures on air quality is required, and air chemistry transport models (CTMs) are the main instrument to perform emission reduction scenarios. In this study, we study the robustness of the model responses to emission reductions when emission input is changed. We investigate how inconsistencies in emissions impact the modelling responses in the case of emission reduction scenarios. Based on EMEP simulations over Europe fed by four emission inventories – EDGAR 5.0, EMEP-GNFR, CAMS 2.2.1 and CAMS version 4.2 (including condensables) – we reduce anthropogenic emissions in six cities (Brussels, Madrid, Rome, Bucharest, Berlin and Stockholm) and two regions (Po Valley in Italy and Malopolska in Poland) and study the variability in the concentration reductions obtained with these four emission inventories. Our study reveals that the impact of reducing aerosol precursors on PM 10 concentrations result in different potentials and potencies, differences that are mainly explained by differences in emission quantities, differences in their spatial distributions as well as in their sector allocation. In general, the variability among models is larger for concentration changes (potentials) than for absolute concentrations. Similar total precursor emissions can, however, hide large variations in sectorial allocation that can lead to large impacts on potency given their different vertical distribution. Primary particulate matter (PPM) appears to be the precursor leading to the major differences in terms of potentials. From an emission inventory viewpoint, this work indicates that the most efficient actions to improve the robustness of the modelling responses to emission changes would be to better assess the sectorial share and total quantities of PPM emissions. From a modelling point of view, NOx responses are the more challenging and require caution because of their non-linearity. For O 3 , we find that the relationship between emission reduction and O 3 concentration change shows the largest non-linearity for NOx (concentration increase) and a quasi-linear behaviour for volatile organic compounds (concentration decrease). We also emphasise the importance of accurate ratios of emitted precursors since these lead to changes in chemical regimes, directly affecting the responses of O 3 or PM 10 concentrations to emission reductions. Despite the application of an increasingly strict EU air quality legislation, air quality remains problematic in large parts of Europe. To support the abatement of these remaining problems, a better understanding of the potential impacts of emission abatement measures on air quality is required, and air chemistry transport models (CTMs) are the main instrument to perform emission reduction scenarios. In this study, we study the robustness of the model responses to emission reductions when emission input is changed. We investigate how inconsistencies in emissions impact the modelling responses in the case of emission reduction scenarios. Based on EMEP simulations over Europe fed by four emission inventories - EDGAR 5.0, EMEP-GNFR, CAMS 2.2.1 and CAMS version 4.2 (including condensables) - we reduce anthropogenic emissions in six cities (Brussels, Madrid, Rome, Bucharest, Berlin and Stockholm) and two regions (Po Valley in Italy and Malopolska in Poland) and study the variability in the concentration reductions obtained with these four emission inventories. Our study reveals that the impact of reducing aerosol precursors on PM.sub.10 concentrations result in different potentials and potencies, differences that are mainly explained by differences in emission quantities, differences in their spatial distributions as well as in their sector allocation. In general, the variability among models is larger for concentration changes (potentials) than for absolute concentrations. Similar total precursor emissions can, however, hide large variations in sectorial allocation that can lead to large impacts on potency given their different vertical distribution. Primary particulate matter (PPM) appears to be the precursor leading to the major differences in terms of potentials. From an emission inventory viewpoint, this work indicates that the most efficient actions to improve the robustness of the modelling responses to emission changes would be to better assess the sectorial share and total quantities of PPM emissions. From a modelling point of view, NO.sub.x responses are the more challenging and require caution because of their non-linearity. For O.sub.3, we find that the relationship between emission reduction and O.sub.3 concentration change shows the largest non-linearity for NO.sub.x (concentration increase) and a quasi-linear behaviour for volatile organic compounds (concentration decrease). We also emphasise the importance of accurate ratios of emitted precursors since these lead to changes in chemical regimes, directly affecting the responses of O.sub.3 or PM.sub.10 concentrations to emission reductions. |
| Audience | Academic |
| Author | Pisoni, Enrico Cuvelier, Cornelis de Meij, Alexander Thunis, Philippe Bessagnet, Bertrand |
| Author_xml | – sequence: 1 givenname: Alexander orcidid: 0000-0003-3799-7951 surname: de Meij fullname: de Meij, Alexander – sequence: 2 givenname: Cornelis surname: Cuvelier fullname: Cuvelier, Cornelis – sequence: 3 givenname: Philippe surname: Thunis fullname: Thunis, Philippe – sequence: 4 givenname: Enrico surname: Pisoni fullname: Pisoni, Enrico – sequence: 5 givenname: Bertrand surname: Bessagnet fullname: Bessagnet, Bertrand |
| BookMark | eNp1Ul1vFCEUnZia2FaffSXxyYdpYb4A3zZ1q5vUNGntM2H4mGWdgS0wjftf_LHedTW6RuEBODnnAPees-LEB2-K4jXBFy3hzeUw6ZLQsmW0rHDVPCtOCeek5B2uT_7YvyjOUtpg3HHa0dPi273xyWX35PIOBYuki-hxluP-OAVtRhRN2gafTEI5IDO5lFzwSK2lH0x6h1SYtjK6BBjIgTyPOaFeJqMRYDbMES0fkPNPxucQ3d5nHcM8rNH1YnX36fb9EvXGq_Uk4xfnBzSZvA46jGHYvSyeWzkm8-rnel48XC8_X30sb24_rK4WN6VqKM3w65oQqi23miqlmsZUsmU1JzBY1RqjrMWkb3DLLePM2J7WTFvZ9J3uW9nW58Xq4KuD3IhtdPCWnQjSiR9AiIOQMTs1GtFWNWaSWY473Ehec6k63KsO4KqvSQdebw5e2xgeZ5Oy2EAJPDxfVJww0tKG8N-sQYKp8zbkKBUUV4kFZbjBNe4IsC7-wYKpoQ8K2m8d4EeCt0cC4GTzNQ9yTkms7u-Oue2Bq2JIKRorlMsyQ3PhEjcKgsU-VwJyJQgVkCuxzxXoLv_S_SrY_xTfAdsb0lI |
| CitedBy_id | crossref_primary_10_3390_rs16132447 crossref_primary_10_1016_j_envres_2024_119112 crossref_primary_10_3390_atmos15111358 crossref_primary_10_5194_acp_24_11545_2024 crossref_primary_10_5194_gmd_18_4231_2025 |
| Cites_doi | 10.5194/acp-9-6611-2009 10.1016/j.atmosenv.2006.07.039 10.1016/j.aeaoa.2019.100018 10.1016/j.atmosenv.2015.04.016 10.5194/essd-10-1987-2018 10.1016/j.atmosenv.2008.12.036 10.1016/j.envsoft.2011.07.012 10.1016/j.envint.2021.106699 10.1029/1998JD100096 10.5194/egusphere-2023-1257-supplement 10.1021/acs.est.7b01975 10.5194/acp-21-18195-2021 10.1016/j.aeaoa.2021.100111 10.5194/acp-12-7825-2012 10.5094/APR.2015.048 10.5194/gmd-15-5271-2022 10.1029/2010JD014435 10.3390/app12094257 10.1016/j.atmosres.2007.02.001 10.5194/essd-11-959-2019 10.5194/acp-14-10963-2014 10.1021/es048664m 10.5194/essd-14-491-2022 10.1007/s11869-014-0279-2 10.5194/acp-17-12813-2017 10.1016/j.atmosenv.2014.12.057 10.1016/j.atmosenv.2014.11.033 10.1016/j.atmosenv.2019.117119 10.1007/s11869-013-0211-1 10.1016/j.atmosenv.2006.09.001 10.1038/s41597-020-0462-2 10.5194/acp-21-9309-2021 10.1016/j.atmosenv.2017.10.032 10.3390/su11072054 10.1016/j.serj.2016.04.006 10.1007/s00703-018-0632-3 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 Copernicus GmbH 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 Copernicus GmbH – notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS DOA |
| DOI | 10.5194/gmd-17-587-2024 |
| DatabaseName | CrossRef Gale In Context: Science Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Continental Europe Database ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Chemistry |
| EISSN | 1991-9603 1991-962X |
| EndPage | 606 |
| ExternalDocumentID | oai_doaj_org_article_52308a8f90604a939ac60bc62302b316 A780403061 10_5194_gmd_17_587_2024 |
| GeographicLocations | Poland Italy Bucharest Romania Romania Europe Po Valley |
| GeographicLocations_xml | – name: Po Valley – name: Poland – name: Romania – name: Bucharest Romania – name: Europe – name: Italy |
| GroupedDBID | 5VS 8R4 8R5 AAFWJ AAYXX ABDBF ACUHS ADBBV AENEX AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION ESX GROUPED_DOAJ H13 IAO IEA IEP ISR ITC KQ8 OK1 P2P Q2X RKB RNS TR2 TUS 7TG 7TN 7UA 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M LK5 M7R M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PROAC PTHSS |
| ID | FETCH-LOGICAL-c477t-173117df9fd7ccc44e2a58391111825eecff01b4059f898efb738dfa4b6db5a53 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001168767200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1991-9603 1991-959X 1991-962X |
| IngestDate | Fri Oct 03 12:48:39 EDT 2025 Fri Jul 25 12:25:01 EDT 2025 Mon Oct 20 23:09:57 EDT 2025 Mon Oct 20 17:09:03 EDT 2025 Thu Oct 16 16:19:21 EDT 2025 Sat Nov 29 05:38:06 EST 2025 Tue Nov 18 20:44:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c477t-173117df9fd7ccc44e2a58391111825eecff01b4059f898efb738dfa4b6db5a53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3799-7951 |
| OpenAccessLink | https://doaj.org/article/52308a8f90604a939ac60bc62302b316 |
| PQID | 2918157419 |
| PQPubID | 105726 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_52308a8f90604a939ac60bc62302b316 proquest_journals_2918157419 gale_infotracmisc_A780403061 gale_infotracacademiconefile_A780403061 gale_incontextgauss_ISR_A780403061 crossref_citationtrail_10_5194_gmd_17_587_2024 crossref_primary_10_5194_gmd_17_587_2024 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-25 |
| PublicationDateYYYYMMDD | 2024-01-25 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Geoscientific Model Development |
| PublicationYear | 2024 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref46 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref8 doi: 10.5194/acp-9-6611-2009 – ident: ref32 doi: 10.1016/j.atmosenv.2006.07.039 – ident: ref27 doi: 10.1016/j.aeaoa.2019.100018 – ident: ref37 doi: 10.1016/j.atmosenv.2015.04.016 – ident: ref5 doi: 10.5194/essd-10-1987-2018 – ident: ref9 doi: 10.1016/j.atmosenv.2008.12.036 – ident: ref1 doi: 10.1016/j.envsoft.2011.07.012 – ident: ref3 doi: 10.1016/j.envint.2021.106699 – ident: ref24 doi: 10.1029/1998JD100096 – ident: ref42 doi: 10.5194/egusphere-2023-1257-supplement – ident: ref46 doi: 10.1021/acs.est.7b01975 – ident: ref25 – ident: ref40 doi: 10.5194/acp-21-18195-2021 – ident: ref39 doi: 10.1016/j.aeaoa.2021.100111 – ident: ref31 doi: 10.5194/acp-12-7825-2012 – ident: ref26 doi: 10.5094/APR.2015.048 – ident: ref41 doi: 10.5194/gmd-15-5271-2022 – ident: ref45 doi: 10.1029/2010JD014435 – ident: ref12 doi: 10.3390/app12094257 – ident: ref34 – ident: ref15 – ident: ref30 – ident: ref13 – ident: ref7 doi: 10.1016/j.atmosres.2007.02.001 – ident: ref44 – ident: ref19 doi: 10.5194/essd-11-959-2019 – ident: ref23 doi: 10.5194/acp-14-10963-2014 – ident: ref4 doi: 10.1021/es048664m – ident: ref22 doi: 10.5194/essd-14-491-2022 – ident: ref20 doi: 10.1007/s11869-014-0279-2 – ident: ref21 – ident: ref28 doi: 10.5194/acp-17-12813-2017 – ident: ref36 doi: 10.1016/j.atmosenv.2014.12.057 – ident: ref10 doi: 10.1016/j.atmosenv.2014.11.033 – ident: ref17 doi: 10.1016/j.atmosenv.2019.117119 – ident: ref35 doi: 10.1007/s11869-013-0211-1 – ident: ref33 doi: 10.1016/j.atmosenv.2006.09.001 – ident: ref6 doi: 10.1038/s41597-020-0462-2 – ident: ref18 – ident: ref38 doi: 10.5194/acp-21-9309-2021 – ident: ref43 doi: 10.1016/j.atmosenv.2017.10.032 – ident: ref2 doi: 10.3390/su11072054 – ident: ref16 – ident: ref29 doi: 10.1016/j.serj.2016.04.006 – ident: ref11 doi: 10.1007/s00703-018-0632-3 – ident: ref14 |
| SSID | ssj0069767 ssj0069768 |
| Score | 2.3730648 |
| Snippet | Despite the application of an increasingly strict EU air quality legislation, air quality remains problematic in large parts of Europe. To support the... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 587 |
| SubjectTerms | Aerosols Air Air pollution Air quality Air quality management Air quality measurements Air quality models Anthropogenic factors Benchmarks Chemistry Comparative analysis Emission analysis Emission inventories Emission measurements Emissions Emissions (Pollution) Emissions control Human influences Legislation Methods Modelling Nitrogen compounds Nitrogen oxides Nonlinearity Organic compounds Outdoor air quality Particulate emissions Particulate matter Particulate matter emissions Pollutants Precursors Robustness Spatial distribution Suspended particulate matter Variability Vertical distribution VOCs Volatile organic compounds |
| SummonAdditionalLinks | – databaseName: Copernicus Publications dbid: RKB link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQVSQuUF4iUNAIIcFlaez1Zm1uARKoBAWlFOVmeb12G6nNouwGqf-FH8uMvY3IoeIA192x4p2x5-GMv4-xF1YoLmun6K9Bm0lMWbNqWFSZcDl6BpWrOjbRfP9UHh2p-Vx__YPqi3rCEjxwUtwBnVoqq4ImlBerc23daFg5jNpDUeWcwLZxGdKWnBGHW_LBIwyykVaF-np0oecJ1AezFXlwelFn6JkL3FxY-MuteBRh-69zzjHiTO_8w1z32O0-zYRxGnKX3fDLe-zmh0jje3mf_TqmvvVEHAFNALtYQbpeeQmRGwdWqXfWt9A1QJxwdKoG6Zpw-wbchr6QhqPw-rxrgUJiDfgs4O_D5AQWsaW9oXIcekYgmI4PZ5-_vJ9AhRvk7MLGw3pITNZxeg_YyXTy7d3HrOdpyJwsyw61mXNe1kGHunTOSemFLTDxIm-MBaj3LoQhrzA11EFp5UNV4hoIVlajuipskT9kO8tm6R8xEFqUPHgvCoLV4dISgpos3Sh3gQthB-z1lbWM60HMiUvj3GAxQ-Y1aF7DS4PmNWTeAXu1GfAj4XdcL_qWLLoRI-Dt-ABNbHoTm7-ZeMCe0-IxBK2xpN6dU7tuW3N4PDNjwnqiEo0P2MteKDQ4e2f7qxCoA0Lj2pLc35JEc7vt11dr1PS-pzVCY9ZWoPr04__xRU_YLdIOHTuJYp_tdKu1f8p23c9u0a6exW33G5oXK8k priority: 102 providerName: Copernicus Gesellschaft – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagBdELjwLqQkEWQoJLaOI8HHNB27ILlWCpthTtzXIce1mp3ZQki9T_wo9lxnEW9lAuHJNMIicznhlPxt9HyEvF8igpdY6_BlWQQMoaFGFaBEzH4BnyOC9dE823T3wyyWczceILbo1vq-x9onPUZaWxRn7ABMSiFOKfeHf5I0DWKPy76ik0bpJtRCoDO98-HE1Opr0vziDY8r8P3M44bPYRGZt1SD-QwiQH84syAHedwoxjIUs2gpTD8r_OY7swNL73vy9wn9z1CSgddhbzgNwwy11y56jnfdsltz84st-rh-TXKXa3d_QStLJULWrabcK8oo5Bh9Zdh61paFtRfALW3mi3mbh5S_Wa5BBvB-HVedtQDJwlhXMWxkJHZ3ThGt8rXLRTzxtEx8Pj6ecv70e0gGn0_UK5kj7t-K7d8B6Rs_Ho69HHwLM5BDrhvIXPG0cRL62wJddaJ4lhKoX0DH02LFON0daGUQEJpLC5yI0tOFiKVUmRlUWq0vgx2VpWS7NHKBOMR9YYliL4TpQoxFlLuM5ibSPG1IC86dUntYc6R8aNcwlLHtS3BH3LiEvQt0R9D8jr9Q2XHcrH9aKHaA9rMYTndieqei79bJdYas9VbgVCEykRC6WzsNCQaoasiKNsQF6gNUkE4Fhih89crZpGHp9O5RARoXAhFw3IKy9kKxi9Vn7DBHwDxOzakNzfkAR1683LvUVK76Ea-cccn_z78lOyg--NZSeW7pOttl6ZZ-SW_tkumvq5n3C_AXz3Mfs priority: 102 providerName: ProQuest |
| Title | Sensitivity of air quality model responses to emission changes: comparison of results based on four EU inventories through FAIRMODE benchmarking methodology |
| URI | https://www.proquest.com/docview/2918157419 https://doaj.org/article/52308a8f90604a939ac60bc62302b316 |
| Volume | 17 |
| WOSCitedRecordID | wos001168767200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus Publications customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069767 issn: 1991-9603 databaseCode: RKB dateStart: 20080101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: DOAJ: Directory of Open Access Journal (DOAJ) customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069767 issn: 1991-9603 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: BFMQW dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: PCBAR dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: M7S dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: PIMPY dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQAhIXxKcoLJWFkOASNnacOubWQgsVbKlaFpWT5Tj2Umm3RU2KtP-FH8uMnVb0sOLCse5EcWYm4xln_B4hLw0vmKhsgZ8GTSIgZU3KNC8TbjOIDEVWVKGJ5ttnOZkUi4Wa_kX1hT1hER44Ku4Edy0LU3iFKC9GZcrYXlpaWLVTXmYsgG2nUu2KqRiDe7DIBloV7OtRuVpEUB_IVsTJ-WWVQGTO4eWCwl8crEcBtv-64BxWnNE9crdNFWk_TvE-ueFWD8jtD4GK9-oh-T3H3vNI_kDXnprlhsYjklc08NvQTex_dTVt1hR53XBnjMajvvVbavcUhHg5CG8vmprislZRGPNwfzo8o8vQlr7Gkpq2rD501B_PTr-8H9ISnPzHpQkb7jSyUYfpPSJno-HXdx-TlmshsULKBjSSMSYrr3wlrbVCOG5ySJ4wokIR6Zz1PmUlpHfKF6pwvpRgR29E2avK3OTZY3K0Wq_cE0K54pJ553iO0DhMGERBE9L2MusZ56ZD3uw0rm0LRI58GBcaChI0kQYTaSY1mEijiTrk9f6CnxGD43rRAZpwL4bg2WEAXEq3LqX_5VId8gIdQCM8xgr7b87Ntq71eD7TfcRrwjKLdcirVsivYfbWtMcZQAeIqHUgeXwgCea2h3_v_Ey38aPWXEHmlYP61NP_8UTPyB3UDm4d8fyYHDWbrXtObtlfzbLedMnNwXAynXXDK9TF7tc5jE3Hp9Pv8Gv2afAH7H4fqA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamDjReuAwQhQEWAsFLWOI4cYKEUNlaVq0t1S6oPBnHsUulrRlNC-p_4TfwGzknl0IfxtseeExyElnOudk-5_sIea5Y5PFUR3g0qBwOKauTuEHiMO2DZ4j8KC2KaD71xGAQjUbxcIP8qnthsKyy9omFo04zjXvkuyyGWBRA_IvfXXxzkDUKT1drCo1SLQ7N8gcs2fK33X34vy8Y67RP9g6cilXA0VyIueMJ3_NEamObCq0154apANIE9B2wXDJGW-t6CSQysY3iyNhEwIit4kmYJoFClghw-ZsclN1tkM1htz_8XPv-EIK7-Pui6MTD4qI4ZKMSWQhSJr47Pk9hIE4AFs5cxteCYsEdcFmEKMJe59b_NmG3yc0qwaat0iLukA0z3SZbezWv3Ta5_qEgM17eJT-PsXq_pM-gmaVqMqNlk-mSFgxBdFZWEJuczjOKX8C9RVo2S-dvqF6ROOLrILw4m-cUE4OUwj0LY6HtUzopCvsz3JSgFS8S7bS6R_2P-22agJv4eq6KIwta8nkXw7tHTq9kmu6TxjSbmgeEspgJzxrDAgQX8rhCHDkudOhr6zGmmuR1rS5SV1DuyChyJmFJh_olQb-kJyTol0T9apJXqxcuShSTy0Xfo_6txBB-vLiRzcay8mYSjxIiFdkYoZdU7MdKh26iIZV2WeJ7YZM8Q-2VCDAyxQqmsVrkueweH8kWIl7hQtVrkpeVkM1g9FpVDSEwB4hJtia5syYJv1uvP64tQFYeOJd_1P_hvx8_JVsHJ_2e7HUHh4_IDZwD3GJjwQ5pzGcL85hc09_nk3z2pDJ2Sr5ctbn8BqvSkBk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELaqlteFRwERKGAhEFyWxN6Hd5EQSpsEopYQ9YFyM16vHSK12ZJNQPkv_BJ-HTPe3UAO5dYDx-yOo5F3nvbMfIQ8VzxmQaZjvBpUXgAhq5e2wtTj2gfLEPtx5opoPh-IwSAejZLhBvlV98JgWWVtE52hznKNZ-RNnoAvCsH_JU1blUUMO7135988RJDCm9YaTqMUkX2z_AHpW_G234Fv_YLzXvd474NXIQx4OhBi7jHhMyYym9hMaK2DwHAVQsiAdgRSJ2O0tS2WQlCT2DiJjU0FcG9VkEZZGipEjADzvyVgBSR-W7vdwfCw9gMROHrx9w_XlYeFRknER-WUIQifgub4LANGvBC0nbd4sOYgHY7ARd7CucDerf95826Tm1XgTdulptwhG2a6Ta7v1Xh32-TqewdyvLxLfh5hVX8Jq0FzS9VkRsvm0yV1yEF0VlYWm4LOc4r_gGeOtGyiLt5QvQJ3xOVAvDidFxQDhozCMwu80O4JnbiC_xwPK2iFl0R77f7hx0-dLk3BfHw9U-4qg5Y43469e-TkUrbpPtmc5lPzgFCecMGsMTzEoUMsUDhfLhA68rVlnKsGeV2LjtTViHdEGjmVkOqhrEmQNcmEBFmTKGsN8mq14LycbnIx6S7K4ooMx5K7B_lsLCsrJ_GKIVaxTXAkk0r8ROmolWoIsVs89VnUIM9QkiUOHpmiFI7Voihk_-hQtnESFiawrEFeVkQ2B-61qhpFYA9wVtka5c4aJXxuvf661gZZWeZC_lGFh_9-_ZRcAx2RB_3B_iNyA7cAT954uEM257OFeUyu6O_zSTF7Uuk9JV8uW1t-A7fQmLM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+of+air+quality+model+responses+to+emission+changes%3A+comparison+of+results+based+on+four+EU+inventories+through+FAIRMODE+benchmarking+methodology&rft.jtitle=Geoscientific+model+development&rft.au=de+Meij%2C+Alexander&rft.au=Cuvelier%2C+Cornelis&rft.au=Thunis%2C+Philippe&rft.au=Pisoni%2C+Enrico&rft.date=2024-01-25&rft.issn=1991-9603&rft.eissn=1991-9603&rft.volume=17&rft.issue=2&rft.spage=587&rft.epage=606&rft_id=info:doi/10.5194%2Fgmd-17-587-2024&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_gmd_17_587_2024 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1991-9603&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1991-9603&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1991-9603&client=summon |