Coordination Tunes Selectivity: Two‐Electron Oxygen Reduction on High‐Loading Molybdenum Single‐Atom Catalysts

Single‐atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent coordinative dopants, and metal loading. However, doing so is still a great challenge because of the limited synthesis approach and insufficient...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Angewandte Chemie (International ed.) Ročník 59; číslo 23; s. 9171 - 9176
Hlavní autoři: Tang, Cheng, Jiao, Yan, Shi, Bingyang, Liu, Jia‐Ning, Xie, Zhenhua, Chen, Xiao, Zhang, Qiang, Qiao, Shi‐Zhang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 02.06.2020
Wiley
Vydání:International ed. in English
Témata:
ISSN:1433-7851, 1521-3773, 1521-3773
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Single‐atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent coordinative dopants, and metal loading. However, doing so is still a great challenge because of the limited synthesis approach and insufficient understanding of the structure–property relationships. Herein, we report a new kind of Mo SAC with a unique O,S coordination and a high metal loading over 10 wt %. The isolation and local environment was identified by high‐angle annular dark‐field scanning transmission electron microscopy and extended X‐ray absorption fine structure. The SACs catalyze the oxygen reduction reaction (ORR) via a 2 e− pathway with a high H2O2 selectivity of over 95 % in 0.10 m KOH. The critical role of the Mo single atoms and the coordination structure was revealed by both electrochemical tests and theoretical calculations. The cat in the SAC: Mo single‐atom catalysts (SACs) with a unique O,S coordination exhibit outstanding H2O2 selectivity above 95 % in the oxygen reduction reaction (ORR). Electrochemical tests and theoretical calculations revealed the critical role of the coordination structure in SACs, highlighting new opportunities to tune the activity and selectivity in multi‐electron electrocatalysis.
AbstractList Single-atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent coordinative dopants, and metal loading. However, doing so is still a great challenge because of the limited synthesis approach and insufficient understanding of the structure-property relationships. Herein, we report a new kind of Mo SAC with a unique O,S coordination and a high metal loading over 10 wt %. The isolation and local environment was identified by high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure. The SACs catalyze the oxygen reduction reaction (ORR) via a 2 e- pathway with a high H2 O2 selectivity of over 95 % in 0.10 m KOH. The critical role of the Mo single atoms and the coordination structure was revealed by both electrochemical tests and theoretical calculations.Single-atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent coordinative dopants, and metal loading. However, doing so is still a great challenge because of the limited synthesis approach and insufficient understanding of the structure-property relationships. Herein, we report a new kind of Mo SAC with a unique O,S coordination and a high metal loading over 10 wt %. The isolation and local environment was identified by high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure. The SACs catalyze the oxygen reduction reaction (ORR) via a 2 e- pathway with a high H2 O2 selectivity of over 95 % in 0.10 m KOH. The critical role of the Mo single atoms and the coordination structure was revealed by both electrochemical tests and theoretical calculations.
Single-atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent coordinative dopants, and metal loading. However, doing so is still a great challenge because of the limited synthesis approach and insufficient understanding of the structure-property relationships. Herein, we report a new kind of Mo SAC with a unique O,S coordination and a high metal loading over 10 wt %. The isolation and local environment was identified by high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure. The SACs catalyze the oxygen reduction reaction (ORR) via a 2 e pathway with a high H O selectivity of over 95 % in 0.10 m KOH. The critical role of the Mo single atoms and the coordination structure was revealed by both electrochemical tests and theoretical calculations.
Single‐atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent coordinative dopants, and metal loading. However, doing so is still a great challenge because of the limited synthesis approach and insufficient understanding of the structure–property relationships. Herein, we report a new kind of Mo SAC with a unique O,S coordination and a high metal loading over 10 wt %. The isolation and local environment was identified by high‐angle annular dark‐field scanning transmission electron microscopy and extended X‐ray absorption fine structure. The SACs catalyze the oxygen reduction reaction (ORR) via a 2 e− pathway with a high H2O2 selectivity of over 95 % in 0.10 m KOH. The critical role of the Mo single atoms and the coordination structure was revealed by both electrochemical tests and theoretical calculations. The cat in the SAC: Mo single‐atom catalysts (SACs) with a unique O,S coordination exhibit outstanding H2O2 selectivity above 95 % in the oxygen reduction reaction (ORR). Electrochemical tests and theoretical calculations revealed the critical role of the coordination structure in SACs, highlighting new opportunities to tune the activity and selectivity in multi‐electron electrocatalysis.
Single‐atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent coordinative dopants, and metal loading. However, doing so is still a great challenge because of the limited synthesis approach and insufficient understanding of the structure–property relationships. Herein, we report a new kind of Mo SAC with a unique O,S coordination and a high metal loading over 10 wt %. The isolation and local environment was identified by high‐angle annular dark‐field scanning transmission electron microscopy and extended X‐ray absorption fine structure. The SACs catalyze the oxygen reduction reaction (ORR) via a 2 e − pathway with a high H 2 O 2 selectivity of over 95 % in 0.10  m KOH. The critical role of the Mo single atoms and the coordination structure was revealed by both electrochemical tests and theoretical calculations.
Single‐atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent coordinative dopants, and metal loading. However, doing so is still a great challenge because of the limited synthesis approach and insufficient understanding of the structure–property relationships. Herein, we report a new kind of Mo SAC with a unique O,S coordination and a high metal loading over 10 wt %. The isolation and local environment was identified by high‐angle annular dark‐field scanning transmission electron microscopy and extended X‐ray absorption fine structure. The SACs catalyze the oxygen reduction reaction (ORR) via a 2 e− pathway with a high H2O2 selectivity of over 95 % in 0.10 m KOH. The critical role of the Mo single atoms and the coordination structure was revealed by both electrochemical tests and theoretical calculations.
Single-atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent coordinative dopants, and metal loading. However, doing so is still a great challenge because of the limited synthesis approach and insufficient understanding of the structure–property relationships. Herein, we report a new kind of Mo SAC with a unique O,S coordination and a high metal loading over 10 wt %. The isolation and local environment was identified by high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure. The SACs catalyze the oxygen reduction reaction (ORR) via a 2 e- pathway with a high H2O2 selectivity of over 95 % in 0.10 m KOH. The critical role of the Mo single atoms and the coordination structure was revealed by both electrochemical tests and theoretical calculations.
Author Jiao, Yan
Tang, Cheng
Zhang, Qiang
Liu, Jia‐Ning
Xie, Zhenhua
Chen, Xiao
Qiao, Shi‐Zhang
Shi, Bingyang
Author_xml – sequence: 1
  givenname: Cheng
  surname: Tang
  fullname: Tang, Cheng
  organization: The University of Adelaide
– sequence: 2
  givenname: Yan
  surname: Jiao
  fullname: Jiao, Yan
  organization: The University of Adelaide
– sequence: 3
  givenname: Bingyang
  surname: Shi
  fullname: Shi, Bingyang
  organization: Henan University
– sequence: 4
  givenname: Jia‐Ning
  surname: Liu
  fullname: Liu, Jia‐Ning
  organization: Tsinghua University
– sequence: 5
  givenname: Zhenhua
  surname: Xie
  fullname: Xie, Zhenhua
  organization: Brookhaven National Laboratory
– sequence: 6
  givenname: Xiao
  surname: Chen
  fullname: Chen, Xiao
  organization: Tsinghua University
– sequence: 7
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  organization: Tsinghua University
– sequence: 8
  givenname: Shi‐Zhang
  orcidid: 0000-0002-4568-8422
  surname: Qiao
  fullname: Qiao, Shi‐Zhang
  email: s.qiao@adelaide.edu.au
  organization: The University of Adelaide
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32196867$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1617678$$D View this record in Osti.gov
BookMark eNqFkc1q3DAUhUVJaJJpt10W02yy8VQ_tiV3NwyTJjBtIJmuhUa-nijIUmrJTb3rI_QZ-yTRZNIUAiUgkK70nXs5Okdoz3kHCL0jeEowph-VMzClmGLMREFfoUNSUpIzztleOheM5VyU5AAdhXCTeCFw9RodMErqSlT8EMW5931jnIrGu2w1OAjZFVjQ0fwwcfyUre78n1-_F9ubPhEXP8cNuOwSmkE_SNI6M5vrxCy9So022Rdvx3UDbuiyq1RbSG-z6LtsrqKyY4jhDdpvlQ3w9nGfoG-ni9X8LF9efD6fz5a5LjinuagbodSaQ7IDiula0IKVmGpOqaqwaJUiTds2QGtcCqEbjRU0RECZ3IEibII-7Pr6EI0M2kTQ19o7l8xIUhFecZGgkx102_vvA4QoOxM0WKsc-CFIygSpaEXS7Ak6fobe-KF3yYKkBa4oJ2VZJ-r9IzWsO2jkbW861Y_y76cnYLoDdO9D6KF9QgiW21TlNlX5lGoSFM8EycpDYrFXxv5fVu9kd8bC-MIQOft6vvinvQcl77nj
CitedBy_id crossref_primary_10_1016_j_apsusc_2023_158976
crossref_primary_10_1002_cjoc_202400455
crossref_primary_10_1002_ange_202503195
crossref_primary_10_1021_jacs_4c02031
crossref_primary_10_1002_adfm_202411457
crossref_primary_10_1016_j_cclet_2024_110277
crossref_primary_10_1016_j_jallcom_2022_165148
crossref_primary_10_1021_acs_jpclett_5c00832
crossref_primary_10_1016_j_mattod_2025_02_007
crossref_primary_10_1016_j_mattod_2021_02_004
crossref_primary_10_1002_adma_202102801
crossref_primary_10_1016_j_jechem_2023_08_009
crossref_primary_10_1016_j_pmatsci_2022_100964
crossref_primary_10_1021_jacs_2c11928
crossref_primary_10_1002_adfm_202204458
crossref_primary_10_1002_anie_202415155
crossref_primary_10_1002_ange_202301433
crossref_primary_10_1002_anie_202511844
crossref_primary_10_1039_D1SC05867C
crossref_primary_10_1002_tcr_202500079
crossref_primary_10_1002_sstr_202100225
crossref_primary_10_1016_j_cej_2023_141688
crossref_primary_10_1016_j_electacta_2024_143989
crossref_primary_10_1016_j_jechem_2021_12_028
crossref_primary_10_1002_anie_202108439
crossref_primary_10_1002_admi_202202050
crossref_primary_10_1016_j_jelechem_2025_119113
crossref_primary_10_1016_S1872_5805_24_60861_9
crossref_primary_10_1007_s12274_023_5823_7
crossref_primary_10_1002_anie_202101804
crossref_primary_10_1002_chem_202201996
crossref_primary_10_1002_smll_202105409
crossref_primary_10_1002_adfm_202422588
crossref_primary_10_1002_adma_202209386
crossref_primary_10_1039_D5CY00565E
crossref_primary_10_1002_adfm_202212087
crossref_primary_10_1002_adma_202202523
crossref_primary_10_1002_anie_202105186
crossref_primary_10_1039_D3EW00302G
crossref_primary_10_3390_molecules28237751
crossref_primary_10_1039_D4SC03105A
crossref_primary_10_1016_j_jechem_2020_10_028
crossref_primary_10_1002_smtd_202301571
crossref_primary_10_1002_anie_202109538
crossref_primary_10_1038_s41467_022_30337_0
crossref_primary_10_1016_j_apcatb_2022_122195
crossref_primary_10_1039_D1EE00247C
crossref_primary_10_1002_smll_202504632
crossref_primary_10_1002_adfm_202204031
crossref_primary_10_1002_adma_202106371
crossref_primary_10_1002_adfm_202103857
crossref_primary_10_1016_j_electacta_2024_145624
crossref_primary_10_1002_ange_202011495
crossref_primary_10_1016_S1872_2067_21_63888_3
crossref_primary_10_1016_j_joule_2021_04_012
crossref_primary_10_1002_ange_202511844
crossref_primary_10_1002_anie_202301433
crossref_primary_10_1002_adfm_202210837
crossref_primary_10_1002_adma_202206828
crossref_primary_10_1016_j_biortech_2025_132512
crossref_primary_10_1016_j_ces_2024_119749
crossref_primary_10_1016_j_biomaterials_2024_122923
crossref_primary_10_1002_smm2_1033
crossref_primary_10_1016_j_carbon_2024_119216
crossref_primary_10_1002_adma_202209086
crossref_primary_10_1002_adfm_202104716
crossref_primary_10_1002_ange_202110838
crossref_primary_10_1007_s11356_023_25726_x
crossref_primary_10_1016_j_checat_2023_100810
crossref_primary_10_1002_adma_202410704
crossref_primary_10_1016_j_electacta_2020_137287
crossref_primary_10_1016_j_apcatb_2024_124911
crossref_primary_10_3390_ma18122907
crossref_primary_10_1038_s41467_021_25811_0
crossref_primary_10_1016_j_cej_2024_148587
crossref_primary_10_1002_celc_202300234
crossref_primary_10_1002_adma_202110653
crossref_primary_10_1002_smll_202401019
crossref_primary_10_1002_anie_202016977
crossref_primary_10_1002_ange_202117347
crossref_primary_10_1002_eom2_12336
crossref_primary_10_1007_s10853_024_10428_7
crossref_primary_10_1039_D4QI02430C
crossref_primary_10_1016_j_gee_2021_08_005
crossref_primary_10_1016_j_jiec_2025_01_044
crossref_primary_10_1016_j_apcatb_2023_123533
crossref_primary_10_1039_D2SC03714A
crossref_primary_10_1039_D5TA03508B
crossref_primary_10_1039_D1SE01726H
crossref_primary_10_1038_s42004_022_00645_z
crossref_primary_10_1002_adfm_202008318
crossref_primary_10_1016_j_apcata_2025_120469
crossref_primary_10_1039_D1SE01390D
crossref_primary_10_1002_anie_202117347
crossref_primary_10_1039_D2RA06302F
crossref_primary_10_1002_adma_202306336
crossref_primary_10_1016_j_apcatb_2021_120228
crossref_primary_10_1002_adma_202509221
crossref_primary_10_1002_ange_202016977
crossref_primary_10_1002_anie_202104053
crossref_primary_10_1103_PhysRevApplied_19_054094
crossref_primary_10_1039_D2NR00294A
crossref_primary_10_1002_ange_202104053
crossref_primary_10_1002_anie_202110838
crossref_primary_10_1016_j_cej_2025_159747
crossref_primary_10_1016_j_apcatb_2022_122038
crossref_primary_10_1021_jacs_1c12642
crossref_primary_10_1016_j_checat_2023_100724
crossref_primary_10_1002_advs_202308040
crossref_primary_10_1016_j_cej_2023_147608
crossref_primary_10_1039_D0SC02518F
crossref_primary_10_1002_smll_202200730
crossref_primary_10_1016_S1872_2067_20_63781_0
crossref_primary_10_1002_cey2_194
crossref_primary_10_1016_j_apcatb_2022_121173
crossref_primary_10_1002_adfm_202110224
crossref_primary_10_1038_s41467_023_41192_y
crossref_primary_10_1002_ange_202415155
crossref_primary_10_1002_advs_202205031
crossref_primary_10_1002_anie_202202338
crossref_primary_10_1002_aenm_202003323
crossref_primary_10_1016_j_esci_2025_100456
crossref_primary_10_1002_eom2_12266
crossref_primary_10_1038_s41467_024_48349_3
crossref_primary_10_1002_advs_202413475
crossref_primary_10_1016_j_enchem_2024_100119
crossref_primary_10_1016_j_apsusc_2025_163002
crossref_primary_10_1016_j_jhazmat_2022_129327
crossref_primary_10_1039_D0EE01925A
crossref_primary_10_1002_aic_18022
crossref_primary_10_1002_smll_202311691
crossref_primary_10_1002_adfm_202300895
crossref_primary_10_1002_anie_202008759
crossref_primary_10_1038_s41467_021_23486_1
crossref_primary_10_1016_j_jallcom_2024_174948
crossref_primary_10_1039_D4SC00454J
crossref_primary_10_1002_ange_202105750
crossref_primary_10_1002_adfm_202110485
crossref_primary_10_1016_j_jcis_2024_06_035
crossref_primary_10_1002_anie_202101522
crossref_primary_10_1016_S1872_2067_21_63941_4
crossref_primary_10_1002_aenm_202002473
crossref_primary_10_1038_s41467_021_26747_1
crossref_primary_10_1016_j_chempr_2020_10_023
crossref_primary_10_1002_advs_202100076
crossref_primary_10_1007_s12274_023_5449_9
crossref_primary_10_3390_en16186616
crossref_primary_10_1002_adfm_202309223
crossref_primary_10_1002_aenm_202103097
crossref_primary_10_1038_s41467_021_25562_y
crossref_primary_10_1016_j_apcatb_2022_121265
crossref_primary_10_1016_j_gee_2021_11_005
crossref_primary_10_26599_NR_2025_94907278
crossref_primary_10_1002_adfm_202204755
crossref_primary_10_1007_s12274_023_5899_0
crossref_primary_10_1002_adma_202105812
crossref_primary_10_1016_j_carbon_2024_118997
crossref_primary_10_1021_jacs_4c00972
crossref_primary_10_1016_j_jechem_2020_10_034
crossref_primary_10_1002_adfm_202307390
crossref_primary_10_1016_S1872_5805_22_60582_1
crossref_primary_10_1016_j_jechem_2022_05_007
crossref_primary_10_1016_j_jechem_2020_10_036
crossref_primary_10_1002_admi_202001360
crossref_primary_10_1016_j_apcatb_2023_122987
crossref_primary_10_1016_j_cej_2021_132038
crossref_primary_10_1002_elan_202060334
crossref_primary_10_1002_adma_202404659
crossref_primary_10_1002_ange_202314414
crossref_primary_10_1002_eom2_12067
crossref_primary_10_1002_anie_202416715
crossref_primary_10_1002_smll_202403029
crossref_primary_10_1016_j_checat_2024_100997
crossref_primary_10_1016_S1872_2067_23_64498_5
crossref_primary_10_1016_j_nanoen_2024_110020
crossref_primary_10_1002_anie_202503195
crossref_primary_10_1002_smll_202403261
crossref_primary_10_1002_adma_202100429
crossref_primary_10_1016_j_apmt_2023_102037
crossref_primary_10_1002_sus2_38
crossref_primary_10_1016_j_apsusc_2023_157302
crossref_primary_10_1016_j_jechem_2021_10_011
crossref_primary_10_1016_j_jechem_2021_10_013
crossref_primary_10_1002_anie_202016219
crossref_primary_10_1002_ange_202207268
crossref_primary_10_1016_j_electacta_2023_142777
crossref_primary_10_1039_D2NR07066A
crossref_primary_10_1016_j_jclepro_2023_136918
crossref_primary_10_1039_D1CY00736J
crossref_primary_10_1038_s41467_021_27640_7
crossref_primary_10_1038_s41467_023_44652_7
crossref_primary_10_1002_aenm_202002896
crossref_primary_10_1002_adma_202110123
crossref_primary_10_1002_adfm_202108381
crossref_primary_10_1073_pnas_2209760120
crossref_primary_10_1039_D2EE01797K
crossref_primary_10_1002_cctc_202201016
crossref_primary_10_1002_adma_202312724
crossref_primary_10_1002_adma_202412386
crossref_primary_10_1002_advs_202102209
crossref_primary_10_1002_aenm_202303233
crossref_primary_10_1021_jacs_4c10675
crossref_primary_10_1016_j_cej_2022_140084
crossref_primary_10_1038_s41467_021_24513_x
crossref_primary_10_1016_j_cej_2021_131534
crossref_primary_10_1021_jacs_1c05032
crossref_primary_10_1039_D0EE03947K
crossref_primary_10_1016_j_apsusc_2023_158290
crossref_primary_10_1002_smll_202302249
crossref_primary_10_1016_j_nanoen_2023_108718
crossref_primary_10_1016_j_cej_2021_132990
crossref_primary_10_1016_j_jechem_2021_08_019
crossref_primary_10_1002_anie_202213296
crossref_primary_10_1002_adfm_202305606
crossref_primary_10_1016_j_apcatb_2022_121578
crossref_primary_10_1002_anie_202307355
crossref_primary_10_1002_adfm_202405328
crossref_primary_10_1002_anie_202313914
crossref_primary_10_1016_j_cej_2025_165565
crossref_primary_10_1016_j_ecoenv_2025_117714
crossref_primary_10_1002_bkcs_12348
crossref_primary_10_1016_j_jece_2023_109572
crossref_primary_10_1016_j_mattod_2023_02_004
crossref_primary_10_1002_cctc_202100805
crossref_primary_10_1002_adma_202406807
crossref_primary_10_1002_ange_202101522
crossref_primary_10_1002_ange_202008787
crossref_primary_10_1021_jacs_2c00242
crossref_primary_10_1021_acs_iecr_4c03929
crossref_primary_10_1007_s40820_023_01044_2
crossref_primary_10_1002_smtd_202100102
crossref_primary_10_1016_j_ccr_2024_215961
crossref_primary_10_1002_ange_202202338
crossref_primary_10_1002_smll_202410612
crossref_primary_10_1002_ange_202113895
crossref_primary_10_1002_ange_202513329
crossref_primary_10_1002_anie_202319470
crossref_primary_10_1038_s41467_024_48209_0
crossref_primary_10_1038_s41467_024_55116_x
crossref_primary_10_1016_j_ccr_2024_215952
crossref_primary_10_1038_s41467_022_28346_0
crossref_primary_10_1016_j_jechem_2024_06_021
crossref_primary_10_1016_j_nxnano_2024_100073
crossref_primary_10_1002_smll_202302338
crossref_primary_10_1016_j_checat_2022_04_011
crossref_primary_10_1002_adma_202105410
crossref_primary_10_1039_D3QI01576A
crossref_primary_10_1002_anie_202513329
crossref_primary_10_1016_S1872_2067_22_64184_6
crossref_primary_10_1002_adma_202107954
crossref_primary_10_1016_j_nanoms_2021_03_006
crossref_primary_10_1039_D0MH01061H
crossref_primary_10_1016_j_ccr_2022_214493
crossref_primary_10_1002_anie_202113895
crossref_primary_10_1016_j_ccr_2025_217008
crossref_primary_10_1038_s41467_023_38883_x
crossref_primary_10_1016_j_ccr_2024_215900
crossref_primary_10_1016_j_jechem_2021_08_068
crossref_primary_10_1016_j_cej_2020_127917
crossref_primary_10_1002_ange_202109058
crossref_primary_10_1016_j_apcatb_2025_125854
crossref_primary_10_1016_j_mtener_2024_101500
crossref_primary_10_1002_aenm_202301543
crossref_primary_10_1016_j_cej_2025_165884
crossref_primary_10_1007_s12274_022_4140_x
crossref_primary_10_1021_jacs_4c13400
crossref_primary_10_1080_01614940_2021_2003085
crossref_primary_10_1002_anie_202309341
crossref_primary_10_1039_D2NH00564F
crossref_primary_10_1002_adfm_202203842
crossref_primary_10_1002_ange_202507803
crossref_primary_10_1016_j_jechem_2022_10_015
crossref_primary_10_1002_smsc_202200036
crossref_primary_10_1002_adma_202104891
crossref_primary_10_1016_j_jechem_2025_01_059
crossref_primary_10_1002_smll_202106091
crossref_primary_10_1002_anie_202109058
crossref_primary_10_1002_ange_202407163
crossref_primary_10_1021_acs_iecr_5c02494
crossref_primary_10_1007_s12274_023_5510_8
crossref_primary_10_1016_j_jece_2024_114050
crossref_primary_10_1002_cey2_337
crossref_primary_10_2147_IJN_S382796
crossref_primary_10_1002_adsu_202000213
crossref_primary_10_1021_prechem_2c00006
crossref_primary_10_1002_anie_202008787
crossref_primary_10_1016_j_cej_2022_139371
crossref_primary_10_1039_D5EE01112D
crossref_primary_10_1007_s12274_021_3995_6
crossref_primary_10_1002_anie_202407163
crossref_primary_10_1002_anie_202507803
crossref_primary_10_1002_cjce_24816
crossref_primary_10_1002_cey2_581
crossref_primary_10_1016_S1872_2067_24_60103_8
crossref_primary_10_1039_D5NR00337G
crossref_primary_10_1039_D4SC08603A
crossref_primary_10_1038_s41467_023_37066_y
crossref_primary_10_1002_cssc_202100055
crossref_primary_10_1016_j_susmat_2020_e00204
crossref_primary_10_1002_smsc_202100046
crossref_primary_10_1016_j_cej_2024_156042
crossref_primary_10_1007_s12274_024_6923_8
crossref_primary_10_1016_j_jece_2024_112972
crossref_primary_10_1002_adfm_202106886
crossref_primary_10_1002_ange_202109538
crossref_primary_10_1002_cssc_202100182
crossref_primary_10_1016_j_cclet_2020_11_013
crossref_primary_10_3389_fchem_2022_1011597
crossref_primary_10_1016_j_nanoen_2023_108798
crossref_primary_10_1073_pnas_2315362121
crossref_primary_10_1002_ange_202101804
crossref_primary_10_1016_j_gerr_2023_100031
crossref_primary_10_1021_acscatal_5c02839
crossref_primary_10_1002_smll_202103824
crossref_primary_10_1016_j_cej_2021_130611
crossref_primary_10_1021_jacs_3c03426
crossref_primary_10_1039_D3NR01708G
crossref_primary_10_1002_anie_202011495
crossref_primary_10_1016_j_jechem_2023_02_002
crossref_primary_10_1016_j_jechem_2020_08_030
crossref_primary_10_1016_j_cej_2025_160709
crossref_primary_10_1016_j_jece_2024_112604
crossref_primary_10_1016_j_checat_2022_02_002
crossref_primary_10_1016_j_cej_2024_157125
crossref_primary_10_1002_adfm_202304468
crossref_primary_10_1002_ange_202319470
crossref_primary_10_1002_ange_202108439
crossref_primary_10_1016_j_chempr_2021_08_007
crossref_primary_10_1002_adma_202301477
crossref_primary_10_1002_smtd_202100865
crossref_primary_10_1016_j_nanoen_2021_105817
crossref_primary_10_1002_chem_202101786
crossref_primary_10_1039_D4CS01031K
crossref_primary_10_1016_j_apcatb_2020_119780
crossref_primary_10_1016_j_nanoms_2025_07_009
crossref_primary_10_1016_j_jelechem_2022_116946
crossref_primary_10_1016_j_cej_2021_130996
crossref_primary_10_1002_ange_202309341
crossref_primary_10_59717_j_xinn_mater_2025_100141
crossref_primary_10_1016_j_checat_2024_101069
crossref_primary_10_1002_ange_202105186
crossref_primary_10_1016_j_cej_2022_140721
crossref_primary_10_1002_ange_202213296
crossref_primary_10_1002_cey2_309
crossref_primary_10_1016_j_cej_2021_132829
crossref_primary_10_1016_j_cej_2021_130401
crossref_primary_10_1016_j_fuel_2023_128751
crossref_primary_10_1016_j_est_2024_113684
crossref_primary_10_1038_s41467_023_40118_y
crossref_primary_10_1016_S1872_2067_23_64392_X
crossref_primary_10_1002_ange_202008759
crossref_primary_10_1002_ente_202100301
crossref_primary_10_1002_adma_202103266
crossref_primary_10_1016_j_apcatb_2023_123276
crossref_primary_10_1016_j_apsusc_2022_153233
crossref_primary_10_1002_anie_202207268
crossref_primary_10_1038_s41467_022_30523_0
crossref_primary_10_1002_adma_202408341
crossref_primary_10_1016_j_cclet_2025_110909
crossref_primary_10_1016_j_mser_2024_100822
crossref_primary_10_1002_sstr_202000051
crossref_primary_10_1002_anie_202105750
crossref_primary_10_1016_j_cej_2024_157208
crossref_primary_10_1021_acs_jpcc_5c02774
crossref_primary_10_1039_D1CY01466H
crossref_primary_10_1016_j_cej_2021_131973
crossref_primary_10_1016_j_nanoen_2023_108404
crossref_primary_10_1002_celc_202300630
crossref_primary_10_1016_j_cej_2025_166571
crossref_primary_10_1002_adfm_202103597
crossref_primary_10_1002_adma_202202714
crossref_primary_10_1002_ange_202313914
crossref_primary_10_1016_j_cclet_2023_108142
crossref_primary_10_1002_anie_202314414
crossref_primary_10_1002_smll_202204757
crossref_primary_10_1002_cctc_202101266
crossref_primary_10_1016_j_jechem_2025_08_087
crossref_primary_10_1016_j_electacta_2024_144356
crossref_primary_10_1016_j_jechem_2024_11_027
crossref_primary_10_1016_j_trechm_2021_05_009
crossref_primary_10_1021_acsami_5c08219
crossref_primary_10_1007_s40843_021_1795_9
crossref_primary_10_1016_j_psep_2022_08_017
crossref_primary_10_1002_cctc_202200853
crossref_primary_10_1016_j_jcis_2022_05_149
crossref_primary_10_1002_smll_202308767
crossref_primary_10_1016_j_apcatb_2023_123492
crossref_primary_10_1016_j_nanoen_2023_108536
crossref_primary_10_1002_smll_202002124
crossref_primary_10_1002_smll_202504692
crossref_primary_10_1039_D4SC04905E
crossref_primary_10_1002_ange_202016219
crossref_primary_10_1007_s40820_021_00668_6
crossref_primary_10_1039_D4NR00250D
crossref_primary_10_1002_adma_202106541
crossref_primary_10_1039_D1NR08007E
crossref_primary_10_1021_jacs_2c01194
crossref_primary_10_1021_jacs_4c04322
crossref_primary_10_1016_j_nantod_2025_102732
crossref_primary_10_1002_adma_202314340
crossref_primary_10_1016_j_cclet_2021_07_044
crossref_primary_10_1007_s12209_021_00295_7
crossref_primary_10_1002_aenm_202100332
crossref_primary_10_1002_ange_202416715
crossref_primary_10_1002_ange_202307355
crossref_primary_10_1002_adma_202210575
Cites_doi 10.1002/anie.201812435
10.1038/s41467-019-11992-2
10.1021/acscatal.7b03464
10.1038/s41586-019-1760-8
10.1002/anie.201703864
10.1002/ange.201502396
10.1038/ncomms10922
10.1016/j.chempr.2017.10.013
10.1038/s41929-017-0008-y
10.1103/PhysRevB.71.094110
10.1002/smtd.201800440
10.1002/ange.201812435
10.1038/s41570-018-0010-1
10.1016/j.joule.2018.06.019
10.1002/ange.201703864
10.1016/j.chempr.2017.12.005
10.1002/ange.201911995
10.1002/anie.201811728
10.1021/jp204680p
10.1038/s41563-019-0571-5
10.1016/j.chempr.2019.12.008
10.1002/adma.201808173
10.1002/adma.201801649
10.1038/s41929-017-0017-x
10.1038/s41467-019-09290-y
10.1238/Physica.Topical.115a00232
10.1002/ange.201804958
10.1021/jacs.8b02798
10.1021/acscatal.8b00217
10.1021/cs5008206
10.1002/anie.201911995
10.1002/aenm.201900149
10.1126/sciadv.aax6322
10.1021/acscatal.9b02546
10.1038/s41467-019-12510-0
10.1002/adma.201703185
10.1002/ange.201702473
10.1002/ange.201811728
10.1039/C9CS00422J
10.1007/s41918-019-00033-7
10.1002/smtd.201900540
10.1002/anie.201804958
10.1021/jacs.9b05576
10.1002/smtd.201800406
10.1002/smtd.201800497
10.1021/acscatal.6b03035
10.1002/anie.201502396
10.1021/jacs.9b11852
10.1038/nmat3795
10.1002/anie.201702473
10.1021/jacs.9b03811
10.1021/ja300038p
10.1021/jacs.7b10817
10.1021/jacs.9b09352
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
CorporateAuthor Brookhaven National Lab. (BNL), Upton, NY (United States)
CorporateAuthor_xml – name: Brookhaven National Lab. (BNL), Upton, NY (United States)
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
OIOZB
OTOTI
DOI 10.1002/anie.202003842
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

CrossRef
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 9176
ExternalDocumentID 1617678
32196867
10_1002_anie_202003842
ANIE202003842
Genre article
Journal Article
GrantInformation_xml – fundername: Australian Research Council
  funderid: DP160104866, LP160100927, DP190103472 and FL170100154
– fundername: Australian Research Council
  grantid: DP160104866, LP160100927, DP190103472 and FL170100154
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
ABUFD
AEYWJ
AGHNM
AGYGG
CITATION
O8X
NPM
YIN
7TM
K9.
7X8
AAPBV
ABHUG
ABWRO
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
B-7
OIOZB
OTOTI
PQEST
ID FETCH-LOGICAL-c4772-89d8aab7e377ea3c98243502c722a608faa1dffde290588cdc0aed18e5196ea13
IEDL.DBID DRFUL
ISICitedReferencesCount 536
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524335500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Thu May 18 22:35:25 EDT 2023
Fri Jul 11 11:16:13 EDT 2025
Tue Oct 07 07:17:46 EDT 2025
Wed Feb 19 02:30:00 EST 2025
Sat Nov 29 02:35:50 EST 2025
Tue Nov 18 22:19:33 EST 2025
Wed Jan 22 16:35:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords selectivity
single-atom catalyst
electrocatalysis
oxygen reduction reaction (ORR)
molybdenum
Language English
License 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4772-89d8aab7e377ea3c98243502c722a608faa1dffde290588cdc0aed18e5196ea13
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES)
SC0012704
BNL-215903-2020-JAAM
ORCID 0000-0002-4568-8422
0000000337378894
0000000245688422
OpenAccessLink https://www.osti.gov/servlets/purl/1617678
PMID 32196867
PQID 2406271559
PQPubID 946352
PageCount 6
ParticipantIDs osti_scitechconnect_1617678
proquest_miscellaneous_2381626124
proquest_journals_2406271559
pubmed_primary_32196867
crossref_primary_10_1002_anie_202003842
crossref_citationtrail_10_1002_anie_202003842
wiley_primary_10_1002_anie_202003842_ANIE202003842
PublicationCentury 2000
PublicationDate June 2, 2020
PublicationDateYYYYMMDD 2020-06-02
PublicationDate_xml – month: 06
  year: 2020
  text: June 2, 2020
  day: 02
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: United States
PublicationTitle Angewandte Chemie (International ed.)
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2011; 115
2017; 7
2019; 9
2019; 3
2018; 140
2019; 5
2019; 31
2020; 142
2019; 2
2019; 10
2020 2020; 59 132
2017; 29
2017 2017; 56 129
2019; 141
2019 2019; 58 131
2017; 139
2020; 19
2020; 6
2018; 8
2016; 7
2020; 4
2018; 2
2014; 4
2012; 134
2018; 4
2018; 1
2013; 12
2018 2018; 57 130
2019; 48
2005; T115
2019; 575
2015 2015; 54 127
2018; 30
2005; 71
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_19_2
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_34_2
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_11_2
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_15_2
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_43_2
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_31_2
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_10_2
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 2
  start-page: 332
  year: 2019
  end-page: 371
  publication-title: Electrochem. Energy Rev.
– volume: 19
  start-page: 436
  year: 2020
  end-page: 442
  publication-title: Nat. Mater.
– volume: 141
  start-page: 20118
  year: 2019
  end-page: 20126
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 285
  year: 2018
  end-page: 297
  publication-title: Chem
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  start-page: 658
  year: 2020
  end-page: 674
  publication-title: Chem
– volume: 59 132
  start-page: 798 808
  year: 2020 2020
  end-page: 803 813
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 134
  start-page: 4072
  year: 2012
  end-page: 4075
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 2404
  year: 2020
  end-page: 2414
  publication-title: J. Am. Chem. Soc.
– volume: 71
  year: 2005
  publication-title: Phys. Rev. B
– volume: 115
  start-page: 18015
  year: 2011
  end-page: 18026
  publication-title: J. Phys. Chem. C
– volume: 48
  start-page: 5207
  year: 2019
  end-page: 5241
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 1137
  year: 2013
  end-page: 1143
  publication-title: Nat. Mater.
– volume: 140
  start-page: 7851
  year: 2018
  end-page: 7859
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 9038 9176
  year: 2018 2018
  end-page: 9043 9181
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56 129
  start-page: 13944 14132
  year: 2017 2017
  end-page: 13960 14148
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 106
  year: 2018
  end-page: 123
  publication-title: Chem
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 54 127
  start-page: 6837 6941
  year: 2015 2015
  end-page: 6841 6945
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 1278
  year: 2019
  publication-title: Nat. Commun.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 2844
  year: 2018
  end-page: 2856
  publication-title: ACS Catal.
– volume: 7
  start-page: 10922
  year: 2016
  publication-title: Nat. Commun.
– volume: T115
  start-page: 232
  year: 2005
  end-page: 234
  publication-title: Phys. Scripta
– volume: 2
  start-page: 1242
  year: 2018
  end-page: 1264
  publication-title: Joule
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 7
  start-page: 706
  year: 2017
  end-page: 709
  publication-title: ACS Catal.
– volume: 1
  start-page: 156
  year: 2018
  end-page: 162
  publication-title: Nat. Catal.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 9
  start-page: 8433
  year: 2019
  end-page: 8442
  publication-title: ACS Catal.
– volume: 8
  start-page: 4064
  year: 2018
  end-page: 4081
  publication-title: ACS Catal.
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 139
  start-page: 18093
  year: 2017
  end-page: 18100
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 1100 1112
  year: 2019 2019
  end-page: 1105 1117
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 575
  start-page: 639
  year: 2019
  end-page: 642
  publication-title: Nature
– volume: 141
  start-page: 9664
  year: 2019
  end-page: 9672
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 12372
  year: 2019
  end-page: 12381
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 3749
  year: 2014
  end-page: 3754
  publication-title: ACS Catal.
– volume: 56 129
  start-page: 6937 7041
  year: 2017 2017
  end-page: 6941 7045
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 63
  year: 2018
  end-page: 72
  publication-title: Nat. Catal.
– volume: 2
  start-page: 65
  year: 2018
  end-page: 81
  publication-title: Nat. Rev. Chem.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 10
  start-page: 3997
  year: 2019
  publication-title: Nat. Commun.
– volume: 10
  start-page: 4585
  year: 2019
  publication-title: Nat. Commun.
– volume: 58 131
  start-page: 2321 2343
  year: 2019 2019
  end-page: 2325 2347
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_6_34_1
  doi: 10.1002/anie.201812435
– ident: e_1_2_6_13_1
  doi: 10.1038/s41467-019-11992-2
– ident: e_1_2_6_44_1
  doi: 10.1021/acscatal.7b03464
– ident: e_1_2_6_16_1
  doi: 10.1038/s41586-019-1760-8
– ident: e_1_2_6_19_1
  doi: 10.1002/anie.201703864
– ident: e_1_2_6_43_2
  doi: 10.1002/ange.201502396
– ident: e_1_2_6_47_1
  doi: 10.1038/ncomms10922
– ident: e_1_2_6_46_1
  doi: 10.1016/j.chempr.2017.10.013
– ident: e_1_2_6_4_1
  doi: 10.1038/s41929-017-0008-y
– ident: e_1_2_6_33_1
  doi: 10.1103/PhysRevB.71.094110
– ident: e_1_2_6_14_1
  doi: 10.1002/smtd.201800440
– ident: e_1_2_6_34_2
  doi: 10.1002/ange.201812435
– ident: e_1_2_6_1_1
  doi: 10.1038/s41570-018-0010-1
– ident: e_1_2_6_26_1
  doi: 10.1016/j.joule.2018.06.019
– ident: e_1_2_6_19_2
  doi: 10.1002/ange.201703864
– ident: e_1_2_6_30_1
  doi: 10.1016/j.chempr.2017.12.005
– ident: e_1_2_6_15_2
  doi: 10.1002/ange.201911995
– ident: e_1_2_6_31_1
  doi: 10.1002/anie.201811728
– ident: e_1_2_6_38_1
  doi: 10.1021/jp204680p
– ident: e_1_2_6_9_1
  doi: 10.1038/s41563-019-0571-5
– ident: e_1_2_6_45_1
  doi: 10.1016/j.chempr.2019.12.008
– ident: e_1_2_6_37_1
  doi: 10.1002/adma.201808173
– ident: e_1_2_6_2_1
  doi: 10.1002/adma.201801649
– ident: e_1_2_6_35_1
  doi: 10.1038/s41929-017-0017-x
– ident: e_1_2_6_6_1
  doi: 10.1038/s41467-019-09290-y
– ident: e_1_2_6_32_1
  doi: 10.1238/Physica.Topical.115a00232
– ident: e_1_2_6_11_2
  doi: 10.1002/ange.201804958
– ident: e_1_2_6_36_1
  doi: 10.1021/jacs.8b02798
– ident: e_1_2_6_18_1
  doi: 10.1021/acscatal.8b00217
– ident: e_1_2_6_42_1
  doi: 10.1021/cs5008206
– ident: e_1_2_6_15_1
  doi: 10.1002/anie.201911995
– ident: e_1_2_6_25_1
  doi: 10.1002/aenm.201900149
– ident: e_1_2_6_7_1
  doi: 10.1126/sciadv.aax6322
– ident: e_1_2_6_40_1
  doi: 10.1021/acscatal.9b02546
– ident: e_1_2_6_5_1
  doi: 10.1038/s41467-019-12510-0
– ident: e_1_2_6_27_1
  doi: 10.1002/adma.201703185
– ident: e_1_2_6_10_2
  doi: 10.1002/ange.201702473
– ident: e_1_2_6_31_2
  doi: 10.1002/ange.201811728
– ident: e_1_2_6_21_1
  doi: 10.1039/C9CS00422J
– ident: e_1_2_6_28_1
  doi: 10.1007/s41918-019-00033-7
– ident: e_1_2_6_24_1
  doi: 10.1002/smtd.201900540
– ident: e_1_2_6_11_1
  doi: 10.1002/anie.201804958
– ident: e_1_2_6_12_1
  doi: 10.1021/jacs.9b05576
– ident: e_1_2_6_29_1
  doi: 10.1002/smtd.201800406
– ident: e_1_2_6_20_1
  doi: 10.1002/smtd.201800497
– ident: e_1_2_6_17_1
  doi: 10.1021/acscatal.6b03035
– ident: e_1_2_6_43_1
  doi: 10.1002/anie.201502396
– ident: e_1_2_6_23_1
  doi: 10.1021/jacs.9b11852
– ident: e_1_2_6_39_1
  doi: 10.1038/nmat3795
– ident: e_1_2_6_10_1
  doi: 10.1002/anie.201702473
– ident: e_1_2_6_8_1
  doi: 10.1021/jacs.9b03811
– ident: e_1_2_6_41_1
  doi: 10.1021/ja300038p
– ident: e_1_2_6_3_1
  doi: 10.1021/jacs.7b10817
– ident: e_1_2_6_22_1
  doi: 10.1021/jacs.9b09352
SSID ssj0028806
Score 2.7163317
Snippet Single‐atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent...
Single-atom catalysts (SACs) have great potential in electrocatalysis. Their performance can be rationally optimized by tailoring the metal atoms, adjacent...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9171
SubjectTerms Catalysts
Chemical reduction
Coordination
electrocatalysis
Electrochemistry
Fine structure
Hydrogen peroxide
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
Molybdenum
Oxygen
oxygen reduction reaction (ORR)
Oxygen reduction reactions
Scanning transmission electron microscopy
Selectivity
Single atom catalysts
single-atom catalyst
Transmission electron microscopy
Ultrastructure
Title Coordination Tunes Selectivity: Two‐Electron Oxygen Reduction on High‐Loading Molybdenum Single‐Atom Catalysts
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202003842
https://www.ncbi.nlm.nih.gov/pubmed/32196867
https://www.proquest.com/docview/2406271559
https://www.proquest.com/docview/2381626124
https://www.osti.gov/servlets/purl/1617678
Volume 59
WOSCitedRecordID wos000524335500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swED-2dLC9tPvbue2KBoM9mTqyZsl7C1nCBlk22hTyJhRZhkIWl9pZm7d-hH7GfpLdyY7XwMpgAz_YSDJCd6e7051-B_DOiq60qDZCETsVCsddqGKRoc-jVJY4O8utp_RIjsdqOk2_37nFX-NDtAduJBl-vyYBN7Py6DdoKN3ARv-OkquUwE14iyPzig5sfToeno5apwv5s75hFMchFaJfAzdG_GjzDxuKqVOggP3J6Ny0Yb0SGu78__SfwnZjgLJezTHP4IFbPIfH_XXdtxdQ9Qt0SM_qU0I2WeJeyE58tRxfZ-Ijm1wWt9c3g6Z-Dvt2tUImZMeEAeuH4EPZI9hnVPgMffa1mK9mGSXdsxP8njts61XFD9anw6NVWZUv4XQ4mPQ_h01thtAKNMhDlWbKmJl0sZTOxDZVHA2viFvJuUkilRvTzfI8czyNPihlMxsZl3WVQ4sxcaYbv4LOoli418Ck4VRCSVorUhHlwgiZ5hTvjJLI5SoJIFwTRtsGuJzqZ8x1DbnMNa2lbtcygPdt__MasuPenvtEZ43GBiHmWkotspUmlw91eAAHa_LrRrBLTQYQlxTLDeBt24wUojiLWbhiiX0oGEvQbCKA3Zpt2onEqCESlcgAuOeOv8xQ98ZfBu3X3r8M2ocn9O7T2_gBdKqLpXsDj-zP6qy8OISHcqoOG6H5BcG_GPQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9GOuhe9tWPee02DQp7MnVk1ZL3FrKElrnZaFPom1BkGQJpXBqnW972J-xv3F-yO9nxCGwMxsAvsmQjdHe6D51-B3BkRVdaVBuhiJ0KheMuVLHI0edRKk-cnRTWUzqTo5G6vk4_N9mEdBemxodoA24kGX6_JgGngPTxL9RQuoKNDh5lVymBu_CWQF466cDWh4vhVdZ6Xcig9RWjOA6pEv0auTHix5t_2NBMnRIl7HdW56YR67XQ8Ml_mP9TeNyYoKxX88wzeODmz2G7v678tgNVv0SXdFrHCdl4ibshu_T1cnylifds_KX88e37oKmgwz59XSEbsgtCgfWf4EP5IzgmK32OPjsvZ6tJTmn37BLbM4d9vaq8YX0KH60W1WIXroaDcf80bKozhFagSR6qNFfGTKSLpXQmtqniaHpF3ErOTRKpwphuXhS542l0opTNbWRc3lUObcbEmW68B515OXcvgEnDqYiStFakIiqEETIt6MQzSiJXqCSAcE0ZbRvocqqgMdM16DLXtJa6XcsA3rXjb2vQjj-OPCBCazQ3CDPXUnKRrTQ5fajFAzhc0183or3QZAJxSae5Abxtu5FCdNJi5q5c4hg6jiVwNhHAfs037URi1BGJSmQA3LPHX2aoe6OzQdt6-S8fvYHt0_F5prOz0ccDeETvfbIbP4ROdbd0r-Chva-mi7vXjez8BOzvG_w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED-hDgEvjH-DsAFGQuIpWup4sbO3qmvFRCnT1kl7s1zbkSaVZlpToG98BD4jn2R3TpqpEggJIeXFsRNZvjvfne_8O4B3VnSlRbURi9SrWHjuY5UKhz6PUi7zdlrYQOmRHI_VxUV-0mQT0l2YGh-iPXAjyQj7NQm4v3LF_i1qKF3BRgePsquUwF14SxzkGcrm1tHp8HzUel3IoPUVozSNqRL9Grkx4fubf9jQTJ0SJex3VuemERu00HD7P8z_ETxsTFDWq3nmMdzx8ydwv7-u_PYUqn6JLullfU7IJkvcDdlZqJcTKk0cssm38tePn4Omgg77_H2FbMhOCQU2fIIP5Y_gmFEZcvTZp3K2mjpKu2dn2J557OtV5RfWp-Oj1aJaPIPz4WDS_xA31RliK9Akj1XulDFT6VMpvUltrjiaXgm3knOTJaowpuuKwnmeJwdKWWcT411XebQZM2-66Q505uXcvwAmDaciStJakYukEEbIvKCIZ5IlvlBZBPGaMto20OVUQWOma9BlrmktdbuWEbxvx1_VoB1_HLlLhNZobhBmrqXkIltpcvpQi0ewt6a_bkR7ockE4pKiuRG8bbuRQhRpMXNfLnEMhWMJnE1E8Lzmm3YiKeqITGUyAh7Y4y8z1L3x8aBtvfyXj97AvZOjoR4djz_uwgN6HXLd-B50quulfwV37dfqcnH9uhGdG09vG3c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coordination+Tunes+Selectivity%3A+Two%E2%80%90Electron+Oxygen+Reduction+on+High%E2%80%90Loading+Molybdenum+Single%E2%80%90Atom+Catalysts&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Tang%2C+Cheng&rft.au=Jiao%2C+Yan&rft.au=Shi%2C+Bingyang&rft.au=Jia%E2%80%90Ning+Liu&rft.date=2020-06-02&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=23&rft.spage=9171&rft.epage=9176&rft_id=info:doi/10.1002%2Fanie.202003842&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon