Fast High-Dimensional Filtering Using the Permutohedral Lattice

Many useful algorithms for processing images and geometry fall under the general framework of high‐dimensional Gaussian filtering. This family of algorithms includes bilateral filtering and non‐local means. We propose a new way to perform such filters using the permutohedral lattice, which tessellat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 29; číslo 2; s. 753 - 762
Hlavní autoři: Adams, Andrew, Baek, Jongmin, Davis, Myers Abraham
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford, UK Blackwell Publishing Ltd 01.05.2010
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Many useful algorithms for processing images and geometry fall under the general framework of high‐dimensional Gaussian filtering. This family of algorithms includes bilateral filtering and non‐local means. We propose a new way to perform such filters using the permutohedral lattice, which tessellates high‐dimensional space with uniform simplices. Our algorithm is the first implementation of a high‐dimensional Gaussian filter that is both linear in input size and polynomial in dimensionality. Furthermore it is parameter‐free, apart from the filter size, and achieves a consistently high accuracy relative to ground truth (> 45 dB). We use this to demonstrate a number of interactive‐rate applications of filters in as high as eight dimensions.
Bibliografie:ArticleID:CGF1645
istex:E64FC9E0C659CA7344DBE79C591832B5E9275E9A
ark:/67375/WNG-8VLMBVLB-L
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0167-7055
1467-8659
DOI:10.1111/j.1467-8659.2009.01645.x