Increasing rates of long-term nitrogen deposition consistently increased litter decomposition in a semi-arid grassland

• The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process contributing to these changes, but the numerous mechanisms for altered decomposition remain poorly identified. • We assessed these different...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The New phytologist Ročník 229; číslo 1; s. 296 - 307
Hlavní autoři: Hou, Shuang-Li, Hättenschwiler, Stephan, Yang, Jun-Jie, Sistla, Seeta, Wei, Hai-Wei, Zhang, Zhi-Wei, Hu, Yan-Yu, Wang, Ru-Zhen, Cui, Shu-Yan, Lü, Xiao-Tao, Han, Xing-Guo
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Wiley 01.01.2021
Wiley Subscription Services, Inc
Témata:
ISSN:0028-646X, 1469-8137, 1469-8137
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract • The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process contributing to these changes, but the numerous mechanisms for altered decomposition remain poorly identified. • We assessed these different mechanisms with a decomposition experiment using litter from four abundant species (Achnatherum sibiricum, Agropyron cristatum, Leymus chinensis and Stipa grandis) and litter mixtures representing treatment-specific community composition in a semi-arid grassland under long-term simulation of six different rates of N deposition. • Decomposition increased consistently with increasing rates of N addition in all litter types. Higher soil manganese (Mn) availability, which apparently was a consequence of N addition-induced lower soil pH, was the most important factor for faster decomposition. Soil C : N ratios were lower with N addition that subsequently led to markedly higher bacterial to fungal ratios, which also stimulated litter decomposition. • Several factors contributed jointly to higher rates of litter decomposition in response to N deposition. Shifts in plant species composition and litter quality played a minor role compared to N-driven reductions in soil pH and C : N, which increased soil Mn availability and altered microbial community structure. The soil-driven effect on decomposition reported here may have long-lasting impacts on nutrient cycling, soil organic matter dynamics and ecosystem functioning.
AbstractList Summary The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process contributing to these changes, but the numerous mechanisms for altered decomposition remain poorly identified. We assessed these different mechanisms with a decomposition experiment using litter from four abundant species (Achnatherum sibiricum, Agropyron cristatum, Leymus chinensis and Stipa grandis) and litter mixtures representing treatment‐specific community composition in a semi‐arid grassland under long‐term simulation of six different rates of N deposition. Decomposition increased consistently with increasing rates of N addition in all litter types. Higher soil manganese (Mn) availability, which apparently was a consequence of N addition‐induced lower soil pH, was the most important factor for faster decomposition. Soil C : N ratios were lower with N addition that subsequently led to markedly higher bacterial to fungal ratios, which also stimulated litter decomposition. Several factors contributed jointly to higher rates of litter decomposition in response to N deposition. Shifts in plant species composition and litter quality played a minor role compared to N‐driven reductions in soil pH and C : N, which increased soil Mn availability and altered microbial community structure. The soil‐driven effect on decomposition reported here may have long‐lasting impacts on nutrient cycling, soil organic matter dynamics and ecosystem functioning.
The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process contributing to these changes, but the numerous mechanisms for altered decomposition remain poorly identified. We assessed these different mechanisms with a decomposition experiment using litter from four abundant species (Achnatherum sibiricum, Agropyron cristatum, Leymus chinensis and Stipa grandis) and litter mixtures representing treatment-specific community composition in a semi-arid grassland under long-term simulation of six different rates of N deposition. Decomposition increased consistently with increasing rates of N addition in all litter types. Higher soil manganese (Mn) availability, which apparently was a consequence of N addition-induced lower soil pH, was the most important factor for faster decomposition. Soil C : N ratios were lower with N addition that subsequently led to markedly higher bacterial to fungal ratios, which also stimulated litter decomposition. Several factors contributed jointly to higher rates of litter decomposition in response to N deposition. Shifts in plant species composition and litter quality played a minor role compared to N-driven reductions in soil pH and C : N, which increased soil Mn availability and altered microbial community structure. The soil-driven effect on decomposition reported here may have long-lasting impacts on nutrient cycling, soil organic matter dynamics and ecosystem functioning.The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process contributing to these changes, but the numerous mechanisms for altered decomposition remain poorly identified. We assessed these different mechanisms with a decomposition experiment using litter from four abundant species (Achnatherum sibiricum, Agropyron cristatum, Leymus chinensis and Stipa grandis) and litter mixtures representing treatment-specific community composition in a semi-arid grassland under long-term simulation of six different rates of N deposition. Decomposition increased consistently with increasing rates of N addition in all litter types. Higher soil manganese (Mn) availability, which apparently was a consequence of N addition-induced lower soil pH, was the most important factor for faster decomposition. Soil C : N ratios were lower with N addition that subsequently led to markedly higher bacterial to fungal ratios, which also stimulated litter decomposition. Several factors contributed jointly to higher rates of litter decomposition in response to N deposition. Shifts in plant species composition and litter quality played a minor role compared to N-driven reductions in soil pH and C : N, which increased soil Mn availability and altered microbial community structure. The soil-driven effect on decomposition reported here may have long-lasting impacts on nutrient cycling, soil organic matter dynamics and ecosystem functioning.
The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process contributing to these changes, but the numerous mechanisms for altered decomposition remain poorly identified. We assessed these different mechanisms with a decomposition experiment using litter from four abundant species (Achnatherum sibiricum, Agropyron cristatum, Leymus chinensis and Stipa grandis) and litter mixtures representing treatment-specific community composition in a semi-arid grassland under long-term simulation of six different rates of N deposition. Decomposition increased consistently with increasing rates of N addition in all litter types. Higher soil manganese (Mn) availability, which apparently was a consequence of N addition-induced lower soil pH, was the most important factor for faster decomposition. Soil C : N ratios were lower with N addition that subsequently led to markedly higher bacterial to fungal ratios, which also stimulated litter decomposition. Several factors contributed jointly to higher rates of litter decomposition in response to N deposition. Shifts in plant species composition and litter quality played a minor role compared to N-driven reductions in soil pH and C : N, which increased soil Mn availability and altered microbial community structure. The soil-driven effect on decomposition reported here may have long-lasting impacts on nutrient cycling, soil organic matter dynamics and ecosystem functioning.
The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process contributing to these changes, but the numerous mechanisms for altered decomposition remain poorly identified.We assessed these different mechanisms with a decomposition experiment using litter from four abundant species (Achnatherum sibiricum, Agropyron cristatum, Leymus chinensis and Stipa grandis) and litter mixtures representing treatment‐specific community composition in a semi‐arid grassland under long‐term simulation of six different rates of N deposition.Decomposition increased consistently with increasing rates of N addition in all litter types. Higher soil manganese (Mn) availability, which apparently was a consequence of N addition‐induced lower soil pH, was the most important factor for faster decomposition. Soil C : N ratios were lower with N addition that subsequently led to markedly higher bacterial to fungal ratios, which also stimulated litter decomposition.Several factors contributed jointly to higher rates of litter decomposition in response to N deposition. Shifts in plant species composition and litter quality played a minor role compared to N‐driven reductions in soil pH and C : N, which increased soil Mn availability and altered microbial community structure. The soil‐driven effect on decomposition reported here may have long‐lasting impacts on nutrient cycling, soil organic matter dynamics and ecosystem functioning.
The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process contributing to these changes, but the numerous mechanisms for altered decomposition remain poorly identified. We assessed these different mechanisms with a decomposition experiment using litter from four abundant species ( Achnatherum sibiricum , Agropyron cristatum , Leymus chinensis and Stipa grandis ) and litter mixtures representing treatment‐specific community composition in a semi‐arid grassland under long‐term simulation of six different rates of N deposition. Decomposition increased consistently with increasing rates of N addition in all litter types. Higher soil manganese (Mn) availability, which apparently was a consequence of N addition‐induced lower soil pH, was the most important factor for faster decomposition. Soil C : N ratios were lower with N addition that subsequently led to markedly higher bacterial to fungal ratios, which also stimulated litter decomposition. Several factors contributed jointly to higher rates of litter decomposition in response to N deposition. Shifts in plant species composition and litter quality played a minor role compared to N‐driven reductions in soil pH and C : N, which increased soil Mn availability and altered microbial community structure. The soil‐driven effect on decomposition reported here may have long‐lasting impacts on nutrient cycling, soil organic matter dynamics and ecosystem functioning.
• The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process contributing to these changes, but the numerous mechanisms for altered decomposition remain poorly identified. • We assessed these different mechanisms with a decomposition experiment using litter from four abundant species (Achnatherum sibiricum, Agropyron cristatum, Leymus chinensis and Stipa grandis) and litter mixtures representing treatment-specific community composition in a semi-arid grassland under long-term simulation of six different rates of N deposition. • Decomposition increased consistently with increasing rates of N addition in all litter types. Higher soil manganese (Mn) availability, which apparently was a consequence of N addition-induced lower soil pH, was the most important factor for faster decomposition. Soil C : N ratios were lower with N addition that subsequently led to markedly higher bacterial to fungal ratios, which also stimulated litter decomposition. • Several factors contributed jointly to higher rates of litter decomposition in response to N deposition. Shifts in plant species composition and litter quality played a minor role compared to N-driven reductions in soil pH and C : N, which increased soil Mn availability and altered microbial community structure. The soil-driven effect on decomposition reported here may have long-lasting impacts on nutrient cycling, soil organic matter dynamics and ecosystem functioning.
Author Lü, Xiao-Tao
Han, Xing-Guo
Wang, Ru-Zhen
Cui, Shu-Yan
Hu, Yan-Yu
Yang, Jun-Jie
Hou, Shuang-Li
Sistla, Seeta
Wei, Hai-Wei
Zhang, Zhi-Wei
Hättenschwiler, Stephan
Author_xml – sequence: 1
  givenname: Shuang-Li
  surname: Hou
  fullname: Hou, Shuang-Li
– sequence: 2
  givenname: Stephan
  surname: Hättenschwiler
  fullname: Hättenschwiler, Stephan
– sequence: 3
  givenname: Jun-Jie
  surname: Yang
  fullname: Yang, Jun-Jie
– sequence: 4
  givenname: Seeta
  surname: Sistla
  fullname: Sistla, Seeta
– sequence: 5
  givenname: Hai-Wei
  surname: Wei
  fullname: Wei, Hai-Wei
– sequence: 6
  givenname: Zhi-Wei
  surname: Zhang
  fullname: Zhang, Zhi-Wei
– sequence: 7
  givenname: Yan-Yu
  surname: Hu
  fullname: Hu, Yan-Yu
– sequence: 8
  givenname: Ru-Zhen
  surname: Wang
  fullname: Wang, Ru-Zhen
– sequence: 9
  givenname: Shu-Yan
  surname: Cui
  fullname: Cui, Shu-Yan
– sequence: 10
  givenname: Xiao-Tao
  surname:
  fullname: Lü, Xiao-Tao
– sequence: 11
  givenname: Xing-Guo
  surname: Han
  fullname: Han, Xing-Guo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32762047$$D View this record in MEDLINE/PubMed
https://cnrs.hal.science/hal-04960753$$DView record in HAL
BookMark eNqFkk1rVDEYhYNU7LR14Q9QAm50cdt83XwsS6lOYVAXFtyF3NzcaYZ7kzHJVObfN-O0IxTUbAIvzzm8L-ecgKMQgwPgDUbnuL6LsL47x1y27AWYYcZVIzEVR2CGEJENZ_zHMTjJeYUQUi0nr8AxJYITxMQM3N8Em5zJPixhMsVlGAc4xrBsiksTDL6kuHQB9m4dsy8-BmhjyD4XF8q4hX4vdz0cfamSCto4HVgfoIHZTb4xyfdwmUzOown9GXg5mDG714__Kbj9dP39at4svn6-ubpcNJYJwRrJu45a1TlrhRSDEgOnvey5NUoNhreWtx3pJFOMdC0dKOXKqnp8HSrCJaWn4OPe986Mep38ZNJWR-P1_HKhdzPEFEeipfe4sh_27DrFnxuXi558tm6s-7q4yZq0HLdMKsX_jzKKJarwzvX9M3QVNynUoyvFBWesJlapd4_Upptcf1j1Kag_h9gUc05uOCAY6V0JdC2B_l2Cyl48Y60vZpdHScaP_1L88qPb_t1af_k2f1K83StWucR0UBCBmVKtpA8Xacws
CitedBy_id crossref_primary_10_1111_1365_2435_14459
crossref_primary_10_1007_s11368_023_03490_2
crossref_primary_10_1016_j_scitotenv_2021_150388
crossref_primary_10_3390_f16040684
crossref_primary_10_1016_j_apsoil_2023_105125
crossref_primary_10_1007_s11104_021_05176_5
crossref_primary_10_1016_j_catena_2025_109153
crossref_primary_10_1016_j_still_2025_106800
crossref_primary_10_1007_s11104_023_06030_6
crossref_primary_10_1029_2023JG007830
crossref_primary_10_1007_s11104_024_06660_4
crossref_primary_10_3390_microorganisms13092014
crossref_primary_10_1016_j_jhazmat_2023_131152
crossref_primary_10_1007_s11104_023_06339_2
crossref_primary_10_3389_fpls_2022_1025162
crossref_primary_10_3390_f14040699
crossref_primary_10_3390_w17010125
crossref_primary_10_1111_1365_2435_14015
crossref_primary_10_1016_j_agrformet_2024_110368
crossref_primary_10_1111_gcb_70475
crossref_primary_10_1002_jpln_202100144
crossref_primary_10_1007_s11104_025_07534_z
crossref_primary_10_3390_f14050955
crossref_primary_10_1002_ece3_10377
crossref_primary_10_1016_j_ufug_2024_128628
crossref_primary_10_3389_fevo_2022_919571
crossref_primary_10_1111_gcb_17428
crossref_primary_10_3390_f15101764
crossref_primary_10_1007_s11104_022_05537_8
crossref_primary_10_1007_s00442_024_05638_4
crossref_primary_10_1016_j_jenvman_2023_119121
crossref_primary_10_1016_j_soilbio_2024_109418
crossref_primary_10_7717_peerj_14012
crossref_primary_10_1016_j_apsoil_2023_104903
crossref_primary_10_1007_s11258_024_01475_w
crossref_primary_10_1002_ece3_71317
crossref_primary_10_1038_s41467_025_60948_2
crossref_primary_10_1093_jpe_rtaf024
crossref_primary_10_1016_j_ejsobi_2024_103696
crossref_primary_10_1016_j_soilbio_2024_109695
crossref_primary_10_1016_j_tfp_2025_100986
crossref_primary_10_1016_j_scitotenv_2022_157115
crossref_primary_10_3390_pr10112425
crossref_primary_10_1002_ecy_4020
crossref_primary_10_1016_j_apsoil_2025_106451
crossref_primary_10_3389_fpls_2024_1479563
crossref_primary_10_1016_j_scitotenv_2022_155418
crossref_primary_10_1016_j_apsoil_2023_104851
crossref_primary_10_1002_agj2_70154
crossref_primary_10_3390_f15122193
crossref_primary_10_3389_fpls_2024_1464973
crossref_primary_10_3389_fpls_2023_1140080
crossref_primary_10_3389_fmicb_2023_1013570
crossref_primary_10_1016_j_soilbio_2023_109009
crossref_primary_10_1016_j_scitotenv_2022_156194
crossref_primary_10_1007_s42729_024_01771_4
crossref_primary_10_5897_JSSEM2024_0952
crossref_primary_10_1016_j_soilbio_2021_108511
crossref_primary_10_1016_j_soilbio_2023_108992
crossref_primary_10_1007_s11802_023_5248_7
crossref_primary_10_1016_j_soilbio_2023_109164
crossref_primary_10_3389_fevo_2023_1220111
crossref_primary_10_1016_j_jenvman_2021_113649
crossref_primary_10_1007_s40333_021_0076_3
crossref_primary_10_3390_f15091492
crossref_primary_10_3389_fmicb_2022_1015588
crossref_primary_10_1111_gcb_15988
crossref_primary_10_1186_s13717_025_00624_x
crossref_primary_10_1029_2024JG008570
crossref_primary_10_1016_j_ecolind_2022_109471
crossref_primary_10_1038_s41598_021_81458_3
crossref_primary_10_1007_s11104_022_05727_4
crossref_primary_10_3389_fevo_2024_1365954
crossref_primary_10_3390_plants14081183
crossref_primary_10_1016_j_envpol_2021_117969
crossref_primary_10_1016_j_still_2024_106037
crossref_primary_10_1111_1365_2745_13878
crossref_primary_10_1016_j_fmre_2023_10_025
crossref_primary_10_1111_sum_70077
crossref_primary_10_3389_fpls_2024_1394112
crossref_primary_10_1111_1365_2745_14048
crossref_primary_10_1002_ldr_5125
crossref_primary_10_1016_j_soilbio_2023_108964
crossref_primary_10_3389_ffgc_2022_895774
crossref_primary_10_1016_j_soilbio_2024_109474
crossref_primary_10_1029_2022JG007000
crossref_primary_10_1016_j_agrformet_2024_110257
crossref_primary_10_3390_su16208845
Cites_doi 10.1016/j.soilbio.2012.10.027
10.1525/9780520407114
10.1016/j.soilbio.2015.06.028
10.1016/j.soilbio.2018.11.018
10.1890/ES15-00262.1
10.2307/1940104
10.1016/S0038-0717(02)00251-1
10.1073/pnas.1508382112
10.1007/s11104-017-3288-8
10.1093/femsre/fux049
10.1007/s11104-014-2277-4
10.1890/05-0150
10.1111/1365-2745.12507
10.1016/j.soilbio.2017.08.014
10.1111/j.1461-0248.2012.01826.x
10.1111/j.1461-0248.2008.01230.x
10.1007/s10533-015-0129-9
10.2307/2404111
10.1016/j.soilbio.2018.09.007
10.1890/14-0777.1
10.1016/j.soilbio.2013.04.010
10.1038/srep12558
10.1111/gcb.12611
10.1890/15-1683.1
10.1111/1365-2435.12589
10.1016/j.soilbio.2018.11.025
10.1016/j.apsoil.2014.09.015
10.1016/S0038-0717(03)00154-8
10.1016/S0141-0229(01)00528-2
10.1126/science.1134853
10.1088/1748-9326/10/2/024019
10.1016/j.apsoil.2016.08.008
10.1007/BF00384433
10.1038/srep03763
10.1007/s00442-006-0562-5
10.1126/science.287.5459.1770
10.3389/fmicb.2016.01247
10.1002/ecy.1515
10.3389/fmicb.2014.00022
10.1139/a96-017
10.1016/j.foreco.2015.09.021
10.1016/j.soilbio.2018.09.025
10.1038/ismej.2010.58
10.1038/nature06503
10.1111/1365-2435.12863
10.2307/1932179
10.1111/j.1365-2486.2009.01950.x
10.1128/AEM.58.8.2402-2409.1992
10.1111/ele.12269
10.1007/s100210000042
10.1890/09-0654.1
10.1017/CBO9780511617799
10.1007/s10533-018-0466-6
10.1111/j.1461-0248.2008.01219.x
10.1016/j.scitotenv.2016.09.018
10.1139/b06-150
10.1016/j.soilbio.2014.08.005
10.1890/15-0917.1
10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
10.1890/11-1600.1
10.1016/j.soilbio.2004.03.010
ContentType Journal Article
Copyright 2020 The Authors © 2020 New Phytologist Trust
2020 The Authors New Phytologist © 2020 New Phytologist Trust
2020 The Authors New Phytologist © 2020 New Phytologist Trust.
Copyright © 2020 New Phytologist Trust
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 The Authors © 2020 New Phytologist Trust
– notice: 2020 The Authors New Phytologist © 2020 New Phytologist Trust
– notice: 2020 The Authors New Phytologist © 2020 New Phytologist Trust.
– notice: Copyright © 2020 New Phytologist Trust
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
1XC
DOI 10.1111/nph.16854
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Environmental Sciences
EISSN 1469-8137
EndPage 307
ExternalDocumentID oai:HAL:hal-04960753v1
32762047
10_1111_nph_16854
NPH16854
27149958
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2016YFC0500601
– fundername: National Natural Science Foundation of China
  funderid: 31770503; 31822006; 31901141
– fundername: CAS
  funderid: QYZDB‐SSW‐DQC006
– fundername: Youth Innovation Promotion Association CAS
  funderid: Y201832
– fundername: Liaoning Revitalizing Talents Program
  funderid: XLYC1807061
– fundername: K.C.Wong Education Foundation
  funderid: GJTD‐2019‐10
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ACAHQ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASGY
AASVR
ABEFU
ABEML
ABXSQ
ACCFJ
ACHIC
ACQPF
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AILXY
AIWBW
AJBDE
AQVQM
AS~
CAG
COF
DOOOF
EJD
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
LW6
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ABSQW
ABUFD
ADXHL
AGUYK
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
1XC
ID FETCH-LOGICAL-c4774-86bb3c9becc787f97f63d8d6ca99fa65c65b2b84942b53f3369c9813b2b926833
IEDL.DBID DRFUL
ISICitedReferencesCount 104
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000567407600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-646X
1469-8137
IngestDate Tue Oct 14 20:25:36 EDT 2025
Fri Sep 05 17:25:14 EDT 2025
Thu Sep 04 17:46:15 EDT 2025
Fri Jul 25 12:14:07 EDT 2025
Mon Jul 21 05:56:29 EDT 2025
Sat Nov 29 03:44:27 EST 2025
Tue Nov 18 22:11:20 EST 2025
Wed Jan 22 16:31:13 EST 2025
Thu Jul 03 21:26:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords litter quality
soil C : N
community level
soil pH
nitrogen addition
soil microbial community structure
manganese
Language English
License 2020 The Authors New Phytologist © 2020 New Phytologist Trust.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4774-86bb3c9becc787f97f63d8d6ca99fa65c65b2b84942b53f3369c9813b2b926833
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8148-960X
0000-0001-8654-6677
0000-0002-6345-462X
0000-0001-5571-1895
0000-0002-1836-975X
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.16854
PMID 32762047
PQID 2467644146
PQPubID 2026848
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_04960753v1
proquest_miscellaneous_2561548996
proquest_miscellaneous_2431805481
proquest_journals_2467644146
pubmed_primary_32762047
crossref_primary_10_1111_nph_16854
crossref_citationtrail_10_1111_nph_16854
wiley_primary_10_1111_nph_16854_NPH16854
jstor_primary_27149958
PublicationCentury 2000
PublicationDate 20210101
January 2021
2021-01-00
2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 1
  year: 2021
  text: 20210101
  day: 1
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2021
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2017; 41
2010; 16
1963; 44
2018; 127
2016; 108
2000; 3
2015; 387
2018; 126
2013; 64
2016; 30
1992; 58
2016; 104
2012; 15
2019; 129
1997; 5
2017; 115
1979
1997; 7
2014; 20
2015; 89
2017; 31
2014; 5
2013; 58
2014; 4
2018; 139
2004; 36
1982; 63
2015; 86
2015; 85
2000; 287
2014; 17
2010; 4
1996; 22
2012; 82
2017; 418
2015; 6
2015; 5
2002; 30
2015; 125
2015; 10
2003; 35
1954
2016; 97
2005; 86
2006
2008; 11
1993
2017; 575
2008; 1617
2016; 7
1991; 28
2007; 315
2015; 358
2007; 150
2015; 112
2007; 85
2019; 130
2010; 91
2008; 451
2014; 78
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Sluiter A (e_1_2_7_45_1) 2008; 1617
Olsen SR (e_1_2_7_37_1) 1954
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_29_1
Swift MJ (e_1_2_7_48_1) 1979
Sterjiades R (e_1_2_7_46_1) 1993
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 129
  start-page: 178
  year: 2019
  end-page: 183
  article-title: A test of manganese effects on decomposition in forest and cropland sites
  publication-title: Soil Biology and Biochemistry
– volume: 17
  start-page: 680
  year: 2014
  end-page: 690
  article-title: Microbial community dynamics alleviate stoichiometric constraints during litter decay
  publication-title: Ecology Letters
– volume: 63
  start-page: 1636
  year: 1982
  end-page: 1642
  article-title: A critique of the analytical methods used in examining decomposition data obtained from litter bags
  publication-title: Ecology
– volume: 58
  start-page: 163
  year: 2013
  end-page: 171
  article-title: N‐ driven changes in a plant community affect leaf‐ litter traits and may delay organic matter decomposition in a Mediterranean maquis
  publication-title: Soil Biology Biochemistry
– volume: 139
  start-page: 261
  year: 2018
  end-page: 273
  article-title: Quantifying the indirect effects of nitrogen deposition on grassland litter chemical traits
  publication-title: Biogeochemistry
– volume: 89
  start-page: 99
  year: 2015
  end-page: 108
  article-title: Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs. soil acidification
  publication-title: Soil Biology and Biochemistry
– volume: 150
  start-page: 590
  year: 2007
  end-page: 601
  article-title: Is microbial community composition in boreal forest soils determined by pH, C‐to‐N ratio, the trees, or all three?
  publication-title: Oecologia
– year: 1979
– volume: 1617
  start-page: 1
  year: 2008
  end-page: 16
  article-title: Determination of structural carbohydrates and lignin in biomass
  publication-title: Laboratory Analytical Procedure
– volume: 22
  start-page: 59
  year: 1996
  end-page: 65
  article-title: The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil
  publication-title: Biology and Fertility of Soils
– volume: 11
  start-page: 1111
  year: 2008
  end-page: 1120
  article-title: Nitrogen additions and microbial biomass: a meta‐analysis of ecosystem studies
  publication-title: Ecology Letters
– volume: 127
  start-page: 252
  year: 2018
  end-page: 263
  article-title: Manganese limitation as a mechanism for reduced decomposition in soils under atmospheric nitrogen deposition
  publication-title: Soil Biology and Biochemistry
– volume: 112
  start-page: 10967
  year: 2015
  end-page: 10972
  article-title: Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 126
  start-page: 219
  year: 2018
  end-page: 227
  article-title: Contrasting effects of N and P on rhizosphere processes in two northern hardwood species
  publication-title: Soil Biology and Biochemistry
– volume: 4
  start-page: 1340
  year: 2010
  end-page: 1351
  article-title: Soil bacterial and fungal communities across a pH gradient in an arable soil
  publication-title: ISME Journal
– volume: 85
  start-page: 16
  year: 2007
  end-page: 24
  article-title: Decomposition of oak leaf litter is related to initial litter Mn concentrations
  publication-title: Canadian Journal of Botany
– volume: 97
  start-page: 2834
  year: 2016
  end-page: 2843
  article-title: Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence
  publication-title: Ecology
– volume: 30
  start-page: 819
  year: 2016
  end-page: 829
  article-title: The importance of litter traits and decomposers for litter decomposition: a comparison of aquatic and terrestrial ecosystems within and across biomes
  publication-title: Functional Ecology
– volume: 575
  start-page: 564
  year: 2017
  end-page: 572
  article-title: Base cations and micronutrients in soil aggregates as affected by enhanced nitrogen and water inputs in a semi‐arid steppe grassland
  publication-title: Science of the Total Environment
– volume: 287
  start-page: 1770
  year: 2000
  end-page: 1774
  article-title: Global biodiversity scenarios for the year 2100
  publication-title: Science
– volume: 3
  start-page: 484
  year: 2000
  end-page: 494
  article-title: Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest
  publication-title: Ecosystems
– volume: 85
  start-page: 133
  year: 2015
  end-page: 155
  article-title: The application of ecological stoichiometry to plant‐microbial‐soil organic matter transformations
  publication-title: Ecological Monographs
– volume: 104
  start-page: 229
  year: 2016
  end-page: 238
  article-title: Understanding the dominant controls on litter decomposition
  publication-title: Journal of Ecology
– volume: 315
  start-page: 361
  year: 2007
  end-page: 364
  article-title: Global‐scale similarities in nitrogen release patterns during long‐term decomposition
  publication-title: Science
– volume: 31
  start-page: 1792
  year: 2017
  end-page: 1801
  article-title: Home‐field advantages of litter decomposition increase with increasing N deposition rates: a litter and soil perspective
  publication-title: Functional Ecology
– volume: 41
  start-page: 941
  year: 2017
  end-page: 962
  article-title: Lignin degradation: microorganisims, enzymes involved, genomes analysis and evolution
  publication-title: FEMS Microbiology Review
– volume: 4
  start-page: 3763
  year: 2014
  article-title: Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity
  publication-title: Scientific Reports
– volume: 58
  start-page: 2402
  year: 1992
  end-page: 2409
  article-title: Roles of manganese and organic acid chelators in regulating lignin degradation and biosynthesis of peroxidases by
  publication-title: Applied and Environmental Microbiology
– volume: 86
  start-page: 3252
  year: 2005
  end-page: 3257
  article-title: Nitrogen additions and litter decomposition ‐ a meta‐analysis
  publication-title: Ecology
– volume: 44
  start-page: 322
  year: 1963
  end-page: 331
  article-title: Energy storage and the balance of producers and decomposers in ecological systems
  publication-title: Ecology
– volume: 130
  start-page: 33
  year: 2019
  end-page: 42
  article-title: Changes in litter quality induced by N deposition alter soil microbial communities
  publication-title: Soil Biology and Biochemistry
– volume: 20
  start-page: 3520
  year: 2014
  end-page: 3529
  article-title: Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe
  publication-title: Global Change Biology
– volume: 387
  start-page: 103
  year: 2015
  end-page: 116
  article-title: Soil C: N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations
  publication-title: Plant and Soil
– start-page: 115
  year: 1993
  end-page: 120
– volume: 358
  start-page: 248
  year: 2015
  end-page: 260
  article-title: Manganese in the litter fall‐forest floor continuum of boreal and temperate pine and spruce forest ecosystems – A review
  publication-title: Forest Ecology and Management
– volume: 86
  start-page: 19
  year: 2015
  end-page: 29
  article-title: The variations in soil microbial communities enzyme activities and their relationships with soil organic matter decomposition along the northern slope of Changbai Mountain
  publication-title: Applied Soil Ecology
– volume: 115
  start-page: 92
  year: 2017
  end-page: 99
  article-title: Patterns and mechanisms of responses by soil microbial communities to nitrogen addition
  publication-title: Soil Biology and Biochemistry
– volume: 35
  start-page: 955
  year: 2003
  end-page: 963
  article-title: Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA‐based techniques
  publication-title: Soil Biology and Biochemistry
– volume: 64
  start-page: 89
  year: 2013
  end-page: 95
  article-title: Exploring relationships between enzyme activities and leaf litter decomposition in a wet tropical forest
  publication-title: Soil Biology and Biochemistry
– volume: 5
  start-page: 12558
  year: 2015
  article-title: Productivity depends more on the rate than the frequency of N addition in a temperate grassland
  publication-title: Scientific Reports
– volume: 35
  start-page: 167
  year: 2003
  end-page: 176
  article-title: Variations in microbial community composition through two soil depth profiles
  publication-title: Soil Biology and Biochemistry
– volume: 6
  start-page: 205
  year: 2015
  article-title: Changes in litter quality caused by simulated nitrogen deposition reinforce the N‐induced suppression of litter decay
  publication-title: Ecosphere
– volume: 451
  start-page: 712
  year: 2008
  end-page: 715
  article-title: Loss of plant species after chronic low‐level nitrogen deposition to prairie grasslands
  publication-title: Nature
– volume: 108
  start-page: 128
  year: 2016
  end-page: 135
  article-title: Opposing effects of nitrogen and water addition on soil bacterial and fungal communities in the Inner Mongolia steppe: a field experiment
  publication-title: Applied Soil Ecology
– volume: 11
  start-page: 1065
  year: 2008
  end-page: 1071
  article-title: Plant species traits are the predominant control on litter decomposition rates within biomes worldwide
  publication-title: Ecology Letters
– volume: 5
  start-page: 1
  year: 1997
  end-page: 25
  article-title: Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems
  publication-title: Environmental Reviews
– volume: 418
  start-page: 241
  year: 2017
  end-page: 253
  article-title: Responses of litter decomposition and nutrient release rate to water and nitrogen addition differed among three plant species dominated in a semi‐arid grassland
  publication-title: Plant and Soil
– volume: 97
  start-page: 65
  year: 2016
  end-page: 74
  article-title: A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe
  publication-title: Ecology
– volume: 82
  start-page: 389
  year: 2012
  end-page: 405
  article-title: Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment
  publication-title: Ecological Monographs
– volume: 7
  start-page: 1247
  year: 2016
  article-title: Soil fungal:bacterial ratios are linked to altered carbon cycling
  publication-title: Frontiers in Microbiology
– year: 1954
– volume: 28
  start-page: 28
  year: 1991
  end-page: 41
  article-title: Effects of nutrient enrichment in Dutch Chalk Grassland
  publication-title: Journal of Applied Ecology
– volume: 97
  start-page: 1796
  year: 2016
  end-page: 1806
  article-title: Nitrogen addition affects chemical composition of plant tissues, litter and soil organic matter
  publication-title: Ecology
– volume: 15
  start-page: 1033
  year: 2012
  end-page: 1041
  article-title: Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient
  publication-title: Ecology Letters
– volume: 16
  start-page: 358
  year: 2010
  end-page: 372
  article-title: Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands
  publication-title: Global Change Biology
– volume: 10
  start-page: 24019
  year: 2015
  article-title: A global analysis of soil acidification caused by nitrogen addition
  publication-title: Environmental Research Letters
– volume: 7
  start-page: 737
  year: 1997
  end-page: 750
  article-title: Human alteration of the global nitrogen cycle: sources and consequences
  publication-title: Ecological Applications
– year: 2006
– volume: 78
  start-page: 222
  year: 2014
  end-page: 232
  article-title: Decomposition patterns for foliar litter – a theory for influencing factors
  publication-title: Soil Biology and Biochemistry
– volume: 5
  start-page: 22
  year: 2014
  article-title: Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources
  publication-title: Frontiers in Microbiology
– volume: 36
  start-page: 1761
  year: 2004
  end-page: 1768
  article-title: Degradation of hemicellulose cellulose and lignin in decomposing spruce needle litter in relation to N
  publication-title: Soil Biology and Biochemistry
– volume: 125
  start-page: 349
  year: 2015
  end-page: 358
  article-title: Influence of manganese on decomposition of common beech ( L.) leaf litter during field incubation
  publication-title: Biogeochemistry
– volume: 30
  start-page: 545
  year: 2002
  end-page: 566
  article-title: Review: lignin conversion by manganese peroxydase (MnP)
  publication-title: Enzyme and Microbial Technology
– volume: 91
  start-page: 2324
  year: 2010
  end-page: 2332
  article-title: Functional diversity in resource use by fungi
  publication-title: Ecology
– volume: 1617
  start-page: 1
  year: 2008
  ident: e_1_2_7_45_1
  article-title: Determination of structural carbohydrates and lignin in biomass
  publication-title: Laboratory Analytical Procedure
– ident: e_1_2_7_13_1
  doi: 10.1016/j.soilbio.2012.10.027
– volume-title: Decomposition in Terrestrial Ecosystems
  year: 1979
  ident: e_1_2_7_48_1
  doi: 10.1525/9780520407114
– ident: e_1_2_7_9_1
  doi: 10.1016/j.soilbio.2015.06.028
– ident: e_1_2_7_47_1
  doi: 10.1016/j.soilbio.2018.11.018
– ident: e_1_2_7_14_1
  doi: 10.1890/ES15-00262.1
– ident: e_1_2_7_59_1
  doi: 10.2307/1940104
– ident: e_1_2_7_15_1
  doi: 10.1016/S0038-0717(02)00251-1
– ident: e_1_2_7_28_1
  doi: 10.1073/pnas.1508382112
– ident: e_1_2_7_56_1
  doi: 10.1007/s11104-017-3288-8
– ident: e_1_2_7_24_1
  doi: 10.1093/femsre/fux049
– ident: e_1_2_7_54_1
  doi: 10.1007/s11104-014-2277-4
– ident: e_1_2_7_27_1
  doi: 10.1890/05-0150
– ident: e_1_2_7_8_1
  doi: 10.1111/1365-2745.12507
– ident: e_1_2_7_65_1
  doi: 10.1016/j.soilbio.2017.08.014
– ident: e_1_2_7_33_1
  doi: 10.1111/j.1461-0248.2012.01826.x
– ident: e_1_2_7_51_1
  doi: 10.1111/j.1461-0248.2008.01230.x
– ident: e_1_2_7_52_1
  doi: 10.1007/s10533-015-0129-9
– ident: e_1_2_7_7_1
  doi: 10.2307/2404111
– ident: e_1_2_7_43_1
  doi: 10.1016/j.soilbio.2018.09.007
– ident: e_1_2_7_61_1
  doi: 10.1890/14-0777.1
– ident: e_1_2_7_57_1
  doi: 10.1016/j.soilbio.2013.04.010
– ident: e_1_2_7_63_1
  doi: 10.1038/srep12558
– ident: e_1_2_7_64_1
  doi: 10.1111/gcb.12611
– ident: e_1_2_7_31_1
  doi: 10.1890/15-1683.1
– ident: e_1_2_7_17_1
  doi: 10.1111/1365-2435.12589
– ident: e_1_2_7_29_1
  doi: 10.1016/j.soilbio.2018.11.025
– ident: e_1_2_7_60_1
  doi: 10.1016/j.apsoil.2014.09.015
– ident: e_1_2_7_2_1
  doi: 10.1016/S0038-0717(03)00154-8
– ident: e_1_2_7_21_1
  doi: 10.1016/S0141-0229(01)00528-2
– ident: e_1_2_7_39_1
  doi: 10.1126/science.1134853
– ident: e_1_2_7_49_1
  doi: 10.1088/1748-9326/10/2/024019
– volume-title: Estimation of available phosphorus in soils by extraction with sodiumbicarbonate
  year: 1954
  ident: e_1_2_7_37_1
– ident: e_1_2_7_32_1
  doi: 10.1016/j.apsoil.2016.08.008
– ident: e_1_2_7_16_1
  doi: 10.1007/BF00384433
– ident: e_1_2_7_25_1
  doi: 10.1038/srep03763
– ident: e_1_2_7_22_1
  doi: 10.1007/s00442-006-0562-5
– ident: e_1_2_7_42_1
  doi: 10.1126/science.287.5459.1770
– ident: e_1_2_7_34_1
  doi: 10.3389/fmicb.2016.01247
– ident: e_1_2_7_62_1
  doi: 10.1002/ecy.1515
– ident: e_1_2_7_36_1
  doi: 10.3389/fmicb.2014.00022
– ident: e_1_2_7_6_1
  doi: 10.1139/a96-017
– ident: e_1_2_7_5_1
  doi: 10.1016/j.foreco.2015.09.021
– ident: e_1_2_7_58_1
  doi: 10.1016/j.soilbio.2018.09.025
– ident: e_1_2_7_41_1
  doi: 10.1038/ismej.2010.58
– ident: e_1_2_7_10_1
  doi: 10.1038/nature06503
– ident: e_1_2_7_30_1
  doi: 10.1111/1365-2435.12863
– ident: e_1_2_7_38_1
  doi: 10.2307/1932179
– ident: e_1_2_7_3_1
  doi: 10.1111/j.1365-2486.2009.01950.x
– ident: e_1_2_7_40_1
  doi: 10.1128/AEM.58.8.2402-2409.1992
– ident: e_1_2_7_26_1
  doi: 10.1111/ele.12269
– ident: e_1_2_7_19_1
  doi: 10.1007/s100210000042
– ident: e_1_2_7_35_1
  doi: 10.1890/09-0654.1
– ident: e_1_2_7_18_1
  doi: 10.1017/CBO9780511617799
– ident: e_1_2_7_23_1
  doi: 10.1007/s10533-018-0466-6
– ident: e_1_2_7_11_1
  doi: 10.1111/j.1461-0248.2008.01219.x
– ident: e_1_2_7_55_1
  doi: 10.1016/j.scitotenv.2016.09.018
– ident: e_1_2_7_12_1
  doi: 10.1139/b06-150
– start-page: 115
  volume-title: Polyphenolic phenomena
  year: 1993
  ident: e_1_2_7_46_1
– ident: e_1_2_7_4_1
  doi: 10.1016/j.soilbio.2014.08.005
– ident: e_1_2_7_50_1
  doi: 10.1890/15-0917.1
– ident: e_1_2_7_53_1
  doi: 10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
– ident: e_1_2_7_20_1
  doi: 10.1890/11-1600.1
– ident: e_1_2_7_44_1
  doi: 10.1016/j.soilbio.2004.03.010
SSID ssj0009562
Score 2.6269841
Snippet • The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process...
Summary The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key...
The continuing nitrogen (N) deposition observed worldwide alters ecosystem nutrient cycling and ecosystem functioning. Litter decomposition is a key process...
SourceID hal
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 296
SubjectTerms Achnatherum sibiricum
Agropyron cristatum
Aridity
Availability
Biodiversity and Ecology
Carbon-nitrogen ratio
Community composition
community level
Community structure
Composition
Cycles
Decomposition
Deposition
Ecological function
Ecosystem
Ecosystems
Environmental Sciences
fungi
Grassland
Grasslands
Leymus chinensis
Litter
litter quality
Manganese
microbial communities
Microorganisms
Mineral nutrients
Nitrogen
nitrogen addition
Nutrient cycles
Nutrient dynamics
Organic matter
pH effects
Plant Leaves
Plant species
Plants
Poaceae
Soil
Soil chemistry
soil C : N
Soil dynamics
soil microbial community structure
Soil organic matter
Soil pH
Soil structure
Soils
Species composition
species diversity
Stipa grandis
Title Increasing rates of long-term nitrogen deposition consistently increased litter decomposition in a semi-arid grassland
URI https://www.jstor.org/stable/27149958
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16854
https://www.ncbi.nlm.nih.gov/pubmed/32762047
https://www.proquest.com/docview/2467644146
https://www.proquest.com/docview/2431805481
https://www.proquest.com/docview/2561548996
https://cnrs.hal.science/hal-04960753
Volume 229
WOSCitedRecordID wos000567407600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1469-8137
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009562
  issn: 0028-646X
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1469-8137
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009562
  issn: 0028-646X
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL3qtF2wgfIoBNrKIBZsgoid-CFWpWU0SKNRhaiYXRQ7TjvSkFSTaaWy4hP4Rr6Ee_NSKxWExC6Pkyhj32ufmzk5BnidGK59nLkw9-9cGEfKhTrReaiciyLrEq1cY-I6VbOZns_NyQa877-Faf0hhhdulBnNeE0Jntn6RpKXF-dvI6mTeARb9FEVVl5bx5_Hp9MbnruS9ybMMpbzzliIhDzDxbemo9E5iSFbXeJdjPM2gW1moPGD_3r2HbjfEU922EbKQ9jw5SPY_lAhObx-DN9xnCB5Ok5kjMwjalYVbFmVZ79-_KTBm2HmryoMNpb7XufFHIlrMUrK9fKaLdob-JwhscdLEEhy9R67KFnGav9tgTfE8jxnZyuk7SSrfAKn449fjiZhtyxD6GIki6GW1gpnqPMx2wujCilynUuXGVNkMnEysdzq2MTcJqIQQhpndCTwoOFSC7ELm2VV-mfAtJQZ9pO3RWFjzyObcSszy6VV1imZB_Cm753UdZ7ltHTGMu1rF2zJtGnJAF4N0IvWqONOEHbxcJ6stSeH05SOYaUkkT6JqyiA3SYCBhhXWEaaRAew14dE2mV6nXKcaYhTxjKAl8NpzFH64yUrfXVJGBw5kRvr6C8YJLKIwPIzgKdtuA0PILiiZQMUNkcTVX_-gensZNJsPP936Au4x0mo07xX2oPN9erS78O2u1ov6tUBjNRcH3SphXtfP81-A1PbKYE
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD6024K-eK9Gq47igy8pZiaZC_hSL8uKcSnSwr6FzGTSLqxJ2d0W6pM_wd_oL_Gc3GihiuBbSL6E7Mw5M9-Z_fINwKvEcO3j3IWFf-PCOFIu1IkuQuVcFFmXaOUaE9dUTad6NjMHG_C2_xam9YcYFtwoM5rxmhKcFqQvZXl1erIXSZ3Em7AVS6H0CLY-fB0fpZdMdyXvXZhlLGedsxApeYabr8xHmyekhmyFiddRzqsMtpmCxrf_7-XvwK2OerL9Nlbuwoav7sH2uxrp4cV9-I4jBQnUcSpjZB-xYnXJFnV1_OvHTxq-Geb-ssZwY4XvlV7MkbwW46RaLy7YvH2ALxhSe7wFgSRY77HziuVs5b_N8YFYoBfseInEnYSVD-Bo_PHw_STsNmYIXYx0MdTSWuEMdT_me2lUKUWhC-lyY8pcJk4mllsdm5jbRJRCSOOMjgSeNFxqIXZgVNWVfwRMS5ljR3lbljb2PLI5tzK3XFplnZJFAK_77slc51pOm2cssr56wZbMmpYM4OUAPW2tOq4FYR8P18lce7KfZnQOayWJBEqcRwHsNCEwwLjCQtIkOoDdPiayLtdXGce5hlhlLAN4MVzGLKW_XvLK12eEwbET2bGO_oJBKosILEADeNjG2_ACgivaOEBhczRh9ecfmE0PJs3B43-HPocbk8MvaZZ-mn5-Ajc5yXaaVaZdGK2XZ_4pbLvz9Xy1fNZl2G8KTSt6
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1da9RAFL202yJ98bs2WnUUH3yJmPke8KValxWXZREL-xYyk0m7sCbL7rZQn_wJ_kZ_iXfyRQtVBN9CchKSmXtnzk1OzgC8EoZqzzMX5_6ti3miXKyFzmPlXJJYJ7RytYnrWE0mejYz0y141_0L0_hD9C_cQmbU43VIcL_MiytZXi7P3iRSC74NO1wYwQewc_xleDK-YroraefCLLmctc5CQcnTn3xtPto-C2rIRph4E-W8zmDrKWh45_9u_i7cbqknOWpi5R5s-fI-7L6vkB5ePoDvOFIEgTpOZSTYR6xJVZBFVZ7--vEzDN8Ec39VYbiR3HdKL-KCvBbjpNwsLsm8uYDPCVJ7PAWBQbDeYeclycjaf5vjBbFAz8npCol7EFY-hJPhx68fRnG7MEPsONLFWEtrmTOh-zHfC6MKyXKdS5cZU2RSOCkstZobTq1gBWPSOKMThjsNlZqxfRiUVekPgGgpM-wob4vCck8Tm1ErM0ulVdYpmUfwuuue1LWu5WHxjEXaVS_YkmndkhG87KHLxqrjRhD2cX88mGuPjsZp2Ie1kkQCxS6SCPbrEOhhVGEhaYSO4LCLibTN9XVKca4JrJLLCF70hzFLw6eXrPTVecDg2InsWCd_wSCVRQQWoBE8auKtvwFGVVg4QGFz1GH15wdMJ9NRvfH436HP4db0eJiOP00-P4E9GlQ79UumQxhsVuf-Key6i818vXrWJthvV7Eq9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasing+rates+of+long-term+nitrogen+deposition+consistently+increased+litter+decomposition+in+a+semi-arid+grassland&rft.jtitle=The+New+phytologist&rft.au=Hou%2C+Shuang-Li&rft.au=H%C3%A4ttenschwiler%2C+Stephan&rft.au=Yang%2C+Jun-Jie&rft.au=Sistla%2C+Seeta&rft.date=2021&rft.pub=Wiley&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=229&rft.issue=1&rft.spage=296&rft.epage=307&rft_id=info:doi/10.1111%2Fnph.16854&rft_id=info%3Apmid%2F32762047&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04960753v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon