Querying quantitative logic models (Q2LM) to study intracellular signaling networks and cell-cytokine interactions

Mathematical models have substantially improved our ability to predict the response of a complex biological system to perturbation, but their use is typically limited by difficulties in specifying model topology and parameter values. Additionally, incorporating entities across different biological s...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology journal Vol. 7; no. 3; pp. 374 - 386
Main Authors: Morris, Melody K., Shriver, Zachary, Sasisekharan, Ram, Lauffenburger, Douglas A.
Format: Journal Article
Language:English
Published: Weinheim WILEY-VCH Verlag 01.03.2012
WILEY‐VCH Verlag
Subjects:
ISSN:1860-6768, 1860-7314, 1860-7314
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Mathematical models have substantially improved our ability to predict the response of a complex biological system to perturbation, but their use is typically limited by difficulties in specifying model topology and parameter values. Additionally, incorporating entities across different biological scales ranging from molecular to organismal in the same model is not trivial. Here, we present a framework called “querying quantitative logic models” (Q2LM) for building and asking questions of constrained fuzzy logic (cFL) models. cFL is a recently developed modeling formalism that uses logic gates to describe influences among entities, with transfer functions to describe quantitative dependencies. Q2LM does not rely on dedicated data to train the parameters of the transfer functions, and it permits straight‐forward incorporation of entities at multiple biological scales. The Q2LM framework can be employed to ask questions such as: Which therapeutic perturbations accomplish a designated goal, and under what environmental conditions will these perturbations be effective? We demonstrate the utility of this framework for generating testable hypotheses in two examples: (i) a intracellular signaling network model; and (ii) a model for pharmacokinetics and pharmacodynamics of cell‐cytokine interactions; in the latter, we validate hypotheses concerning molecular design of granulocyte colony stimulating factor. Querying Quantitative Logic Models (Q2LM) to study intracellular signaling networks and cell/cytokine interactions: The authors present a framework for building and asking questions of constrained fuzzy logic (cFL) models constructed based on prior knowledge. We demonstrate the utility of this framework for generating testable hypotheses in an intracellular signaling network model and a model for pharmacokinetics and pharmacodynamics of G‐CSF.
AbstractList Mathematical models have substantially improved our ability to predict the response of a complex biological system to perturbation, but their use is typically limited by difficulties in specifying model topology and parameter values. Additionally, incorporating entities across different biological scales ranging from molecular to organismal in the same model is not trivial. Here, we present a framework called “querying quantitative logic models” (Q2LM) for building and asking questions of constrained fuzzy logic (cFL) models. cFL is a recently developed modeling formalism that uses logic gates to describe influences among entities, with transfer functions to describe quantitative dependencies. Q2LM does not rely on dedicated data to train the parameters of the transfer functions, and it permits straight-forward incorporation of entities at multiple biological scales. The Q2LM framework can be employed to ask questions such as: Which therapeutic perturbations accomplish a designated goal, and under what environmental conditions will these perturbations be effective? We demonstrate the utility of this framework for generating testable hypotheses in two examples: (i) a intracellular signaling network model; and (ii) a model for pharmacokinetics and pharmacodynamics of cell-cytokine interactions; in the latter, we validate hypotheses concerning molecular design of granulocyte colony stimulating factor.
Mathematical models have substantially improved our ability to predict the response of a complex biological system to perturbation, but their use is typically limited by difficulties in specifying model topology and parameter values. Additionally, incorporating entities across different biological scales ranging from molecular to organismal in the same model is not trivial. Here, we present a framework called “querying quantitative logic models” (Q2LM) for building and asking questions of constrained fuzzy logic (cFL) models. cFL is a recently developed modeling formalism that uses logic gates to describe influences among entities, with transfer functions to describe quantitative dependencies. Q2LM does not rely on dedicated data to train the parameters of the transfer functions, and it permits straight‐forward incorporation of entities at multiple biological scales. The Q2LM framework can be employed to ask questions such as: Which therapeutic perturbations accomplish a designated goal, and under what environmental conditions will these perturbations be effective? We demonstrate the utility of this framework for generating testable hypotheses in two examples: (i) a intracellular signaling network model; and (ii) a model for pharmacokinetics and pharmacodynamics of cell‐cytokine interactions; in the latter, we validate hypotheses concerning molecular design of granulocyte colony stimulating factor. Querying Quantitative Logic Models (Q2LM) to study intracellular signaling networks and cell/cytokine interactions: The authors present a framework for building and asking questions of constrained fuzzy logic (cFL) models constructed based on prior knowledge. We demonstrate the utility of this framework for generating testable hypotheses in an intracellular signaling network model and a model for pharmacokinetics and pharmacodynamics of G‐CSF.
Mathematical models have substantially improved our ability to predict the response of a complex biological system to perturbation, but their use is typically limited by difficulties in specifying model topology and parameter values. Additionally, incorporating entities across different biological scales ranging from molecular to organismal in the same model is not trivial. Here, we present a framework called "querying quantitative logic models" (Q2LM) for building and asking questions of constrained fuzzy logic (cFL) models. cFL is a recently developed modeling formalism that uses logic gates to describe influences among entities, with transfer functions to describe quantitative dependencies. Q2LM does not rely on dedicated data to train the parameters of the transfer functions, and it permits straight-forward incorporation of entities at multiple biological scales. The Q2LM framework can be employed to ask questions such as: Which therapeutic perturbations accomplish a designated goal, and under what environmental conditions will these perturbations be effective? We demonstrate the utility of this framework for generating testable hypotheses in two examples: (i) a intracellular signaling network model; and (ii) a model for pharmacokinetics and pharmacodynamics of cell-cytokine interactions; in the latter, we validate hypotheses concerning molecular design of granulocyte colony stimulating factor.Mathematical models have substantially improved our ability to predict the response of a complex biological system to perturbation, but their use is typically limited by difficulties in specifying model topology and parameter values. Additionally, incorporating entities across different biological scales ranging from molecular to organismal in the same model is not trivial. Here, we present a framework called "querying quantitative logic models" (Q2LM) for building and asking questions of constrained fuzzy logic (cFL) models. cFL is a recently developed modeling formalism that uses logic gates to describe influences among entities, with transfer functions to describe quantitative dependencies. Q2LM does not rely on dedicated data to train the parameters of the transfer functions, and it permits straight-forward incorporation of entities at multiple biological scales. The Q2LM framework can be employed to ask questions such as: Which therapeutic perturbations accomplish a designated goal, and under what environmental conditions will these perturbations be effective? We demonstrate the utility of this framework for generating testable hypotheses in two examples: (i) a intracellular signaling network model; and (ii) a model for pharmacokinetics and pharmacodynamics of cell-cytokine interactions; in the latter, we validate hypotheses concerning molecular design of granulocyte colony stimulating factor.
Author Sasisekharan, Ram
Morris, Melody K.
Shriver, Zachary
Lauffenburger, Douglas A.
Author_xml – sequence: 1
  givenname: Melody K.
  surname: Morris
  fullname: Morris, Melody K.
  organization: Massachusetts Institute of Technology, Department of Biological Engineering, MA, USA
– sequence: 2
  givenname: Zachary
  surname: Shriver
  fullname: Shriver, Zachary
  organization: Massachusetts Institute of Technology, Department of Biological Engineering, MA, USA
– sequence: 3
  givenname: Ram
  surname: Sasisekharan
  fullname: Sasisekharan, Ram
  organization: Massachusetts Institute of Technology, Department of Biological Engineering, MA, USA
– sequence: 4
  givenname: Douglas A.
  surname: Lauffenburger
  fullname: Lauffenburger, Douglas A.
  email: lauffen@mit.edu
  organization: Massachusetts Institute of Technology, Department of Biological Engineering, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22125256$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS1URD_gyhH5Bhyy2I4dJxckuoJSaaFaWgQ3y0kmi1mv3dpOS_57EnZZFSSEfLCteb83Y79jdOC8A4SeUjKjhLBXtfFpxgidLow9QEe0LEgmc8oPdudCFuUhOo7xOyFc5IQ_QoeMUSaYKI5QWPYQBuNW-KbXLpmkk7kFbP3KNHjjW7ARv1iyxYeXOHkcU98O2LgUdAPW9lYHHM3KaTs5OEh3Pqwj1q7FUz1rhuTXxsGEwMgk4118jB522kZ4sttP0Od3b6_m77PFxdn5_M0ia7iULJO0aytdlUB4IYGTqhNlQzRlJScghaihoo2gTaE7JlpScKFB1LLkJWW5qPP8BL3e-l739QbaBqaxrboOZqPDoLw26s-KM9_Uyt-qnFVMEjEaPN8ZBH_TQ0xqY-L0Lu3A91FVrKBiXOWofHa_1b7H738eBbOtoAk-xgDdXkKJmrJTU5BqH-QI8L-A5lc2fhrV2H9j1Ra7MxaG_zRRp-cXV_fZbMuamODHntVhrQqZS6G-fDxTl3O2_HQpTtXX_Cf4PMRV
CitedBy_id crossref_primary_10_1002_biot_201200062
crossref_primary_10_1002_biot_201290012
crossref_primary_10_12688_f1000research_19592_1
crossref_primary_10_1186_1752_0509_7_135
crossref_primary_10_1038_s41540_024_00454_1
crossref_primary_10_1002_psp4_12104
crossref_primary_10_1088_1478_3975_9_4_045003
crossref_primary_10_3390_pr3010178
Cites_doi 10.1093/bioinformatics/bti056
10.1038/clpt.2010.87
10.1016/S0167-7799(03)00115-X
10.1126/science.271.5255.1582
10.1371/journal.pcbi.1001099
10.1074/jbc.M300477200
10.1038/msb.2009.87
10.1186/1752-0509-3-98
10.2174/1381612043382611
10.1016/S1074-5521(98)90110-7
10.1093/bib/bbn024
10.1016/0022-5193(73)90208-7
10.1016/j.tibtech.2008.05.009
10.1186/1742-4682-3-13
10.1158/0008-5472.CAN-10-4453
10.3109/03602539608994020
10.1038/sj.onc.1204385
10.1038/nbt725
10.1021/bi902202q
10.1016/S1097-2765(02)00528-2
10.1073/pnas.0806447105
10.1124/mol.63.1.147
10.1007/s10439-011-0280-y
10.1038/sj.onc.1204239
10.1126/science.1116598
10.1002/j.1875-9114.1992.tb02680.x
10.1038/msb.2009.47
10.1007/978-1-60761-478-4_6
10.1242/jcs.01589
10.1016/j.cbpa.2005.12.016
ContentType Journal Article
Copyright Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2012
Copyright_xml – notice: Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2012
DBID BSCLL
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/biot.201100222
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 1860-7314
EndPage 386
ExternalDocumentID PMC3292705
22125256
10_1002_biot_201100222
BIOT201100222
ark_67375_WNG_SC2QRS5B_X
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Funded Access
– fundername: NIH
  funderid: P50‐GM068762 and R24‐DK090963
– fundername: Institute for Collaborative Biotechnologies
  funderid: W911NF‐09‐0001
– fundername: NIGMS NIH HHS
  grantid: P50-GM068762
– fundername: NIGMS NIH HHS
  grantid: P50 GM068762
– fundername: NIDDK NIH HHS
  grantid: R24 DK090963
– fundername: NIDDK NIH HHS
  grantid: R24-DK090963
GroupedDBID ---
05W
0R~
1L6
1OC
23N
31~
33P
3WU
4.4
53G
5GY
6P2
8-0
8-1
8UM
AAESR
AAHQN
AAIHA
AAMMB
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
BSCLL
CS3
DCZOG
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GODZA
HGLYW
HHZ
HVGLF
HZ~
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
ROL
RYL
SUPJJ
SV3
WBKPD
WIH
WIK
WNSPC
WOHZO
WXSBR
WYISQ
XV2
ZZTAW
~S-
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c4772-71fd9a98e0467e409f58c0a12840e755be91c51c6af25d0645ae5b78481235b33
IEDL.DBID 24P
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302023600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1860-6768
1860-7314
IngestDate Tue Nov 04 01:59:31 EST 2025
Thu Oct 02 06:19:50 EDT 2025
Mon Jul 21 06:07:31 EDT 2025
Thu Oct 16 04:46:35 EDT 2025
Tue Nov 18 22:18:29 EST 2025
Wed Aug 20 07:26:00 EDT 2025
Tue Sep 09 05:32:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4772-71fd9a98e0467e409f58c0a12840e755be91c51c6af25d0645ae5b78481235b33
Notes istex:7BE082D4D11E6A3F28D93C3C02E3B12FAA41C2DF
ark:/67375/WNG-SC2QRS5B-X
Institute for Collaborative Biotechnologies - No. W911NF-09-0001
Funded Access
ArticleID:BIOT201100222
NIH - No. P50-GM068762 and R24-DK090963
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Supporting information available online
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbiot.201100222
PMID 22125256
PQID 926151518
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3292705
proquest_miscellaneous_926151518
pubmed_primary_22125256
crossref_primary_10_1002_biot_201100222
crossref_citationtrail_10_1002_biot_201100222
wiley_primary_10_1002_biot_201100222_BIOT201100222
istex_primary_ark_67375_WNG_SC2QRS5B_X
PublicationCentury 2000
PublicationDate March 2012
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: March 2012
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Biotechnology journal
PublicationTitleAlternate Biotechnology Journal
PublicationYear 2012
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References Janes, K. A., Albeck, J. G., Gaudet, S., Sorger, P. et al., A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 2005, 310, 1646-1653.
Janes, K. A., Lauffenburger, D. A., A biological approach to computational models of proteomic networks. Curr. Opin. Chem. Biol. 2006, 10, 73-80.
Glass, L., Kauffman, S. A., The logical analysis of continuous, non-linear biochemical control networks. J. Theo. Bio. 1973, 39, 103-129.
Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M., Ho, D. D., HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 1996, 271, 1582-1586.
Sarkar, C. A., Lauffenburger, D. A., Cell-level pharmacokinetic model of granulocyte colony-stimulating factor: implications for ligand lifetime and potency in vivo. Mol. Pharmacol. 2003, 63, 147-158.
Bauer-Mehren, A., Furlong, L. I., Sanz, F., Pathway databases and tools for their exploitation: benefits, current limitations and challenges. Mol. Syst. Biol. 2009, 5, 290.
Woolf, P. J., Prudhomme, W., Daheron, L., Daley, G. Q., Lauffenburger, D. A., Bayesian analysis of signaling networks governing embryonic stem cell fate decisions. Bioinformatics 2005, 21, 741-753.
van Dam, H., Castellazzi, M., Distinct roles of Jun: Fos and Jun: ATF dimers in oncogenesis. Oncogene 2001, 20, 2453-2464.
Morris, M. K., Saez-Rodriguez, J., Clarke, D. C., Sorger, P. K., Lauffenburger, D. A., Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli. PLoS Comput. Biol. 2011, 7, e1001099.
Heinrich, R., Neel, B. G., Rapoport, T. A., Mathematical models of protein kinase signal transduction. Mol. Cell 2002, 9, 957-970.
Jones, D. S., Silverman, A. P., Cochran, J. R., Developing therapeutic proteins by engineering ligand-receptor interactions. Trends Biotechnol. 2008, 26, 498-505.
Zhang, R., Shah, M., Yang, J., Nyland, S. et al., Network model of survival signaling in large granular lymphocyte leukemia. Proc. Natl. Acad. Sci. USA 2008, 105, 16308-16313.
Sarkar, C. A., Lowenhaupt, K., Horan, T., Boone, T. C. et al., Rational cytokine design for increased lifetime and enhanced potency using pH-activated "histidine switching". Nat. Biotechnol. 2002, 20, 908-913.
Hess, J., Angel, P., Schorpp-Kistner, M., AP-1 subunits: quarrel and harmony among siblings. J. Cell Sci. 2004, 117, 5965-5973.
Ideker, T., Lauffenburger, D. A., Building with a scaffold: emerging strategies for high- to low-level cellular modeling. Trends Biotechnol. 2003, 21, 255-262.
Ricci, M. S., Brems, D. N., Common structural stability properties of 4-helical bundle cytokines: possible physiological and pharmaceutical consequences. Curr. Pharm. Des. 2004, 10, 3901-3911.
Chinenov, Y., Kerppola, T. K., Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 2001, 20, 2438-2452.
Wittmann, D., Krumsiek, J., Saez-Rodriguez, J., Lauffenburger, D. A. et al., Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst. Biol. 2009, 3, 98.
Saez-Rodriguez, J., Alexopoulos, L. G., Zhang, M., Morris, M. K. et al., Comparing signaling networks between normal and transformed hepatocytes using discrete logical models. Cancer Res. 2011, 71, 5400-5411.
Hendriks, B. S., Opresko, L. K., Wiley, H. S., Lauffenburger, D., Quantitative analysis of HER2-mediated effects on HER2 and epidermal growth factor receptor endocytosis: distribution of homo- and heterodimers depends on relative HER2 levels. J. Biol. Chem. 2003, 278, 23343-23351.
Petros, W. P., Pharmacokinetics and administration of colony-stimulating factors. Pharmacotherapy 1992, 12, 32S-38S.
Hunter, P. J., Crampin, E. J., Nielsen, P. M., Bioinformatics, multiscale modeling and the IUPS Physiome Project. Brief Bioinform. 2008, 9, 333-343.
Vicini, P., Multiscale modeling in drug discovery and development: future opportunities and present challenges. Clin. Pharmacol. Ther. 2010, 88, 126-129.
Lauffenburger, D. A., Fallon, E. M., Haugh, J. M., Scratching the (cell) surface: cytokine engineering for improved ligand/receptor trafficking dynamics. Chem. Biol. 1998, 5, R257-R263.
Morris, M. K., Saez-Rodriguez, J., Sorger, P. K., Lauffenburger, D. A., Logic-based models for the analysis of cell signaling networks. Biochemistry 2010, 49, 3216-3224.
Mendoza, L., Xenarios, I., A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theo. Biol. Med. Model. 2006, 3, 13.
Yoon, D. J., Liu, C. T., Quinlan, D. S., Nafisi, P. M., Kamei, D. T., Intracellular trafficking considerations in the development of natural ligand-drug molecular conjugates for cancer. Ann. Biomed. Eng. 2011, 39, 1235-1251.
Saez-Rodriguez, J., Alexopoulos, L. G., Epperlein, J., Samaga, R. et al., Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol. Syst. Biol. 2009, 5, 331.
Kuwabara, T., Kobayashi, S., Sugiyama, Y., Pharmacokinetics and phyamacodynamics of a recombinant human granulocyte colony-stimulating factor. Drug Metab. Rev. 1996, 28, 625-658.
2002; 9
2006; 10
2005; 310
1973; 39
2008; 9
2005; 21
2008; 105
2006; 3
2011; 39
2003; 278
1992; 12
2011; 7
2001; 20
2004; 10
2010; 88
2010; 49
1996; 28
2002; 20
2011; 71
1996; 271
2008; 26
2009; 5
2009; 3
1998; 5
2004; 117
2003; 63
2003; 21
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_21_2
e_1_2_7_20_2
References_xml – reference: Glass, L., Kauffman, S. A., The logical analysis of continuous, non-linear biochemical control networks. J. Theo. Bio. 1973, 39, 103-129.
– reference: Hess, J., Angel, P., Schorpp-Kistner, M., AP-1 subunits: quarrel and harmony among siblings. J. Cell Sci. 2004, 117, 5965-5973.
– reference: Yoon, D. J., Liu, C. T., Quinlan, D. S., Nafisi, P. M., Kamei, D. T., Intracellular trafficking considerations in the development of natural ligand-drug molecular conjugates for cancer. Ann. Biomed. Eng. 2011, 39, 1235-1251.
– reference: Janes, K. A., Albeck, J. G., Gaudet, S., Sorger, P. et al., A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 2005, 310, 1646-1653.
– reference: Heinrich, R., Neel, B. G., Rapoport, T. A., Mathematical models of protein kinase signal transduction. Mol. Cell 2002, 9, 957-970.
– reference: Morris, M. K., Saez-Rodriguez, J., Sorger, P. K., Lauffenburger, D. A., Logic-based models for the analysis of cell signaling networks. Biochemistry 2010, 49, 3216-3224.
– reference: Zhang, R., Shah, M., Yang, J., Nyland, S. et al., Network model of survival signaling in large granular lymphocyte leukemia. Proc. Natl. Acad. Sci. USA 2008, 105, 16308-16313.
– reference: Mendoza, L., Xenarios, I., A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theo. Biol. Med. Model. 2006, 3, 13.
– reference: Sarkar, C. A., Lowenhaupt, K., Horan, T., Boone, T. C. et al., Rational cytokine design for increased lifetime and enhanced potency using pH-activated "histidine switching". Nat. Biotechnol. 2002, 20, 908-913.
– reference: Hendriks, B. S., Opresko, L. K., Wiley, H. S., Lauffenburger, D., Quantitative analysis of HER2-mediated effects on HER2 and epidermal growth factor receptor endocytosis: distribution of homo- and heterodimers depends on relative HER2 levels. J. Biol. Chem. 2003, 278, 23343-23351.
– reference: Sarkar, C. A., Lauffenburger, D. A., Cell-level pharmacokinetic model of granulocyte colony-stimulating factor: implications for ligand lifetime and potency in vivo. Mol. Pharmacol. 2003, 63, 147-158.
– reference: Hunter, P. J., Crampin, E. J., Nielsen, P. M., Bioinformatics, multiscale modeling and the IUPS Physiome Project. Brief Bioinform. 2008, 9, 333-343.
– reference: Chinenov, Y., Kerppola, T. K., Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 2001, 20, 2438-2452.
– reference: Saez-Rodriguez, J., Alexopoulos, L. G., Epperlein, J., Samaga, R. et al., Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol. Syst. Biol. 2009, 5, 331.
– reference: Petros, W. P., Pharmacokinetics and administration of colony-stimulating factors. Pharmacotherapy 1992, 12, 32S-38S.
– reference: Woolf, P. J., Prudhomme, W., Daheron, L., Daley, G. Q., Lauffenburger, D. A., Bayesian analysis of signaling networks governing embryonic stem cell fate decisions. Bioinformatics 2005, 21, 741-753.
– reference: van Dam, H., Castellazzi, M., Distinct roles of Jun: Fos and Jun: ATF dimers in oncogenesis. Oncogene 2001, 20, 2453-2464.
– reference: Vicini, P., Multiscale modeling in drug discovery and development: future opportunities and present challenges. Clin. Pharmacol. Ther. 2010, 88, 126-129.
– reference: Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M., Ho, D. D., HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 1996, 271, 1582-1586.
– reference: Ricci, M. S., Brems, D. N., Common structural stability properties of 4-helical bundle cytokines: possible physiological and pharmaceutical consequences. Curr. Pharm. Des. 2004, 10, 3901-3911.
– reference: Ideker, T., Lauffenburger, D. A., Building with a scaffold: emerging strategies for high- to low-level cellular modeling. Trends Biotechnol. 2003, 21, 255-262.
– reference: Janes, K. A., Lauffenburger, D. A., A biological approach to computational models of proteomic networks. Curr. Opin. Chem. Biol. 2006, 10, 73-80.
– reference: Jones, D. S., Silverman, A. P., Cochran, J. R., Developing therapeutic proteins by engineering ligand-receptor interactions. Trends Biotechnol. 2008, 26, 498-505.
– reference: Kuwabara, T., Kobayashi, S., Sugiyama, Y., Pharmacokinetics and phyamacodynamics of a recombinant human granulocyte colony-stimulating factor. Drug Metab. Rev. 1996, 28, 625-658.
– reference: Wittmann, D., Krumsiek, J., Saez-Rodriguez, J., Lauffenburger, D. A. et al., Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst. Biol. 2009, 3, 98.
– reference: Morris, M. K., Saez-Rodriguez, J., Clarke, D. C., Sorger, P. K., Lauffenburger, D. A., Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli. PLoS Comput. Biol. 2011, 7, e1001099.
– reference: Bauer-Mehren, A., Furlong, L. I., Sanz, F., Pathway databases and tools for their exploitation: benefits, current limitations and challenges. Mol. Syst. Biol. 2009, 5, 290.
– reference: Saez-Rodriguez, J., Alexopoulos, L. G., Zhang, M., Morris, M. K. et al., Comparing signaling networks between normal and transformed hepatocytes using discrete logical models. Cancer Res. 2011, 71, 5400-5411.
– reference: Lauffenburger, D. A., Fallon, E. M., Haugh, J. M., Scratching the (cell) surface: cytokine engineering for improved ligand/receptor trafficking dynamics. Chem. Biol. 1998, 5, R257-R263.
– volume: 5
  start-page: R257
  year: 1998
  end-page: R263
  article-title: Scratching the (cell) surface: cytokine engineering for improved ligand/receptor trafficking dynamics.
  publication-title: Chem. Biol.
– volume: 21
  start-page: 255
  year: 2003
  end-page: 262
  article-title: Building with a scaffold: emerging strategies for high‐ to low‐level cellular modeling.
  publication-title: Trends Biotechnol.
– volume: 9
  start-page: 333
  year: 2008
  end-page: 343
  article-title: Bioinformatics, multiscale modeling and the IUPS Physiome Project.
  publication-title: Brief Bioinform.
– volume: 10
  start-page: 3901
  year: 2004
  end-page: 3911
  article-title: Common structural stability properties of 4‐helical bundle cytokines: possible physiological and pharmaceutical consequences.
  publication-title: Curr. Pharm. Des.
– volume: 278
  start-page: 23343
  year: 2003
  end-page: 23351
  article-title: Quantitative analysis of HER2‐mediated effects on HER2 and epidermal growth factor receptor endocytosis: distribution of homo‐ and heterodimers depends on relative HER2 levels.
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 957
  year: 2002
  end-page: 970
  article-title: Mathematical models of protein kinase signal transduction.
  publication-title: Mol. Cell
– volume: 271
  start-page: 1582
  year: 1996
  end-page: 1586
  article-title: HIV‐1 dynamics in vivo: virion clearance rate, infected cell life‐span, and viral generation time.
  publication-title: Science
– volume: 105
  start-page: 16308
  year: 2008
  end-page: 16313
  article-title: Network model of survival signaling in large granular lymphocyte leukemia.
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 71
  start-page: 5400
  year: 2011
  end-page: 5411
  article-title: Comparing signaling networks between normal and transformed hepatocytes using discrete logical models.
  publication-title: Cancer Res.
– volume: 39
  start-page: 103
  year: 1973
  end-page: 129
  article-title: The logical analysis of continuous, non‐linear biochemical control networks.
  publication-title: J. Theo. Bio.
– volume: 3
  start-page: 98
  year: 2009
  article-title: Transforming Boolean models to continuous models: methodology and application to T‐cell receptor signaling.
  publication-title: BMC Syst. Biol.
– volume: 88
  start-page: 126
  year: 2010
  end-page: 129
  article-title: Multiscale modeling in drug discovery and development: future opportunities and present challenges.
  publication-title: Clin. Pharmacol. Ther.
– volume: 12
  start-page: 32S
  year: 1992
  end-page: 38S
  article-title: Pharmacokinetics and administration of colony‐stimulating factors.
  publication-title: Pharmacotherapy
– volume: 5
  start-page: 331
  year: 2009
  article-title: Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction.
  publication-title: Mol. Syst. Biol.
– volume: 7
  start-page: e1001099
  year: 2011
  article-title: Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli.
  publication-title: PLoS Comput. Biol.
– volume: 20
  start-page: 2438
  year: 2001
  end-page: 2452
  article-title: Close encounters of many kinds: Fos‐Jun interactions that mediate transcription regulatory specificity.
  publication-title: Oncogene
– volume: 5
  start-page: 290
  year: 2009
  article-title: Pathway databases and tools for their exploitation: benefits, current limitations and challenges.
  publication-title: Mol. Syst. Biol.
– volume: 117
  start-page: 5965
  year: 2004
  end-page: 5973
  article-title: AP‐1 subunits: quarrel and harmony among siblings.
  publication-title: J. Cell Sci.
– volume: 310
  start-page: 1646
  year: 2005
  end-page: 1653
  article-title: A systems model of signaling identifies a molecular basis set for cytokine‐induced apoptosis.
  publication-title: Science
– volume: 26
  start-page: 498
  year: 2008
  end-page: 505
  article-title: Developing therapeutic proteins by engineering ligand‐receptor interactions.
  publication-title: Trends Biotechnol.
– volume: 21
  start-page: 741
  year: 2005
  end-page: 753
  article-title: Bayesian analysis of signaling networks governing embryonic stem cell fate decisions.
  publication-title: Bioinformatics
– volume: 10
  start-page: 73
  year: 2006
  end-page: 80
  article-title: A biological approach to computational models of proteomic networks.
  publication-title: Curr. Opin. Chem. Biol.
– volume: 39
  start-page: 1235
  year: 2011
  end-page: 1251
  article-title: Intracellular trafficking considerations in the development of natural ligand‐drug molecular conjugates for cancer.
  publication-title: Ann. Biomed. Eng.
– volume: 3
  start-page: 13
  year: 2006
  article-title: A method for the generation of standardized qualitative dynamical systems of regulatory networks.
  publication-title: Theo. Biol. Med. Model.
– volume: 20
  start-page: 908
  year: 2002
  end-page: 913
  article-title: Rational cytokine design for increased lifetime and enhanced potency using pH‐activated “histidine switching”.
  publication-title: Nat. Biotechnol.
– volume: 28
  start-page: 625
  year: 1996
  end-page: 658
  article-title: Pharmacokinetics and phyamacodynamics of a recombinant human granulocyte colony‐stimulating factor.
  publication-title: Drug Metab. Rev.
– volume: 49
  start-page: 3216
  year: 2010
  end-page: 3224
  article-title: Logic‐based models for the analysis of cell signaling networks.
  publication-title: Biochemistry
– volume: 63
  start-page: 147
  year: 2003
  end-page: 158
  article-title: Cell‐level pharmacokinetic model of granulocyte colony‐stimulating factor: implications for ligand lifetime and potency in vivo.
  publication-title: Mol. Pharmacol.
– volume: 20
  start-page: 2453
  year: 2001
  end-page: 2464
  article-title: Distinct roles of Jun: Fos and Jun: ATF dimers in oncogenesis.
  publication-title: Oncogene
– ident: e_1_2_7_8_2
  doi: 10.1093/bioinformatics/bti056
– ident: e_1_2_7_10_2
  doi: 10.1038/clpt.2010.87
– ident: e_1_2_7_2_2
  doi: 10.1016/S0167-7799(03)00115-X
– ident: e_1_2_7_4_2
  doi: 10.1126/science.271.5255.1582
– ident: e_1_2_7_18_2
  doi: 10.1371/journal.pcbi.1001099
– ident: e_1_2_7_5_2
  doi: 10.1074/jbc.M300477200
– ident: e_1_2_7_20_2
  doi: 10.1038/msb.2009.87
– ident: e_1_2_7_17_2
  doi: 10.1186/1752-0509-3-98
– ident: e_1_2_7_29_2
  doi: 10.2174/1381612043382611
– ident: e_1_2_7_28_2
  doi: 10.1016/S1074-5521(98)90110-7
– ident: e_1_2_7_9_2
  doi: 10.1093/bib/bbn024
– ident: e_1_2_7_15_2
  doi: 10.1016/0022-5193(73)90208-7
– ident: e_1_2_7_30_2
  doi: 10.1016/j.tibtech.2008.05.009
– ident: e_1_2_7_16_2
  doi: 10.1186/1742-4682-3-13
– ident: e_1_2_7_14_2
  doi: 10.1158/0008-5472.CAN-10-4453
– ident: e_1_2_7_27_2
  doi: 10.3109/03602539608994020
– ident: e_1_2_7_23_2
  doi: 10.1038/sj.onc.1204385
– ident: e_1_2_7_25_2
  doi: 10.1038/nbt725
– ident: e_1_2_7_12_2
  doi: 10.1021/bi902202q
– ident: e_1_2_7_6_2
  doi: 10.1016/S1097-2765(02)00528-2
– ident: e_1_2_7_13_2
  doi: 10.1073/pnas.0806447105
– ident: e_1_2_7_24_2
  doi: 10.1124/mol.63.1.147
– ident: e_1_2_7_31_2
  doi: 10.1007/s10439-011-0280-y
– ident: e_1_2_7_21_2
  doi: 10.1038/sj.onc.1204239
– ident: e_1_2_7_7_2
  doi: 10.1126/science.1116598
– ident: e_1_2_7_26_2
  doi: 10.1002/j.1875-9114.1992.tb02680.x
– ident: e_1_2_7_19_2
  doi: 10.1038/msb.2009.47
– ident: e_1_2_7_11_2
  doi: 10.1007/978-1-60761-478-4_6
– ident: e_1_2_7_22_2
  doi: 10.1242/jcs.01589
– ident: e_1_2_7_3_2
  doi: 10.1016/j.cbpa.2005.12.016
SSID ssj0045304
Score 1.9836301
Snippet Mathematical models have substantially improved our ability to predict the response of a complex biological system to perturbation, but their use is typically...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 374
SubjectTerms Algorithms
Cell Communication
Computer Simulation
Constrained fuzzy logic model
Cytokines - metabolism
Cytokines - pharmacokinetics
Fuzzy Logic
G-CSF
Granulocyte Colony-Stimulating Factor - metabolism
Granulocyte Colony-Stimulating Factor - pharmacokinetics
Humans
Models, Theoretical
Multi-scale model
Signal Transduction
Signaling network
Title Querying quantitative logic models (Q2LM) to study intracellular signaling networks and cell-cytokine interactions
URI https://api.istex.fr/ark:/67375/WNG-SC2QRS5B-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbiot.201100222
https://www.ncbi.nlm.nih.gov/pubmed/22125256
https://www.proquest.com/docview/926151518
https://pubmed.ncbi.nlm.nih.gov/PMC3292705
Volume 7
WOSCitedRecordID wos000302023600010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1860-7314
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045304
  issn: 1860-6768
  databaseCode: DRFUL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BlwM98C4ESuUD4nGImjhx7BzbwgJSWbp9iL1ZjuPQVVECSbYqN34Cv5FfUo-zG3YFCAkuUSyPE3k8Mx4nM98APNFFruwuxX1Fk9yPGVe-KNLAV4qGRU7TXGfCFZvgo5GYTNKDpSz-Dh-i_-CGmuHsNSq4yprtn6Ch2bRqHQSny-e8CoMwjAQWb6DxwcIWxyxyBQRDkWCQeyIWsI0B3V4dv7ItDZDDF7_zOX8NnVx2ad2eNLz5_7O5BTfm_ijZ6QToNlwx5R1Y3_lYzzE5jG0tYRbehXY8MzXmRpEvM1W6FDVrMIkzocTV1WnI8zHdf_eCtBVx6LVkirPAXwQY80owZERhFjwpuxj0hqgyJ9j_49t3_bWtzuzrcJCpu7SL5h6cDF8d773x56UbfB1bf93ndqFTlQpjj9_c2DNkwYQOFG6GgeGMZSYNNQt1ogrKcsTMU4ZlHLH9acSyKNqAtbIqzQMgcWaiKDZJFuU8zgprYPIwyRkrgoIn1kPxwF-snNRzXHMsr_FJdojMVCJvZc9bD5719J87RI8_Uj51gtCTqfoM4-A4kx9Gr-XRHh0fHrFdOfGALCRFWu1EfqnSVLNGptR5jKHw4H4nOP3DqHUamHU4PeArItUTIPD3ak85PXUA4BFNKQ-YB9SJ1F-mIXffvj_uWw__ZdAjuG7vaRd7twlrbT0zj-GaPm-nTb3lVM5e-URsweDl4fBk_xIGMTEp
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BFwl6KG8anj4gHoeoiRPHybEtLK3YLmy7VfdmOY4Dq6IEkiwqN34Cv5FfgsfJhq4AISGOiceOPJ4Zj52ZbwAeqzyTZpfirqRR5oaMSzfOE8-Vkvp5RpNMpbEtNsHH43g2S9520YSYC9PiQ_QXbqgZ1l6jguOF9NZP1NB0XjYWg9MmdF6EQWhkyQj54MXh8Hi0NMchC2wNQT-OMM49ipfIjR7dWh1hZWcaIJPPfud2_ho9ed6rtdvS8Op_mNA12Oh8UrLdCtF1uKCLG7C-_a7qcDm0eTqHW3gTmslCV5gfRT4tZGHT1IzRJNaMEltbpybPJnR08Jw0JbEItmSO08DfBBj3SjBsRGImPCnaOPSayCIj2P796zf1pSlPzeewk67a1Iv6FhwPX05399yufIOrQuOzu9wsdiKTWJsjONfmHJmzWHkSN0RPc8ZSnfiK-SqSOWUZ4uZJzVKO-P40YGkQ3Ia1oiz0JpAw1UEQ6igNMh6muTEymR9ljOVeziPjpTjgLpdOqA7bHEtsfBAtKjMVyFvR89aBpz39xxbV44-UT6wk9GSyOsVYOM7EyfiVONqlk8MjtiNmDpClqAijocgvWehyUYuEWq_Rjx2400pOPxg1jgMzTqcDfEWmegIE_15tKebvLQh4QBPKPeYAtTL1l2mInf030_7p7r90egSX96YHIzHaH7--B1fMe9rG4t2HtaZa6AdwSX1u5nX1sNPAH_spNCc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BLkJw4NnS8PQB8ThETZw4To59sFCxLN0-xN4sJ3Zg1SopSRbBjZ_Ab-SX4HGyoStASIij47Ejj2fG42TmG4DHWa6kOaW4K2mk3JBx6cZ54rlSUj9XNFFZGttiE3wyiWezZL-LJsRcmBYfov_ghpph7TUquD5T-eZP1NB0XjYWg9MmdF6EYYiVZAYw3D0YHY-X5jhkga0h6McRxrlH8RK50aObqzOsnExDZPLn37mdv0ZPnvdq7bE0uv4fFnQDrnU-KdlqhegmXNDFLbi69b7qcDm0aZ3DLbwNzXShK8yPIh8XsrBpasZoEmtGia2tU5NnUzp-85w0JbEItmSOy8DfBBj3SjBsRGImPCnaOPSayEIR7P_-9Vv2pSlPzOtwkK7a1It6DY5HL452Xrld-QY3C43P7nKz2YlMYm2u4Fybe2TO4syTeCB6mjOW6sTPmJ9FMqdMIW6e1CzliO9PA5YGwToMirLQG0DCVAdBqKM0UDxMc2NklB8pxnIv55HxUhxwl1snsg7bHEtsnIoWlZkK5K3oeevA057-rEX1-CPlEysJPZmsTjAWjjPxbvJSHO7Q6cEh2xYzB8hSVITRUOSXLHS5qEVCrdfoxw7caSWnn4wax4EZp9MBviJTPQGCf6_2FPMPFgQ8oAnlHnOAWpn6yzLE9t7bo751918GPYLL-7sjMd6bvL4HV8xj2obi3YdBUy30A7iUfWrmdfWwU8AfO5kzog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Querying+quantitative+logic+models+%28Q2LM%29+to+study+intracellular+signaling+networks+and+cell%E2%80%90cytokine+interactions&rft.jtitle=Biotechnology+journal&rft.au=Morris%2C+Melody+K.&rft.au=Shriver%2C+Zachary&rft.au=Sasisekharan%2C+Ram&rft.au=Lauffenburger%2C+Douglas+A.&rft.date=2012-03-01&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1860-6768&rft.eissn=1860-7314&rft.volume=7&rft.issue=3&rft.spage=374&rft.epage=386&rft_id=info:doi/10.1002%2Fbiot.201100222&rft.externalDBID=10.1002%252Fbiot.201100222&rft.externalDocID=BIOT201100222
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-6768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-6768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-6768&client=summon