Data-Free Prior Model for Upper Body Pose Estimation and Tracking
Video based human body pose estimation seeks to estimate the human body pose from an image or a video sequence, which captures a person exhibiting some activities. To handle noise and occlusion, a pose prior model is often constructed and is subsequently combined with the pose estimated from the ima...
Uloženo v:
| Vydáno v: | IEEE transactions on image processing Ročník 22; číslo 12; s. 4627 - 4639 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
IEEE
01.12.2013
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Video based human body pose estimation seeks to estimate the human body pose from an image or a video sequence, which captures a person exhibiting some activities. To handle noise and occlusion, a pose prior model is often constructed and is subsequently combined with the pose estimated from the image data to achieve a more robust body pose tracking. Various body prior models have been proposed. Most of them are data-driven, typically learned from 3D motion capture data. In addition to being expensive and time-consuming to collect, these data-based prior models cannot generalize well to activities and subjects not present in the motion capture data. To alleviate this problem, we propose to learn the prior model from anatomic, biomechanics, and physical constraints, rather than from the motion capture data. For this, we propose methods that can effectively capture different types of constraints and systematically encode them into the prior model. Experiments on benchmark data sets show the proposed prior model, compared with data-based prior models, achieves comparable performance for body motions that are present in the training data. It, however, significantly outperforms the data-based prior models in generalization to different body motions and to different subjects. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1057-7149 1941-0042 1941-0042 |
| DOI: | 10.1109/TIP.2013.2274748 |