MRI R2 and quantitative susceptibility mapping in brain tissue with extreme iron overload

Background R2* and quantitative susceptibility mapping (QSM) are regarded as robust techniques for assessing iron content in the brain. While these techniques are established for normal or moderate iron levels, their usability in extreme iron overload, as seen in aceruloplasminemia (ACP), is unclear...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:European radiology experimental Ročník 9; číslo 1; s. 80 - 13
Hlavní autori: Birkl, Christoph, Panzer, Marlene, Kames, Christian, Birkl-Toeglhofer, Anna Maria, Rauscher, Alexander, Glodny, Bernhard, Gizewski, Elke R., Zoller, Heinz
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Vienna Springer Vienna 23.08.2025
Springer Nature B.V
SpringerOpen
Predmet:
ISSN:2509-9280, 2509-9280
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background R2* and quantitative susceptibility mapping (QSM) are regarded as robust techniques for assessing iron content in the brain. While these techniques are established for normal or moderate iron levels, their usability in extreme iron overload, as seen in aceruloplasminemia (ACP), is unclear. We aimed to evaluate various R2* and QSM algorithms in assessing brain iron levels in patients with ACP compared to healthy controls. Materials and methods We acquired a three-dimensional multiecho gradient-echo sequence for R2* and QSM in three patients with ACP and three healthy subjects. Six algorithms each for R2* and QSM were compared. QSM was performed with referencing to whole brain, to cerebrospinal fluid and without referencing. R2* and QSM values were assessed in the caudate nucleus, putamen, globus pallidus, and thalamus. Results R2* values varied significantly across algorithms, particularly in the putamen (F(5,50) = 16.51, p  < 0.001). For QSM, reference region choice (F(5,150) = 264, p  < 0.001) and algorithm selection (F(2,9) = 10, p  < 0.001) had an impact on susceptibility values. In patients, referencing to whole brain yielded lower susceptibility values than cerebrospinal fluid (median = 0.147 ppm, range = 0.527 ppm versus median = 0.279 ppm, range = 0.593 ppm). Conclusion Extreme iron overload amplifies variability in R2* and QSM measurements. QSM referencing is particularly challenging in diffuse whole-brain iron accumulation; thus, analysis with multiple reference regions might mitigate bias. Both algorithm selection and referencing approaches play a pivotal role in determining measurement accuracy and clinical interpretation under extreme brain iron overload. Relevance statement As QSM transitions into clinical use, it will encounter cases of extreme iron overload. Our study in patients with aceruloplasminemia revealed that the choice of reference region significantly influences susceptibility values, with variations exceeding algorithm-dependent differences. Key Points R2* and QSM vary across algorithms in brain tissue with iron overload. Whole-brain referenced QSM leads to lower susceptibility values in aceruloplasminemia patients. QSM, if properly processed, provides reliable maps in iron overload brain regions. In brain regions with extremely high iron content, R2* mapping might fail. Graphical Abstract
AbstractList Abstract Background R2* and quantitative susceptibility mapping (QSM) are regarded as robust techniques for assessing iron content in the brain. While these techniques are established for normal or moderate iron levels, their usability in extreme iron overload, as seen in aceruloplasminemia (ACP), is unclear. We aimed to evaluate various R2* and QSM algorithms in assessing brain iron levels in patients with ACP compared to healthy controls. Materials and methods We acquired a three-dimensional multiecho gradient-echo sequence for R2* and QSM in three patients with ACP and three healthy subjects. Six algorithms each for R2* and QSM were compared. QSM was performed with referencing to whole brain, to cerebrospinal fluid and without referencing. R2* and QSM values were assessed in the caudate nucleus, putamen, globus pallidus, and thalamus. Results R2* values varied significantly across algorithms, particularly in the putamen (F(5,50) = 16.51, p < 0.001). For QSM, reference region choice (F(5,150) = 264, p < 0.001) and algorithm selection (F(2,9) = 10, p < 0.001) had an impact on susceptibility values. In patients, referencing to whole brain yielded lower susceptibility values than cerebrospinal fluid (median = 0.147 ppm, range = 0.527 ppm versus median = 0.279 ppm, range = 0.593 ppm). Conclusion Extreme iron overload amplifies variability in R2* and QSM measurements. QSM referencing is particularly challenging in diffuse whole-brain iron accumulation; thus, analysis with multiple reference regions might mitigate bias. Both algorithm selection and referencing approaches play a pivotal role in determining measurement accuracy and clinical interpretation under extreme brain iron overload. Relevance statement As QSM transitions into clinical use, it will encounter cases of extreme iron overload. Our study in patients with aceruloplasminemia revealed that the choice of reference region significantly influences susceptibility values, with variations exceeding algorithm-dependent differences. Key Points R2* and QSM vary across algorithms in brain tissue with iron overload. Whole-brain referenced QSM leads to lower susceptibility values in aceruloplasminemia patients. QSM, if properly processed, provides reliable maps in iron overload brain regions. In brain regions with extremely high iron content, R2* mapping might fail. Graphical Abstract
Background R2* and quantitative susceptibility mapping (QSM) are regarded as robust techniques for assessing iron content in the brain. While these techniques are established for normal or moderate iron levels, their usability in extreme iron overload, as seen in aceruloplasminemia (ACP), is unclear. We aimed to evaluate various R2* and QSM algorithms in assessing brain iron levels in patients with ACP compared to healthy controls. Materials and methods We acquired a three-dimensional multiecho gradient-echo sequence for R2* and QSM in three patients with ACP and three healthy subjects. Six algorithms each for R2* and QSM were compared. QSM was performed with referencing to whole brain, to cerebrospinal fluid and without referencing. R2* and QSM values were assessed in the caudate nucleus, putamen, globus pallidus, and thalamus. Results R2* values varied significantly across algorithms, particularly in the putamen (F(5,50) = 16.51, p  < 0.001). For QSM, reference region choice (F(5,150) = 264, p  < 0.001) and algorithm selection (F(2,9) = 10, p  < 0.001) had an impact on susceptibility values. In patients, referencing to whole brain yielded lower susceptibility values than cerebrospinal fluid (median = 0.147 ppm, range = 0.527 ppm versus median = 0.279 ppm, range = 0.593 ppm). Conclusion Extreme iron overload amplifies variability in R2* and QSM measurements. QSM referencing is particularly challenging in diffuse whole-brain iron accumulation; thus, analysis with multiple reference regions might mitigate bias. Both algorithm selection and referencing approaches play a pivotal role in determining measurement accuracy and clinical interpretation under extreme brain iron overload. Relevance statement As QSM transitions into clinical use, it will encounter cases of extreme iron overload. Our study in patients with aceruloplasminemia revealed that the choice of reference region significantly influences susceptibility values, with variations exceeding algorithm-dependent differences. Key Points R2* and QSM vary across algorithms in brain tissue with iron overload. Whole-brain referenced QSM leads to lower susceptibility values in aceruloplasminemia patients. QSM, if properly processed, provides reliable maps in iron overload brain regions. In brain regions with extremely high iron content, R2* mapping might fail. Graphical Abstract
R2* and quantitative susceptibility mapping (QSM) are regarded as robust techniques for assessing iron content in the brain. While these techniques are established for normal or moderate iron levels, their usability in extreme iron overload, as seen in aceruloplasminemia (ACP), is unclear. We aimed to evaluate various R2* and QSM algorithms in assessing brain iron levels in patients with ACP compared to healthy controls. We acquired a three-dimensional multiecho gradient-echo sequence for R2* and QSM in three patients with ACP and three healthy subjects. Six algorithms each for R2* and QSM were compared. QSM was performed with referencing to whole brain, to cerebrospinal fluid and without referencing. R2* and QSM values were assessed in the caudate nucleus, putamen, globus pallidus, and thalamus. R2* values varied significantly across algorithms, particularly in the putamen (F(5,50) = 16.51, p < 0.001). For QSM, reference region choice (F(5,150) = 264, p < 0.001) and algorithm selection (F(2,9) = 10, p < 0.001) had an impact on susceptibility values. In patients, referencing to whole brain yielded lower susceptibility values than cerebrospinal fluid (median = 0.147 ppm, range = 0.527 ppm versus median = 0.279 ppm, range = 0.593 ppm). Extreme iron overload amplifies variability in R2* and QSM measurements. QSM referencing is particularly challenging in diffuse whole-brain iron accumulation; thus, analysis with multiple reference regions might mitigate bias. Both algorithm selection and referencing approaches play a pivotal role in determining measurement accuracy and clinical interpretation under extreme brain iron overload. As QSM transitions into clinical use, it will encounter cases of extreme iron overload. Our study in patients with aceruloplasminemia revealed that the choice of reference region significantly influences susceptibility values, with variations exceeding algorithm-dependent differences. R2* and QSM vary across algorithms in brain tissue with iron overload. Whole-brain referenced QSM leads to lower susceptibility values in aceruloplasminemia patients. QSM, if properly processed, provides reliable maps in iron overload brain regions. In brain regions with extremely high iron content, R2* mapping might fail.
R2* and quantitative susceptibility mapping (QSM) are regarded as robust techniques for assessing iron content in the brain. While these techniques are established for normal or moderate iron levels, their usability in extreme iron overload, as seen in aceruloplasminemia (ACP), is unclear. We aimed to evaluate various R2* and QSM algorithms in assessing brain iron levels in patients with ACP compared to healthy controls.BACKGROUNDR2* and quantitative susceptibility mapping (QSM) are regarded as robust techniques for assessing iron content in the brain. While these techniques are established for normal or moderate iron levels, their usability in extreme iron overload, as seen in aceruloplasminemia (ACP), is unclear. We aimed to evaluate various R2* and QSM algorithms in assessing brain iron levels in patients with ACP compared to healthy controls.We acquired a three-dimensional multiecho gradient-echo sequence for R2* and QSM in three patients with ACP and three healthy subjects. Six algorithms each for R2* and QSM were compared. QSM was performed with referencing to whole brain, to cerebrospinal fluid and without referencing. R2* and QSM values were assessed in the caudate nucleus, putamen, globus pallidus, and thalamus.MATERIALS AND METHODSWe acquired a three-dimensional multiecho gradient-echo sequence for R2* and QSM in three patients with ACP and three healthy subjects. Six algorithms each for R2* and QSM were compared. QSM was performed with referencing to whole brain, to cerebrospinal fluid and without referencing. R2* and QSM values were assessed in the caudate nucleus, putamen, globus pallidus, and thalamus.R2* values varied significantly across algorithms, particularly in the putamen (F(5,50) = 16.51, p < 0.001). For QSM, reference region choice (F(5,150) = 264, p < 0.001) and algorithm selection (F(2,9) = 10, p < 0.001) had an impact on susceptibility values. In patients, referencing to whole brain yielded lower susceptibility values than cerebrospinal fluid (median = 0.147 ppm, range = 0.527 ppm versus median = 0.279 ppm, range = 0.593 ppm).RESULTSR2* values varied significantly across algorithms, particularly in the putamen (F(5,50) = 16.51, p < 0.001). For QSM, reference region choice (F(5,150) = 264, p < 0.001) and algorithm selection (F(2,9) = 10, p < 0.001) had an impact on susceptibility values. In patients, referencing to whole brain yielded lower susceptibility values than cerebrospinal fluid (median = 0.147 ppm, range = 0.527 ppm versus median = 0.279 ppm, range = 0.593 ppm).Extreme iron overload amplifies variability in R2* and QSM measurements. QSM referencing is particularly challenging in diffuse whole-brain iron accumulation; thus, analysis with multiple reference regions might mitigate bias. Both algorithm selection and referencing approaches play a pivotal role in determining measurement accuracy and clinical interpretation under extreme brain iron overload.CONCLUSIONExtreme iron overload amplifies variability in R2* and QSM measurements. QSM referencing is particularly challenging in diffuse whole-brain iron accumulation; thus, analysis with multiple reference regions might mitigate bias. Both algorithm selection and referencing approaches play a pivotal role in determining measurement accuracy and clinical interpretation under extreme brain iron overload.As QSM transitions into clinical use, it will encounter cases of extreme iron overload. Our study in patients with aceruloplasminemia revealed that the choice of reference region significantly influences susceptibility values, with variations exceeding algorithm-dependent differences.RELEVANCE STATEMENTAs QSM transitions into clinical use, it will encounter cases of extreme iron overload. Our study in patients with aceruloplasminemia revealed that the choice of reference region significantly influences susceptibility values, with variations exceeding algorithm-dependent differences.R2* and QSM vary across algorithms in brain tissue with iron overload. Whole-brain referenced QSM leads to lower susceptibility values in aceruloplasminemia patients. QSM, if properly processed, provides reliable maps in iron overload brain regions. In brain regions with extremely high iron content, R2* mapping might fail.KEY POINTSR2* and QSM vary across algorithms in brain tissue with iron overload. Whole-brain referenced QSM leads to lower susceptibility values in aceruloplasminemia patients. QSM, if properly processed, provides reliable maps in iron overload brain regions. In brain regions with extremely high iron content, R2* mapping might fail.
BackgroundR2* and quantitative susceptibility mapping (QSM) are regarded as robust techniques for assessing iron content in the brain. While these techniques are established for normal or moderate iron levels, their usability in extreme iron overload, as seen in aceruloplasminemia (ACP), is unclear. We aimed to evaluate various R2* and QSM algorithms in assessing brain iron levels in patients with ACP compared to healthy controls.Materials and methodsWe acquired a three-dimensional multiecho gradient-echo sequence for R2* and QSM in three patients with ACP and three healthy subjects. Six algorithms each for R2* and QSM were compared. QSM was performed with referencing to whole brain, to cerebrospinal fluid and without referencing. R2* and QSM values were assessed in the caudate nucleus, putamen, globus pallidus, and thalamus.ResultsR2* values varied significantly across algorithms, particularly in the putamen (F(5,50) = 16.51, p < 0.001). For QSM, reference region choice (F(5,150) = 264, p < 0.001) and algorithm selection (F(2,9) = 10, p < 0.001) had an impact on susceptibility values. In patients, referencing to whole brain yielded lower susceptibility values than cerebrospinal fluid (median = 0.147 ppm, range = 0.527 ppm versus median = 0.279 ppm, range = 0.593 ppm).ConclusionExtreme iron overload amplifies variability in R2* and QSM measurements. QSM referencing is particularly challenging in diffuse whole-brain iron accumulation; thus, analysis with multiple reference regions might mitigate bias. Both algorithm selection and referencing approaches play a pivotal role in determining measurement accuracy and clinical interpretation under extreme brain iron overload.Relevance statementAs QSM transitions into clinical use, it will encounter cases of extreme iron overload. Our study in patients with aceruloplasminemia revealed that the choice of reference region significantly influences susceptibility values, with variations exceeding algorithm-dependent differences.Key PointsR2* and QSM vary across algorithms in brain tissue with iron overload.Whole-brain referenced QSM leads to lower susceptibility values in aceruloplasminemia patients.QSM, if properly processed, provides reliable maps in iron overload brain regions.In brain regions with extremely high iron content, R2* mapping might fail.
ArticleNumber 80
Author Birkl-Toeglhofer, Anna Maria
Glodny, Bernhard
Gizewski, Elke R.
Zoller, Heinz
Panzer, Marlene
Rauscher, Alexander
Birkl, Christoph
Kames, Christian
Author_xml – sequence: 1
  givenname: Christoph
  orcidid: 0000-0003-3101-4002
  surname: Birkl
  fullname: Birkl, Christoph
  email: christoph.birkl@i-med.ac.at
  organization: Department of Radiology, Medical University of Innsbruck, Neuroimaging Research Core Facility, Medical University of Innsbruck
– sequence: 2
  givenname: Marlene
  surname: Panzer
  fullname: Panzer, Marlene
  organization: Department of Medicine I, Medical University of Innsbruck, Christian Doppler Laboratory for Iron and Phosphate Biology, Medical University of Innsbruck
– sequence: 3
  givenname: Christian
  surname: Kames
  fullname: Kames, Christian
  organization: Department of Physics and Astronomy, University of British Columbia
– sequence: 4
  givenname: Anna Maria
  surname: Birkl-Toeglhofer
  fullname: Birkl-Toeglhofer, Anna Maria
  organization: Institute of Neuropathology and Neuromolecular Pathology, Medical University of Innsbruck
– sequence: 5
  givenname: Alexander
  surname: Rauscher
  fullname: Rauscher, Alexander
  organization: Department of Physics and Astronomy, University of British Columbia, Department of Pediatrics, University of British Columbia
– sequence: 6
  givenname: Bernhard
  surname: Glodny
  fullname: Glodny, Bernhard
  organization: Department of Radiology, Medical University of Innsbruck
– sequence: 7
  givenname: Elke R.
  surname: Gizewski
  fullname: Gizewski, Elke R.
  organization: Department of Radiology, Medical University of Innsbruck, Neuroimaging Research Core Facility, Medical University of Innsbruck
– sequence: 8
  givenname: Heinz
  surname: Zoller
  fullname: Zoller, Heinz
  organization: Department of Medicine I, Medical University of Innsbruck, Christian Doppler Laboratory for Iron and Phosphate Biology, Medical University of Innsbruck
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40848176$$D View this record in MEDLINE/PubMed
BookMark eNp9kktvEzEUhS1UREvoH2CBLLFhM-D3jFcIVTwiFSFVsGBleWauU0cTO7U9Cf33uE0pLQs2tmV_99yr4_McHYUYAKGXlLyltFPvsqCtaBvCZEOIYqzZP0EnTBLdaNaRowfnY3Sa85oQQrXWUnXP0LEgnehoq07Qz68XS3zBsA0jvpptKL7Y4neA85wH2Bbf-8mXa7yx260PK-wD7pOta_E5z4D3vlxi-FUSbAD7FAOOO0hTtOML9NTZKcPp3b5APz59_H72pTn_9nl59uG8GUSr9k2nnOulAmEpSBi5ZMr14LQkA9OUd_0wuo5x1rdklIRralsYuBipY1SNgvAFWh50x2jXZpv8xqZrE603txcxrYxNxQ8TmIE5JpTTHWlb4QarFdGCkFbLsZe2dlug9wet7dxvYBwglGSnR6KPX4K_NKu4M5TxVmguq8KbO4UUr2bIxWx8NXKabIA4Z8PrAJwTyURFX_-DruOcQvXqhmJCs2pQpV49HOl-lj9fWAF2AIYUc07g7hFKzE1UzCEqpkbF3EbF7GsRPxTlCocVpL-9_1P1G1JOwO8
Cites_doi 10.1016/j.mri.2014.09.004
10.1148/radiol.10100495
10.1073/pnas.0910222107
10.1038/srep45261
10.1038/s41598-017-02584-5
10.1006/bcmd.2002.0561
10.1016/j.neuroimage.2018.04.047
10.1148/radiol.12120707
10.1002/nbm.3569
10.1002/mrm.26946
10.1016/j.mri.2020.02.016
10.1002/mrm.28563
10.1016/j.neuroimage.2010.06.070
10.1002/mrm.30006
10.1002/mrm.27062
10.1016/j.neuroimage.2011.02.046
10.3892/etm.2020.8645
10.1016/j.neuroimage.2013.08.051
10.1002/nbm.3383
10.1002/mrm.10283
10.3389/fnins.2021.618435
10.1002/mrm.25137
10.1016/j.neuroimage.2010.11.088
10.1148/radiol.2020192541
10.1002/mrm.22816
10.1016/j.nicl.2021.102657
10.1016/j.neuroimage.2021.118752
10.1016/j.neuroimage.2012.05.049
10.1073/pnas.1211075109
10.1016/j.mri.2007.02.014
10.1002/mrm.27073
10.1016/j.neuroimage.2020.117611
10.1016/j.neuroimage.2014.11.010
10.1073/pnas.0610821104
10.1002/mrm.25350
10.1002/hbm.24461
10.1046/j.1440-1789.2003.00521.x
10.1093/brain/awh641
10.1002/mrm.26369
10.1002/hbm.22360
10.1016/j.zemedi.2015.10.002
10.1007/s10334-016-0571-2
10.1002/mrm.29588
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
KB0
NAPCQ
PHGZM
PHGZT
PIMPY
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s41747-025-00622-w
DatabaseName Springer Nature Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
Nursing & Allied Health Premium
Health Research Premium Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7RV
  name: Nursing & Allied Health Database
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2509-9280
EndPage 13
ExternalDocumentID oai_doaj_org_article_c2f246f980774fca9609400795db5a91
PMC12374935
40848176
10_1186_s41747_025_00622_w
Genre Journal Article
GrantInformation_xml – fundername: Austrian Science Fund
  grantid: I 6838
  funderid: http://dx.doi.org/10.13039/501100002428
– fundername: Austrian Science Fund
  grantid: I 6838
GroupedDBID 0R~
7RV
8FI
8FJ
AAFWJ
AAJSJ
AAKKN
AASML
ABEEZ
ABUWG
ACACY
ACGFS
ACULB
ADBBV
AFGXO
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
BCNDV
BENPR
BKEYQ
BPHCQ
BVXVI
C24
C6C
CCPQU
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
HYE
IAO
IHR
ITC
M~E
NAPCQ
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PPXIY
PQQKQ
PROAC
PUEGO
RPM
SOJ
UKHRP
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c476w-86ffb56e4a1e5ed3526fbef950c29138bcdf8232b70d50391a7ec34d1f216d403
IEDL.DBID C24
ISSN 2509-9280
IngestDate Tue Oct 14 19:05:50 EDT 2025
Tue Nov 04 02:05:54 EST 2025
Thu Sep 04 12:31:17 EDT 2025
Sat Nov 01 15:14:37 EDT 2025
Thu Sep 04 05:03:06 EDT 2025
Sat Nov 29 07:34:36 EST 2025
Sun Aug 24 01:10:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Ceruloplasmin
Iron overload
Brain
Magnetic resonance imaging
Putamen
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476w-86ffb56e4a1e5ed3526fbef950c29138bcdf8232b70d50391a7ec34d1f216d403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3101-4002
OpenAccessLink https://link.springer.com/10.1186/s41747-025-00622-w
PMID 40848176
PQID 3242492476
PQPubID 4402887
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_c2f246f980774fca9609400795db5a91
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12374935
proquest_miscellaneous_3246330524
proquest_journals_3242492476
pubmed_primary_40848176
crossref_primary_10_1186_s41747_025_00622_w
springer_journals_10_1186_s41747_025_00622_w
PublicationCentury 2000
PublicationDate 20250823
PublicationDateYYYYMMDD 2025-08-23
PublicationDate_xml – month: 8
  year: 2025
  text: 20250823
  day: 23
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: England
– name: London
PublicationTitle European radiology experimental
PublicationTitleAbbrev Eur Radiol Exp
PublicationTitleAlternate Eur Radiol Exp
PublicationYear 2025
Publisher Springer Vienna
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
– name: SpringerOpen
References C Langkammer (622_CR2) 2010; 257
J Lee (622_CR21) 2010; 107
X Lu (622_CR35) 2018; 79
H Sun (622_CR40) 2015; 105
GE Hagberg (622_CR25) 2002; 48
QCO Committee (622_CR6) 2024; 91
S Wharton (622_CR38) 2010; 53
C Kames (622_CR29) 2023; 89
J Sedlacik (622_CR15) 2014; 84
B Dymerska (622_CR30) 2021; 85
K-S Chan (622_CR32) 2021; 227
G Perlaki (622_CR34) 2017; 7
H Miyajima (622_CR12) 2003; 23
P Ravanfar (622_CR4) 2021; 15
R Wang (622_CR43) 2017; 7
AM Peters (622_CR8) 2007; 25
LHP Vroegindeweij (622_CR16) 2021; 245
Z Liu (622_CR31) 2017; 79
622_CR5
EM Haacke (622_CR7) 2015; 33
M Pei (622_CR23) 2015; 73
S Straub (622_CR19) 2017; 78
C Tinauer (622_CR24) 2016; 29
JH Duyn (622_CR36) 2007; 104
C Milovic (622_CR26) 2018; 80
W Li (622_CR27) 2011; 55
S Buch (622_CR37) 2014; 73
L Zhou (622_CR14) 2020; 70
A Kutzelnigg (622_CR39) 2005; 128
Q Cheng (622_CR10) 2020; 19
ET Peterson (622_CR42) 2019; 40
C Langkammer (622_CR3) 2012; 62
LHP Vroegindeweij (622_CR13) 2021; 30
S Wharton (622_CR22) 2012; 109
T Liu (622_CR20) 2011; 66
K Ghassaban (622_CR1) 2019; 187
H Miyajima (622_CR17) 2002; 29
B Patenaude (622_CR33) 2011; 56
A Damulina (622_CR11) 2020; 296
C Langkammer (622_CR9) 2013; 267
H Wei (622_CR28) 2015; 28
F Schweser (622_CR18) 2016; 26
W Li (622_CR41) 2013; 35
References_xml – volume: 33
  start-page: 1
  year: 2015
  ident: 622_CR7
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2014.09.004
– volume: 257
  start-page: 455
  year: 2010
  ident: 622_CR2
  publication-title: Radiology
  doi: 10.1148/radiol.10100495
– volume: 107
  start-page: 5130
  year: 2010
  ident: 622_CR21
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0910222107
– volume: 7
  year: 2017
  ident: 622_CR43
  publication-title: Sci Rep
  doi: 10.1038/srep45261
– volume: 7
  year: 2017
  ident: 622_CR34
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-02584-5
– volume: 29
  start-page: 433
  year: 2002
  ident: 622_CR17
  publication-title: Blood Cells Mol Dis
  doi: 10.1006/bcmd.2002.0561
– volume: 187
  start-page: 77
  year: 2019
  ident: 622_CR1
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.04.047
– volume: 267
  start-page: 551
  year: 2013
  ident: 622_CR9
  publication-title: Radiology
  doi: 10.1148/radiol.12120707
– ident: 622_CR5
  doi: 10.1002/nbm.3569
– volume: 79
  start-page: 2795
  year: 2017
  ident: 622_CR31
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26946
– volume: 70
  start-page: 29
  year: 2020
  ident: 622_CR14
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2020.02.016
– volume: 85
  start-page: 2294
  year: 2021
  ident: 622_CR30
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28563
– volume: 53
  start-page: 515
  year: 2010
  ident: 622_CR38
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.070
– volume: 91
  start-page: 1834
  year: 2024
  ident: 622_CR6
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.30006
– volume: 79
  start-page: 2315
  year: 2018
  ident: 622_CR35
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27062
– volume: 56
  start-page: 907
  year: 2011
  ident: 622_CR33
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.02.046
– volume: 19
  start-page: 3778
  year: 2020
  ident: 622_CR10
  publication-title: Exp Ther Med
  doi: 10.3892/etm.2020.8645
– volume: 84
  start-page: 1032
  year: 2014
  ident: 622_CR15
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.08.051
– volume: 28
  start-page: 1294
  year: 2015
  ident: 622_CR28
  publication-title: NMR Biomed
  doi: 10.1002/nbm.3383
– volume: 48
  start-page: 877
  year: 2002
  ident: 622_CR25
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10283
– volume: 15
  start-page: 618435
  year: 2021
  ident: 622_CR4
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2021.618435
– volume: 73
  start-page: 843
  year: 2015
  ident: 622_CR23
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25137
– volume: 55
  start-page: 1645
  year: 2011
  ident: 622_CR27
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.11.088
– volume: 296
  start-page: 619
  year: 2020
  ident: 622_CR11
  publication-title: Radiology
  doi: 10.1148/radiol.2020192541
– volume: 66
  start-page: 777
  year: 2011
  ident: 622_CR20
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22816
– volume: 30
  start-page: 102657
  year: 2021
  ident: 622_CR13
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2021.102657
– volume: 245
  start-page: 118752
  year: 2021
  ident: 622_CR16
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118752
– volume: 62
  start-page: 1593
  year: 2012
  ident: 622_CR3
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.05.049
– volume: 109
  start-page: 18559
  year: 2012
  ident: 622_CR22
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1211075109
– volume: 25
  start-page: 748
  year: 2007
  ident: 622_CR8
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2007.02.014
– volume: 80
  start-page: 814
  year: 2018
  ident: 622_CR26
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27073
– volume: 227
  start-page: 117611
  year: 2021
  ident: 622_CR32
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117611
– volume: 105
  start-page: 486
  year: 2015
  ident: 622_CR40
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.11.010
– volume: 104
  start-page: 11796
  year: 2007
  ident: 622_CR36
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0610821104
– volume: 73
  start-page: 2185
  year: 2014
  ident: 622_CR37
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25350
– volume: 40
  start-page: 1480
  year: 2019
  ident: 622_CR42
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.24461
– volume: 23
  start-page: 345
  year: 2003
  ident: 622_CR12
  publication-title: Neuropathology
  doi: 10.1046/j.1440-1789.2003.00521.x
– volume: 128
  start-page: 2705
  year: 2005
  ident: 622_CR39
  publication-title: Brain
  doi: 10.1093/brain/awh641
– volume: 78
  start-page: 204
  year: 2017
  ident: 622_CR19
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26369
– volume: 35
  start-page: 2698
  year: 2013
  ident: 622_CR41
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22360
– volume: 26
  start-page: 6
  year: 2016
  ident: 622_CR18
  publication-title: Z Med Phys
  doi: 10.1016/j.zemedi.2015.10.002
– volume: 29
  start-page: 401
  year: 2016
  ident: 622_CR24
  publication-title: Magn Reson Mater Phy
  doi: 10.1007/s10334-016-0571-2
– volume: 89
  start-page: 2391
  year: 2023
  ident: 622_CR29
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.29588
SSID ssj0001999568
Score 2.3012753
Snippet Background R2* and quantitative susceptibility mapping (QSM) are regarded as robust techniques for assessing iron content in the brain. While these techniques...
R2* and quantitative susceptibility mapping (QSM) are regarded as robust techniques for assessing iron content in the brain. While these techniques are...
BackgroundR2* and quantitative susceptibility mapping (QSM) are regarded as robust techniques for assessing iron content in the brain. While these techniques...
Abstract Background R2* and quantitative susceptibility mapping (QSM) are regarded as robust techniques for assessing iron content in the brain. While these...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 80
SubjectTerms Adult
Algorithms
Alzheimer's disease
Brain
Brain - diagnostic imaging
Brain - metabolism
Ceruloplasmin
Ceruloplasmin - deficiency
Diagnostic Radiology
Disease
Female
Humans
Imaging
Internal Medicine
Interventional Radiology
Iron
Iron Metabolism Disorders - diagnostic imaging
Iron overload
Iron Overload - diagnostic imaging
Magnetic fields
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medicine
Medicine & Public Health
Middle Aged
Multiple sclerosis
Neurodegenerative Diseases - diagnostic imaging
Neuroradiology
Original
Original Article
Patients
Putamen
Radiology
Statistical analysis
Tissues
Ultrasound
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiEuqLxTCjISN4iaOLZjHwFRgUQrVAEqJ8tPWgmy0O2y4t8z42SXLg9x4ZjEkaxv7PFne-YbgEcmIG1TPtVJxlzjeitqrZyvA9dZ9Mp3qoj6vH_dHx7q42Pz5kKpL4oJG-WBR-D2As9cqGx0g0QlB0cKaVTL28jopSt56xyfLmymyumKoYxNvcqS0WpvLpB79zVVb6W8QV4vN1aiItj_J5b5e7DkLzemZSHa34ZrE4NkT8eeX4dLabgBVw6mO_Kb8OHg6BU74swNkX1duKFkkaFPY_PFvMSwlHDY7-yzI2mGj-x0YJ7qRLDzYgNGJ7MMXTYdHDJKgmMU5flp5uIteLf_4u3zl_VUQKEOiPMSUc_ZS5WEa5NMkaTws0_ZyCZw03bah5g1UirfN1GSVLzrU-hEbDNvVRRNdxu2htmQ7gLzuclNi_i3Ac0RkOWYHFojaUNiOpEqeLwC034ZdTJs2V9oZUfoLUJvC_R2WcEzwnvdkjSuywu0vJ0sb_9l-Qp2V9ay08SbW-KHAveUvarg4fozThm6B3FDmi1KG9Whn-Oigjujcdc9EaW-AP2tN8y-0dXNL8PpSZHlRg7QC9PJCp6sRsjPfv0di53_gcU9uMrL0Ea31-3C1vnZIt2Hy-EbDp2zB2Vu_ADTyBD-
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Nursing & Allied Health Database
  dbid: 7RV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQagX3pRAQUbiBlHzcBz7hABRgUQrtIKqnCw_SyVI2k2XFf-eGW92V8vrwnWTVZx84_Hn8cw3AE-VQ9ombMhD42OO6y3PpTA2d5WMvBW2FknU5-h9e3goj4_VhzHgNoxplUufmBy17x3FyPdo4ee4WWjFi7PznLpG0enq2ELjMlwpiRujPbeTo3WMRVHdplzWykixN3Bk4G1OPVyperDK5xvrUZLt_xPX_D1l8pdz07Qc7d_43xe5CddHIspeLiznFlwK3W24djAetd-BzweTd2xSMdN5dj4zXSpGQ9fIhtmQUmFSVu0P9s2QwsMJO-2YpXYT7CJBySjAy9DzU_yRUS0do2TRr73xd-HT_puPr9_mYx-G3OEo5whejLYRgZsyNMGTon60IaqmcJUqa2mdjxKZmW0L35DivGmDq7kvY1UKz4v6Hmx1fRfuA7OxiEUZnSldxYVDsqSiK1VD-xpV85DBsyUa-mwht6HTNkUKvcBOI3Y6YafnGbwiwFZ3klR2-qGfnuhx5mlXRXxUVLJApotPJok9agavGm8bo8oMdpc46XH-DnoNUgZPVpdx5tFxiulCP0v3iBrdZcUz2FlYx2okPLUpoH_LDbvZGOrmle70S1L3RirRclU3GTxfmth6XH__Fg_-_RoPYbtKVo9-sd6FrYvpLDyCq-47GsX0cZo2PwGXBSAc
  priority: 102
  providerName: ProQuest
Title MRI R2 and quantitative susceptibility mapping in brain tissue with extreme iron overload
URI https://link.springer.com/article/10.1186/s41747-025-00622-w
https://www.ncbi.nlm.nih.gov/pubmed/40848176
https://www.proquest.com/docview/3242492476
https://www.proquest.com/docview/3246330524
https://pubmed.ncbi.nlm.nih.gov/PMC12374935
https://doaj.org/article/c2f246f980774fca9609400795db5a91
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2509-9280
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999568
  issn: 2509-9280
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2509-9280
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999568
  issn: 2509-9280
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 2509-9280
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999568
  issn: 2509-9280
  databaseCode: 7RV
  dateStart: 20190201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2509-9280
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999568
  issn: 2509-9280
  databaseCode: BENPR
  dateStart: 20190201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2509-9280
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999568
  issn: 2509-9280
  databaseCode: PIMPY
  dateStart: 20190201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2509-9280
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999568
  issn: 2509-9280
  databaseCode: C24
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH9iG0K78M0IjMpI3CAiH7ZjH9nUiUm0qiqYulMUO_aYBCk0KxUX_nbec5OiwjjAJYfYUSy_D_9sv_d7AC-0RdgmjYudqH2M6y2PlaxMbDPleSFNLgOpz9m7YjxWs5medElhbR_t3l9JBk8dzFrJ1y1H8FzEVH6VEv-yeLUDeyJVmgL5jrsch3CyoilbU_UZMtd-urUKBbL-6xDmn4GSv92WhkXo5M7_Df8u3O5AJ3uz1pJ7cMM19-HWqLtWfwDno-kpm2asamr2dVk1IfEM3SBrl20IewkRtN_Z54rYHC7YZcMMlZZgV0FsjA5zGXp5OmtklDfHKDD007yqH8KHk-H747dxV3MhtiiaFQrKeyOk41XqhKuJPd8b57VIbKbTXBlbe4UozBRJLYhdviqczXmd-iyVNU_yR7DbzBv3GJjxiU9Sb6vUZlxaBEba21QL2sPonLsIXvYyKL-sqTXKsCVRslzPVomzVYbZKlcRHJGYNj2JFju8mC8uys7KSpt5_JXXKkFUi38mOj0q_K5FbUSl0wgOeyGXna22JUFKjtvQQkbwfNOMVkZXJ1Xj5svQR-boGjMewcFaJzYj4aEkAX2ttrRla6jbLc3lx8DkjbCh4DoXEbzqlebXuP4-F0_-rftT2M-C3qFPzA9h92qxdM_gpv2GSrIYwE4xPaPnTA1g72g4nkwHwaAG4XwCn6MfQ2yZnI4m5z8BZ9EdkA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHQJeuF8CA4wETyxa4jhO_IAQt2nV2qqaBtqeTOLYYxKkW7tS7U_xGznHTVqV29seeI3t-Pb5XOxzAXiuDIptsrShTSsXIr8VYS6LMjQ8dyKTZSJ9UJ9PvWwwyA8O1HANfrS-MGRW2dJET6irkaE78i1i_AKVhUy-PjkNKWsUva62KTTmsNi15zNU2Savuu9xf19wvv1h_91O2GQVCA02nuFQnCtTaUUR29RWFB_eldapNDJcxUlemsrlKGeUWVSlFD-9yKxJRBU7HstKRAn-9xKsCwJ7B9aH3f7wcHmro8hTNG-9c3K5NREo82chZY0lf0UezlY4oE8U8Cfp9ncjzV9eaj0D3L7xvy3dTbjeiNrszfxs3II1W9-GK_3GmOAOHPb3umyPs6Ku2Om0qL27HRJ_NplOvLGPtxs-Z98KimFxxI5rVlJCDXbmwcroCpshb6MbVkbegozMYb-OiuoufLyQid2DTj2q7QNgpYtcFDtTxIYLaVAcVM7EKiXNTSXCBvCy3X19Mg8oor0ilks9x4pGrGiPFT0L4C0BZFGTgoH7D6PxkW5oizbcYVdO5RHK8tgzBRGkdPcqrcq0UHEAGy0udEOhJnoJigCeLYqRttCDUVHb0dTXkQkyBC4CuD9H42IkwidioNb5Ck5XhrpaUh9_8fHLUVjKhErSADZbSC_H9fe1ePjvaTyFqzv7_Z7udQe7j-Aa9ycOuUCyAZ2z8dQ-hsvmOwJk_KQ5tAw-XzTYfwL_1H6y
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQRUX3o9AASNxg6h5OI59hMKKinZVVYDKyfKzVGq9ZR-s-Pd4nGRhoRwQ18RWHM-M_dkz8w3Ac2EibGPa5a6xPo_7Lc05Uzo3Ffe0ZbpmidTn0147HvOjI3HwSxZ_inYfXJJdTgOyNIX59rn1nYlztj2jEUi3OZZixSTAKl9ehivokUId3-nzHdIti8DMTT5ky1zYdW1HSsT9F6HNP4Mmf_Ocpg1pdOP_f-UmXO_BKHnVac8tuOTCbdjc793td-Dz_uEuOayICpZ8XaiQEtLi8khmi1kKh0mRtd_JmUKWh2NyEojGkhNknsRJ8JKXxNUf7yAJ5tMRDBg9nSh7Fz6O3n7YeZf3tRhyE0W2jAL0XjfMUVW6xllk1ffaedEUphJlzbWxnkd0ptvCNsg6r1pnampLX5XM0qK-BxthEtwDINoXvii9UaWpKDMRMAlvStHg2UbU1GXwYpCHPO8oN2Q6qnAmu9mScbZkmi25zOA1imzVEumy04PJ9Fj21idN5eOnvOBFRLvxy0izhwXhRWN1o0SZwdYgcNnb8Ewi1KTxeNqyDJ6tXkfrQ5eKCm6ySG1YHZfMimZwv9OP1UhoKlWAvfma5qwNdf1NOPmSGL4jnGipqJsMXg4K9HNcf5-Lh__W_ClsHrwZyb3d8ftHcK1KKhiXzXoLNubThXsMV823qC_TJ8mmfgCBdSH_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRI+R2+and+quantitative+susceptibility+mapping+in+brain+tissue+with+extreme+iron+overload&rft.jtitle=European+radiology+experimental&rft.au=Birkl%2C+Christoph&rft.au=Panzer%2C+Marlene&rft.au=Kames%2C+Christian&rft.au=Birkl-Toeglhofer%2C+Anna+Maria&rft.date=2025-08-23&rft.pub=Springer+Vienna&rft.eissn=2509-9280&rft.volume=9&rft_id=info:doi/10.1186%2Fs41747-025-00622-w&rft_id=info%3Apmid%2F40848176&rft.externalDocID=PMC12374935
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2509-9280&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2509-9280&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2509-9280&client=summon