Accelerated Visualization of Dynamic Molecular Surfaces

Molecular surfaces play an important role in studying the interactions between molecules. Visualizing the dynamic behavior of molecules is particularly interesting to gain insights into a molecular system. Only recently it has become possible to interactively visualize dynamic molecular surfaces usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum Jg. 29; H. 3; S. 943 - 952
Hauptverfasser: Lindow, Norbert, Baum, Daniel, Prohaska, Steffen, Hege, Hans-Christian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.06.2010
Schlagworte:
ISSN:0167-7055, 1467-8659
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecular surfaces play an important role in studying the interactions between molecules. Visualizing the dynamic behavior of molecules is particularly interesting to gain insights into a molecular system. Only recently it has become possible to interactively visualize dynamic molecular surfaces using ray casting techniques. In this paper, we show how to further accelerate the construction and the rendering of the solvent excluded surface (SES) and the molecular skin surface (MSS). We propose several improvements to reduce the update times for displaying these molecular surfaces. First, we adopt a parallel approximate Voronoi diagram algorithm to compute the MSS. This accelerates the MSS computation by more than one order of magnitude on a single core. Second, we demonstrate that the contour‐buildup algorithm is ideally suited for computing the SES due to its inherently parallel structure. For both parallel algorithms, we observe good scalability up to 8 cores and, thus, obtain interactive frame rates for molecular dynamics trajectories of up to twenty thousand atoms for the SES and up to a few thousand atoms for the MSS. Third, we reduce the rendering time for the SES using tight‐fitting bounding quadrangles as rasterization primitives. These primitives also accelerate the rendering of the MSS. With these improvements, the interactive visualization of the MSS of dynamic trajectories of a few thousand atoms becomes for the first time possible. Nevertheless, the SES remains a few times faster than the MSS.
Bibliographie:istex:81D8FA669634D23B0BB3C3ECB1FE49306584841B
ark:/67375/WNG-3ZPM3WTT-4
ArticleID:CGF1693
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0167-7055
1467-8659
DOI:10.1111/j.1467-8659.2009.01693.x