Coordination Tunes Selectivity: Two‐Electron Oxygen Reduction on High‐Loading Molybdenum Single‐Atom Catalysts
Single‐atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent coordinative dopants, and metal loading. However, doing so is still a great challenge because of the limited synthesis approach and insufficient...
Uloženo v:
| Vydáno v: | Angewandte Chemie (International ed.) Ročník 59; číslo 23; s. 9171 - 9176 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Wiley Subscription Services, Inc
02.06.2020
Wiley |
| Vydání: | International ed. in English |
| Témata: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Single‐atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent coordinative dopants, and metal loading. However, doing so is still a great challenge because of the limited synthesis approach and insufficient understanding of the structure–property relationships. Herein, we report a new kind of Mo SAC with a unique O,S coordination and a high metal loading over 10 wt %. The isolation and local environment was identified by high‐angle annular dark‐field scanning transmission electron microscopy and extended X‐ray absorption fine structure. The SACs catalyze the oxygen reduction reaction (ORR) via a 2 e− pathway with a high H2O2 selectivity of over 95 % in 0.10 m KOH. The critical role of the Mo single atoms and the coordination structure was revealed by both electrochemical tests and theoretical calculations.
The cat in the SAC: Mo single‐atom catalysts (SACs) with a unique O,S coordination exhibit outstanding H2O2 selectivity above 95 % in the oxygen reduction reaction (ORR). Electrochemical tests and theoretical calculations revealed the critical role of the coordination structure in SACs, highlighting new opportunities to tune the activity and selectivity in multi‐electron electrocatalysis. |
|---|---|
| AbstractList | Single-atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent coordinative dopants, and metal loading. However, doing so is still a great challenge because of the limited synthesis approach and insufficient understanding of the structure-property relationships. Herein, we report a new kind of Mo SAC with a unique O,S coordination and a high metal loading over 10 wt %. The isolation and local environment was identified by high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure. The SACs catalyze the oxygen reduction reaction (ORR) via a 2 e- pathway with a high H2 O2 selectivity of over 95 % in 0.10 m KOH. The critical role of the Mo single atoms and the coordination structure was revealed by both electrochemical tests and theoretical calculations.Single-atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent coordinative dopants, and metal loading. However, doing so is still a great challenge because of the limited synthesis approach and insufficient understanding of the structure-property relationships. Herein, we report a new kind of Mo SAC with a unique O,S coordination and a high metal loading over 10 wt %. The isolation and local environment was identified by high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure. The SACs catalyze the oxygen reduction reaction (ORR) via a 2 e- pathway with a high H2 O2 selectivity of over 95 % in 0.10 m KOH. The critical role of the Mo single atoms and the coordination structure was revealed by both electrochemical tests and theoretical calculations. Single-atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent coordinative dopants, and metal loading. However, doing so is still a great challenge because of the limited synthesis approach and insufficient understanding of the structure-property relationships. Herein, we report a new kind of Mo SAC with a unique O,S coordination and a high metal loading over 10 wt %. The isolation and local environment was identified by high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure. The SACs catalyze the oxygen reduction reaction (ORR) via a 2 e pathway with a high H O selectivity of over 95 % in 0.10 m KOH. The critical role of the Mo single atoms and the coordination structure was revealed by both electrochemical tests and theoretical calculations. Single‐atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent coordinative dopants, and metal loading. However, doing so is still a great challenge because of the limited synthesis approach and insufficient understanding of the structure–property relationships. Herein, we report a new kind of Mo SAC with a unique O,S coordination and a high metal loading over 10 wt %. The isolation and local environment was identified by high‐angle annular dark‐field scanning transmission electron microscopy and extended X‐ray absorption fine structure. The SACs catalyze the oxygen reduction reaction (ORR) via a 2 e− pathway with a high H2O2 selectivity of over 95 % in 0.10 m KOH. The critical role of the Mo single atoms and the coordination structure was revealed by both electrochemical tests and theoretical calculations. The cat in the SAC: Mo single‐atom catalysts (SACs) with a unique O,S coordination exhibit outstanding H2O2 selectivity above 95 % in the oxygen reduction reaction (ORR). Electrochemical tests and theoretical calculations revealed the critical role of the coordination structure in SACs, highlighting new opportunities to tune the activity and selectivity in multi‐electron electrocatalysis. Single‐atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent coordinative dopants, and metal loading. However, doing so is still a great challenge because of the limited synthesis approach and insufficient understanding of the structure–property relationships. Herein, we report a new kind of Mo SAC with a unique O,S coordination and a high metal loading over 10 wt %. The isolation and local environment was identified by high‐angle annular dark‐field scanning transmission electron microscopy and extended X‐ray absorption fine structure. The SACs catalyze the oxygen reduction reaction (ORR) via a 2 e − pathway with a high H 2 O 2 selectivity of over 95 % in 0.10 m KOH. The critical role of the Mo single atoms and the coordination structure was revealed by both electrochemical tests and theoretical calculations. Single‐atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent coordinative dopants, and metal loading. However, doing so is still a great challenge because of the limited synthesis approach and insufficient understanding of the structure–property relationships. Herein, we report a new kind of Mo SAC with a unique O,S coordination and a high metal loading over 10 wt %. The isolation and local environment was identified by high‐angle annular dark‐field scanning transmission electron microscopy and extended X‐ray absorption fine structure. The SACs catalyze the oxygen reduction reaction (ORR) via a 2 e− pathway with a high H2O2 selectivity of over 95 % in 0.10 m KOH. The critical role of the Mo single atoms and the coordination structure was revealed by both electrochemical tests and theoretical calculations. Single-atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent coordinative dopants, and metal loading. However, doing so is still a great challenge because of the limited synthesis approach and insufficient understanding of the structure–property relationships. Herein, we report a new kind of Mo SAC with a unique O,S coordination and a high metal loading over 10 wt %. The isolation and local environment was identified by high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure. The SACs catalyze the oxygen reduction reaction (ORR) via a 2 e- pathway with a high H2O2 selectivity of over 95 % in 0.10 m KOH. The critical role of the Mo single atoms and the coordination structure was revealed by both electrochemical tests and theoretical calculations. |
| Author | Jiao, Yan Tang, Cheng Zhang, Qiang Liu, Jia‐Ning Xie, Zhenhua Chen, Xiao Qiao, Shi‐Zhang Shi, Bingyang |
| Author_xml | – sequence: 1 givenname: Cheng surname: Tang fullname: Tang, Cheng organization: The University of Adelaide – sequence: 2 givenname: Yan surname: Jiao fullname: Jiao, Yan organization: The University of Adelaide – sequence: 3 givenname: Bingyang surname: Shi fullname: Shi, Bingyang organization: Henan University – sequence: 4 givenname: Jia‐Ning surname: Liu fullname: Liu, Jia‐Ning organization: Tsinghua University – sequence: 5 givenname: Zhenhua surname: Xie fullname: Xie, Zhenhua organization: Brookhaven National Laboratory – sequence: 6 givenname: Xiao surname: Chen fullname: Chen, Xiao organization: Tsinghua University – sequence: 7 givenname: Qiang surname: Zhang fullname: Zhang, Qiang organization: Tsinghua University – sequence: 8 givenname: Shi‐Zhang orcidid: 0000-0002-4568-8422 surname: Qiao fullname: Qiao, Shi‐Zhang email: s.qiao@adelaide.edu.au organization: The University of Adelaide |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32196867$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1617678$$D View this record in Osti.gov |
| BookMark | eNqFkc1q3DAUhUVJaJJpt10W02yy8VQ_tiV3NwyTJjBtIJmuhUa-nijIUmrJTb3rI_QZ-yTRZNIUAiUgkK70nXs5Okdoz3kHCL0jeEowph-VMzClmGLMREFfoUNSUpIzztleOheM5VyU5AAdhXCTeCFw9RodMErqSlT8EMW5931jnIrGu2w1OAjZFVjQ0fwwcfyUre78n1-_F9ubPhEXP8cNuOwSmkE_SNI6M5vrxCy9So022Rdvx3UDbuiyq1RbSG-z6LtsrqKyY4jhDdpvlQ3w9nGfoG-ni9X8LF9efD6fz5a5LjinuagbodSaQ7IDiula0IKVmGpOqaqwaJUiTds2QGtcCqEbjRU0RECZ3IEibII-7Pr6EI0M2kTQ19o7l8xIUhFecZGgkx102_vvA4QoOxM0WKsc-CFIygSpaEXS7Ak6fobe-KF3yYKkBa4oJ2VZJ-r9IzWsO2jkbW861Y_y76cnYLoDdO9D6KF9QgiW21TlNlX5lGoSFM8EycpDYrFXxv5fVu9kd8bC-MIQOft6vvinvQcl77nj |
| CitedBy_id | crossref_primary_10_1016_j_apsusc_2023_158976 crossref_primary_10_1002_cjoc_202400455 crossref_primary_10_1002_ange_202503195 crossref_primary_10_1021_jacs_4c02031 crossref_primary_10_1002_adfm_202411457 crossref_primary_10_1016_j_cclet_2024_110277 crossref_primary_10_1016_j_jallcom_2022_165148 crossref_primary_10_1021_acs_jpclett_5c00832 crossref_primary_10_1016_j_mattod_2025_02_007 crossref_primary_10_1016_j_mattod_2021_02_004 crossref_primary_10_1002_adma_202102801 crossref_primary_10_1016_j_jechem_2023_08_009 crossref_primary_10_1016_j_pmatsci_2022_100964 crossref_primary_10_1021_jacs_2c11928 crossref_primary_10_1002_adfm_202204458 crossref_primary_10_1002_anie_202415155 crossref_primary_10_1002_ange_202301433 crossref_primary_10_1002_anie_202511844 crossref_primary_10_1039_D1SC05867C crossref_primary_10_1002_tcr_202500079 crossref_primary_10_1002_sstr_202100225 crossref_primary_10_1016_j_cej_2023_141688 crossref_primary_10_1016_j_electacta_2024_143989 crossref_primary_10_1016_j_jechem_2021_12_028 crossref_primary_10_1002_anie_202108439 crossref_primary_10_1002_admi_202202050 crossref_primary_10_1016_j_jelechem_2025_119113 crossref_primary_10_1016_S1872_5805_24_60861_9 crossref_primary_10_1007_s12274_023_5823_7 crossref_primary_10_1002_anie_202101804 crossref_primary_10_1002_chem_202201996 crossref_primary_10_1002_smll_202105409 crossref_primary_10_1002_adfm_202422588 crossref_primary_10_1002_adma_202209386 crossref_primary_10_1039_D5CY00565E crossref_primary_10_1002_adfm_202212087 crossref_primary_10_1002_adma_202202523 crossref_primary_10_1002_anie_202105186 crossref_primary_10_1039_D3EW00302G crossref_primary_10_3390_molecules28237751 crossref_primary_10_1039_D4SC03105A crossref_primary_10_1016_j_jechem_2020_10_028 crossref_primary_10_1002_smtd_202301571 crossref_primary_10_1002_anie_202109538 crossref_primary_10_1038_s41467_022_30337_0 crossref_primary_10_1016_j_apcatb_2022_122195 crossref_primary_10_1039_D1EE00247C crossref_primary_10_1002_smll_202504632 crossref_primary_10_1002_adfm_202204031 crossref_primary_10_1002_adma_202106371 crossref_primary_10_1002_adfm_202103857 crossref_primary_10_1016_j_electacta_2024_145624 crossref_primary_10_1002_ange_202011495 crossref_primary_10_1016_S1872_2067_21_63888_3 crossref_primary_10_1016_j_joule_2021_04_012 crossref_primary_10_1002_ange_202511844 crossref_primary_10_1002_anie_202301433 crossref_primary_10_1002_adfm_202210837 crossref_primary_10_1002_adma_202206828 crossref_primary_10_1016_j_biortech_2025_132512 crossref_primary_10_1016_j_ces_2024_119749 crossref_primary_10_1016_j_biomaterials_2024_122923 crossref_primary_10_1002_smm2_1033 crossref_primary_10_1016_j_carbon_2024_119216 crossref_primary_10_1002_adma_202209086 crossref_primary_10_1002_adfm_202104716 crossref_primary_10_1002_ange_202110838 crossref_primary_10_1007_s11356_023_25726_x crossref_primary_10_1016_j_checat_2023_100810 crossref_primary_10_1002_adma_202410704 crossref_primary_10_1016_j_electacta_2020_137287 crossref_primary_10_1016_j_apcatb_2024_124911 crossref_primary_10_3390_ma18122907 crossref_primary_10_1038_s41467_021_25811_0 crossref_primary_10_1016_j_cej_2024_148587 crossref_primary_10_1002_celc_202300234 crossref_primary_10_1002_adma_202110653 crossref_primary_10_1002_smll_202401019 crossref_primary_10_1002_anie_202016977 crossref_primary_10_1002_ange_202117347 crossref_primary_10_1002_eom2_12336 crossref_primary_10_1007_s10853_024_10428_7 crossref_primary_10_1039_D4QI02430C crossref_primary_10_1016_j_gee_2021_08_005 crossref_primary_10_1016_j_jiec_2025_01_044 crossref_primary_10_1016_j_apcatb_2023_123533 crossref_primary_10_1039_D2SC03714A crossref_primary_10_1039_D5TA03508B crossref_primary_10_1039_D1SE01726H crossref_primary_10_1038_s42004_022_00645_z crossref_primary_10_1002_adfm_202008318 crossref_primary_10_1016_j_apcata_2025_120469 crossref_primary_10_1039_D1SE01390D crossref_primary_10_1002_anie_202117347 crossref_primary_10_1039_D2RA06302F crossref_primary_10_1002_adma_202306336 crossref_primary_10_1016_j_apcatb_2021_120228 crossref_primary_10_1002_adma_202509221 crossref_primary_10_1002_ange_202016977 crossref_primary_10_1002_anie_202104053 crossref_primary_10_1103_PhysRevApplied_19_054094 crossref_primary_10_1039_D2NR00294A crossref_primary_10_1002_ange_202104053 crossref_primary_10_1002_anie_202110838 crossref_primary_10_1016_j_cej_2025_159747 crossref_primary_10_1016_j_apcatb_2022_122038 crossref_primary_10_1021_jacs_1c12642 crossref_primary_10_1016_j_checat_2023_100724 crossref_primary_10_1002_advs_202308040 crossref_primary_10_1016_j_cej_2023_147608 crossref_primary_10_1039_D0SC02518F crossref_primary_10_1002_smll_202200730 crossref_primary_10_1016_S1872_2067_20_63781_0 crossref_primary_10_1002_cey2_194 crossref_primary_10_1016_j_apcatb_2022_121173 crossref_primary_10_1002_adfm_202110224 crossref_primary_10_1038_s41467_023_41192_y crossref_primary_10_1002_ange_202415155 crossref_primary_10_1002_advs_202205031 crossref_primary_10_1002_anie_202202338 crossref_primary_10_1002_aenm_202003323 crossref_primary_10_1016_j_esci_2025_100456 crossref_primary_10_1002_eom2_12266 crossref_primary_10_1038_s41467_024_48349_3 crossref_primary_10_1002_advs_202413475 crossref_primary_10_1016_j_enchem_2024_100119 crossref_primary_10_1016_j_apsusc_2025_163002 crossref_primary_10_1016_j_jhazmat_2022_129327 crossref_primary_10_1039_D0EE01925A crossref_primary_10_1002_aic_18022 crossref_primary_10_1002_smll_202311691 crossref_primary_10_1002_adfm_202300895 crossref_primary_10_1002_anie_202008759 crossref_primary_10_1038_s41467_021_23486_1 crossref_primary_10_1016_j_jallcom_2024_174948 crossref_primary_10_1039_D4SC00454J crossref_primary_10_1002_ange_202105750 crossref_primary_10_1002_adfm_202110485 crossref_primary_10_1016_j_jcis_2024_06_035 crossref_primary_10_1002_anie_202101522 crossref_primary_10_1016_S1872_2067_21_63941_4 crossref_primary_10_1002_aenm_202002473 crossref_primary_10_1038_s41467_021_26747_1 crossref_primary_10_1016_j_chempr_2020_10_023 crossref_primary_10_1002_advs_202100076 crossref_primary_10_1007_s12274_023_5449_9 crossref_primary_10_3390_en16186616 crossref_primary_10_1002_adfm_202309223 crossref_primary_10_1002_aenm_202103097 crossref_primary_10_1038_s41467_021_25562_y crossref_primary_10_1016_j_apcatb_2022_121265 crossref_primary_10_1016_j_gee_2021_11_005 crossref_primary_10_26599_NR_2025_94907278 crossref_primary_10_1002_adfm_202204755 crossref_primary_10_1007_s12274_023_5899_0 crossref_primary_10_1002_adma_202105812 crossref_primary_10_1016_j_carbon_2024_118997 crossref_primary_10_1021_jacs_4c00972 crossref_primary_10_1016_j_jechem_2020_10_034 crossref_primary_10_1002_adfm_202307390 crossref_primary_10_1016_S1872_5805_22_60582_1 crossref_primary_10_1016_j_jechem_2022_05_007 crossref_primary_10_1016_j_jechem_2020_10_036 crossref_primary_10_1002_admi_202001360 crossref_primary_10_1016_j_apcatb_2023_122987 crossref_primary_10_1016_j_cej_2021_132038 crossref_primary_10_1002_elan_202060334 crossref_primary_10_1002_adma_202404659 crossref_primary_10_1002_ange_202314414 crossref_primary_10_1002_eom2_12067 crossref_primary_10_1002_anie_202416715 crossref_primary_10_1002_smll_202403029 crossref_primary_10_1016_j_checat_2024_100997 crossref_primary_10_1016_S1872_2067_23_64498_5 crossref_primary_10_1016_j_nanoen_2024_110020 crossref_primary_10_1002_anie_202503195 crossref_primary_10_1002_smll_202403261 crossref_primary_10_1002_adma_202100429 crossref_primary_10_1016_j_apmt_2023_102037 crossref_primary_10_1002_sus2_38 crossref_primary_10_1016_j_apsusc_2023_157302 crossref_primary_10_1016_j_jechem_2021_10_011 crossref_primary_10_1016_j_jechem_2021_10_013 crossref_primary_10_1002_anie_202016219 crossref_primary_10_1002_ange_202207268 crossref_primary_10_1016_j_electacta_2023_142777 crossref_primary_10_1039_D2NR07066A crossref_primary_10_1016_j_jclepro_2023_136918 crossref_primary_10_1039_D1CY00736J crossref_primary_10_1038_s41467_021_27640_7 crossref_primary_10_1038_s41467_023_44652_7 crossref_primary_10_1002_aenm_202002896 crossref_primary_10_1002_adma_202110123 crossref_primary_10_1002_adfm_202108381 crossref_primary_10_1073_pnas_2209760120 crossref_primary_10_1039_D2EE01797K crossref_primary_10_1002_cctc_202201016 crossref_primary_10_1002_adma_202312724 crossref_primary_10_1002_adma_202412386 crossref_primary_10_1002_advs_202102209 crossref_primary_10_1002_aenm_202303233 crossref_primary_10_1021_jacs_4c10675 crossref_primary_10_1016_j_cej_2022_140084 crossref_primary_10_1038_s41467_021_24513_x crossref_primary_10_1016_j_cej_2021_131534 crossref_primary_10_1021_jacs_1c05032 crossref_primary_10_1039_D0EE03947K crossref_primary_10_1016_j_apsusc_2023_158290 crossref_primary_10_1002_smll_202302249 crossref_primary_10_1016_j_nanoen_2023_108718 crossref_primary_10_1016_j_cej_2021_132990 crossref_primary_10_1016_j_jechem_2021_08_019 crossref_primary_10_1002_anie_202213296 crossref_primary_10_1002_adfm_202305606 crossref_primary_10_1016_j_apcatb_2022_121578 crossref_primary_10_1002_anie_202307355 crossref_primary_10_1002_adfm_202405328 crossref_primary_10_1002_anie_202313914 crossref_primary_10_1016_j_cej_2025_165565 crossref_primary_10_1016_j_ecoenv_2025_117714 crossref_primary_10_1002_bkcs_12348 crossref_primary_10_1016_j_jece_2023_109572 crossref_primary_10_1016_j_mattod_2023_02_004 crossref_primary_10_1002_cctc_202100805 crossref_primary_10_1002_adma_202406807 crossref_primary_10_1002_ange_202101522 crossref_primary_10_1002_ange_202008787 crossref_primary_10_1021_jacs_2c00242 crossref_primary_10_1021_acs_iecr_4c03929 crossref_primary_10_1007_s40820_023_01044_2 crossref_primary_10_1002_smtd_202100102 crossref_primary_10_1016_j_ccr_2024_215961 crossref_primary_10_1002_ange_202202338 crossref_primary_10_1002_smll_202410612 crossref_primary_10_1002_ange_202113895 crossref_primary_10_1002_ange_202513329 crossref_primary_10_1002_anie_202319470 crossref_primary_10_1038_s41467_024_48209_0 crossref_primary_10_1038_s41467_024_55116_x crossref_primary_10_1016_j_ccr_2024_215952 crossref_primary_10_1038_s41467_022_28346_0 crossref_primary_10_1016_j_jechem_2024_06_021 crossref_primary_10_1016_j_nxnano_2024_100073 crossref_primary_10_1002_smll_202302338 crossref_primary_10_1016_j_checat_2022_04_011 crossref_primary_10_1002_adma_202105410 crossref_primary_10_1039_D3QI01576A crossref_primary_10_1002_anie_202513329 crossref_primary_10_1016_S1872_2067_22_64184_6 crossref_primary_10_1002_adma_202107954 crossref_primary_10_1016_j_nanoms_2021_03_006 crossref_primary_10_1039_D0MH01061H crossref_primary_10_1016_j_ccr_2022_214493 crossref_primary_10_1002_anie_202113895 crossref_primary_10_1016_j_ccr_2025_217008 crossref_primary_10_1038_s41467_023_38883_x crossref_primary_10_1016_j_ccr_2024_215900 crossref_primary_10_1016_j_jechem_2021_08_068 crossref_primary_10_1016_j_cej_2020_127917 crossref_primary_10_1002_ange_202109058 crossref_primary_10_1016_j_apcatb_2025_125854 crossref_primary_10_1016_j_mtener_2024_101500 crossref_primary_10_1002_aenm_202301543 crossref_primary_10_1016_j_cej_2025_165884 crossref_primary_10_1007_s12274_022_4140_x crossref_primary_10_1021_jacs_4c13400 crossref_primary_10_1080_01614940_2021_2003085 crossref_primary_10_1002_anie_202309341 crossref_primary_10_1039_D2NH00564F crossref_primary_10_1002_adfm_202203842 crossref_primary_10_1002_ange_202507803 crossref_primary_10_1016_j_jechem_2022_10_015 crossref_primary_10_1002_smsc_202200036 crossref_primary_10_1002_adma_202104891 crossref_primary_10_1016_j_jechem_2025_01_059 crossref_primary_10_1002_smll_202106091 crossref_primary_10_1002_anie_202109058 crossref_primary_10_1002_ange_202407163 crossref_primary_10_1021_acs_iecr_5c02494 crossref_primary_10_1007_s12274_023_5510_8 crossref_primary_10_1016_j_jece_2024_114050 crossref_primary_10_1002_cey2_337 crossref_primary_10_2147_IJN_S382796 crossref_primary_10_1002_adsu_202000213 crossref_primary_10_1021_prechem_2c00006 crossref_primary_10_1002_anie_202008787 crossref_primary_10_1016_j_cej_2022_139371 crossref_primary_10_1039_D5EE01112D crossref_primary_10_1007_s12274_021_3995_6 crossref_primary_10_1002_anie_202407163 crossref_primary_10_1002_anie_202507803 crossref_primary_10_1002_cjce_24816 crossref_primary_10_1002_cey2_581 crossref_primary_10_1016_S1872_2067_24_60103_8 crossref_primary_10_1039_D5NR00337G crossref_primary_10_1039_D4SC08603A crossref_primary_10_1038_s41467_023_37066_y crossref_primary_10_1002_cssc_202100055 crossref_primary_10_1016_j_susmat_2020_e00204 crossref_primary_10_1002_smsc_202100046 crossref_primary_10_1016_j_cej_2024_156042 crossref_primary_10_1007_s12274_024_6923_8 crossref_primary_10_1016_j_jece_2024_112972 crossref_primary_10_1002_adfm_202106886 crossref_primary_10_1002_ange_202109538 crossref_primary_10_1002_cssc_202100182 crossref_primary_10_1016_j_cclet_2020_11_013 crossref_primary_10_3389_fchem_2022_1011597 crossref_primary_10_1016_j_nanoen_2023_108798 crossref_primary_10_1073_pnas_2315362121 crossref_primary_10_1002_ange_202101804 crossref_primary_10_1016_j_gerr_2023_100031 crossref_primary_10_1021_acscatal_5c02839 crossref_primary_10_1002_smll_202103824 crossref_primary_10_1016_j_cej_2021_130611 crossref_primary_10_1021_jacs_3c03426 crossref_primary_10_1039_D3NR01708G crossref_primary_10_1002_anie_202011495 crossref_primary_10_1016_j_jechem_2023_02_002 crossref_primary_10_1016_j_jechem_2020_08_030 crossref_primary_10_1016_j_cej_2025_160709 crossref_primary_10_1016_j_jece_2024_112604 crossref_primary_10_1016_j_checat_2022_02_002 crossref_primary_10_1016_j_cej_2024_157125 crossref_primary_10_1002_adfm_202304468 crossref_primary_10_1002_ange_202319470 crossref_primary_10_1002_ange_202108439 crossref_primary_10_1016_j_chempr_2021_08_007 crossref_primary_10_1002_adma_202301477 crossref_primary_10_1002_smtd_202100865 crossref_primary_10_1016_j_nanoen_2021_105817 crossref_primary_10_1002_chem_202101786 crossref_primary_10_1039_D4CS01031K crossref_primary_10_1016_j_apcatb_2020_119780 crossref_primary_10_1016_j_nanoms_2025_07_009 crossref_primary_10_1016_j_jelechem_2022_116946 crossref_primary_10_1016_j_cej_2021_130996 crossref_primary_10_1002_ange_202309341 crossref_primary_10_59717_j_xinn_mater_2025_100141 crossref_primary_10_1016_j_checat_2024_101069 crossref_primary_10_1002_ange_202105186 crossref_primary_10_1016_j_cej_2022_140721 crossref_primary_10_1002_ange_202213296 crossref_primary_10_1002_cey2_309 crossref_primary_10_1016_j_cej_2021_132829 crossref_primary_10_1016_j_cej_2021_130401 crossref_primary_10_1016_j_fuel_2023_128751 crossref_primary_10_1016_j_est_2024_113684 crossref_primary_10_1038_s41467_023_40118_y crossref_primary_10_1016_S1872_2067_23_64392_X crossref_primary_10_1002_ange_202008759 crossref_primary_10_1002_ente_202100301 crossref_primary_10_1002_adma_202103266 crossref_primary_10_1016_j_apcatb_2023_123276 crossref_primary_10_1016_j_apsusc_2022_153233 crossref_primary_10_1002_anie_202207268 crossref_primary_10_1038_s41467_022_30523_0 crossref_primary_10_1002_adma_202408341 crossref_primary_10_1016_j_cclet_2025_110909 crossref_primary_10_1016_j_mser_2024_100822 crossref_primary_10_1002_sstr_202000051 crossref_primary_10_1002_anie_202105750 crossref_primary_10_1016_j_cej_2024_157208 crossref_primary_10_1021_acs_jpcc_5c02774 crossref_primary_10_1039_D1CY01466H crossref_primary_10_1016_j_cej_2021_131973 crossref_primary_10_1016_j_nanoen_2023_108404 crossref_primary_10_1002_celc_202300630 crossref_primary_10_1016_j_cej_2025_166571 crossref_primary_10_1002_adfm_202103597 crossref_primary_10_1002_adma_202202714 crossref_primary_10_1002_ange_202313914 crossref_primary_10_1016_j_cclet_2023_108142 crossref_primary_10_1002_anie_202314414 crossref_primary_10_1002_smll_202204757 crossref_primary_10_1002_cctc_202101266 crossref_primary_10_1016_j_jechem_2025_08_087 crossref_primary_10_1016_j_electacta_2024_144356 crossref_primary_10_1016_j_jechem_2024_11_027 crossref_primary_10_1016_j_trechm_2021_05_009 crossref_primary_10_1021_acsami_5c08219 crossref_primary_10_1007_s40843_021_1795_9 crossref_primary_10_1016_j_psep_2022_08_017 crossref_primary_10_1002_cctc_202200853 crossref_primary_10_1016_j_jcis_2022_05_149 crossref_primary_10_1002_smll_202308767 crossref_primary_10_1016_j_apcatb_2023_123492 crossref_primary_10_1016_j_nanoen_2023_108536 crossref_primary_10_1002_smll_202002124 crossref_primary_10_1002_smll_202504692 crossref_primary_10_1039_D4SC04905E crossref_primary_10_1002_ange_202016219 crossref_primary_10_1007_s40820_021_00668_6 crossref_primary_10_1039_D4NR00250D crossref_primary_10_1002_adma_202106541 crossref_primary_10_1039_D1NR08007E crossref_primary_10_1021_jacs_2c01194 crossref_primary_10_1021_jacs_4c04322 crossref_primary_10_1016_j_nantod_2025_102732 crossref_primary_10_1002_adma_202314340 crossref_primary_10_1016_j_cclet_2021_07_044 crossref_primary_10_1007_s12209_021_00295_7 crossref_primary_10_1002_aenm_202100332 crossref_primary_10_1002_ange_202416715 crossref_primary_10_1002_ange_202307355 crossref_primary_10_1002_adma_202210575 |
| Cites_doi | 10.1002/anie.201812435 10.1038/s41467-019-11992-2 10.1021/acscatal.7b03464 10.1038/s41586-019-1760-8 10.1002/anie.201703864 10.1002/ange.201502396 10.1038/ncomms10922 10.1016/j.chempr.2017.10.013 10.1038/s41929-017-0008-y 10.1103/PhysRevB.71.094110 10.1002/smtd.201800440 10.1002/ange.201812435 10.1038/s41570-018-0010-1 10.1016/j.joule.2018.06.019 10.1002/ange.201703864 10.1016/j.chempr.2017.12.005 10.1002/ange.201911995 10.1002/anie.201811728 10.1021/jp204680p 10.1038/s41563-019-0571-5 10.1016/j.chempr.2019.12.008 10.1002/adma.201808173 10.1002/adma.201801649 10.1038/s41929-017-0017-x 10.1038/s41467-019-09290-y 10.1238/Physica.Topical.115a00232 10.1002/ange.201804958 10.1021/jacs.8b02798 10.1021/acscatal.8b00217 10.1021/cs5008206 10.1002/anie.201911995 10.1002/aenm.201900149 10.1126/sciadv.aax6322 10.1021/acscatal.9b02546 10.1038/s41467-019-12510-0 10.1002/adma.201703185 10.1002/ange.201702473 10.1002/ange.201811728 10.1039/C9CS00422J 10.1007/s41918-019-00033-7 10.1002/smtd.201900540 10.1002/anie.201804958 10.1021/jacs.9b05576 10.1002/smtd.201800406 10.1002/smtd.201800497 10.1021/acscatal.6b03035 10.1002/anie.201502396 10.1021/jacs.9b11852 10.1038/nmat3795 10.1002/anie.201702473 10.1021/jacs.9b03811 10.1021/ja300038p 10.1021/jacs.7b10817 10.1021/jacs.9b09352 |
| ContentType | Journal Article |
| Copyright | 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| Copyright_xml | – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| CorporateAuthor | Brookhaven National Lab. (BNL), Upton, NY (United States) |
| CorporateAuthor_xml | – name: Brookhaven National Lab. (BNL), Upton, NY (United States) |
| DBID | AAYXX CITATION NPM 7TM K9. 7X8 OIOZB OTOTI |
| DOI | 10.1002/anie.202003842 |
| DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| Edition | International ed. in English |
| EndPage | 9176 |
| ExternalDocumentID | 1617678 32196867 10_1002_anie_202003842 ANIE202003842 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Australian Research Council funderid: DP160104866, LP160100927, DP190103472 and FL170100154 – fundername: Australian Research Council grantid: DP160104866, LP160100927, DP190103472 and FL170100154 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI ABUFD AEYWJ AGHNM AGYGG CITATION O8X NPM YIN 7TM K9. 7X8 AAPBV ABHUG ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS B-7 OIOZB OTOTI PQEST |
| ID | FETCH-LOGICAL-c4772-89d8aab7e377ea3c98243502c722a608faa1dffde290588cdc0aed18e5196ea13 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 536 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524335500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Thu May 18 22:35:25 EDT 2023 Fri Jul 11 11:16:13 EDT 2025 Tue Oct 07 07:17:46 EDT 2025 Wed Feb 19 02:30:00 EST 2025 Sat Nov 29 02:35:50 EST 2025 Tue Nov 18 22:19:33 EST 2025 Wed Jan 22 16:35:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Keywords | selectivity single-atom catalyst electrocatalysis oxygen reduction reaction (ORR) molybdenum |
| Language | English |
| License | 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4772-89d8aab7e377ea3c98243502c722a608faa1dffde290588cdc0aed18e5196ea13 |
| Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) SC0012704 BNL-215903-2020-JAAM |
| ORCID | 0000-0002-4568-8422 0000000337378894 0000000245688422 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1617678 |
| PMID | 32196867 |
| PQID | 2406271559 |
| PQPubID | 946352 |
| PageCount | 6 |
| ParticipantIDs | osti_scitechconnect_1617678 proquest_miscellaneous_2381626124 proquest_journals_2406271559 pubmed_primary_32196867 crossref_primary_10_1002_anie_202003842 crossref_citationtrail_10_1002_anie_202003842 wiley_primary_10_1002_anie_202003842_ANIE202003842 |
| PublicationCentury | 2000 |
| PublicationDate | June 2, 2020 |
| PublicationDateYYYYMMDD | 2020-06-02 |
| PublicationDate_xml | – month: 06 year: 2020 text: June 2, 2020 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: United States |
| PublicationTitle | Angewandte Chemie (International ed.) |
| PublicationTitleAlternate | Angew Chem Int Ed Engl |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc Wiley |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
| References | 2011; 115 2017; 7 2019; 9 2019; 3 2018; 140 2019; 5 2019; 31 2020; 142 2019; 2 2019; 10 2020 2020; 59 132 2017; 29 2017 2017; 56 129 2019; 141 2019 2019; 58 131 2017; 139 2020; 19 2020; 6 2018; 8 2016; 7 2020; 4 2018; 2 2014; 4 2012; 134 2018; 4 2018; 1 2013; 12 2018 2018; 57 130 2019; 48 2005; T115 2019; 575 2015 2015; 54 127 2018; 30 2005; 71 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_19_2 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_34_2 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_11_2 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_15_2 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_43_2 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_31_2 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_10_2 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
| References_xml | – volume: 2 start-page: 332 year: 2019 end-page: 371 publication-title: Electrochem. Energy Rev. – volume: 19 start-page: 436 year: 2020 end-page: 442 publication-title: Nat. Mater. – volume: 141 start-page: 20118 year: 2019 end-page: 20126 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 285 year: 2018 end-page: 297 publication-title: Chem – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 6 start-page: 658 year: 2020 end-page: 674 publication-title: Chem – volume: 59 132 start-page: 798 808 year: 2020 2020 end-page: 803 813 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 134 start-page: 4072 year: 2012 end-page: 4075 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 2404 year: 2020 end-page: 2414 publication-title: J. Am. Chem. Soc. – volume: 71 year: 2005 publication-title: Phys. Rev. B – volume: 115 start-page: 18015 year: 2011 end-page: 18026 publication-title: J. Phys. Chem. C – volume: 48 start-page: 5207 year: 2019 end-page: 5241 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 1137 year: 2013 end-page: 1143 publication-title: Nat. Mater. – volume: 140 start-page: 7851 year: 2018 end-page: 7859 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 9038 9176 year: 2018 2018 end-page: 9043 9181 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 13944 14132 year: 2017 2017 end-page: 13960 14148 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 106 year: 2018 end-page: 123 publication-title: Chem – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 54 127 start-page: 6837 6941 year: 2015 2015 end-page: 6841 6945 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 1278 year: 2019 publication-title: Nat. Commun. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 8 start-page: 2844 year: 2018 end-page: 2856 publication-title: ACS Catal. – volume: 7 start-page: 10922 year: 2016 publication-title: Nat. Commun. – volume: T115 start-page: 232 year: 2005 end-page: 234 publication-title: Phys. Scripta – volume: 2 start-page: 1242 year: 2018 end-page: 1264 publication-title: Joule – volume: 3 year: 2019 publication-title: Small Methods – volume: 7 start-page: 706 year: 2017 end-page: 709 publication-title: ACS Catal. – volume: 1 start-page: 156 year: 2018 end-page: 162 publication-title: Nat. Catal. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 9 start-page: 8433 year: 2019 end-page: 8442 publication-title: ACS Catal. – volume: 8 start-page: 4064 year: 2018 end-page: 4081 publication-title: ACS Catal. – volume: 4 year: 2020 publication-title: Small Methods – volume: 139 start-page: 18093 year: 2017 end-page: 18100 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 1100 1112 year: 2019 2019 end-page: 1105 1117 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 575 start-page: 639 year: 2019 end-page: 642 publication-title: Nature – volume: 141 start-page: 9664 year: 2019 end-page: 9672 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 12372 year: 2019 end-page: 12381 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 3749 year: 2014 end-page: 3754 publication-title: ACS Catal. – volume: 56 129 start-page: 6937 7041 year: 2017 2017 end-page: 6941 7045 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 63 year: 2018 end-page: 72 publication-title: Nat. Catal. – volume: 2 start-page: 65 year: 2018 end-page: 81 publication-title: Nat. Rev. Chem. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 10 start-page: 3997 year: 2019 publication-title: Nat. Commun. – volume: 10 start-page: 4585 year: 2019 publication-title: Nat. Commun. – volume: 58 131 start-page: 2321 2343 year: 2019 2019 end-page: 2325 2347 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_6_34_1 doi: 10.1002/anie.201812435 – ident: e_1_2_6_13_1 doi: 10.1038/s41467-019-11992-2 – ident: e_1_2_6_44_1 doi: 10.1021/acscatal.7b03464 – ident: e_1_2_6_16_1 doi: 10.1038/s41586-019-1760-8 – ident: e_1_2_6_19_1 doi: 10.1002/anie.201703864 – ident: e_1_2_6_43_2 doi: 10.1002/ange.201502396 – ident: e_1_2_6_47_1 doi: 10.1038/ncomms10922 – ident: e_1_2_6_46_1 doi: 10.1016/j.chempr.2017.10.013 – ident: e_1_2_6_4_1 doi: 10.1038/s41929-017-0008-y – ident: e_1_2_6_33_1 doi: 10.1103/PhysRevB.71.094110 – ident: e_1_2_6_14_1 doi: 10.1002/smtd.201800440 – ident: e_1_2_6_34_2 doi: 10.1002/ange.201812435 – ident: e_1_2_6_1_1 doi: 10.1038/s41570-018-0010-1 – ident: e_1_2_6_26_1 doi: 10.1016/j.joule.2018.06.019 – ident: e_1_2_6_19_2 doi: 10.1002/ange.201703864 – ident: e_1_2_6_30_1 doi: 10.1016/j.chempr.2017.12.005 – ident: e_1_2_6_15_2 doi: 10.1002/ange.201911995 – ident: e_1_2_6_31_1 doi: 10.1002/anie.201811728 – ident: e_1_2_6_38_1 doi: 10.1021/jp204680p – ident: e_1_2_6_9_1 doi: 10.1038/s41563-019-0571-5 – ident: e_1_2_6_45_1 doi: 10.1016/j.chempr.2019.12.008 – ident: e_1_2_6_37_1 doi: 10.1002/adma.201808173 – ident: e_1_2_6_2_1 doi: 10.1002/adma.201801649 – ident: e_1_2_6_35_1 doi: 10.1038/s41929-017-0017-x – ident: e_1_2_6_6_1 doi: 10.1038/s41467-019-09290-y – ident: e_1_2_6_32_1 doi: 10.1238/Physica.Topical.115a00232 – ident: e_1_2_6_11_2 doi: 10.1002/ange.201804958 – ident: e_1_2_6_36_1 doi: 10.1021/jacs.8b02798 – ident: e_1_2_6_18_1 doi: 10.1021/acscatal.8b00217 – ident: e_1_2_6_42_1 doi: 10.1021/cs5008206 – ident: e_1_2_6_15_1 doi: 10.1002/anie.201911995 – ident: e_1_2_6_25_1 doi: 10.1002/aenm.201900149 – ident: e_1_2_6_7_1 doi: 10.1126/sciadv.aax6322 – ident: e_1_2_6_40_1 doi: 10.1021/acscatal.9b02546 – ident: e_1_2_6_5_1 doi: 10.1038/s41467-019-12510-0 – ident: e_1_2_6_27_1 doi: 10.1002/adma.201703185 – ident: e_1_2_6_10_2 doi: 10.1002/ange.201702473 – ident: e_1_2_6_31_2 doi: 10.1002/ange.201811728 – ident: e_1_2_6_21_1 doi: 10.1039/C9CS00422J – ident: e_1_2_6_28_1 doi: 10.1007/s41918-019-00033-7 – ident: e_1_2_6_24_1 doi: 10.1002/smtd.201900540 – ident: e_1_2_6_11_1 doi: 10.1002/anie.201804958 – ident: e_1_2_6_12_1 doi: 10.1021/jacs.9b05576 – ident: e_1_2_6_29_1 doi: 10.1002/smtd.201800406 – ident: e_1_2_6_20_1 doi: 10.1002/smtd.201800497 – ident: e_1_2_6_17_1 doi: 10.1021/acscatal.6b03035 – ident: e_1_2_6_43_1 doi: 10.1002/anie.201502396 – ident: e_1_2_6_23_1 doi: 10.1021/jacs.9b11852 – ident: e_1_2_6_39_1 doi: 10.1038/nmat3795 – ident: e_1_2_6_10_1 doi: 10.1002/anie.201702473 – ident: e_1_2_6_8_1 doi: 10.1021/jacs.9b03811 – ident: e_1_2_6_41_1 doi: 10.1021/ja300038p – ident: e_1_2_6_3_1 doi: 10.1021/jacs.7b10817 – ident: e_1_2_6_22_1 doi: 10.1021/jacs.9b09352 |
| SSID | ssj0028806 |
| Score | 2.7163317 |
| Snippet | Single‐atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent... Single-atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent... |
| SourceID | osti proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 9171 |
| SubjectTerms | Catalysts Chemical reduction Coordination electrocatalysis Electrochemistry Fine structure Hydrogen peroxide INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY Molybdenum Oxygen oxygen reduction reaction (ORR) Oxygen reduction reactions Scanning transmission electron microscopy Selectivity Single atom catalysts single-atom catalyst Transmission electron microscopy Ultrastructure |
| Title | Coordination Tunes Selectivity: Two‐Electron Oxygen Reduction on High‐Loading Molybdenum Single‐Atom Catalysts |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202003842 https://www.ncbi.nlm.nih.gov/pubmed/32196867 https://www.proquest.com/docview/2406271559 https://www.proquest.com/docview/2381626124 https://www.osti.gov/servlets/purl/1617678 |
| Volume | 59 |
| WOSCitedRecordID | wos000524335500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swED-2dLC9tPvbue2KBoM9mTqyZsl7C1nCBlk22hTyJhRZhkIWl9pZm7d-hH7GfpLdyY7XwMpgAz_YSDJCd6e7051-B_DOiq60qDZCETsVCsddqGKRoc-jVJY4O8utp_RIjsdqOk2_37nFX-NDtAduJBl-vyYBN7Py6DdoKN3ARv-OkquUwE14iyPzig5sfToeno5apwv5s75hFMchFaJfAzdG_GjzDxuKqVOggP3J6Ny0Yb0SGu78__SfwnZjgLJezTHP4IFbPIfH_XXdtxdQ9Qt0SM_qU0I2WeJeyE58tRxfZ-Ijm1wWt9c3g6Z-Dvt2tUImZMeEAeuH4EPZI9hnVPgMffa1mK9mGSXdsxP8njts61XFD9anw6NVWZUv4XQ4mPQ_h01thtAKNMhDlWbKmJl0sZTOxDZVHA2viFvJuUkilRvTzfI8czyNPihlMxsZl3WVQ4sxcaYbv4LOoli418Ck4VRCSVorUhHlwgiZ5hTvjJLI5SoJIFwTRtsGuJzqZ8x1DbnMNa2lbtcygPdt__MasuPenvtEZ43GBiHmWkotspUmlw91eAAHa_LrRrBLTQYQlxTLDeBt24wUojiLWbhiiX0oGEvQbCKA3Zpt2onEqCESlcgAuOeOv8xQ98ZfBu3X3r8M2ocn9O7T2_gBdKqLpXsDj-zP6qy8OISHcqoOG6H5BcG_GPQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9GOuhe9tWPee02DQp7MnVk1ZL3FrKElrnZaFPom1BkGQJpXBqnW972J-xv3F-yO9nxCGwMxsAvsmQjdHe6D51-B3BkRVdaVBuhiJ0KheMuVLHI0edRKk-cnRTWUzqTo5G6vk4_N9mEdBemxodoA24kGX6_JgGngPTxL9RQuoKNDh5lVymBu_CWQF466cDWh4vhVdZ6Xcig9RWjOA6pEv0auTHix5t_2NBMnRIl7HdW56YR67XQ8Ml_mP9TeNyYoKxX88wzeODmz2G7v678tgNVv0SXdFrHCdl4ibshu_T1cnylifds_KX88e37oKmgwz59XSEbsgtCgfWf4EP5IzgmK32OPjsvZ6tJTmn37BLbM4d9vaq8YX0KH60W1WIXroaDcf80bKozhFagSR6qNFfGTKSLpXQmtqniaHpF3ErOTRKpwphuXhS542l0opTNbWRc3lUObcbEmW68B515OXcvgEnDqYiStFakIiqEETIt6MQzSiJXqCSAcE0ZbRvocqqgMdM16DLXtJa6XcsA3rXjb2vQjj-OPCBCazQ3CDPXUnKRrTQ5fajFAzhc0183or3QZAJxSae5Abxtu5FCdNJi5q5c4hg6jiVwNhHAfs037URi1BGJSmQA3LPHX2aoe6OzQdt6-S8fvYHt0_F5prOz0ccDeETvfbIbP4ROdbd0r-Chva-mi7vXjez8BOzvG_w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED-hDgEvjH-DsAFGQuIpWup4sbO3qmvFRCnT1kl7s1zbkSaVZlpToG98BD4jn2R3TpqpEggJIeXFsRNZvjvfne_8O4B3VnSlRbURi9SrWHjuY5UKhz6PUi7zdlrYQOmRHI_VxUV-0mQT0l2YGh-iPXAjyQj7NQm4v3LF_i1qKF3BRgePsquUwF14SxzkGcrm1tHp8HzUel3IoPUVozSNqRL9Grkx4fubf9jQTJ0SJex3VuemERu00HD7P8z_ETxsTFDWq3nmMdzx8ydwv7-u_PYUqn6JLullfU7IJkvcDdlZqJcTKk0cssm38tePn4Omgg77_H2FbMhOCQU2fIIP5Y_gmFEZcvTZp3K2mjpKu2dn2J557OtV5RfWp-Oj1aJaPIPz4WDS_xA31RliK9Akj1XulDFT6VMpvUltrjiaXgm3knOTJaowpuuKwnmeJwdKWWcT411XebQZM2-66Q505uXcvwAmDaciStJakYukEEbIvKCIZ5IlvlBZBPGaMto20OVUQWOma9BlrmktdbuWEbxvx1_VoB1_HLlLhNZobhBmrqXkIltpcvpQi0ewt6a_bkR7ockE4pKiuRG8bbuRQhRpMXNfLnEMhWMJnE1E8Lzmm3YiKeqITGUyAh7Y4y8z1L3x8aBtvfyXj97AvZOjoR4djz_uwgN6HXLd-B50quulfwV37dfqcnH9uhGdG09vG3c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coordination+Tunes+Selectivity%3A+Two%E2%80%90Electron+Oxygen+Reduction+on+High%E2%80%90Loading+Molybdenum+Single%E2%80%90Atom+Catalysts&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Tang%2C+Cheng&rft.au=Jiao%2C+Yan&rft.au=Shi%2C+Bingyang&rft.au=Jia%E2%80%90Ning+Liu&rft.date=2020-06-02&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=23&rft.spage=9171&rft.epage=9176&rft_id=info:doi/10.1002%2Fanie.202003842&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |