A survey of thermal expansion coefficients for organic molecular crystals in the Cambridge Structural Database

Typical ranges of thermal expansion coefficients are established for organic molecular crystals in the Cambridge Structural Database. The CSD Python API is used to extract 6201 crystal structures determined close to room temperature and at least one lower temperature down to 90 K. The data set is do...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica Section B, Structural science, crystal engineering and materials Jg. 77; H. 3; S. 357 - 364
1. Verfasser: Bond, Andrew D.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 5 Abbey Square, Chester, Cheshire CH1 2HU, England International Union of Crystallography 01.06.2021
Schlagworte:
ISSN:2052-5206, 2052-5192, 2052-5206
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Typical ranges of thermal expansion coefficients are established for organic molecular crystals in the Cambridge Structural Database. The CSD Python API is used to extract 6201 crystal structures determined close to room temperature and at least one lower temperature down to 90 K. The data set is dominated by structure families with only two temperature points and is subject to various sources of error, including incorrect temperature reporting and missing flags for variable‐pressure studies. For structure families comprising four or more temperature points in the range 90–300 K, a linear relationship between unit‐cell volume and temperature is shown to be a reasonable approximation. For a selected subset of 210 structures showing an optimal linear fit, the volumetric expansion coefficient at 298 K has mean 173 p.p.m. K−1 and standard deviation 47 p.p.m.  K−1. The full set of 6201 structures shows a similar distribution, which is fitted by a normal distribution with mean 161 p.p.m. K−1 and standard deviation 51 p.p.m. K−1, with excess population in the tails mainly comprising unreliable entries. The distribution of principal expansion coefficients, extracted under the assumption of a linear relationship between length and temperature, shows a positive skew and can be approximated by two half normal distributions centred on 33 p.p.m. K−1 with standard deviations 40 p.p.m. K−1 (lower side) and 56 p.p.m. K−1 (upper side). The distribution for the full structure set is comparable to that of the test subset, and the overall frequency of biaxial and uniaxial negative thermal expansion is estimated to be < 5% and ∼30%, respectively. A measure of the expansion anisotropy shows a positively skewed distribution, similar to the principal expansion coefficients themselves, and ranges based on suggested half normal distributions are shown to highlight literature cases of exceptional thermal expansion. Thermal expansion coefficients are calculated for 6201 molecular crystals in the Cambridge Structural Database and the distributions of the values are assessed.
AbstractList Typical ranges of thermal expansion coefficients are established for organic molecular crystals in the Cambridge Structural Database. The CSD Python API is used to extract 6201 crystal structures determined close to room temperature and at least one lower temperature down to 90 K. The data set is dominated by structure families with only two temperature points and is subject to various sources of error, including incorrect temperature reporting and missing flags for variable-pressure studies. For structure families comprising four or more temperature points in the range 90-300 K, a linear relationship between unit-cell volume and temperature is shown to be a reasonable approximation. For a selected subset of 210 structures showing an optimal linear fit, the volumetric expansion coefficient at 298 K has mean 173 p.p.m. K and standard deviation 47 p.p.m.  K . The full set of 6201 structures shows a similar distribution, which is fitted by a normal distribution with mean 161 p.p.m. K and standard deviation 51 p.p.m. K , with excess population in the tails mainly comprising unreliable entries. The distribution of principal expansion coefficients, extracted under the assumption of a linear relationship between length and temperature, shows a positive skew and can be approximated by two half normal distributions centred on 33 p.p.m. K with standard deviations 40 p.p.m. K (lower side) and 56 p.p.m. K (upper side). The distribution for the full structure set is comparable to that of the test subset, and the overall frequency of biaxial and uniaxial negative thermal expansion is estimated to be < 5% and ∼30%, respectively. A measure of the expansion anisotropy shows a positively skewed distribution, similar to the principal expansion coefficients themselves, and ranges based on suggested half normal distributions are shown to highlight literature cases of exceptional thermal expansion.
Typical ranges of thermal expansion coefficients are established for organic molecular crystals in the Cambridge Structural Database. The CSD Python API is used to extract 6201 crystal structures determined close to room temperature and at least one lower temperature down to 90 K. The data set is dominated by structure families with only two temperature points and is subject to various sources of error, including incorrect temperature reporting and missing flags for variable-pressure studies. For structure families comprising four or more temperature points in the range 90–300 K, a linear relationship between unit-cell volume and temperature is shown to be a reasonable approximation. For a selected subset of 210 structures showing an optimal linear fit, the volumetric expansion coefficient at 298 K has mean 173 p.p.m. K −1 and standard deviation 47 p.p.m.  K −1 . The full set of 6201 structures shows a similar distribution, which is fitted by a normal distribution with mean 161 p.p.m. K −1 and standard deviation 51 p.p.m. K −1 , with excess population in the tails mainly comprising unreliable entries. The distribution of principal expansion coefficients, extracted under the assumption of a linear relationship between length and temperature, shows a positive skew and can be approximated by two half normal distributions centred on 33 p.p.m. K −1 with standard deviations 40 p.p.m. K −1 (lower side) and 56 p.p.m. K −1 (upper side). The distribution for the full structure set is comparable to that of the test subset, and the overall frequency of biaxial and uniaxial negative thermal expansion is estimated to be < 5% and ∼30%, respectively. A measure of the expansion anisotropy shows a positively skewed distribution, similar to the principal expansion coefficients themselves, and ranges based on suggested half normal distributions are shown to highlight literature cases of exceptional thermal expansion.
Thermal expansion coefficients are calculated for 6201 molecular crystals in the Cambridge Structural Database and the distributions of the values are assessed. Typical ranges of thermal expansion coefficients are established for organic molecular crystals in the Cambridge Structural Database. The CSD Python API is used to extract 6201 crystal structures determined close to room temperature and at least one lower temperature down to 90 K. The data set is dominated by structure families with only two temperature points and is subject to various sources of error, including incorrect temperature reporting and missing flags for variable-pressure studies. For structure families comprising four or more temperature points in the range 90–300 K, a linear relationship between unit-cell volume and temperature is shown to be a reasonable approximation. For a selected subset of 210 structures showing an optimal linear fit, the volumetric expansion coefficient at 298 K has mean 173 p.p.m. K−1 and standard deviation 47 p.p.m.  K−1. The full set of 6201 structures shows a similar distribution, which is fitted by a normal distribution with mean 161 p.p.m. K−1 and standard deviation 51 p.p.m. K−1, with excess population in the tails mainly comprising unreliable entries. The distribution of principal expansion coefficients, extracted under the assumption of a linear relationship between length and temperature, shows a positive skew and can be approximated by two half normal distributions centred on 33 p.p.m. K−1 with standard deviations 40 p.p.m. K−1 (lower side) and 56 p.p.m. K−1 (upper side). The distribution for the full structure set is comparable to that of the test subset, and the overall frequency of biaxial and uniaxial negative thermal expansion is estimated to be < 5% and ∼30%, respectively. A measure of the expansion anisotropy shows a positively skewed distribution, similar to the principal expansion coefficients themselves, and ranges based on suggested half normal distributions are shown to highlight literature cases of exceptional thermal expansion.
Typical ranges of thermal expansion coefficients are established for organic molecular crystals in the Cambridge Structural Database. The CSD Python API is used to extract 6201 crystal structures determined close to room temperature and at least one lower temperature down to 90 K. The data set is dominated by structure families with only two temperature points and is subject to various sources of error, including incorrect temperature reporting and missing flags for variable‐pressure studies. For structure families comprising four or more temperature points in the range 90–300 K, a linear relationship between unit‐cell volume and temperature is shown to be a reasonable approximation. For a selected subset of 210 structures showing an optimal linear fit, the volumetric expansion coefficient at 298 K has mean 173 p.p.m. K−1 and standard deviation 47 p.p.m.  K−1. The full set of 6201 structures shows a similar distribution, which is fitted by a normal distribution with mean 161 p.p.m. K−1 and standard deviation 51 p.p.m. K−1, with excess population in the tails mainly comprising unreliable entries. The distribution of principal expansion coefficients, extracted under the assumption of a linear relationship between length and temperature, shows a positive skew and can be approximated by two half normal distributions centred on 33 p.p.m. K−1 with standard deviations 40 p.p.m. K−1 (lower side) and 56 p.p.m. K−1 (upper side). The distribution for the full structure set is comparable to that of the test subset, and the overall frequency of biaxial and uniaxial negative thermal expansion is estimated to be < 5% and ∼30%, respectively. A measure of the expansion anisotropy shows a positively skewed distribution, similar to the principal expansion coefficients themselves, and ranges based on suggested half normal distributions are shown to highlight literature cases of exceptional thermal expansion. Thermal expansion coefficients are calculated for 6201 molecular crystals in the Cambridge Structural Database and the distributions of the values are assessed.
Typical ranges of thermal expansion coefficients are established for organic molecular crystals in the Cambridge Structural Database. The CSD Python API is used to extract 6201 crystal structures determined close to room temperature and at least one lower temperature down to 90 K. The data set is dominated by structure families with only two temperature points and is subject to various sources of error, including incorrect temperature reporting and missing flags for variable-pressure studies. For structure families comprising four or more temperature points in the range 90-300 K, a linear relationship between unit-cell volume and temperature is shown to be a reasonable approximation. For a selected subset of 210 structures showing an optimal linear fit, the volumetric expansion coefficient at 298 K has mean 173 p.p.m. K-1 and standard deviation 47 p.p.m.  K-1. The full set of 6201 structures shows a similar distribution, which is fitted by a normal distribution with mean 161 p.p.m. K-1 and standard deviation 51 p.p.m. K-1, with excess population in the tails mainly comprising unreliable entries. The distribution of principal expansion coefficients, extracted under the assumption of a linear relationship between length and temperature, shows a positive skew and can be approximated by two half normal distributions centred on 33 p.p.m. K-1 with standard deviations 40 p.p.m. K-1 (lower side) and 56 p.p.m. K-1 (upper side). The distribution for the full structure set is comparable to that of the test subset, and the overall frequency of biaxial and uniaxial negative thermal expansion is estimated to be < 5% and ∼30%, respectively. A measure of the expansion anisotropy shows a positively skewed distribution, similar to the principal expansion coefficients themselves, and ranges based on suggested half normal distributions are shown to highlight literature cases of exceptional thermal expansion.Typical ranges of thermal expansion coefficients are established for organic molecular crystals in the Cambridge Structural Database. The CSD Python API is used to extract 6201 crystal structures determined close to room temperature and at least one lower temperature down to 90 K. The data set is dominated by structure families with only two temperature points and is subject to various sources of error, including incorrect temperature reporting and missing flags for variable-pressure studies. For structure families comprising four or more temperature points in the range 90-300 K, a linear relationship between unit-cell volume and temperature is shown to be a reasonable approximation. For a selected subset of 210 structures showing an optimal linear fit, the volumetric expansion coefficient at 298 K has mean 173 p.p.m. K-1 and standard deviation 47 p.p.m.  K-1. The full set of 6201 structures shows a similar distribution, which is fitted by a normal distribution with mean 161 p.p.m. K-1 and standard deviation 51 p.p.m. K-1, with excess population in the tails mainly comprising unreliable entries. The distribution of principal expansion coefficients, extracted under the assumption of a linear relationship between length and temperature, shows a positive skew and can be approximated by two half normal distributions centred on 33 p.p.m. K-1 with standard deviations 40 p.p.m. K-1 (lower side) and 56 p.p.m. K-1 (upper side). The distribution for the full structure set is comparable to that of the test subset, and the overall frequency of biaxial and uniaxial negative thermal expansion is estimated to be < 5% and ∼30%, respectively. A measure of the expansion anisotropy shows a positively skewed distribution, similar to the principal expansion coefficients themselves, and ranges based on suggested half normal distributions are shown to highlight literature cases of exceptional thermal expansion.
Author Bond, Andrew D.
Author_xml – sequence: 1
  givenname: Andrew D.
  surname: Bond
  fullname: Bond, Andrew D.
  email: adb29@cam.ac.uk
  organization: Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34096517$$D View this record in MEDLINE/PubMed
BookMark eNqFkV9vFCEUxYmpsXXtB_DF8OjLKn8GhnkxWbdaTWpMrD74RIC5s8XMwApMdb992Wxtqib6BLmc87snnMfoKMQACD2l5AWlpH15yYhgghHJKCGck-4BOtmPlvvZ0b37MTrN-RshpNoEk_QROuYN6aSg7QkKK5zndA07HAdcriBNZsTwc2tC9jFgF2EYvPMQSsZDTDimjQne4SmO4ObRJOzSLhczZuzDHoDXZrLJ9xvAlyXNrsypEs9MMdZkeIIeDlULp7fnAn15--bz-t3y4uP5-_XqYumatlXLlgpHW9EbLqiVVnTMGNUz1_cElCGupYrJhlIrJHAw0FnXWslEQyi3clB8gV4duNvZTtC7mr_G0NvkJ5N2Ohqvf38J_kpv4rVWlawqZYGe3wJS_D5DLnry2cE4mgBxzpoJrkgjqBRV-uz-rrslvz65CuhB4FLMOcFwJ6FE77vUf3VZPe0fHueLKbWTGteP_3R2B-cPP8Lu_6v06utr9umDII3iN8z4s40
CitedBy_id crossref_primary_10_1107_S1600576724005934
crossref_primary_10_1107_S2052252524010443
crossref_primary_10_1039_D4CC01593B
crossref_primary_10_1103_tck2_78dx
crossref_primary_10_1002_ejic_202400334
crossref_primary_10_1017_S0885715624000010
crossref_primary_10_1107_S2052520621005357
Cites_doi 10.1039/D0CE01694B
10.1039/C6DT04152C
10.1039/C8SC00159F
10.1039/C8CE00539G
10.1107/S0108768106019677
10.1021/cg049816s
10.1039/C8CE01090K
10.1103/PhysRevB.85.064114
10.1021/cg4009174
10.1038/s41467-017-00776-1
10.1107/S0108768101017955
10.1039/C4TC00654B
10.1039/C9NJ04833B
10.1107/S0108270190005492
10.1524/zkri.2006.221.1.15
10.1021/acs.cgd.9b00518
10.1039/C5CP01307K
10.1107/S0567739478000108
10.1021/cg400276c
10.1021/cg400668w
10.1002/anie.201806431
10.1107/S0021889812043026
10.1107/S0567740879003630
10.1039/C4CC00849A
10.1039/D0SC02795B
10.1039/c39870001118
10.1039/C5CE00029G
10.1021/jacs.8b11528
10.1107/S0108768190006802
10.1016/j.carres.2016.06.003
10.1126/science.1151442
10.1107/S0567740880009181
10.1039/c3ce41869c
10.1021/acs.chemmater.9b01135
10.1107/S2052520616003954
10.1039/C8NJ03815E
10.1002/anie.200704421
10.1107/S0567740882003707
10.1126/science.1229675
10.1021/acs.cgd.8b00360
10.1039/C8CC05859H
10.3390/cryst5010143
10.1107/S0567740880003858
10.1107/S2052252514014845
10.1021/jp050121r
10.1515/zkri-2014-1728
10.1107/S0108768187097477
10.1039/C7CE01848G
10.1039/C6CE01674J
10.1039/C5NJ00196J
10.1038/nmat2583
10.1021/ja001239i
ContentType Journal Article
Copyright 2021 Andrew D. Bond. published by IUCr Journals.
open access.
Andrew D. Bond 2021 2021
Copyright_xml – notice: 2021 Andrew D. Bond. published by IUCr Journals.
– notice: open access.
– notice: Andrew D. Bond 2021 2021
DBID 24P
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1107/S2052520621003309
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Thermal expansion coefficients for organic molecular crystals
EISSN 2052-5206
EndPage 364
ExternalDocumentID PMC8182801
34096517
10_1107_S2052520621003309
AYB2RM5048
Genre article
Journal Article
GroupedDBID .GA
0R~
10A
1OC
24P
3SF
50Z
52O
52S
52U
52W
8-0
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
D-F
DCZOG
DRFUL
DRSTM
EBS
EJD
F00
G-S
G.N
GODZA
H.T
H.X
HGLYW
IX1
LATKE
LEEKS
LH-
LH4
LITHE
LOXES
LP7
LUTES
LW6
LYRES
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
NF~
O66
P2W
PQQKQ
Q.N
Q11
QB0
R.K
RCJ
ROL
SUPJJ
WBFHL
WBKPD
WIH
WIK
WOHZO
WYISQ
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c4778-715c175da351b6b592aa8d2cdd0e8a0c71826411b56e3eae9bc7b6254013b6f83
IEDL.DBID 24P
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000661270800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2052-5206
2052-5192
IngestDate Tue Nov 04 01:54:22 EST 2025
Thu Oct 02 17:27:16 EDT 2025
Mon Jul 21 05:55:44 EDT 2025
Sat Nov 29 06:44:46 EST 2025
Tue Nov 18 21:08:36 EST 2025
Wed Jan 22 16:30:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Cambridge Structural Database
molecular crystals
thermal expansion
python API
Language English
License Attribution
open access.
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4778-715c175da351b6b592aa8d2cdd0e8a0c71826411b56e3eae9bc7b6254013b6f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1744-0489
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS2052520621003309
PMID 34096517
PQID 2538045165
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8182801
proquest_miscellaneous_2538045165
pubmed_primary_34096517
crossref_primary_10_1107_S2052520621003309
crossref_citationtrail_10_1107_S2052520621003309
wiley_primary_10_1107_S2052520621003309_AYB2RM5048
PublicationCentury 2000
PublicationDate June 2021
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace 5 Abbey Square, Chester, Cheshire CH1 2HU, England
PublicationPlace_xml – name: 5 Abbey Square, Chester, Cheshire CH1 2HU, England
– name: England
PublicationTitle Acta crystallographica Section B, Structural science, crystal engineering and materials
PublicationTitleAlternate Acta Crystallogr B Struct Sci Cryst Eng Mater
PublicationYear 2021
Publisher International Union of Crystallography
Publisher_xml – name: International Union of Crystallography
References Olejniczak (rm5048_bb44) 2013; 13
Upadhyay (rm5048_bb56) 2021; 23
Cliffe (rm5048_bb16) 2012; 45
Bhattacharya (rm5048_bb6) 2013; 13
Schlenker (rm5048_bb49) 1978; 34
Negi (rm5048_bb41) 2018; 54
Alimi (rm5048_bb2) 2018; 20
Sim (rm5048_bb51) 1990; 46
Budzianowski (rm5048_bb11) 2002; 58
Okutsu (rm5048_bb43) 2005; 5
Turner (rm5048_bb55) 2018; 20
Mullaney (rm5048_bb40) 2017; 8
Groom (rm5048_bb26) 2016; 72
Das (rm5048_bb18) 2010; 9
Aroyo (rm5048_bb4) 2006; 221
Brock (rm5048_bb10) 2018; 57
Cai (rm5048_bb13) 2014; 2
Goodwin (rm5048_bb25) 2008; 319
Streek (rm5048_bb52) 2006; 62
Beldjoudi (rm5048_bb5) 2019; 141
Saraswatula (rm5048_bb48) 2015; 39
Cliffe (rm5048_bb17) 2015; 17
Fu (rm5048_bb24) 2013; 339
Sztylko (rm5048_bb53) 2019; 19
Hosten (rm5048_bb27) 2015; 230
MacGillivray (rm5048_bb39) 2000; 122
Juneja (rm5048_bb32) 2019; 43
Dulani Dhanapala (rm5048_bb20) 2017; 46
Lau (rm5048_bb35) 1976; 9
Usanmaz (rm5048_bb57) 1982; 38
Buron-Le Cointe (rm5048_bb12) 2012; 85
Lemée (rm5048_bb37) 1987; 43
Fabbianni (rm5048_bb22) 2014; 229
Hutchins (rm5048_bb28) 2016; 18
Capelli (rm5048_bb14) 2014; 1
Rather (rm5048_bb47) 2018; 18
rm5048_bb9
rm5048_bb3
Choi (rm5048_bb15) 1980; 36
Takahashi (rm5048_bb54) 2015; 17
rm5048_bb58
Krebs (rm5048_bb33) 1979; 35
Hutchins (rm5048_bb30) 2018; 42
Hutchins (rm5048_bb29) 2018; 20
Ding (rm5048_bb19) 2020; 11
Neumann (rm5048_bb42) 2005; 109
Lee (rm5048_bb36) 2018; 9
Abboud (rm5048_bb1) 1990; 46
Sim (rm5048_bb50) 1987
Liu (rm5048_bb38) 2019; 31
Jackson (rm5048_bb31) 2016; 432
Phillips (rm5048_bb45) 2008; 47
Filhol (rm5048_bb23) 1980; 36
Bhattacharya (rm5048_bb7) 2014; 16
Engel (rm5048_bb21) 2014; 50
Bhattacharya (rm5048_bb8) 2013; 13
Langreiter (rm5048_bb34) 2015; 5
rm5048_bb46
References_xml – volume: 9
  start-page: 29
  year: 1976
  ident: rm5048_bb35
  publication-title: J. Korean Phys. Soc.
– volume: 23
  start-page: 1226
  year: 2021
  ident: rm5048_bb56
  publication-title: CrystEngComm
  doi: 10.1039/D0CE01694B
– volume: 46
  start-page: 1420
  year: 2017
  ident: rm5048_bb20
  publication-title: Dalton Trans.
  doi: 10.1039/C6DT04152C
– volume: 9
  start-page: 3948
  year: 2018
  ident: rm5048_bb36
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC00159F
– volume: 20
  start-page: 4099
  year: 2018
  ident: rm5048_bb55
  publication-title: CrystEngComm
  doi: 10.1039/C8CE00539G
– volume: 62
  start-page: 567
  year: 2006
  ident: rm5048_bb52
  publication-title: Acta Cryst. B
  doi: 10.1107/S0108768106019677
– volume: 5
  start-page: 461
  year: 2005
  ident: rm5048_bb43
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg049816s
– volume: 20
  start-page: 7232
  year: 2018
  ident: rm5048_bb29
  publication-title: CrystEngComm
  doi: 10.1039/C8CE01090K
– ident: rm5048_bb3
– volume: 85
  start-page: 064114
  year: 2012
  ident: rm5048_bb12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.064114
– volume: 230
  start-page: 59
  year: 2015
  ident: rm5048_bb27
  publication-title: Z. Kristallogr. NCS
– volume: 13
  start-page: 3299
  year: 2013
  ident: rm5048_bb6
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg4009174
– volume: 8
  start-page: 1053
  year: 2017
  ident: rm5048_bb40
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00776-1
– volume: 58
  start-page: 125
  year: 2002
  ident: rm5048_bb11
  publication-title: Acta Cryst. B
  doi: 10.1107/S0108768101017955
– volume: 2
  start-page: 6471
  year: 2014
  ident: rm5048_bb13
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC00654B
– volume: 43
  start-page: 18433
  year: 2019
  ident: rm5048_bb32
  publication-title: New J. Chem.
  doi: 10.1039/C9NJ04833B
– ident: rm5048_bb58
– volume: 46
  start-page: 2494
  year: 1990
  ident: rm5048_bb1
  publication-title: Acta Cryst. C
  doi: 10.1107/S0108270190005492
– volume: 221
  start-page: 15
  year: 2006
  ident: rm5048_bb4
  publication-title: Z. Kristallogr.
  doi: 10.1524/zkri.2006.221.1.15
– volume: 19
  start-page: 5132
  year: 2019
  ident: rm5048_bb53
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.9b00518
– volume: 17
  start-page: 11586
  year: 2015
  ident: rm5048_bb17
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP01307K
– volume: 34
  start-page: 52
  year: 1978
  ident: rm5048_bb49
  publication-title: Acta Cryst. A
  doi: 10.1107/S0567739478000108
– volume: 13
  start-page: 2872
  year: 2013
  ident: rm5048_bb44
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg400276c
– volume: 13
  start-page: 3651
  year: 2013
  ident: rm5048_bb8
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg400668w
– volume: 57
  start-page: 11325
  year: 2018
  ident: rm5048_bb10
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201806431
– volume: 45
  start-page: 1321
  year: 2012
  ident: rm5048_bb16
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889812043026
– volume: 35
  start-page: 402
  year: 1979
  ident: rm5048_bb33
  publication-title: Acta Cryst. B
  doi: 10.1107/S0567740879003630
– volume: 50
  start-page: 4238
  year: 2014
  ident: rm5048_bb21
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC00849A
– volume: 11
  start-page: 7701
  year: 2020
  ident: rm5048_bb19
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC02795B
– start-page: 1118
  year: 1987
  ident: rm5048_bb50
  publication-title: J. Chem. Soc. Chem. Commun.
  doi: 10.1039/c39870001118
– volume: 17
  start-page: 8888
  year: 2015
  ident: rm5048_bb54
  publication-title: CrystEngComm
  doi: 10.1039/C5CE00029G
– volume: 141
  start-page: 6875
  year: 2019
  ident: rm5048_bb5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11528
– volume: 46
  start-page: 676
  year: 1990
  ident: rm5048_bb51
  publication-title: Acta Cryst. B
  doi: 10.1107/S0108768190006802
– volume: 432
  start-page: 9
  year: 2016
  ident: rm5048_bb31
  publication-title: Carbohydr. Res.
  doi: 10.1016/j.carres.2016.06.003
– volume: 319
  start-page: 794
  year: 2008
  ident: rm5048_bb25
  publication-title: Science
  doi: 10.1126/science.1151442
– volume: 36
  start-page: 2491
  year: 1980
  ident: rm5048_bb15
  publication-title: Acta Cryst. B
  doi: 10.1107/S0567740880009181
– volume: 16
  start-page: 2340
  year: 2014
  ident: rm5048_bb7
  publication-title: CrystEngComm
  doi: 10.1039/c3ce41869c
– volume: 31
  start-page: 4514
  year: 2019
  ident: rm5048_bb38
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b01135
– ident: rm5048_bb9
– volume: 72
  start-page: 171
  year: 2016
  ident: rm5048_bb26
  publication-title: Acta Cryst. B
  doi: 10.1107/S2052520616003954
– volume: 42
  start-page: 16460
  year: 2018
  ident: rm5048_bb30
  publication-title: New J. Chem.
  doi: 10.1039/C8NJ03815E
– ident: rm5048_bb46
– volume: 47
  start-page: 1396
  year: 2008
  ident: rm5048_bb45
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200704421
– volume: 38
  start-page: 660
  year: 1982
  ident: rm5048_bb57
  publication-title: Acta Cryst. B
  doi: 10.1107/S0567740882003707
– volume: 339
  start-page: 425
  year: 2013
  ident: rm5048_bb24
  publication-title: Science
  doi: 10.1126/science.1229675
– volume: 18
  start-page: 2712
  year: 2018
  ident: rm5048_bb47
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.8b00360
– volume: 54
  start-page: 10675
  year: 2018
  ident: rm5048_bb41
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC05859H
– volume: 5
  start-page: 143
  year: 2015
  ident: rm5048_bb34
  publication-title: Crystals
  doi: 10.3390/cryst5010143
– volume: 36
  start-page: 575
  year: 1980
  ident: rm5048_bb23
  publication-title: Acta Cryst. B
  doi: 10.1107/S0567740880003858
– volume: 1
  start-page: 361
  year: 2014
  ident: rm5048_bb14
  publication-title: IUCrJ
  doi: 10.1107/S2052252514014845
– volume: 109
  start-page: 15531
  year: 2005
  ident: rm5048_bb42
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp050121r
– volume: 229
  start-page: 667
  year: 2014
  ident: rm5048_bb22
  publication-title: Z. Krist. Cryst. Mater.
  doi: 10.1515/zkri-2014-1728
– volume: 43
  start-page: 466
  year: 1987
  ident: rm5048_bb37
  publication-title: Acta Cryst. B
  doi: 10.1107/S0108768187097477
– volume: 20
  start-page: 631
  year: 2018
  ident: rm5048_bb2
  publication-title: CrystEngComm
  doi: 10.1039/C7CE01848G
– volume: 18
  start-page: 8354
  year: 2016
  ident: rm5048_bb28
  publication-title: CrystEngComm
  doi: 10.1039/C6CE01674J
– volume: 39
  start-page: 3345
  year: 2015
  ident: rm5048_bb48
  publication-title: New J. Chem.
  doi: 10.1039/C5NJ00196J
– volume: 9
  start-page: 36
  year: 2010
  ident: rm5048_bb18
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2583
– volume: 122
  start-page: 7817
  year: 2000
  ident: rm5048_bb39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja001239i
SSID ssj0001105261
Score 2.3062706
SecondaryResourceType review_article
Snippet Typical ranges of thermal expansion coefficients are established for organic molecular crystals in the Cambridge Structural Database. The CSD Python API is...
Thermal expansion coefficients are calculated for 6201 molecular crystals in the Cambridge Structural Database and the distributions of the values are...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 357
SubjectTerms Cambridge Structural Database
molecular crystals
python API
Research Papers
thermal expansion
Title A survey of thermal expansion coefficients for organic molecular crystals in the Cambridge Structural Database
URI https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS2052520621003309
https://www.ncbi.nlm.nih.gov/pubmed/34096517
https://www.proquest.com/docview/2538045165
https://pubmed.ncbi.nlm.nih.gov/PMC8182801
Volume 77
WOSCitedRecordID wos000661270800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2052-5206
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105261
  issn: 2052-5206
  databaseCode: DRFUL
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1R6KEcKKUfhBbkSpwqRbWdOHaOW-iKA0UIirQ9RbbjVVeCbLULqPz7zjjZlNVKrVT1kksyVhLPeN7M2G8ADpU35LfGKfeKp7nQRepC4KkxTtXWOM1lHZtN6LMzMxqV52twtDgL0_JD9Ak3soy4XpOBW9d1IYl1_UtJLdgkLzBo4RiVl09gQ4hMk2rL_Px3okUQpQkFXiSQkkRX3cRxPq6MsuyfVkDn6t7Jx5g2OqXh8__yOduw1WFSNmiV6AWshWYHNh8xFb6EZsDmd7P78MCmY0aY8QYFwk9cSijbxvw0RCoK2pXBEAaztlmUZzeL7rvMzx4QiF7P2aShAVh_WIxdRgpbov9gx_bWkl99BVfDz1-PTtKuVUPqc41xqBbKIxCpbaaEK5wqpbWmlr6ueTCWe01hTC6EU0XIgg2l89ph6EXRnSvGJnsN6820CbvAxNiowiIqq8ssV740KpSmlJ5KiEqFLAG-mKDKdzzm1E7juorxDNfVyq9M4EMv8qMl8fjTw-8Xs16hqVH9xDZhejevJDoHouMpVAJvWi3oh8tyotEROgG9pB_9A0TjvXynmXyPdN4ImSTihARk1I-_v2E1-PZJXnxRuPju_YvQW3gmaWdOzCW9g3Wc5bAPT_397WQ-O4jWg1c9MgewcXwxvDr9BahHFzo
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4BrQQ99MGjTUtbV-KEFOE4cewcl5eoCitUqERPke14xUpLttoFBP-eGWc3ZbVSKyHO8VhJ7PF88_A3AFvSabJbvZg7yeMsUXlsveex1lZWRlvFRRWaTahuV19cFKcLsD-9C9PwQ7QBN9KMcF6TglNAutHykNg_E9SDTfAcvRaObnmxCC8ytE5U2Cey07-RloQ4TcjzIoGYJCbpTZxnZ26WWQM1hzrniycfg9pglQ7fPM_3vIXXE1TKOs02egcLvl6FV4-4Cteg7rDxzejW37NhjxFqvEIBf4eHCcXbmBv6QEZBdRkMgTBr2kU5djXtv8vc6B6h6GDM-jVNwNrrYuwskNgSAQjbN9eGLOs6_Do8ON87iifNGmKXKfREVSIdQpHKpDKxuZWFMEZXwlUV99pwp8iRyZLEytyn3vjCOmXR-SL_zuY9nW7AUj2s_QdgSU_L3CAuq4o0k67Q0he6EI6SiFL6NAI-XaHSTZjMqaHGoAweDVfl3K-MYLsV-dPQePxr8LfpspeobJRBMbUf3oxLgeaBCHlyGcH7Zhu006UZEekkKgI1s0HaAUTkPfuk7l8GQm8ETQKRQgQibJD_v2HZ-b0rfp5IPH4_PkXoKywfnZ8cl8ffuz8-wYqgOp0QWdqEJVxx_xleutvr_nj0JajSA_GCGJY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-6doz2oe2-Wrf70GBPAzNZtiz5MVsWNtaFsG7QPRlJllmgdUrSlva_752ceA2BDsaerTts6073O530O4C30mmKW3XMneRxlqg8tt7zWGsrK6Ot4qIKzSbUcKhPTorRGvQXd2Fafohuw408I6zX5OD-vKpbLw-F_WNBPdgEzzFr4ZiWFw9gI5MquKfIRn92WhLiNKHMiwRikpiXN1HP-xUtywFqBXWuHp68C2pDVBrs_J_v2YXtOSplvdaMHsOab57A1h2uwqfQ9Njscnrlb9ikZoQaz1DAX-NiQvttzE18IKOgcxkMgTBr20U5drbov8vc9Aah6OmMjRtSwLrrYuw4kNgSAQjrmwtDkfUZ_Bx8-vHxczxv1hC7TGEmqhLpEIpUJpWJza0shDG6Eq6quNeGO0WJTJYkVuY-9cYX1imLyRfldzavdfoc1ptJ4_eBJbWWuUFcVhVpJl2hpS90IRwVEaX0aQR8MUOlmzOZU0ON0zJkNFyVK78ygnedyHlL43Hf4DeLaS_R2aiCYho_uZyVAsMDEfLkMoK91gw6dWlGRDqJikAtGUg3gIi8l58049-B0BtBk0CkEIEIBvL3Nyx7vz6I798kLr8H_yL0Gh6N-oPy6Mvw6yFsCjqmEzaWXsA6Trh_CQ_d1cV4Nn0VPOkWVgoYEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+of+thermal+expansion+coefficients+for+organic+molecular+crystals+in+the+Cambridge+Structural+Database&rft.jtitle=Acta+crystallographica+Section+B%2C+Structural+science%2C+crystal+engineering+and+materials&rft.au=Bond%2C+Andrew+D.&rft.date=2021-06-01&rft.issn=2052-5206&rft.eissn=2052-5206&rft.volume=77&rft.issue=3&rft.spage=357&rft.epage=364&rft_id=info:doi/10.1107%2FS2052520621003309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1107_S2052520621003309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-5206&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-5206&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-5206&client=summon