Automated diabetic retinopathy grading and lesion detection based on the modified R-FCN object-detection algorithm

In this work, we develop a computer-aided retinal image screening system that can perform automated diabetic retinopathy (DR) grading and DR lesion detection in retinal fundus images. We propose a modified object-detection method for this task via a region-based fully convolutional network (R-FCN)....

Full description

Saved in:
Bibliographic Details
Published in:IET computer vision Vol. 14; no. 1; pp. 1 - 8
Main Authors: Wang, Jialiang, Luo, Jianxu, Liu, Bin, Feng, Rui, Lu, Lina, Zou, Haidong
Format: Journal Article
Language:English
Published: The Institution of Engineering and Technology 01.02.2020
Wiley
Subjects:
ISSN:1751-9632, 1751-9640, 1751-9640
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we develop a computer-aided retinal image screening system that can perform automated diabetic retinopathy (DR) grading and DR lesion detection in retinal fundus images. We propose a modified object-detection method for this task via a region-based fully convolutional network (R-FCN). A feature pyramid network and a modified region proposal network are applied to enhance the detection of small objects. The DR-grading model based on the modified R-FCN is evaluated on the Messidor data set and images provided by the Shanghai Eye Hospital. High sensitivity of 99.39% and specificity of 99.93% are obtained on the hospital data. Moreover, high sensitivity of 92.59% and specificity of 96.20% are obtained on the Messidor data set. The modified R-FCN lesion-detection model is validated on the hospital data set and achieves a 92.15% mean average precision. The proposed R-FCN can efficiently accomplish DR grading and lesion detection with high accuracy.
ISSN:1751-9632
1751-9640
1751-9640
DOI:10.1049/iet-cvi.2018.5508