Querying quantitative logic models (Q2LM) to study intracellular signaling networks and cell-cytokine interactions
Mathematical models have substantially improved our ability to predict the response of a complex biological system to perturbation, but their use is typically limited by difficulties in specifying model topology and parameter values. Additionally, incorporating entities across different biological s...
Saved in:
| Published in: | Biotechnology journal Vol. 7; no. 3; pp. 374 - 386 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Weinheim
WILEY-VCH Verlag
01.03.2012
WILEY‐VCH Verlag |
| Subjects: | |
| ISSN: | 1860-6768, 1860-7314, 1860-7314 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Mathematical models have substantially improved our ability to predict the response of a complex biological system to perturbation, but their use is typically limited by difficulties in specifying model topology and parameter values. Additionally, incorporating entities across different biological scales ranging from molecular to organismal in the same model is not trivial. Here, we present a framework called “querying quantitative logic models” (Q2LM) for building and asking questions of constrained fuzzy logic (cFL) models. cFL is a recently developed modeling formalism that uses logic gates to describe influences among entities, with transfer functions to describe quantitative dependencies. Q2LM does not rely on dedicated data to train the parameters of the transfer functions, and it permits straight‐forward incorporation of entities at multiple biological scales. The Q2LM framework can be employed to ask questions such as: Which therapeutic perturbations accomplish a designated goal, and under what environmental conditions will these perturbations be effective? We demonstrate the utility of this framework for generating testable hypotheses in two examples: (i) a intracellular signaling network model; and (ii) a model for pharmacokinetics and pharmacodynamics of cell‐cytokine interactions; in the latter, we validate hypotheses concerning molecular design of granulocyte colony stimulating factor.
Querying Quantitative Logic Models (Q2LM) to study intracellular signaling networks and cell/cytokine interactions: The authors present a framework for building and asking questions of constrained fuzzy logic (cFL) models constructed based on prior knowledge. We demonstrate the utility of this framework for generating testable hypotheses in an intracellular signaling network model and a model for pharmacokinetics and pharmacodynamics of G‐CSF. |
|---|---|
| AbstractList | Mathematical models have substantially improved our ability to predict the response of a complex biological system to perturbation, but their use is typically limited by difficulties in specifying model topology and parameter values. Additionally, incorporating entities across different biological scales ranging from molecular to organismal in the same model is not trivial. Here, we present a framework called “querying quantitative logic models” (Q2LM) for building and asking questions of constrained fuzzy logic (cFL) models. cFL is a recently developed modeling formalism that uses logic gates to describe influences among entities, with transfer functions to describe quantitative dependencies. Q2LM does not rely on dedicated data to train the parameters of the transfer functions, and it permits straight-forward incorporation of entities at multiple biological scales. The Q2LM framework can be employed to ask questions such as: Which therapeutic perturbations accomplish a designated goal, and under what environmental conditions will these perturbations be effective? We demonstrate the utility of this framework for generating testable hypotheses in two examples: (i) a intracellular signaling network model; and (ii) a model for pharmacokinetics and pharmacodynamics of cell-cytokine interactions; in the latter, we validate hypotheses concerning molecular design of granulocyte colony stimulating factor. Mathematical models have substantially improved our ability to predict the response of a complex biological system to perturbation, but their use is typically limited by difficulties in specifying model topology and parameter values. Additionally, incorporating entities across different biological scales ranging from molecular to organismal in the same model is not trivial. Here, we present a framework called “querying quantitative logic models” (Q2LM) for building and asking questions of constrained fuzzy logic (cFL) models. cFL is a recently developed modeling formalism that uses logic gates to describe influences among entities, with transfer functions to describe quantitative dependencies. Q2LM does not rely on dedicated data to train the parameters of the transfer functions, and it permits straight‐forward incorporation of entities at multiple biological scales. The Q2LM framework can be employed to ask questions such as: Which therapeutic perturbations accomplish a designated goal, and under what environmental conditions will these perturbations be effective? We demonstrate the utility of this framework for generating testable hypotheses in two examples: (i) a intracellular signaling network model; and (ii) a model for pharmacokinetics and pharmacodynamics of cell‐cytokine interactions; in the latter, we validate hypotheses concerning molecular design of granulocyte colony stimulating factor. Querying Quantitative Logic Models (Q2LM) to study intracellular signaling networks and cell/cytokine interactions: The authors present a framework for building and asking questions of constrained fuzzy logic (cFL) models constructed based on prior knowledge. We demonstrate the utility of this framework for generating testable hypotheses in an intracellular signaling network model and a model for pharmacokinetics and pharmacodynamics of G‐CSF. Mathematical models have substantially improved our ability to predict the response of a complex biological system to perturbation, but their use is typically limited by difficulties in specifying model topology and parameter values. Additionally, incorporating entities across different biological scales ranging from molecular to organismal in the same model is not trivial. Here, we present a framework called "querying quantitative logic models" (Q2LM) for building and asking questions of constrained fuzzy logic (cFL) models. cFL is a recently developed modeling formalism that uses logic gates to describe influences among entities, with transfer functions to describe quantitative dependencies. Q2LM does not rely on dedicated data to train the parameters of the transfer functions, and it permits straight-forward incorporation of entities at multiple biological scales. The Q2LM framework can be employed to ask questions such as: Which therapeutic perturbations accomplish a designated goal, and under what environmental conditions will these perturbations be effective? We demonstrate the utility of this framework for generating testable hypotheses in two examples: (i) a intracellular signaling network model; and (ii) a model for pharmacokinetics and pharmacodynamics of cell-cytokine interactions; in the latter, we validate hypotheses concerning molecular design of granulocyte colony stimulating factor.Mathematical models have substantially improved our ability to predict the response of a complex biological system to perturbation, but their use is typically limited by difficulties in specifying model topology and parameter values. Additionally, incorporating entities across different biological scales ranging from molecular to organismal in the same model is not trivial. Here, we present a framework called "querying quantitative logic models" (Q2LM) for building and asking questions of constrained fuzzy logic (cFL) models. cFL is a recently developed modeling formalism that uses logic gates to describe influences among entities, with transfer functions to describe quantitative dependencies. Q2LM does not rely on dedicated data to train the parameters of the transfer functions, and it permits straight-forward incorporation of entities at multiple biological scales. The Q2LM framework can be employed to ask questions such as: Which therapeutic perturbations accomplish a designated goal, and under what environmental conditions will these perturbations be effective? We demonstrate the utility of this framework for generating testable hypotheses in two examples: (i) a intracellular signaling network model; and (ii) a model for pharmacokinetics and pharmacodynamics of cell-cytokine interactions; in the latter, we validate hypotheses concerning molecular design of granulocyte colony stimulating factor. |
| Author | Sasisekharan, Ram Morris, Melody K. Shriver, Zachary Lauffenburger, Douglas A. |
| Author_xml | – sequence: 1 givenname: Melody K. surname: Morris fullname: Morris, Melody K. organization: Massachusetts Institute of Technology, Department of Biological Engineering, MA, USA – sequence: 2 givenname: Zachary surname: Shriver fullname: Shriver, Zachary organization: Massachusetts Institute of Technology, Department of Biological Engineering, MA, USA – sequence: 3 givenname: Ram surname: Sasisekharan fullname: Sasisekharan, Ram organization: Massachusetts Institute of Technology, Department of Biological Engineering, MA, USA – sequence: 4 givenname: Douglas A. surname: Lauffenburger fullname: Lauffenburger, Douglas A. email: lauffen@mit.edu organization: Massachusetts Institute of Technology, Department of Biological Engineering, MA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22125256$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1v1DAQxS1URD_gyhH5Bhyy2I4dJxckuoJSaaFaWgQ3y0kmi1mv3dpOS_57EnZZFSSEfLCteb83Y79jdOC8A4SeUjKjhLBXtfFpxgidLow9QEe0LEgmc8oPdudCFuUhOo7xOyFc5IQ_QoeMUSaYKI5QWPYQBuNW-KbXLpmkk7kFbP3KNHjjW7ARv1iyxYeXOHkcU98O2LgUdAPW9lYHHM3KaTs5OEh3Pqwj1q7FUz1rhuTXxsGEwMgk4118jB522kZ4sttP0Od3b6_m77PFxdn5_M0ia7iULJO0aytdlUB4IYGTqhNlQzRlJScghaihoo2gTaE7JlpScKFB1LLkJWW5qPP8BL3e-l739QbaBqaxrboOZqPDoLw26s-KM9_Uyt-qnFVMEjEaPN8ZBH_TQ0xqY-L0Lu3A91FVrKBiXOWofHa_1b7H738eBbOtoAk-xgDdXkKJmrJTU5BqH-QI8L-A5lc2fhrV2H9j1Ra7MxaG_zRRp-cXV_fZbMuamODHntVhrQqZS6G-fDxTl3O2_HQpTtXX_Cf4PMRV |
| CitedBy_id | crossref_primary_10_1002_biot_201200062 crossref_primary_10_1002_biot_201290012 crossref_primary_10_12688_f1000research_19592_1 crossref_primary_10_1186_1752_0509_7_135 crossref_primary_10_1038_s41540_024_00454_1 crossref_primary_10_1002_psp4_12104 crossref_primary_10_1088_1478_3975_9_4_045003 crossref_primary_10_3390_pr3010178 |
| Cites_doi | 10.1093/bioinformatics/bti056 10.1038/clpt.2010.87 10.1016/S0167-7799(03)00115-X 10.1126/science.271.5255.1582 10.1371/journal.pcbi.1001099 10.1074/jbc.M300477200 10.1038/msb.2009.87 10.1186/1752-0509-3-98 10.2174/1381612043382611 10.1016/S1074-5521(98)90110-7 10.1093/bib/bbn024 10.1016/0022-5193(73)90208-7 10.1016/j.tibtech.2008.05.009 10.1186/1742-4682-3-13 10.1158/0008-5472.CAN-10-4453 10.3109/03602539608994020 10.1038/sj.onc.1204385 10.1038/nbt725 10.1021/bi902202q 10.1016/S1097-2765(02)00528-2 10.1073/pnas.0806447105 10.1124/mol.63.1.147 10.1007/s10439-011-0280-y 10.1038/sj.onc.1204239 10.1126/science.1116598 10.1002/j.1875-9114.1992.tb02680.x 10.1038/msb.2009.47 10.1007/978-1-60761-478-4_6 10.1242/jcs.01589 10.1016/j.cbpa.2005.12.016 |
| ContentType | Journal Article |
| Copyright | Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2012 |
| Copyright_xml | – notice: Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2012 |
| DBID | BSCLL 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1002/biot.201100222 |
| DatabaseName | Istex Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Agriculture |
| EISSN | 1860-7314 |
| EndPage | 386 |
| ExternalDocumentID | PMC3292705 22125256 10_1002_biot_201100222 BIOT201100222 ark_67375_WNG_SC2QRS5B_X |
| Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Funded Access – fundername: NIH funderid: P50‐GM068762 and R24‐DK090963 – fundername: Institute for Collaborative Biotechnologies funderid: W911NF‐09‐0001 – fundername: NIGMS NIH HHS grantid: P50-GM068762 – fundername: NIGMS NIH HHS grantid: P50 GM068762 – fundername: NIDDK NIH HHS grantid: R24 DK090963 – fundername: NIDDK NIH HHS grantid: R24-DK090963 |
| GroupedDBID | --- 05W 0R~ 1L6 1OC 23N 31~ 33P 3WU 4.4 53G 5GY 6P2 8-0 8-1 8UM AAESR AAHQN AAIHA AAMMB AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI BSCLL CS3 DCZOG DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GODZA HGLYW HHZ HVGLF HZ~ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW ROL RYL SUPJJ SV3 WBKPD WIH WIK WNSPC WOHZO WXSBR WYISQ XV2 ZZTAW ~S- 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c4772-71fd9a98e0467e409f58c0a12840e755be91c51c6af25d0645ae5b78481235b33 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302023600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1860-6768 1860-7314 |
| IngestDate | Tue Nov 04 01:59:31 EST 2025 Thu Oct 02 06:19:50 EDT 2025 Mon Jul 21 06:07:31 EDT 2025 Thu Oct 16 04:46:35 EDT 2025 Tue Nov 18 22:18:29 EST 2025 Wed Aug 20 07:26:00 EDT 2025 Tue Sep 09 05:32:14 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4772-71fd9a98e0467e409f58c0a12840e755be91c51c6af25d0645ae5b78481235b33 |
| Notes | istex:7BE082D4D11E6A3F28D93C3C02E3B12FAA41C2DF ark:/67375/WNG-SC2QRS5B-X Institute for Collaborative Biotechnologies - No. W911NF-09-0001 Funded Access ArticleID:BIOT201100222 NIH - No. P50-GM068762 and R24-DK090963 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Supporting information available online |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbiot.201100222 |
| PMID | 22125256 |
| PQID | 926151518 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3292705 proquest_miscellaneous_926151518 pubmed_primary_22125256 crossref_primary_10_1002_biot_201100222 crossref_citationtrail_10_1002_biot_201100222 wiley_primary_10_1002_biot_201100222_BIOT201100222 istex_primary_ark_67375_WNG_SC2QRS5B_X |
| PublicationCentury | 2000 |
| PublicationDate | March 2012 |
| PublicationDateYYYYMMDD | 2012-03-01 |
| PublicationDate_xml | – month: 03 year: 2012 text: March 2012 |
| PublicationDecade | 2010 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim – name: Germany |
| PublicationTitle | Biotechnology journal |
| PublicationTitleAlternate | Biotechnology Journal |
| PublicationYear | 2012 |
| Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
| Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
| References | Janes, K. A., Albeck, J. G., Gaudet, S., Sorger, P. et al., A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 2005, 310, 1646-1653. Janes, K. A., Lauffenburger, D. A., A biological approach to computational models of proteomic networks. Curr. Opin. Chem. Biol. 2006, 10, 73-80. Glass, L., Kauffman, S. A., The logical analysis of continuous, non-linear biochemical control networks. J. Theo. Bio. 1973, 39, 103-129. Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M., Ho, D. D., HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 1996, 271, 1582-1586. Sarkar, C. A., Lauffenburger, D. A., Cell-level pharmacokinetic model of granulocyte colony-stimulating factor: implications for ligand lifetime and potency in vivo. Mol. Pharmacol. 2003, 63, 147-158. Bauer-Mehren, A., Furlong, L. I., Sanz, F., Pathway databases and tools for their exploitation: benefits, current limitations and challenges. Mol. Syst. Biol. 2009, 5, 290. Woolf, P. J., Prudhomme, W., Daheron, L., Daley, G. Q., Lauffenburger, D. A., Bayesian analysis of signaling networks governing embryonic stem cell fate decisions. Bioinformatics 2005, 21, 741-753. van Dam, H., Castellazzi, M., Distinct roles of Jun: Fos and Jun: ATF dimers in oncogenesis. Oncogene 2001, 20, 2453-2464. Morris, M. K., Saez-Rodriguez, J., Clarke, D. C., Sorger, P. K., Lauffenburger, D. A., Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli. PLoS Comput. Biol. 2011, 7, e1001099. Heinrich, R., Neel, B. G., Rapoport, T. A., Mathematical models of protein kinase signal transduction. Mol. Cell 2002, 9, 957-970. Jones, D. S., Silverman, A. P., Cochran, J. R., Developing therapeutic proteins by engineering ligand-receptor interactions. Trends Biotechnol. 2008, 26, 498-505. Zhang, R., Shah, M., Yang, J., Nyland, S. et al., Network model of survival signaling in large granular lymphocyte leukemia. Proc. Natl. Acad. Sci. USA 2008, 105, 16308-16313. Sarkar, C. A., Lowenhaupt, K., Horan, T., Boone, T. C. et al., Rational cytokine design for increased lifetime and enhanced potency using pH-activated "histidine switching". Nat. Biotechnol. 2002, 20, 908-913. Hess, J., Angel, P., Schorpp-Kistner, M., AP-1 subunits: quarrel and harmony among siblings. J. Cell Sci. 2004, 117, 5965-5973. Ideker, T., Lauffenburger, D. A., Building with a scaffold: emerging strategies for high- to low-level cellular modeling. Trends Biotechnol. 2003, 21, 255-262. Ricci, M. S., Brems, D. N., Common structural stability properties of 4-helical bundle cytokines: possible physiological and pharmaceutical consequences. Curr. Pharm. Des. 2004, 10, 3901-3911. Chinenov, Y., Kerppola, T. K., Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 2001, 20, 2438-2452. Wittmann, D., Krumsiek, J., Saez-Rodriguez, J., Lauffenburger, D. A. et al., Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst. Biol. 2009, 3, 98. Saez-Rodriguez, J., Alexopoulos, L. G., Zhang, M., Morris, M. K. et al., Comparing signaling networks between normal and transformed hepatocytes using discrete logical models. Cancer Res. 2011, 71, 5400-5411. Hendriks, B. S., Opresko, L. K., Wiley, H. S., Lauffenburger, D., Quantitative analysis of HER2-mediated effects on HER2 and epidermal growth factor receptor endocytosis: distribution of homo- and heterodimers depends on relative HER2 levels. J. Biol. Chem. 2003, 278, 23343-23351. Petros, W. P., Pharmacokinetics and administration of colony-stimulating factors. Pharmacotherapy 1992, 12, 32S-38S. Hunter, P. J., Crampin, E. J., Nielsen, P. M., Bioinformatics, multiscale modeling and the IUPS Physiome Project. Brief Bioinform. 2008, 9, 333-343. Vicini, P., Multiscale modeling in drug discovery and development: future opportunities and present challenges. Clin. Pharmacol. Ther. 2010, 88, 126-129. Lauffenburger, D. A., Fallon, E. M., Haugh, J. M., Scratching the (cell) surface: cytokine engineering for improved ligand/receptor trafficking dynamics. Chem. Biol. 1998, 5, R257-R263. Morris, M. K., Saez-Rodriguez, J., Sorger, P. K., Lauffenburger, D. A., Logic-based models for the analysis of cell signaling networks. Biochemistry 2010, 49, 3216-3224. Mendoza, L., Xenarios, I., A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theo. Biol. Med. Model. 2006, 3, 13. Yoon, D. J., Liu, C. T., Quinlan, D. S., Nafisi, P. M., Kamei, D. T., Intracellular trafficking considerations in the development of natural ligand-drug molecular conjugates for cancer. Ann. Biomed. Eng. 2011, 39, 1235-1251. Saez-Rodriguez, J., Alexopoulos, L. G., Epperlein, J., Samaga, R. et al., Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol. Syst. Biol. 2009, 5, 331. Kuwabara, T., Kobayashi, S., Sugiyama, Y., Pharmacokinetics and phyamacodynamics of a recombinant human granulocyte colony-stimulating factor. Drug Metab. Rev. 1996, 28, 625-658. 2002; 9 2006; 10 2005; 310 1973; 39 2008; 9 2005; 21 2008; 105 2006; 3 2011; 39 2003; 278 1992; 12 2011; 7 2001; 20 2004; 10 2010; 88 2010; 49 1996; 28 2002; 20 2011; 71 1996; 271 2008; 26 2009; 5 2009; 3 1998; 5 2004; 117 2003; 63 2003; 21 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_28_2 e_1_2_7_29_2 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_21_2 e_1_2_7_20_2 |
| References_xml | – reference: Glass, L., Kauffman, S. A., The logical analysis of continuous, non-linear biochemical control networks. J. Theo. Bio. 1973, 39, 103-129. – reference: Hess, J., Angel, P., Schorpp-Kistner, M., AP-1 subunits: quarrel and harmony among siblings. J. Cell Sci. 2004, 117, 5965-5973. – reference: Yoon, D. J., Liu, C. T., Quinlan, D. S., Nafisi, P. M., Kamei, D. T., Intracellular trafficking considerations in the development of natural ligand-drug molecular conjugates for cancer. Ann. Biomed. Eng. 2011, 39, 1235-1251. – reference: Janes, K. A., Albeck, J. G., Gaudet, S., Sorger, P. et al., A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 2005, 310, 1646-1653. – reference: Heinrich, R., Neel, B. G., Rapoport, T. A., Mathematical models of protein kinase signal transduction. Mol. Cell 2002, 9, 957-970. – reference: Morris, M. K., Saez-Rodriguez, J., Sorger, P. K., Lauffenburger, D. A., Logic-based models for the analysis of cell signaling networks. Biochemistry 2010, 49, 3216-3224. – reference: Zhang, R., Shah, M., Yang, J., Nyland, S. et al., Network model of survival signaling in large granular lymphocyte leukemia. Proc. Natl. Acad. Sci. USA 2008, 105, 16308-16313. – reference: Mendoza, L., Xenarios, I., A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theo. Biol. Med. Model. 2006, 3, 13. – reference: Sarkar, C. A., Lowenhaupt, K., Horan, T., Boone, T. C. et al., Rational cytokine design for increased lifetime and enhanced potency using pH-activated "histidine switching". Nat. Biotechnol. 2002, 20, 908-913. – reference: Hendriks, B. S., Opresko, L. K., Wiley, H. S., Lauffenburger, D., Quantitative analysis of HER2-mediated effects on HER2 and epidermal growth factor receptor endocytosis: distribution of homo- and heterodimers depends on relative HER2 levels. J. Biol. Chem. 2003, 278, 23343-23351. – reference: Sarkar, C. A., Lauffenburger, D. A., Cell-level pharmacokinetic model of granulocyte colony-stimulating factor: implications for ligand lifetime and potency in vivo. Mol. Pharmacol. 2003, 63, 147-158. – reference: Hunter, P. J., Crampin, E. J., Nielsen, P. M., Bioinformatics, multiscale modeling and the IUPS Physiome Project. Brief Bioinform. 2008, 9, 333-343. – reference: Chinenov, Y., Kerppola, T. K., Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 2001, 20, 2438-2452. – reference: Saez-Rodriguez, J., Alexopoulos, L. G., Epperlein, J., Samaga, R. et al., Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol. Syst. Biol. 2009, 5, 331. – reference: Petros, W. P., Pharmacokinetics and administration of colony-stimulating factors. Pharmacotherapy 1992, 12, 32S-38S. – reference: Woolf, P. J., Prudhomme, W., Daheron, L., Daley, G. Q., Lauffenburger, D. A., Bayesian analysis of signaling networks governing embryonic stem cell fate decisions. Bioinformatics 2005, 21, 741-753. – reference: van Dam, H., Castellazzi, M., Distinct roles of Jun: Fos and Jun: ATF dimers in oncogenesis. Oncogene 2001, 20, 2453-2464. – reference: Vicini, P., Multiscale modeling in drug discovery and development: future opportunities and present challenges. Clin. Pharmacol. Ther. 2010, 88, 126-129. – reference: Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M., Ho, D. D., HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 1996, 271, 1582-1586. – reference: Ricci, M. S., Brems, D. N., Common structural stability properties of 4-helical bundle cytokines: possible physiological and pharmaceutical consequences. Curr. Pharm. Des. 2004, 10, 3901-3911. – reference: Ideker, T., Lauffenburger, D. A., Building with a scaffold: emerging strategies for high- to low-level cellular modeling. Trends Biotechnol. 2003, 21, 255-262. – reference: Janes, K. A., Lauffenburger, D. A., A biological approach to computational models of proteomic networks. Curr. Opin. Chem. Biol. 2006, 10, 73-80. – reference: Jones, D. S., Silverman, A. P., Cochran, J. R., Developing therapeutic proteins by engineering ligand-receptor interactions. Trends Biotechnol. 2008, 26, 498-505. – reference: Kuwabara, T., Kobayashi, S., Sugiyama, Y., Pharmacokinetics and phyamacodynamics of a recombinant human granulocyte colony-stimulating factor. Drug Metab. Rev. 1996, 28, 625-658. – reference: Wittmann, D., Krumsiek, J., Saez-Rodriguez, J., Lauffenburger, D. A. et al., Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst. Biol. 2009, 3, 98. – reference: Morris, M. K., Saez-Rodriguez, J., Clarke, D. C., Sorger, P. K., Lauffenburger, D. A., Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli. PLoS Comput. Biol. 2011, 7, e1001099. – reference: Bauer-Mehren, A., Furlong, L. I., Sanz, F., Pathway databases and tools for their exploitation: benefits, current limitations and challenges. Mol. Syst. Biol. 2009, 5, 290. – reference: Saez-Rodriguez, J., Alexopoulos, L. G., Zhang, M., Morris, M. K. et al., Comparing signaling networks between normal and transformed hepatocytes using discrete logical models. Cancer Res. 2011, 71, 5400-5411. – reference: Lauffenburger, D. A., Fallon, E. M., Haugh, J. M., Scratching the (cell) surface: cytokine engineering for improved ligand/receptor trafficking dynamics. Chem. Biol. 1998, 5, R257-R263. – volume: 5 start-page: R257 year: 1998 end-page: R263 article-title: Scratching the (cell) surface: cytokine engineering for improved ligand/receptor trafficking dynamics. publication-title: Chem. Biol. – volume: 21 start-page: 255 year: 2003 end-page: 262 article-title: Building with a scaffold: emerging strategies for high‐ to low‐level cellular modeling. publication-title: Trends Biotechnol. – volume: 9 start-page: 333 year: 2008 end-page: 343 article-title: Bioinformatics, multiscale modeling and the IUPS Physiome Project. publication-title: Brief Bioinform. – volume: 10 start-page: 3901 year: 2004 end-page: 3911 article-title: Common structural stability properties of 4‐helical bundle cytokines: possible physiological and pharmaceutical consequences. publication-title: Curr. Pharm. Des. – volume: 278 start-page: 23343 year: 2003 end-page: 23351 article-title: Quantitative analysis of HER2‐mediated effects on HER2 and epidermal growth factor receptor endocytosis: distribution of homo‐ and heterodimers depends on relative HER2 levels. publication-title: J. Biol. Chem. – volume: 9 start-page: 957 year: 2002 end-page: 970 article-title: Mathematical models of protein kinase signal transduction. publication-title: Mol. Cell – volume: 271 start-page: 1582 year: 1996 end-page: 1586 article-title: HIV‐1 dynamics in vivo: virion clearance rate, infected cell life‐span, and viral generation time. publication-title: Science – volume: 105 start-page: 16308 year: 2008 end-page: 16313 article-title: Network model of survival signaling in large granular lymphocyte leukemia. publication-title: Proc. Natl. Acad. Sci. USA – volume: 71 start-page: 5400 year: 2011 end-page: 5411 article-title: Comparing signaling networks between normal and transformed hepatocytes using discrete logical models. publication-title: Cancer Res. – volume: 39 start-page: 103 year: 1973 end-page: 129 article-title: The logical analysis of continuous, non‐linear biochemical control networks. publication-title: J. Theo. Bio. – volume: 3 start-page: 98 year: 2009 article-title: Transforming Boolean models to continuous models: methodology and application to T‐cell receptor signaling. publication-title: BMC Syst. Biol. – volume: 88 start-page: 126 year: 2010 end-page: 129 article-title: Multiscale modeling in drug discovery and development: future opportunities and present challenges. publication-title: Clin. Pharmacol. Ther. – volume: 12 start-page: 32S year: 1992 end-page: 38S article-title: Pharmacokinetics and administration of colony‐stimulating factors. publication-title: Pharmacotherapy – volume: 5 start-page: 331 year: 2009 article-title: Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. publication-title: Mol. Syst. Biol. – volume: 7 start-page: e1001099 year: 2011 article-title: Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli. publication-title: PLoS Comput. Biol. – volume: 20 start-page: 2438 year: 2001 end-page: 2452 article-title: Close encounters of many kinds: Fos‐Jun interactions that mediate transcription regulatory specificity. publication-title: Oncogene – volume: 5 start-page: 290 year: 2009 article-title: Pathway databases and tools for their exploitation: benefits, current limitations and challenges. publication-title: Mol. Syst. Biol. – volume: 117 start-page: 5965 year: 2004 end-page: 5973 article-title: AP‐1 subunits: quarrel and harmony among siblings. publication-title: J. Cell Sci. – volume: 310 start-page: 1646 year: 2005 end-page: 1653 article-title: A systems model of signaling identifies a molecular basis set for cytokine‐induced apoptosis. publication-title: Science – volume: 26 start-page: 498 year: 2008 end-page: 505 article-title: Developing therapeutic proteins by engineering ligand‐receptor interactions. publication-title: Trends Biotechnol. – volume: 21 start-page: 741 year: 2005 end-page: 753 article-title: Bayesian analysis of signaling networks governing embryonic stem cell fate decisions. publication-title: Bioinformatics – volume: 10 start-page: 73 year: 2006 end-page: 80 article-title: A biological approach to computational models of proteomic networks. publication-title: Curr. Opin. Chem. Biol. – volume: 39 start-page: 1235 year: 2011 end-page: 1251 article-title: Intracellular trafficking considerations in the development of natural ligand‐drug molecular conjugates for cancer. publication-title: Ann. Biomed. Eng. – volume: 3 start-page: 13 year: 2006 article-title: A method for the generation of standardized qualitative dynamical systems of regulatory networks. publication-title: Theo. Biol. Med. Model. – volume: 20 start-page: 908 year: 2002 end-page: 913 article-title: Rational cytokine design for increased lifetime and enhanced potency using pH‐activated “histidine switching”. publication-title: Nat. Biotechnol. – volume: 28 start-page: 625 year: 1996 end-page: 658 article-title: Pharmacokinetics and phyamacodynamics of a recombinant human granulocyte colony‐stimulating factor. publication-title: Drug Metab. Rev. – volume: 49 start-page: 3216 year: 2010 end-page: 3224 article-title: Logic‐based models for the analysis of cell signaling networks. publication-title: Biochemistry – volume: 63 start-page: 147 year: 2003 end-page: 158 article-title: Cell‐level pharmacokinetic model of granulocyte colony‐stimulating factor: implications for ligand lifetime and potency in vivo. publication-title: Mol. Pharmacol. – volume: 20 start-page: 2453 year: 2001 end-page: 2464 article-title: Distinct roles of Jun: Fos and Jun: ATF dimers in oncogenesis. publication-title: Oncogene – ident: e_1_2_7_8_2 doi: 10.1093/bioinformatics/bti056 – ident: e_1_2_7_10_2 doi: 10.1038/clpt.2010.87 – ident: e_1_2_7_2_2 doi: 10.1016/S0167-7799(03)00115-X – ident: e_1_2_7_4_2 doi: 10.1126/science.271.5255.1582 – ident: e_1_2_7_18_2 doi: 10.1371/journal.pcbi.1001099 – ident: e_1_2_7_5_2 doi: 10.1074/jbc.M300477200 – ident: e_1_2_7_20_2 doi: 10.1038/msb.2009.87 – ident: e_1_2_7_17_2 doi: 10.1186/1752-0509-3-98 – ident: e_1_2_7_29_2 doi: 10.2174/1381612043382611 – ident: e_1_2_7_28_2 doi: 10.1016/S1074-5521(98)90110-7 – ident: e_1_2_7_9_2 doi: 10.1093/bib/bbn024 – ident: e_1_2_7_15_2 doi: 10.1016/0022-5193(73)90208-7 – ident: e_1_2_7_30_2 doi: 10.1016/j.tibtech.2008.05.009 – ident: e_1_2_7_16_2 doi: 10.1186/1742-4682-3-13 – ident: e_1_2_7_14_2 doi: 10.1158/0008-5472.CAN-10-4453 – ident: e_1_2_7_27_2 doi: 10.3109/03602539608994020 – ident: e_1_2_7_23_2 doi: 10.1038/sj.onc.1204385 – ident: e_1_2_7_25_2 doi: 10.1038/nbt725 – ident: e_1_2_7_12_2 doi: 10.1021/bi902202q – ident: e_1_2_7_6_2 doi: 10.1016/S1097-2765(02)00528-2 – ident: e_1_2_7_13_2 doi: 10.1073/pnas.0806447105 – ident: e_1_2_7_24_2 doi: 10.1124/mol.63.1.147 – ident: e_1_2_7_31_2 doi: 10.1007/s10439-011-0280-y – ident: e_1_2_7_21_2 doi: 10.1038/sj.onc.1204239 – ident: e_1_2_7_7_2 doi: 10.1126/science.1116598 – ident: e_1_2_7_26_2 doi: 10.1002/j.1875-9114.1992.tb02680.x – ident: e_1_2_7_19_2 doi: 10.1038/msb.2009.47 – ident: e_1_2_7_11_2 doi: 10.1007/978-1-60761-478-4_6 – ident: e_1_2_7_22_2 doi: 10.1242/jcs.01589 – ident: e_1_2_7_3_2 doi: 10.1016/j.cbpa.2005.12.016 |
| SSID | ssj0045304 |
| Score | 1.9836301 |
| Snippet | Mathematical models have substantially improved our ability to predict the response of a complex biological system to perturbation, but their use is typically... |
| SourceID | pubmedcentral proquest pubmed crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 374 |
| SubjectTerms | Algorithms Cell Communication Computer Simulation Constrained fuzzy logic model Cytokines - metabolism Cytokines - pharmacokinetics Fuzzy Logic G-CSF Granulocyte Colony-Stimulating Factor - metabolism Granulocyte Colony-Stimulating Factor - pharmacokinetics Humans Models, Theoretical Multi-scale model Signal Transduction Signaling network |
| Title | Querying quantitative logic models (Q2LM) to study intracellular signaling networks and cell-cytokine interactions |
| URI | https://api.istex.fr/ark:/67375/WNG-SC2QRS5B-X/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbiot.201100222 https://www.ncbi.nlm.nih.gov/pubmed/22125256 https://www.proquest.com/docview/926151518 https://pubmed.ncbi.nlm.nih.gov/PMC3292705 |
| Volume | 7 |
| WOSCitedRecordID | wos000302023600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1860-7314 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045304 issn: 1860-6768 databaseCode: DRFUL dateStart: 20060101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BlgMceD_CY-UD4nGINrHj2jnuLhSQStnuA3qzHMeBalECSYrgxk_gN_JL8DhtaAUICS5RIo8TeTK2v0lmvgG4zwzTuUl4ONRFEjoEnoWZAwKhTagwRkas8NGEr8diMpGzWXqwlsXf8UP0H9xwZvj1Gie4zpqdn6Sh2bxqPQWnz-c8C4M4ZhKLN9DkYLUWJ5z5AoKxHGKQ-1CuaBsjurPZf2NbGqCGP_8Oc_4aOrkOaf2eNLr0_6O5DBeXeJTsdgZ0Bc7Y8ipc2H1bLzk5rLta4yy8Bu10YWvMjSIfF7r0KWpuwSR-CSW-rk5DHk3p-OVj0lbEs9eSOY4CfxFgzCvBkBGNWfCk7GLQG6LLnGD796_fzJe2OnWPw0627tIumutwMnp6vP88XJZuCE3i8Hoo4iJPdSqtc7-FdT5kwaWJNG6GkRWcZzaNDY-NsxDKc-TM05ZnArn9KeMZYzdgq6xKewsIzYXzuSgT1KC_l8qh5anWBSusEDlLAghXb06ZJa85ltd4rzpGZqpQt6rXbQAPe_kPHaPHHyUfeEPoxXR9inFwgqs3k2fqaJ9OD4_4npoFQFaWotzsRH3p0laLRqXUI8ZYBnCzM5z-ZtSBBu4AZwBiw6R6AST-3mwp5-88ATijKRURD4B6k_rLMNTei1fH_dXtf-l0B867c9rF3t2FrbZe2Htwznxq50297aecO4qZ3IbBk8PRyfgHEIkwNQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFL2CDhKw4P0ITy8Qj0XUxI7HybItDK2YDkw7hdlZjuPAqCiBJINgxyfwjXwJvk4mdAQICbFMYjuyc2wfO-ceAzxgmqlMR9wfqjzyLQNP_dQSAd9EVGgdByx3asLXYzGZxPN58qpTE2IsTOsP0W-4Yc9w4zV2cNyQ3vzpGpouysZ5cLqAztMwiCyWLMgHTw9GR-PVcBxx5s4QDOMh6tyH8cq5MaCb6yWszUwDbOTPv6Odv6onT7JaNy2NLv6HCl2CCx0nJVstiC7DKVNcgfNbb6vOl8PYqxO-hVehmS5NhfFR5ONSFS5MzQ6axA2jxJ2tU5PHUzref0KakjgHW7LAauBvAtS9EpSNKIyEJ0WrQ6-JKjKCz79__aa_NOWxfR1mMlUbelFfg6PRs9nOrt8d3-DryHJ2X4R5lqgkNnYJLoxdR-Y81oHCCTEwgvPUJKHmobYooTxD3zxleCrQ358ynjJ2HTaKsjA3gdBM2HUXZYJqXPMl8dDwRKmc5UaIjEUe-KtPJ3XnbY5HbLyXrSszldi2sm9bDx716T-0rh5_TPnQIaFPpqpj1MIJLt9MnsvDHTo9OOTbcu4BWUFF2h6K7aUKUy5rmVDHGsPYgxstcvrCqCUO3JJOD8QapvoEaP69_qRYvHMm4IwmVATcA-ow9ZdqyO29l7P-6ta_ZLoPZ3dn-2M53pu8uA3n7H3aavHuwEZTLc1dOKM_NYu6utf1wB8DMDMz |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jj9MwFH6CFqHhwL6E1QfEcogmseM6Oc5CYUQp09nozXIcZ6gGJUOaIrjxE_iN_BL8nDRMBQgJcUy8RHae7e8l3_sewGOmmcp0xP2ByiPfIvDUTy0Q8E1EhdZxwHLHJjwaifE4nk6T3ZZNiLEwjT5E98ENV4bbr3GBm9MsX_-pGprOytppcLqAzvPQjzCTTA_623vDw9FyO444czkEw3iAPPdBvFRuDOj6ag8rJ1MfJ_nz72Dnr-zJs6jWHUvDK_9hQFfhcotJyUZjRNfgnCmuw6WN46rV5TD26oxu4Q2oJwtTYXwU-bhQhQtTs5smcdsocbl15uTZhI7ePCd1SZyCLZnhMPA3AfJeCdJGFEbCk6Lhoc-JKjKC5d-_ftNf6vLEPg4bmaoJvZjfhMPhi4OtV36bvsHXkcXsvgjzLFFJbKwLLoz1I3Me60DhgRgYwXlqklDzUFsroTxD3TxleCpQ358ynjJ2C3pFWZg7QGgmrN9FmaAafb4kHhieKJWz3AiRscgDf_nqpG61zTHFxgfZqDJTiXMru7n14GlX_7RR9fhjzSfOErpqqjpBLpzg8t34pdzfopO9fb4ppx6QpalIu0JxvlRhysVcJtShxjD24HZjOV1n1AIHbkGnB2LFproKKP69WlLM3jsRcEYTKgLuAXU29ZdhyM2dtwfd1d1_afQILu5uD-VoZ_z6HqzZ27Sh4t2HXl0tzAO4oD_Vs3n1sF2APwBEhTKu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Querying+quantitative+logic+models+%28Q2LM%29+to+study+intracellular+signaling+networks+and+cell%E2%80%90cytokine+interactions&rft.jtitle=Biotechnology+journal&rft.au=Morris%2C+Melody+K.&rft.au=Shriver%2C+Zachary&rft.au=Sasisekharan%2C+Ram&rft.au=Lauffenburger%2C+Douglas+A.&rft.date=2012-03-01&rft.issn=1860-6768&rft.eissn=1860-7314&rft.volume=7&rft.issue=3&rft.spage=374&rft.epage=386&rft_id=info:doi/10.1002%2Fbiot.201100222&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_biot_201100222 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-6768&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-6768&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-6768&client=summon |