Increasing rates of long-term nitrogen deposition consistently increased litter decomposition in a semi-arid grassland
• The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process contributing to these changes, but the numerous mechanisms for altered decomposition remain poorly identified. • We assessed these different...
Uloženo v:
| Vydáno v: | The New phytologist Ročník 229; číslo 1; s. 296 - 307 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Wiley
01.01.2021
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 0028-646X, 1469-8137, 1469-8137 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | • The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process contributing to these changes, but the numerous mechanisms for altered decomposition remain poorly identified.
• We assessed these different mechanisms with a decomposition experiment using litter from four abundant species (Achnatherum sibiricum, Agropyron cristatum, Leymus chinensis and Stipa grandis) and litter mixtures representing treatment-specific community composition in a semi-arid grassland under long-term simulation of six different rates of N deposition.
• Decomposition increased consistently with increasing rates of N addition in all litter types. Higher soil manganese (Mn) availability, which apparently was a consequence of N addition-induced lower soil pH, was the most important factor for faster decomposition. Soil C : N ratios were lower with N addition that subsequently led to markedly higher bacterial to fungal ratios, which also stimulated litter decomposition.
• Several factors contributed jointly to higher rates of litter decomposition in response to N deposition. Shifts in plant species composition and litter quality played a minor role compared to N-driven reductions in soil pH and C : N, which increased soil Mn availability and altered microbial community structure. The soil-driven effect on decomposition reported here may have long-lasting impacts on nutrient cycling, soil organic matter dynamics and ecosystem functioning. |
|---|---|
| AbstractList | Summary
The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process contributing to these changes, but the numerous mechanisms for altered decomposition remain poorly identified.
We assessed these different mechanisms with a decomposition experiment using litter from four abundant species (Achnatherum sibiricum, Agropyron cristatum, Leymus chinensis and Stipa grandis) and litter mixtures representing treatment‐specific community composition in a semi‐arid grassland under long‐term simulation of six different rates of N deposition.
Decomposition increased consistently with increasing rates of N addition in all litter types. Higher soil manganese (Mn) availability, which apparently was a consequence of N addition‐induced lower soil pH, was the most important factor for faster decomposition. Soil C : N ratios were lower with N addition that subsequently led to markedly higher bacterial to fungal ratios, which also stimulated litter decomposition.
Several factors contributed jointly to higher rates of litter decomposition in response to N deposition. Shifts in plant species composition and litter quality played a minor role compared to N‐driven reductions in soil pH and C : N, which increased soil Mn availability and altered microbial community structure. The soil‐driven effect on decomposition reported here may have long‐lasting impacts on nutrient cycling, soil organic matter dynamics and ecosystem functioning. The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process contributing to these changes, but the numerous mechanisms for altered decomposition remain poorly identified. We assessed these different mechanisms with a decomposition experiment using litter from four abundant species (Achnatherum sibiricum, Agropyron cristatum, Leymus chinensis and Stipa grandis) and litter mixtures representing treatment-specific community composition in a semi-arid grassland under long-term simulation of six different rates of N deposition. Decomposition increased consistently with increasing rates of N addition in all litter types. Higher soil manganese (Mn) availability, which apparently was a consequence of N addition-induced lower soil pH, was the most important factor for faster decomposition. Soil C : N ratios were lower with N addition that subsequently led to markedly higher bacterial to fungal ratios, which also stimulated litter decomposition. Several factors contributed jointly to higher rates of litter decomposition in response to N deposition. Shifts in plant species composition and litter quality played a minor role compared to N-driven reductions in soil pH and C : N, which increased soil Mn availability and altered microbial community structure. The soil-driven effect on decomposition reported here may have long-lasting impacts on nutrient cycling, soil organic matter dynamics and ecosystem functioning.The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process contributing to these changes, but the numerous mechanisms for altered decomposition remain poorly identified. We assessed these different mechanisms with a decomposition experiment using litter from four abundant species (Achnatherum sibiricum, Agropyron cristatum, Leymus chinensis and Stipa grandis) and litter mixtures representing treatment-specific community composition in a semi-arid grassland under long-term simulation of six different rates of N deposition. Decomposition increased consistently with increasing rates of N addition in all litter types. Higher soil manganese (Mn) availability, which apparently was a consequence of N addition-induced lower soil pH, was the most important factor for faster decomposition. Soil C : N ratios were lower with N addition that subsequently led to markedly higher bacterial to fungal ratios, which also stimulated litter decomposition. Several factors contributed jointly to higher rates of litter decomposition in response to N deposition. Shifts in plant species composition and litter quality played a minor role compared to N-driven reductions in soil pH and C : N, which increased soil Mn availability and altered microbial community structure. The soil-driven effect on decomposition reported here may have long-lasting impacts on nutrient cycling, soil organic matter dynamics and ecosystem functioning. The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process contributing to these changes, but the numerous mechanisms for altered decomposition remain poorly identified. We assessed these different mechanisms with a decomposition experiment using litter from four abundant species (Achnatherum sibiricum, Agropyron cristatum, Leymus chinensis and Stipa grandis) and litter mixtures representing treatment-specific community composition in a semi-arid grassland under long-term simulation of six different rates of N deposition. Decomposition increased consistently with increasing rates of N addition in all litter types. Higher soil manganese (Mn) availability, which apparently was a consequence of N addition-induced lower soil pH, was the most important factor for faster decomposition. Soil C : N ratios were lower with N addition that subsequently led to markedly higher bacterial to fungal ratios, which also stimulated litter decomposition. Several factors contributed jointly to higher rates of litter decomposition in response to N deposition. Shifts in plant species composition and litter quality played a minor role compared to N-driven reductions in soil pH and C : N, which increased soil Mn availability and altered microbial community structure. The soil-driven effect on decomposition reported here may have long-lasting impacts on nutrient cycling, soil organic matter dynamics and ecosystem functioning. The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process contributing to these changes, but the numerous mechanisms for altered decomposition remain poorly identified.We assessed these different mechanisms with a decomposition experiment using litter from four abundant species (Achnatherum sibiricum, Agropyron cristatum, Leymus chinensis and Stipa grandis) and litter mixtures representing treatment‐specific community composition in a semi‐arid grassland under long‐term simulation of six different rates of N deposition.Decomposition increased consistently with increasing rates of N addition in all litter types. Higher soil manganese (Mn) availability, which apparently was a consequence of N addition‐induced lower soil pH, was the most important factor for faster decomposition. Soil C : N ratios were lower with N addition that subsequently led to markedly higher bacterial to fungal ratios, which also stimulated litter decomposition.Several factors contributed jointly to higher rates of litter decomposition in response to N deposition. Shifts in plant species composition and litter quality played a minor role compared to N‐driven reductions in soil pH and C : N, which increased soil Mn availability and altered microbial community structure. The soil‐driven effect on decomposition reported here may have long‐lasting impacts on nutrient cycling, soil organic matter dynamics and ecosystem functioning. The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process contributing to these changes, but the numerous mechanisms for altered decomposition remain poorly identified. We assessed these different mechanisms with a decomposition experiment using litter from four abundant species ( Achnatherum sibiricum , Agropyron cristatum , Leymus chinensis and Stipa grandis ) and litter mixtures representing treatment‐specific community composition in a semi‐arid grassland under long‐term simulation of six different rates of N deposition. Decomposition increased consistently with increasing rates of N addition in all litter types. Higher soil manganese (Mn) availability, which apparently was a consequence of N addition‐induced lower soil pH, was the most important factor for faster decomposition. Soil C : N ratios were lower with N addition that subsequently led to markedly higher bacterial to fungal ratios, which also stimulated litter decomposition. Several factors contributed jointly to higher rates of litter decomposition in response to N deposition. Shifts in plant species composition and litter quality played a minor role compared to N‐driven reductions in soil pH and C : N, which increased soil Mn availability and altered microbial community structure. The soil‐driven effect on decomposition reported here may have long‐lasting impacts on nutrient cycling, soil organic matter dynamics and ecosystem functioning. • The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process contributing to these changes, but the numerous mechanisms for altered decomposition remain poorly identified. • We assessed these different mechanisms with a decomposition experiment using litter from four abundant species (Achnatherum sibiricum, Agropyron cristatum, Leymus chinensis and Stipa grandis) and litter mixtures representing treatment-specific community composition in a semi-arid grassland under long-term simulation of six different rates of N deposition. • Decomposition increased consistently with increasing rates of N addition in all litter types. Higher soil manganese (Mn) availability, which apparently was a consequence of N addition-induced lower soil pH, was the most important factor for faster decomposition. Soil C : N ratios were lower with N addition that subsequently led to markedly higher bacterial to fungal ratios, which also stimulated litter decomposition. • Several factors contributed jointly to higher rates of litter decomposition in response to N deposition. Shifts in plant species composition and litter quality played a minor role compared to N-driven reductions in soil pH and C : N, which increased soil Mn availability and altered microbial community structure. The soil-driven effect on decomposition reported here may have long-lasting impacts on nutrient cycling, soil organic matter dynamics and ecosystem functioning. |
| Author | Lü, Xiao-Tao Han, Xing-Guo Wang, Ru-Zhen Cui, Shu-Yan Hu, Yan-Yu Yang, Jun-Jie Hou, Shuang-Li Sistla, Seeta Wei, Hai-Wei Zhang, Zhi-Wei Hättenschwiler, Stephan |
| Author_xml | – sequence: 1 givenname: Shuang-Li surname: Hou fullname: Hou, Shuang-Li – sequence: 2 givenname: Stephan surname: Hättenschwiler fullname: Hättenschwiler, Stephan – sequence: 3 givenname: Jun-Jie surname: Yang fullname: Yang, Jun-Jie – sequence: 4 givenname: Seeta surname: Sistla fullname: Sistla, Seeta – sequence: 5 givenname: Hai-Wei surname: Wei fullname: Wei, Hai-Wei – sequence: 6 givenname: Zhi-Wei surname: Zhang fullname: Zhang, Zhi-Wei – sequence: 7 givenname: Yan-Yu surname: Hu fullname: Hu, Yan-Yu – sequence: 8 givenname: Ru-Zhen surname: Wang fullname: Wang, Ru-Zhen – sequence: 9 givenname: Shu-Yan surname: Cui fullname: Cui, Shu-Yan – sequence: 10 givenname: Xiao-Tao surname: Lü fullname: Lü, Xiao-Tao – sequence: 11 givenname: Xing-Guo surname: Han fullname: Han, Xing-Guo |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32762047$$D View this record in MEDLINE/PubMed https://cnrs.hal.science/hal-04960753$$DView record in HAL |
| BookMark | eNqFkk1rVDEYhYNU7LR14Q9QAm50cdt83XwsS6lOYVAXFtyF3NzcaYZ7kzHJVObfN-O0IxTUbAIvzzm8L-ecgKMQgwPgDUbnuL6LsL47x1y27AWYYcZVIzEVR2CGEJENZ_zHMTjJeYUQUi0nr8AxJYITxMQM3N8Em5zJPixhMsVlGAc4xrBsiksTDL6kuHQB9m4dsy8-BmhjyD4XF8q4hX4vdz0cfamSCto4HVgfoIHZTb4xyfdwmUzOown9GXg5mDG714__Kbj9dP39at4svn6-ubpcNJYJwRrJu45a1TlrhRSDEgOnvey5NUoNhreWtx3pJFOMdC0dKOXKqnp8HSrCJaWn4OPe986Mep38ZNJWR-P1_HKhdzPEFEeipfe4sh_27DrFnxuXi558tm6s-7q4yZq0HLdMKsX_jzKKJarwzvX9M3QVNynUoyvFBWesJlapd4_Upptcf1j1Kag_h9gUc05uOCAY6V0JdC2B_l2Cyl48Y60vZpdHScaP_1L88qPb_t1af_k2f1K83StWucR0UBCBmVKtpA8Xacws |
| CitedBy_id | crossref_primary_10_1111_1365_2435_14459 crossref_primary_10_1007_s11368_023_03490_2 crossref_primary_10_1016_j_scitotenv_2021_150388 crossref_primary_10_3390_f16040684 crossref_primary_10_1016_j_apsoil_2023_105125 crossref_primary_10_1007_s11104_021_05176_5 crossref_primary_10_1016_j_catena_2025_109153 crossref_primary_10_1016_j_still_2025_106800 crossref_primary_10_1007_s11104_023_06030_6 crossref_primary_10_1029_2023JG007830 crossref_primary_10_1007_s11104_024_06660_4 crossref_primary_10_3390_microorganisms13092014 crossref_primary_10_1016_j_jhazmat_2023_131152 crossref_primary_10_1007_s11104_023_06339_2 crossref_primary_10_3389_fpls_2022_1025162 crossref_primary_10_3390_f14040699 crossref_primary_10_3390_w17010125 crossref_primary_10_1111_1365_2435_14015 crossref_primary_10_1016_j_agrformet_2024_110368 crossref_primary_10_1111_gcb_70475 crossref_primary_10_1002_jpln_202100144 crossref_primary_10_1007_s11104_025_07534_z crossref_primary_10_3390_f14050955 crossref_primary_10_1002_ece3_10377 crossref_primary_10_1016_j_ufug_2024_128628 crossref_primary_10_3389_fevo_2022_919571 crossref_primary_10_1111_gcb_17428 crossref_primary_10_3390_f15101764 crossref_primary_10_1007_s11104_022_05537_8 crossref_primary_10_1007_s00442_024_05638_4 crossref_primary_10_1016_j_jenvman_2023_119121 crossref_primary_10_1016_j_soilbio_2024_109418 crossref_primary_10_7717_peerj_14012 crossref_primary_10_1016_j_apsoil_2023_104903 crossref_primary_10_1007_s11258_024_01475_w crossref_primary_10_1002_ece3_71317 crossref_primary_10_1038_s41467_025_60948_2 crossref_primary_10_1093_jpe_rtaf024 crossref_primary_10_1016_j_ejsobi_2024_103696 crossref_primary_10_1016_j_soilbio_2024_109695 crossref_primary_10_1016_j_tfp_2025_100986 crossref_primary_10_1016_j_scitotenv_2022_157115 crossref_primary_10_3390_pr10112425 crossref_primary_10_1002_ecy_4020 crossref_primary_10_1016_j_apsoil_2025_106451 crossref_primary_10_3389_fpls_2024_1479563 crossref_primary_10_1016_j_scitotenv_2022_155418 crossref_primary_10_1016_j_apsoil_2023_104851 crossref_primary_10_1002_agj2_70154 crossref_primary_10_3390_f15122193 crossref_primary_10_3389_fpls_2024_1464973 crossref_primary_10_3389_fpls_2023_1140080 crossref_primary_10_3389_fmicb_2023_1013570 crossref_primary_10_1016_j_soilbio_2023_109009 crossref_primary_10_1016_j_scitotenv_2022_156194 crossref_primary_10_1007_s42729_024_01771_4 crossref_primary_10_5897_JSSEM2024_0952 crossref_primary_10_1016_j_soilbio_2021_108511 crossref_primary_10_1016_j_soilbio_2023_108992 crossref_primary_10_1007_s11802_023_5248_7 crossref_primary_10_1016_j_soilbio_2023_109164 crossref_primary_10_3389_fevo_2023_1220111 crossref_primary_10_1016_j_jenvman_2021_113649 crossref_primary_10_1007_s40333_021_0076_3 crossref_primary_10_3390_f15091492 crossref_primary_10_3389_fmicb_2022_1015588 crossref_primary_10_1111_gcb_15988 crossref_primary_10_1186_s13717_025_00624_x crossref_primary_10_1029_2024JG008570 crossref_primary_10_1016_j_ecolind_2022_109471 crossref_primary_10_1038_s41598_021_81458_3 crossref_primary_10_1007_s11104_022_05727_4 crossref_primary_10_3389_fevo_2024_1365954 crossref_primary_10_3390_plants14081183 crossref_primary_10_1016_j_envpol_2021_117969 crossref_primary_10_1016_j_still_2024_106037 crossref_primary_10_1111_1365_2745_13878 crossref_primary_10_1016_j_fmre_2023_10_025 crossref_primary_10_1111_sum_70077 crossref_primary_10_3389_fpls_2024_1394112 crossref_primary_10_1111_1365_2745_14048 crossref_primary_10_1002_ldr_5125 crossref_primary_10_1016_j_soilbio_2023_108964 crossref_primary_10_3389_ffgc_2022_895774 crossref_primary_10_1016_j_soilbio_2024_109474 crossref_primary_10_1029_2022JG007000 crossref_primary_10_1016_j_agrformet_2024_110257 crossref_primary_10_3390_su16208845 |
| Cites_doi | 10.1016/j.soilbio.2012.10.027 10.1525/9780520407114 10.1016/j.soilbio.2015.06.028 10.1016/j.soilbio.2018.11.018 10.1890/ES15-00262.1 10.2307/1940104 10.1016/S0038-0717(02)00251-1 10.1073/pnas.1508382112 10.1007/s11104-017-3288-8 10.1093/femsre/fux049 10.1007/s11104-014-2277-4 10.1890/05-0150 10.1111/1365-2745.12507 10.1016/j.soilbio.2017.08.014 10.1111/j.1461-0248.2012.01826.x 10.1111/j.1461-0248.2008.01230.x 10.1007/s10533-015-0129-9 10.2307/2404111 10.1016/j.soilbio.2018.09.007 10.1890/14-0777.1 10.1016/j.soilbio.2013.04.010 10.1038/srep12558 10.1111/gcb.12611 10.1890/15-1683.1 10.1111/1365-2435.12589 10.1016/j.soilbio.2018.11.025 10.1016/j.apsoil.2014.09.015 10.1016/S0038-0717(03)00154-8 10.1016/S0141-0229(01)00528-2 10.1126/science.1134853 10.1088/1748-9326/10/2/024019 10.1016/j.apsoil.2016.08.008 10.1007/BF00384433 10.1038/srep03763 10.1007/s00442-006-0562-5 10.1126/science.287.5459.1770 10.3389/fmicb.2016.01247 10.1002/ecy.1515 10.3389/fmicb.2014.00022 10.1139/a96-017 10.1016/j.foreco.2015.09.021 10.1016/j.soilbio.2018.09.025 10.1038/ismej.2010.58 10.1038/nature06503 10.1111/1365-2435.12863 10.2307/1932179 10.1111/j.1365-2486.2009.01950.x 10.1128/AEM.58.8.2402-2409.1992 10.1111/ele.12269 10.1007/s100210000042 10.1890/09-0654.1 10.1017/CBO9780511617799 10.1007/s10533-018-0466-6 10.1111/j.1461-0248.2008.01219.x 10.1016/j.scitotenv.2016.09.018 10.1139/b06-150 10.1016/j.soilbio.2014.08.005 10.1890/15-0917.1 10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2 10.1890/11-1600.1 10.1016/j.soilbio.2004.03.010 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors © 2020 New Phytologist Trust 2020 The Authors New Phytologist © 2020 New Phytologist Trust 2020 The Authors New Phytologist © 2020 New Phytologist Trust. Copyright © 2020 New Phytologist Trust Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2020 The Authors © 2020 New Phytologist Trust – notice: 2020 The Authors New Phytologist © 2020 New Phytologist Trust – notice: 2020 The Authors New Phytologist © 2020 New Phytologist Trust. – notice: Copyright © 2020 New Phytologist Trust – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 1XC |
| DOI | 10.1111/nph.16854 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany Environmental Sciences |
| EISSN | 1469-8137 |
| EndPage | 307 |
| ExternalDocumentID | oai:HAL:hal-04960753v1 32762047 10_1111_nph_16854 NPH16854 27149958 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2016YFC0500601 – fundername: National Natural Science Foundation of China funderid: 31770503; 31822006; 31901141 – fundername: CAS funderid: QYZDB‐SSW‐DQC006 – fundername: Youth Innovation Promotion Association CAS funderid: Y201832 – fundername: Liaoning Revitalizing Talents Program funderid: XLYC1807061 – fundername: K.C.Wong Education Foundation funderid: GJTD‐2019‐10 |
| GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABTLG ABVKB ACAHQ ACCZN ACFBH ACGFS ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASGY AASVR ABEFU ABEML ABXSQ ACCFJ ACHIC ACQPF ADULT AEEZP AEQDE AEUQT AFPWT AHXOZ AILXY AIWBW AJBDE AQVQM AS~ CAG COF DOOOF EJD ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU LW6 MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ABSQW ABUFD ADXHL AGUYK CITATION O8X CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 1XC |
| ID | FETCH-LOGICAL-c4774-86bb3c9becc787f97f63d8d6ca99fa65c65b2b84942b53f3369c9813b2b926833 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 104 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000567407600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-646X 1469-8137 |
| IngestDate | Tue Oct 14 20:25:36 EDT 2025 Fri Sep 05 17:25:14 EDT 2025 Thu Sep 04 17:46:15 EDT 2025 Fri Jul 25 12:14:07 EDT 2025 Mon Jul 21 05:56:29 EDT 2025 Sat Nov 29 03:44:27 EST 2025 Tue Nov 18 22:11:20 EST 2025 Wed Jan 22 16:31:13 EST 2025 Thu Jul 03 21:26:35 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | litter quality soil C : N community level soil pH nitrogen addition soil microbial community structure manganese |
| Language | English |
| License | 2020 The Authors New Phytologist © 2020 New Phytologist Trust. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4774-86bb3c9becc787f97f63d8d6ca99fa65c65b2b84942b53f3369c9813b2b926833 |
| Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8148-960X 0000-0001-8654-6677 0000-0002-6345-462X 0000-0001-5571-1895 0000-0002-1836-975X |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.16854 |
| PMID | 32762047 |
| PQID | 2467644146 |
| PQPubID | 2026848 |
| PageCount | 12 |
| ParticipantIDs | hal_primary_oai_HAL_hal_04960753v1 proquest_miscellaneous_2561548996 proquest_miscellaneous_2431805481 proquest_journals_2467644146 pubmed_primary_32762047 crossref_primary_10_1111_nph_16854 crossref_citationtrail_10_1111_nph_16854 wiley_primary_10_1111_nph_16854_NPH16854 jstor_primary_27149958 |
| PublicationCentury | 2000 |
| PublicationDate | 20210101 January 2021 2021-01-00 2021 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 1 year: 2021 text: 20210101 day: 1 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Lancaster |
| PublicationTitle | The New phytologist |
| PublicationTitleAlternate | New Phytol |
| PublicationYear | 2021 |
| Publisher | Wiley Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
| References | 2017; 41 2010; 16 1963; 44 2018; 127 2016; 108 2000; 3 2015; 387 2018; 126 2013; 64 2016; 30 1992; 58 2016; 104 2012; 15 2019; 129 1997; 5 2017; 115 1979 1997; 7 2014; 20 2015; 89 2017; 31 2014; 5 2013; 58 2014; 4 2018; 139 2004; 36 1982; 63 2015; 86 2015; 85 2000; 287 2014; 17 2010; 4 1996; 22 2012; 82 2017; 418 2015; 6 2015; 5 2002; 30 2015; 125 2015; 10 2003; 35 1954 2016; 97 2005; 86 2006 2008; 11 1993 2017; 575 2008; 1617 2016; 7 1991; 28 2007; 315 2015; 358 2007; 150 2015; 112 2007; 85 2019; 130 2010; 91 2008; 451 2014; 78 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Sluiter A (e_1_2_7_45_1) 2008; 1617 Olsen SR (e_1_2_7_37_1) 1954 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_29_1 Swift MJ (e_1_2_7_48_1) 1979 Sterjiades R (e_1_2_7_46_1) 1993 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
| References_xml | – volume: 129 start-page: 178 year: 2019 end-page: 183 article-title: A test of manganese effects on decomposition in forest and cropland sites publication-title: Soil Biology and Biochemistry – volume: 17 start-page: 680 year: 2014 end-page: 690 article-title: Microbial community dynamics alleviate stoichiometric constraints during litter decay publication-title: Ecology Letters – volume: 63 start-page: 1636 year: 1982 end-page: 1642 article-title: A critique of the analytical methods used in examining decomposition data obtained from litter bags publication-title: Ecology – volume: 58 start-page: 163 year: 2013 end-page: 171 article-title: N‐ driven changes in a plant community affect leaf‐ litter traits and may delay organic matter decomposition in a Mediterranean maquis publication-title: Soil Biology Biochemistry – volume: 139 start-page: 261 year: 2018 end-page: 273 article-title: Quantifying the indirect effects of nitrogen deposition on grassland litter chemical traits publication-title: Biogeochemistry – volume: 89 start-page: 99 year: 2015 end-page: 108 article-title: Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs. soil acidification publication-title: Soil Biology and Biochemistry – volume: 150 start-page: 590 year: 2007 end-page: 601 article-title: Is microbial community composition in boreal forest soils determined by pH, C‐to‐N ratio, the trees, or all three? publication-title: Oecologia – year: 1979 – volume: 1617 start-page: 1 year: 2008 end-page: 16 article-title: Determination of structural carbohydrates and lignin in biomass publication-title: Laboratory Analytical Procedure – volume: 22 start-page: 59 year: 1996 end-page: 65 article-title: The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil publication-title: Biology and Fertility of Soils – volume: 11 start-page: 1111 year: 2008 end-page: 1120 article-title: Nitrogen additions and microbial biomass: a meta‐analysis of ecosystem studies publication-title: Ecology Letters – volume: 127 start-page: 252 year: 2018 end-page: 263 article-title: Manganese limitation as a mechanism for reduced decomposition in soils under atmospheric nitrogen deposition publication-title: Soil Biology and Biochemistry – volume: 112 start-page: 10967 year: 2015 end-page: 10972 article-title: Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe publication-title: Proceedings of the National Academy of Sciences, USA – volume: 126 start-page: 219 year: 2018 end-page: 227 article-title: Contrasting effects of N and P on rhizosphere processes in two northern hardwood species publication-title: Soil Biology and Biochemistry – volume: 4 start-page: 1340 year: 2010 end-page: 1351 article-title: Soil bacterial and fungal communities across a pH gradient in an arable soil publication-title: ISME Journal – volume: 85 start-page: 16 year: 2007 end-page: 24 article-title: Decomposition of oak leaf litter is related to initial litter Mn concentrations publication-title: Canadian Journal of Botany – volume: 97 start-page: 2834 year: 2016 end-page: 2843 article-title: Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence publication-title: Ecology – volume: 30 start-page: 819 year: 2016 end-page: 829 article-title: The importance of litter traits and decomposers for litter decomposition: a comparison of aquatic and terrestrial ecosystems within and across biomes publication-title: Functional Ecology – volume: 575 start-page: 564 year: 2017 end-page: 572 article-title: Base cations and micronutrients in soil aggregates as affected by enhanced nitrogen and water inputs in a semi‐arid steppe grassland publication-title: Science of the Total Environment – volume: 287 start-page: 1770 year: 2000 end-page: 1774 article-title: Global biodiversity scenarios for the year 2100 publication-title: Science – volume: 3 start-page: 484 year: 2000 end-page: 494 article-title: Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest publication-title: Ecosystems – volume: 85 start-page: 133 year: 2015 end-page: 155 article-title: The application of ecological stoichiometry to plant‐microbial‐soil organic matter transformations publication-title: Ecological Monographs – volume: 104 start-page: 229 year: 2016 end-page: 238 article-title: Understanding the dominant controls on litter decomposition publication-title: Journal of Ecology – volume: 315 start-page: 361 year: 2007 end-page: 364 article-title: Global‐scale similarities in nitrogen release patterns during long‐term decomposition publication-title: Science – volume: 31 start-page: 1792 year: 2017 end-page: 1801 article-title: Home‐field advantages of litter decomposition increase with increasing N deposition rates: a litter and soil perspective publication-title: Functional Ecology – volume: 41 start-page: 941 year: 2017 end-page: 962 article-title: Lignin degradation: microorganisims, enzymes involved, genomes analysis and evolution publication-title: FEMS Microbiology Review – volume: 4 start-page: 3763 year: 2014 article-title: Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity publication-title: Scientific Reports – volume: 58 start-page: 2402 year: 1992 end-page: 2409 article-title: Roles of manganese and organic acid chelators in regulating lignin degradation and biosynthesis of peroxidases by publication-title: Applied and Environmental Microbiology – volume: 86 start-page: 3252 year: 2005 end-page: 3257 article-title: Nitrogen additions and litter decomposition ‐ a meta‐analysis publication-title: Ecology – volume: 44 start-page: 322 year: 1963 end-page: 331 article-title: Energy storage and the balance of producers and decomposers in ecological systems publication-title: Ecology – volume: 130 start-page: 33 year: 2019 end-page: 42 article-title: Changes in litter quality induced by N deposition alter soil microbial communities publication-title: Soil Biology and Biochemistry – volume: 20 start-page: 3520 year: 2014 end-page: 3529 article-title: Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe publication-title: Global Change Biology – volume: 387 start-page: 103 year: 2015 end-page: 116 article-title: Soil C: N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations publication-title: Plant and Soil – start-page: 115 year: 1993 end-page: 120 – volume: 358 start-page: 248 year: 2015 end-page: 260 article-title: Manganese in the litter fall‐forest floor continuum of boreal and temperate pine and spruce forest ecosystems – A review publication-title: Forest Ecology and Management – volume: 86 start-page: 19 year: 2015 end-page: 29 article-title: The variations in soil microbial communities enzyme activities and their relationships with soil organic matter decomposition along the northern slope of Changbai Mountain publication-title: Applied Soil Ecology – volume: 115 start-page: 92 year: 2017 end-page: 99 article-title: Patterns and mechanisms of responses by soil microbial communities to nitrogen addition publication-title: Soil Biology and Biochemistry – volume: 35 start-page: 955 year: 2003 end-page: 963 article-title: Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA‐based techniques publication-title: Soil Biology and Biochemistry – volume: 64 start-page: 89 year: 2013 end-page: 95 article-title: Exploring relationships between enzyme activities and leaf litter decomposition in a wet tropical forest publication-title: Soil Biology and Biochemistry – volume: 5 start-page: 12558 year: 2015 article-title: Productivity depends more on the rate than the frequency of N addition in a temperate grassland publication-title: Scientific Reports – volume: 35 start-page: 167 year: 2003 end-page: 176 article-title: Variations in microbial community composition through two soil depth profiles publication-title: Soil Biology and Biochemistry – volume: 6 start-page: 205 year: 2015 article-title: Changes in litter quality caused by simulated nitrogen deposition reinforce the N‐induced suppression of litter decay publication-title: Ecosphere – volume: 451 start-page: 712 year: 2008 end-page: 715 article-title: Loss of plant species after chronic low‐level nitrogen deposition to prairie grasslands publication-title: Nature – volume: 108 start-page: 128 year: 2016 end-page: 135 article-title: Opposing effects of nitrogen and water addition on soil bacterial and fungal communities in the Inner Mongolia steppe: a field experiment publication-title: Applied Soil Ecology – volume: 11 start-page: 1065 year: 2008 end-page: 1071 article-title: Plant species traits are the predominant control on litter decomposition rates within biomes worldwide publication-title: Ecology Letters – volume: 5 start-page: 1 year: 1997 end-page: 25 article-title: Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems publication-title: Environmental Reviews – volume: 418 start-page: 241 year: 2017 end-page: 253 article-title: Responses of litter decomposition and nutrient release rate to water and nitrogen addition differed among three plant species dominated in a semi‐arid grassland publication-title: Plant and Soil – volume: 97 start-page: 65 year: 2016 end-page: 74 article-title: A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe publication-title: Ecology – volume: 82 start-page: 389 year: 2012 end-page: 405 article-title: Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment publication-title: Ecological Monographs – volume: 7 start-page: 1247 year: 2016 article-title: Soil fungal:bacterial ratios are linked to altered carbon cycling publication-title: Frontiers in Microbiology – year: 1954 – volume: 28 start-page: 28 year: 1991 end-page: 41 article-title: Effects of nutrient enrichment in Dutch Chalk Grassland publication-title: Journal of Applied Ecology – volume: 97 start-page: 1796 year: 2016 end-page: 1806 article-title: Nitrogen addition affects chemical composition of plant tissues, litter and soil organic matter publication-title: Ecology – volume: 15 start-page: 1033 year: 2012 end-page: 1041 article-title: Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient publication-title: Ecology Letters – volume: 16 start-page: 358 year: 2010 end-page: 372 article-title: Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands publication-title: Global Change Biology – volume: 10 start-page: 24019 year: 2015 article-title: A global analysis of soil acidification caused by nitrogen addition publication-title: Environmental Research Letters – volume: 7 start-page: 737 year: 1997 end-page: 750 article-title: Human alteration of the global nitrogen cycle: sources and consequences publication-title: Ecological Applications – year: 2006 – volume: 78 start-page: 222 year: 2014 end-page: 232 article-title: Decomposition patterns for foliar litter – a theory for influencing factors publication-title: Soil Biology and Biochemistry – volume: 5 start-page: 22 year: 2014 article-title: Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources publication-title: Frontiers in Microbiology – volume: 36 start-page: 1761 year: 2004 end-page: 1768 article-title: Degradation of hemicellulose cellulose and lignin in decomposing spruce needle litter in relation to N publication-title: Soil Biology and Biochemistry – volume: 125 start-page: 349 year: 2015 end-page: 358 article-title: Influence of manganese on decomposition of common beech ( L.) leaf litter during field incubation publication-title: Biogeochemistry – volume: 30 start-page: 545 year: 2002 end-page: 566 article-title: Review: lignin conversion by manganese peroxydase (MnP) publication-title: Enzyme and Microbial Technology – volume: 91 start-page: 2324 year: 2010 end-page: 2332 article-title: Functional diversity in resource use by fungi publication-title: Ecology – volume: 1617 start-page: 1 year: 2008 ident: e_1_2_7_45_1 article-title: Determination of structural carbohydrates and lignin in biomass publication-title: Laboratory Analytical Procedure – ident: e_1_2_7_13_1 doi: 10.1016/j.soilbio.2012.10.027 – volume-title: Decomposition in Terrestrial Ecosystems year: 1979 ident: e_1_2_7_48_1 doi: 10.1525/9780520407114 – ident: e_1_2_7_9_1 doi: 10.1016/j.soilbio.2015.06.028 – ident: e_1_2_7_47_1 doi: 10.1016/j.soilbio.2018.11.018 – ident: e_1_2_7_14_1 doi: 10.1890/ES15-00262.1 – ident: e_1_2_7_59_1 doi: 10.2307/1940104 – ident: e_1_2_7_15_1 doi: 10.1016/S0038-0717(02)00251-1 – ident: e_1_2_7_28_1 doi: 10.1073/pnas.1508382112 – ident: e_1_2_7_56_1 doi: 10.1007/s11104-017-3288-8 – ident: e_1_2_7_24_1 doi: 10.1093/femsre/fux049 – ident: e_1_2_7_54_1 doi: 10.1007/s11104-014-2277-4 – ident: e_1_2_7_27_1 doi: 10.1890/05-0150 – ident: e_1_2_7_8_1 doi: 10.1111/1365-2745.12507 – ident: e_1_2_7_65_1 doi: 10.1016/j.soilbio.2017.08.014 – ident: e_1_2_7_33_1 doi: 10.1111/j.1461-0248.2012.01826.x – ident: e_1_2_7_51_1 doi: 10.1111/j.1461-0248.2008.01230.x – ident: e_1_2_7_52_1 doi: 10.1007/s10533-015-0129-9 – ident: e_1_2_7_7_1 doi: 10.2307/2404111 – ident: e_1_2_7_43_1 doi: 10.1016/j.soilbio.2018.09.007 – ident: e_1_2_7_61_1 doi: 10.1890/14-0777.1 – ident: e_1_2_7_57_1 doi: 10.1016/j.soilbio.2013.04.010 – ident: e_1_2_7_63_1 doi: 10.1038/srep12558 – ident: e_1_2_7_64_1 doi: 10.1111/gcb.12611 – ident: e_1_2_7_31_1 doi: 10.1890/15-1683.1 – ident: e_1_2_7_17_1 doi: 10.1111/1365-2435.12589 – ident: e_1_2_7_29_1 doi: 10.1016/j.soilbio.2018.11.025 – ident: e_1_2_7_60_1 doi: 10.1016/j.apsoil.2014.09.015 – ident: e_1_2_7_2_1 doi: 10.1016/S0038-0717(03)00154-8 – ident: e_1_2_7_21_1 doi: 10.1016/S0141-0229(01)00528-2 – ident: e_1_2_7_39_1 doi: 10.1126/science.1134853 – ident: e_1_2_7_49_1 doi: 10.1088/1748-9326/10/2/024019 – volume-title: Estimation of available phosphorus in soils by extraction with sodiumbicarbonate year: 1954 ident: e_1_2_7_37_1 – ident: e_1_2_7_32_1 doi: 10.1016/j.apsoil.2016.08.008 – ident: e_1_2_7_16_1 doi: 10.1007/BF00384433 – ident: e_1_2_7_25_1 doi: 10.1038/srep03763 – ident: e_1_2_7_22_1 doi: 10.1007/s00442-006-0562-5 – ident: e_1_2_7_42_1 doi: 10.1126/science.287.5459.1770 – ident: e_1_2_7_34_1 doi: 10.3389/fmicb.2016.01247 – ident: e_1_2_7_62_1 doi: 10.1002/ecy.1515 – ident: e_1_2_7_36_1 doi: 10.3389/fmicb.2014.00022 – ident: e_1_2_7_6_1 doi: 10.1139/a96-017 – ident: e_1_2_7_5_1 doi: 10.1016/j.foreco.2015.09.021 – ident: e_1_2_7_58_1 doi: 10.1016/j.soilbio.2018.09.025 – ident: e_1_2_7_41_1 doi: 10.1038/ismej.2010.58 – ident: e_1_2_7_10_1 doi: 10.1038/nature06503 – ident: e_1_2_7_30_1 doi: 10.1111/1365-2435.12863 – ident: e_1_2_7_38_1 doi: 10.2307/1932179 – ident: e_1_2_7_3_1 doi: 10.1111/j.1365-2486.2009.01950.x – ident: e_1_2_7_40_1 doi: 10.1128/AEM.58.8.2402-2409.1992 – ident: e_1_2_7_26_1 doi: 10.1111/ele.12269 – ident: e_1_2_7_19_1 doi: 10.1007/s100210000042 – ident: e_1_2_7_35_1 doi: 10.1890/09-0654.1 – ident: e_1_2_7_18_1 doi: 10.1017/CBO9780511617799 – ident: e_1_2_7_23_1 doi: 10.1007/s10533-018-0466-6 – ident: e_1_2_7_11_1 doi: 10.1111/j.1461-0248.2008.01219.x – ident: e_1_2_7_55_1 doi: 10.1016/j.scitotenv.2016.09.018 – ident: e_1_2_7_12_1 doi: 10.1139/b06-150 – start-page: 115 volume-title: Polyphenolic phenomena year: 1993 ident: e_1_2_7_46_1 – ident: e_1_2_7_4_1 doi: 10.1016/j.soilbio.2014.08.005 – ident: e_1_2_7_50_1 doi: 10.1890/15-0917.1 – ident: e_1_2_7_53_1 doi: 10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2 – ident: e_1_2_7_20_1 doi: 10.1890/11-1600.1 – ident: e_1_2_7_44_1 doi: 10.1016/j.soilbio.2004.03.010 |
| SSID | ssj0009562 |
| Score | 2.6269841 |
| Snippet | • The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process... Summary The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key... The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process... |
| SourceID | hal proquest pubmed crossref wiley jstor |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 296 |
| SubjectTerms | Achnatherum sibiricum Agropyron cristatum Aridity Availability Biodiversity and Ecology Carbon-nitrogen ratio Community composition community level Community structure Composition Cycles Decomposition Deposition Ecological function Ecosystem Ecosystems Environmental Sciences fungi Grassland Grasslands Leymus chinensis Litter litter quality Manganese microbial communities Microorganisms Mineral nutrients Nitrogen nitrogen addition Nutrient cycles Nutrient dynamics Organic matter pH effects Plant Leaves Plant species Plants Poaceae Soil Soil chemistry soil C : N Soil dynamics soil microbial community structure Soil organic matter Soil pH Soil structure Soils Species composition species diversity Stipa grandis |
| Title | Increasing rates of long-term nitrogen deposition consistently increased litter decomposition in a semi-arid grassland |
| URI | https://www.jstor.org/stable/27149958 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16854 https://www.ncbi.nlm.nih.gov/pubmed/32762047 https://www.proquest.com/docview/2467644146 https://www.proquest.com/docview/2431805481 https://www.proquest.com/docview/2561548996 https://cnrs.hal.science/hal-04960753 |
| Volume | 229 |
| WOSCitedRecordID | wos000567407600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1469-8137 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009562 issn: 0028-646X databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1469-8137 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0009562 issn: 0028-646X databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL3qtF2wgfIoBNrKIBZsgoid-CFWpWU0SKNRhaiYXRQ7TjvSkFSTaaWy4hP4Rr6Ee_NSKxWExC6Pkyhj32ufmzk5BnidGK59nLkw9-9cGEfKhTrReaiciyLrEq1cY-I6VbOZns_NyQa877-Faf0hhhdulBnNeE0Jntn6RpKXF-dvI6mTeARb9FEVVl5bx5_Hp9MbnruS9ybMMpbzzliIhDzDxbemo9E5iSFbXeJdjPM2gW1moPGD_3r2HbjfEU922EbKQ9jw5SPY_lAhObx-DN9xnCB5Ok5kjMwjalYVbFmVZ79-_KTBm2HmryoMNpb7XufFHIlrMUrK9fKaLdob-JwhscdLEEhy9R67KFnGav9tgTfE8jxnZyuk7SSrfAKn449fjiZhtyxD6GIki6GW1gpnqPMx2wujCilynUuXGVNkMnEysdzq2MTcJqIQQhpndCTwoOFSC7ELm2VV-mfAtJQZ9pO3RWFjzyObcSszy6VV1imZB_Cm753UdZ7ltHTGMu1rF2zJtGnJAF4N0IvWqONOEHbxcJ6stSeH05SOYaUkkT6JqyiA3SYCBhhXWEaaRAew14dE2mV6nXKcaYhTxjKAl8NpzFH64yUrfXVJGBw5kRvr6C8YJLKIwPIzgKdtuA0PILiiZQMUNkcTVX_-gensZNJsPP936Au4x0mo07xX2oPN9erS78O2u1ov6tUBjNRcH3SphXtfP81-A1PbKYE |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD6024K-eK9Gq47igy8pZiaZC_hSL8uKcSnSwr6FzGTSLqxJ2d0W6pM_wd_oL_Gc3GihiuBbSL6E7Mw5M9-Z_fINwKvEcO3j3IWFf-PCOFIu1IkuQuVcFFmXaOUaE9dUTad6NjMHG_C2_xam9YcYFtwoM5rxmhKcFqQvZXl1erIXSZ3Em7AVS6H0CLY-fB0fpZdMdyXvXZhlLGedsxApeYabr8xHmyekhmyFiddRzqsMtpmCxrf_7-XvwK2OerL9Nlbuwoav7sH2uxrp4cV9-I4jBQnUcSpjZB-xYnXJFnV1_OvHTxq-Geb-ssZwY4XvlV7MkbwW46RaLy7YvH2ALxhSe7wFgSRY77HziuVs5b_N8YFYoBfseInEnYSVD-Bo_PHw_STsNmYIXYx0MdTSWuEMdT_me2lUKUWhC-lyY8pcJk4mllsdm5jbRJRCSOOMjgSeNFxqIXZgVNWVfwRMS5ljR3lbljb2PLI5tzK3XFplnZJFAK_77slc51pOm2cssr56wZbMmpYM4OUAPW2tOq4FYR8P18lce7KfZnQOayWJBEqcRwHsNCEwwLjCQtIkOoDdPiayLtdXGce5hlhlLAN4MVzGLKW_XvLK12eEwbET2bGO_oJBKosILEADeNjG2_ACgivaOEBhczRh9ecfmE0PJs3B43-HPocbk8MvaZZ-mn5-Ajc5yXaaVaZdGK2XZ_4pbLvz9Xy1fNZl2G8KTSt6 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1da9RAFL202yJ98bs2WnUUH3yJmPke8KValxWXZREL-xYyk0m7sCbL7rZQn_wJ_kZ_iXfyRQtVBN9CchKSmXtnzk1OzgC8EoZqzzMX5_6ti3miXKyFzmPlXJJYJ7RytYnrWE0mejYz0y141_0L0_hD9C_cQmbU43VIcL_MiytZXi7P3iRSC74NO1wYwQewc_xleDK-YroraefCLLmctc5CQcnTn3xtPto-C2rIRph4E-W8zmDrKWh45_9u_i7cbqknOWpi5R5s-fI-7L6vkB5ePoDvOFIEgTpOZSTYR6xJVZBFVZ7--vEzDN8Ec39VYbiR3HdKL-KCvBbjpNwsLsm8uYDPCVJ7PAWBQbDeYeclycjaf5vjBbFAz8npCol7EFY-hJPhx68fRnG7MEPsONLFWEtrmTOh-zHfC6MKyXKdS5cZU2RSOCkstZobTq1gBWPSOKMThjsNlZqxfRiUVekPgGgpM-wob4vCck8Tm1ErM0ulVdYpmUfwuuue1LWu5WHxjEXaVS_YkmndkhG87KHLxqrjRhD2cX88mGuPjsZp2Ie1kkQCxS6SCPbrEOhhVGEhaYSO4LCLibTN9XVKca4JrJLLCF70hzFLw6eXrPTVecDg2InsWCd_wSCVRQQWoBE8auKtvwFGVVg4QGFz1GH15wdMJ9NRvfH436HP4db0eJiOP00-P4E9GlQ79UumQxhsVuf-Key6i818vXrWJthvV7Eq9Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasing+rates+of+long-term+nitrogen+deposition+consistently+increased+litter+decomposition+in+a+semi-arid+grassland&rft.jtitle=The+New+phytologist&rft.au=Hou%2C+Shuang-Li&rft.au=H%C3%A4ttenschwiler%2C+Stephan&rft.au=Yang%2C+Jun-Jie&rft.au=Sistla%2C+Seeta&rft.date=2021&rft.pub=Wiley&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=229&rft.issue=1&rft.spage=296&rft.epage=307&rft_id=info:doi/10.1111%2Fnph.16854&rft_id=info%3Apmid%2F32762047&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04960753v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |