Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: A review

Microbial contamination in drinking water is of great concern around the world because of high pathogenic risks to humans. Semiconductor photocatalysis has aroused an increasing interest as a promising environmental remediation technology for water disinfection and microbial control. Among various p...

Full description

Saved in:
Bibliographic Details
Published in:Chemosphere (Oxford) Vol. 214; pp. 462 - 479
Main Authors: Zhang, Chi, Li, Yi, Shuai, Danmeng, Shen, Yun, Xiong, Wei, Wang, Linqiong
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01.01.2019
Subjects:
ISSN:0045-6535, 1879-1298, 1879-1298
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Microbial contamination in drinking water is of great concern around the world because of high pathogenic risks to humans. Semiconductor photocatalysis has aroused an increasing interest as a promising environmental remediation technology for water disinfection and microbial control. Among various photocatalysts, graphitic carbon nitride (g-C3N4), as a fascinating two-dimensional conjugated polymer consisting of low-cost, earth-abundant elements, has drawn broad attention as a robust, metal-free, and visible-light-active material in the fields of both environmental remediation and solar energy conversion. Photocatalytic applications of g-C3N4-based nanomaterials for water splitting, hydrogen production, carbon dioxide reduction, and pollutant degradation have been extensively investigated and systematically reviewed. In contrast, their antimicrobial properties have been explored more recently due to the complex structure and unique metabolism of living microorganisms compared with chemicals. The corresponding rapidly increasing research efforts in the last five years have inspired us to conduct the review. This review is the first to comprehensively summarize the progress in design and antimicrobial performance of g-C3N4-based photocatalysts for water disinfection and microbial control, involving not only bacteria but also viruses and microalgae. Moreover, the underlying inactivation mechanisms of photocatalysts for microorganisms are evaluated to provide further understanding of g-C3N4-based advanced disinfection processes. In addition, some exciting future opportunities and challenges at the forefront of this research platform are pointed out. It is expected that this review can pave a new avenue for the development of a facile, cost-effective, environmental-friendly, and sustainable disinfection alternative. •An overview of design and performance of g-C3N4-based antimicrobials is presented.•Collaboration of photocatalysts with microorganisms is also introduced.•Microbial inactivation mechanisms in two different perspectives are discussed.•Future perspectives for g-C3N4-based antimicrobials are pointed out.
AbstractList Microbial contamination in drinking water is of great concern around the world because of high pathogenic risks to humans. Semiconductor photocatalysis has aroused an increasing interest as a promising environmental remediation technology for water disinfection and microbial control. Among various photocatalysts, graphitic carbon nitride (g-C3N4), as a fascinating two-dimensional conjugated polymer consisting of low-cost, earth-abundant elements, has drawn broad attention as a robust, metal-free, and visible-light-active material in the fields of both environmental remediation and solar energy conversion. Photocatalytic applications of g-C3N4-based nanomaterials for water splitting, hydrogen production, carbon dioxide reduction, and pollutant degradation have been extensively investigated and systematically reviewed. In contrast, their antimicrobial properties have been explored more recently due to the complex structure and unique metabolism of living microorganisms compared with chemicals. The corresponding rapidly increasing research efforts in the last five years have inspired us to conduct the review. This review is the first to comprehensively summarize the progress in design and antimicrobial performance of g-C3N4-based photocatalysts for water disinfection and microbial control, involving not only bacteria but also viruses and microalgae. Moreover, the underlying inactivation mechanisms of photocatalysts for microorganisms are evaluated to provide further understanding of g-C3N4-based advanced disinfection processes. In addition, some exciting future opportunities and challenges at the forefront of this research platform are pointed out. It is expected that this review can pave a new avenue for the development of a facile, cost-effective, environmental-friendly, and sustainable disinfection alternative.Microbial contamination in drinking water is of great concern around the world because of high pathogenic risks to humans. Semiconductor photocatalysis has aroused an increasing interest as a promising environmental remediation technology for water disinfection and microbial control. Among various photocatalysts, graphitic carbon nitride (g-C3N4), as a fascinating two-dimensional conjugated polymer consisting of low-cost, earth-abundant elements, has drawn broad attention as a robust, metal-free, and visible-light-active material in the fields of both environmental remediation and solar energy conversion. Photocatalytic applications of g-C3N4-based nanomaterials for water splitting, hydrogen production, carbon dioxide reduction, and pollutant degradation have been extensively investigated and systematically reviewed. In contrast, their antimicrobial properties have been explored more recently due to the complex structure and unique metabolism of living microorganisms compared with chemicals. The corresponding rapidly increasing research efforts in the last five years have inspired us to conduct the review. This review is the first to comprehensively summarize the progress in design and antimicrobial performance of g-C3N4-based photocatalysts for water disinfection and microbial control, involving not only bacteria but also viruses and microalgae. Moreover, the underlying inactivation mechanisms of photocatalysts for microorganisms are evaluated to provide further understanding of g-C3N4-based advanced disinfection processes. In addition, some exciting future opportunities and challenges at the forefront of this research platform are pointed out. It is expected that this review can pave a new avenue for the development of a facile, cost-effective, environmental-friendly, and sustainable disinfection alternative.
Microbial contamination in drinking water is of great concern around the world because of high pathogenic risks to humans. Semiconductor photocatalysis has aroused an increasing interest as a promising environmental remediation technology for water disinfection and microbial control. Among various photocatalysts, graphitic carbon nitride (g-C N ), as a fascinating two-dimensional conjugated polymer consisting of low-cost, earth-abundant elements, has drawn broad attention as a robust, metal-free, and visible-light-active material in the fields of both environmental remediation and solar energy conversion. Photocatalytic applications of g-C N -based nanomaterials for water splitting, hydrogen production, carbon dioxide reduction, and pollutant degradation have been extensively investigated and systematically reviewed. In contrast, their antimicrobial properties have been explored more recently due to the complex structure and unique metabolism of living microorganisms compared with chemicals. The corresponding rapidly increasing research efforts in the last five years have inspired us to conduct the review. This review is the first to comprehensively summarize the progress in design and antimicrobial performance of g-C N -based photocatalysts for water disinfection and microbial control, involving not only bacteria but also viruses and microalgae. Moreover, the underlying inactivation mechanisms of photocatalysts for microorganisms are evaluated to provide further understanding of g-C N -based advanced disinfection processes. In addition, some exciting future opportunities and challenges at the forefront of this research platform are pointed out. It is expected that this review can pave a new avenue for the development of a facile, cost-effective, environmental-friendly, and sustainable disinfection alternative.
Microbial contamination in drinking water is of great concern around the world because of high pathogenic risks to humans. Semiconductor photocatalysis has aroused an increasing interest as a promising environmental remediation technology for water disinfection and microbial control. Among various photocatalysts, graphitic carbon nitride (g-C3N4), as a fascinating two-dimensional conjugated polymer consisting of low-cost, earth-abundant elements, has drawn broad attention as a robust, metal-free, and visible-light-active material in the fields of both environmental remediation and solar energy conversion. Photocatalytic applications of g-C3N4-based nanomaterials for water splitting, hydrogen production, carbon dioxide reduction, and pollutant degradation have been extensively investigated and systematically reviewed. In contrast, their antimicrobial properties have been explored more recently due to the complex structure and unique metabolism of living microorganisms compared with chemicals. The corresponding rapidly increasing research efforts in the last five years have inspired us to conduct the review. This review is the first to comprehensively summarize the progress in design and antimicrobial performance of g-C3N4-based photocatalysts for water disinfection and microbial control, involving not only bacteria but also viruses and microalgae. Moreover, the underlying inactivation mechanisms of photocatalysts for microorganisms are evaluated to provide further understanding of g-C3N4-based advanced disinfection processes. In addition, some exciting future opportunities and challenges at the forefront of this research platform are pointed out. It is expected that this review can pave a new avenue for the development of a facile, cost-effective, environmental-friendly, and sustainable disinfection alternative. •An overview of design and performance of g-C3N4-based antimicrobials is presented.•Collaboration of photocatalysts with microorganisms is also introduced.•Microbial inactivation mechanisms in two different perspectives are discussed.•Future perspectives for g-C3N4-based antimicrobials are pointed out.
Microbial contamination in drinking water is of great concern around the world because of high pathogenic risks to humans. Semiconductor photocatalysis has aroused an increasing interest as a promising environmental remediation technology for water disinfection and microbial control. Among various photocatalysts, graphitic carbon nitride (g-C₃N₄), as a fascinating two-dimensional conjugated polymer consisting of low-cost, earth-abundant elements, has drawn broad attention as a robust, metal-free, and visible-light-active material in the fields of both environmental remediation and solar energy conversion. Photocatalytic applications of g-C₃N₄-based nanomaterials for water splitting, hydrogen production, carbon dioxide reduction, and pollutant degradation have been extensively investigated and systematically reviewed. In contrast, their antimicrobial properties have been explored more recently due to the complex structure and unique metabolism of living microorganisms compared with chemicals. The corresponding rapidly increasing research efforts in the last five years have inspired us to conduct the review. This review is the first to comprehensively summarize the progress in design and antimicrobial performance of g-C₃N₄-based photocatalysts for water disinfection and microbial control, involving not only bacteria but also viruses and microalgae. Moreover, the underlying inactivation mechanisms of photocatalysts for microorganisms are evaluated to provide further understanding of g-C₃N₄-based advanced disinfection processes. In addition, some exciting future opportunities and challenges at the forefront of this research platform are pointed out. It is expected that this review can pave a new avenue for the development of a facile, cost-effective, environmental-friendly, and sustainable disinfection alternative.
Author Shen, Yun
Zhang, Chi
Shuai, Danmeng
Li, Yi
Wang, Linqiong
Xiong, Wei
Author_xml – sequence: 1
  givenname: Chi
  surname: Zhang
  fullname: Zhang, Chi
  organization: Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
– sequence: 2
  givenname: Yi
  surname: Li
  fullname: Li, Yi
  email: envly@hhu.edu.cn
  organization: Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
– sequence: 3
  givenname: Danmeng
  surname: Shuai
  fullname: Shuai, Danmeng
  organization: Department of Civil and Environmental Engineering, The George Washington University, 800 22nd St NW Suite 3530, Washington, DC, 20052, USA
– sequence: 4
  givenname: Yun
  surname: Shen
  fullname: Shen, Yun
  organization: Department of Civil & Environmental Engineering, The University of Michigan, 1351 Beal Avenue, Ann Arbor, MI, 48109-2125, USA
– sequence: 5
  givenname: Wei
  surname: Xiong
  fullname: Xiong, Wei
  organization: Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
– sequence: 6
  givenname: Linqiong
  surname: Wang
  fullname: Wang, Linqiong
  organization: Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30273880$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFu1DAURS1URKcDv4DMriwSnmMndtigagQFqYINrC3HfmE8SuLB9rTq3-PRtBJiNau3ufc-6ZwrcrGEBQl5x6BmwLoPu9pucQ5pv8WIdQNM1dDXjMsXZMWU7CvW9OqCrABEW3Utby_JVUo7gFJu-1fkkkMjuVKwIvNtNPutz95Sa-IQFrr4HL1Dev272vDv4n01mISO7rchB2uymR5TTnQMkT6YjJE6n_wyos2-lM3i6OxtDIM3E7VhyTFMH-kNjXjv8eE1eTmaKeGbp7smv758_rn5Wt39uP22ubmrrJBdrgY3csmdG0CZXpoGOPaNcLZt1CA6A1KBMxJNy0dwohUgrWqEBWcRWNM5vibXp919DH8OmLKefbI4TWbBcEi6YbLjolNMnRFlrWwFK8DW5O1T9DDM6PQ--tnER_1MswQ-nQIFQEoRR219NkcwORo_aQb66E_v9D_-9NGfhl4Xf2Wh_2_h-ck53c2pi4VsoR11sh4Xi87Hoke74M9Y-QtKYr0i
CitedBy_id crossref_primary_10_1002_aoc_6829
crossref_primary_10_1016_j_jallcom_2025_183642
crossref_primary_10_1016_j_seppur_2021_119152
crossref_primary_10_1007_s11356_022_20326_7
crossref_primary_10_1016_j_diamond_2025_112644
crossref_primary_10_1016_j_molstruc_2021_130752
crossref_primary_10_1016_j_jece_2022_107780
crossref_primary_10_1016_j_chemosphere_2020_129135
crossref_primary_10_1002_smll_202205902
crossref_primary_10_1016_j_jpcs_2022_111109
crossref_primary_10_1088_2053_1583_ac9489
crossref_primary_10_1016_j_chemosphere_2022_136912
crossref_primary_10_1002_jcc_27464
crossref_primary_10_1007_s42823_024_00811_4
crossref_primary_10_1016_j_surfin_2024_105673
crossref_primary_10_1016_j_cej_2019_123506
crossref_primary_10_1039_D3CY01139A
crossref_primary_10_1016_j_seppur_2021_120153
crossref_primary_10_1016_j_surfin_2023_103516
crossref_primary_10_1016_j_apsusc_2020_147309
crossref_primary_10_1016_j_apt_2021_03_042
crossref_primary_10_1016_j_inoche_2022_109949
crossref_primary_10_1016_j_solmat_2020_110516
crossref_primary_10_1016_j_jpcs_2022_110700
crossref_primary_10_1016_j_apsusc_2021_149478
crossref_primary_10_1016_j_apsusc_2019_143757
crossref_primary_10_1016_j_scitotenv_2019_133962
crossref_primary_10_1002_ps_7946
crossref_primary_10_1016_j_impact_2020_100268
crossref_primary_10_1016_j_jenvman_2020_110803
crossref_primary_10_1016_j_cej_2020_126365
crossref_primary_10_3390_nano11123341
crossref_primary_10_1016_j_molstruc_2022_134810
crossref_primary_10_1002_cctc_202001939
crossref_primary_10_1016_j_ecoenv_2021_112808
crossref_primary_10_1016_j_ijhydene_2024_05_174
crossref_primary_10_1007_s42114_022_00606_z
crossref_primary_10_1016_j_scitotenv_2020_142588
crossref_primary_10_1002_ps_7715
crossref_primary_10_3390_en15030955
crossref_primary_10_1016_j_jece_2021_106991
crossref_primary_10_1088_2053_1591_abbdeb
crossref_primary_10_3390_molecules28073199
crossref_primary_10_3390_ijms232112979
crossref_primary_10_1039_D2NJ03422K
crossref_primary_10_1007_s10661_023_11907_1
crossref_primary_10_1016_j_cej_2019_123278
crossref_primary_10_1016_j_solener_2021_05_087
crossref_primary_10_1016_j_ceramint_2022_12_080
crossref_primary_10_1038_s44221_025_00500_0
crossref_primary_10_1080_14328917_2019_1634356
crossref_primary_10_1016_j_envres_2023_117019
crossref_primary_10_1007_s11666_020_01118_2
crossref_primary_10_1016_j_jwpe_2025_108485
crossref_primary_10_1007_s11356_020_12027_w
crossref_primary_10_3390_ijms25147634
crossref_primary_10_3390_coatings10100917
crossref_primary_10_1016_j_jhazmat_2021_126607
crossref_primary_10_1007_s11356_022_20170_9
crossref_primary_10_3390_app11031313
crossref_primary_10_1016_j_efmat_2023_01_001
crossref_primary_10_3390_catal11040437
crossref_primary_10_1039_D1CY01096D
crossref_primary_10_1016_j_coesh_2020_08_003
crossref_primary_10_1016_j_nanoen_2020_105371
crossref_primary_10_3390_app122111286
crossref_primary_10_1134_S002315842202001X
crossref_primary_10_1007_s12613_023_2618_5
crossref_primary_10_1016_j_mtener_2020_100488
crossref_primary_10_3389_fnano_2021_684788
crossref_primary_10_1016_j_jwpe_2023_104231
crossref_primary_10_1016_j_scitotenv_2021_148462
crossref_primary_10_1016_j_solidstatesciences_2023_107128
crossref_primary_10_1016_j_jhazmat_2020_122357
crossref_primary_10_1016_j_chemosphere_2019_125119
crossref_primary_10_1016_j_matlet_2019_126600
crossref_primary_10_1016_j_scitotenv_2021_149678
crossref_primary_10_1016_j_clay_2021_106098
crossref_primary_10_1016_j_scitotenv_2022_159640
crossref_primary_10_1007_s10876_021_02189_z
crossref_primary_10_1002_solr_202000594
crossref_primary_10_1016_j_scitotenv_2020_140341
crossref_primary_10_1007_s11356_019_05080_7
crossref_primary_10_1016_j_mssp_2019_04_036
crossref_primary_10_1016_j_desal_2022_116094
crossref_primary_10_1039_D0CY00542H
crossref_primary_10_3390_catal11091084
crossref_primary_10_1515_revic_2021_0044
crossref_primary_10_1016_j_colsurfa_2022_130474
crossref_primary_10_1016_j_apsusc_2019_144245
crossref_primary_10_1016_j_watres_2021_117125
crossref_primary_10_1016_j_seppur_2021_119769
crossref_primary_10_1016_j_ijhydene_2024_12_023
crossref_primary_10_1002_smll_202409637
crossref_primary_10_1016_j_cej_2019_122294
crossref_primary_10_61186_jcc_5_2_6
crossref_primary_10_1002_cbic_201900229
crossref_primary_10_1016_j_jhazmat_2022_130013
crossref_primary_10_1016_j_jphotochem_2019_112028
crossref_primary_10_1007_s11356_020_11390_y
crossref_primary_10_1002_ps_6257
crossref_primary_10_1016_j_apsusc_2020_146609
crossref_primary_10_1016_j_colsurfa_2021_127472
crossref_primary_10_1016_j_psep_2020_04_046
crossref_primary_10_3390_catal13101368
crossref_primary_10_1016_j_jece_2023_110050
crossref_primary_10_1039_C9MH01497G
crossref_primary_10_3389_fmicb_2022_964401
crossref_primary_10_1016_j_ccr_2021_213985
crossref_primary_10_1007_s10853_019_03695_2
crossref_primary_10_3390_su16146104
crossref_primary_10_1016_j_ceramint_2024_02_144
crossref_primary_10_1016_j_cis_2021_102526
crossref_primary_10_1016_j_envpol_2022_118836
crossref_primary_10_1016_j_chemosphere_2021_132611
crossref_primary_10_1016_j_jphotochem_2023_115243
crossref_primary_10_1016_j_jhazmat_2022_129123
crossref_primary_10_1016_j_chemosphere_2021_130552
crossref_primary_10_1016_j_chemosphere_2023_140709
crossref_primary_10_1016_j_jpcs_2021_110514
crossref_primary_10_1016_j_molliq_2022_118655
crossref_primary_10_1016_j_jmst_2021_11_059
crossref_primary_10_1016_j_jhazmat_2018_11_033
crossref_primary_10_1002_jctb_6088
crossref_primary_10_1039_D5NR02485D
crossref_primary_10_1016_j_carbon_2020_03_010
crossref_primary_10_1016_j_colsurfa_2023_132610
crossref_primary_10_1016_j_mssp_2021_106181
crossref_primary_10_1016_j_jwpe_2024_106924
crossref_primary_10_1007_s11356_023_29040_4
crossref_primary_10_1016_j_apcatb_2019_118457
crossref_primary_10_1016_j_chemosphere_2020_128850
crossref_primary_10_1016_j_jwpe_2024_105279
crossref_primary_10_1016_j_vacuum_2021_110371
crossref_primary_10_1016_j_jhazmat_2024_136257
crossref_primary_10_1016_j_chemosphere_2022_134889
crossref_primary_10_1016_j_seppur_2024_128312
crossref_primary_10_1016_j_jcis_2020_11_044
crossref_primary_10_1016_j_jphotochem_2024_115791
crossref_primary_10_1016_j_jhazmat_2021_126121
crossref_primary_10_1080_1040841X_2021_1944053
crossref_primary_10_1016_j_jallcom_2022_167837
crossref_primary_10_1016_j_cej_2024_149627
crossref_primary_10_1016_j_carbon_2021_01_112
crossref_primary_10_1016_j_cej_2023_144575
crossref_primary_10_1016_j_envres_2023_116574
crossref_primary_10_1007_s43630_022_00209_z
crossref_primary_10_1016_j_ijleo_2021_167159
crossref_primary_10_1080_01614940_2023_2250652
crossref_primary_10_1002_cctc_202500419
crossref_primary_10_1016_j_eehl_2025_100178
crossref_primary_10_1016_j_cej_2022_140927
crossref_primary_10_1016_j_jes_2024_03_033
crossref_primary_10_1016_j_jhazmat_2023_131393
crossref_primary_10_1016_j_ccr_2021_214177
crossref_primary_10_1016_j_optmat_2020_109839
crossref_primary_10_1016_j_chemosphere_2019_124981
crossref_primary_10_1016_j_jallcom_2020_155612
crossref_primary_10_1016_j_rser_2020_110235
crossref_primary_10_3390_catal11010036
crossref_primary_10_1016_j_addr_2022_114420
crossref_primary_10_3390_nano12020294
crossref_primary_10_1016_j_apsusc_2021_151496
crossref_primary_10_1016_j_colsurfa_2024_134862
crossref_primary_10_1016_j_colsurfa_2025_136407
crossref_primary_10_3390_catal12090943
crossref_primary_10_1016_j_inoche_2024_112975
crossref_primary_10_1016_j_jhazmat_2019_121166
crossref_primary_10_1016_j_jwpe_2019_101015
crossref_primary_10_1016_j_ecoenv_2023_115133
crossref_primary_10_3390_molecules25092016
crossref_primary_10_1007_s10854_019_02387_6
crossref_primary_10_1016_j_jiec_2019_09_013
crossref_primary_10_1007_s11082_024_07798_2
crossref_primary_10_1016_j_jece_2023_110164
crossref_primary_10_1016_j_jhazmat_2020_123257
crossref_primary_10_1016_j_jfoodeng_2023_111820
crossref_primary_10_1080_10667857_2021_1968232
crossref_primary_10_1016_j_cej_2022_139956
crossref_primary_10_1016_j_jece_2022_108469
crossref_primary_10_1016_j_apcatb_2020_119095
crossref_primary_10_1016_j_apsusc_2020_148241
crossref_primary_10_1016_j_jece_2023_111809
crossref_primary_10_1016_j_cej_2019_122810
crossref_primary_10_1016_j_jallcom_2024_175212
crossref_primary_10_1016_j_chemosphere_2024_142517
crossref_primary_10_1016_j_optmat_2024_115727
crossref_primary_10_1016_j_ijhydene_2024_04_081
crossref_primary_10_3390_catal11121448
crossref_primary_10_1007_s00289_022_04418_5
crossref_primary_10_1016_j_ijbiomac_2024_131897
crossref_primary_10_1016_j_materresbull_2021_111386
crossref_primary_10_1021_acsanm_5c03419
crossref_primary_10_1016_j_cej_2020_126528
crossref_primary_10_3390_catal9010052
crossref_primary_10_1080_1536383X_2021_1921741
crossref_primary_10_1039_D2CP01262F
crossref_primary_10_1016_j_cej_2021_129071
crossref_primary_10_1016_j_apsusc_2022_152728
crossref_primary_10_1016_j_chemosphere_2021_133063
crossref_primary_10_3390_ma17010044
crossref_primary_10_1016_j_pnsc_2022_09_009
crossref_primary_10_1016_j_inoche_2022_109335
crossref_primary_10_1016_j_jallcom_2022_167928
crossref_primary_10_1016_j_molstruc_2024_138013
crossref_primary_10_1016_j_biortech_2024_130796
crossref_primary_10_1016_j_cej_2021_129990
crossref_primary_10_1016_j_jwpe_2024_105870
crossref_primary_10_1016_j_solener_2020_12_016
crossref_primary_10_1016_j_jhazmat_2020_122868
crossref_primary_10_1016_j_apsusc_2020_146757
crossref_primary_10_1088_1361_6528_abadc7
crossref_primary_10_3390_catal15020115
crossref_primary_10_1016_j_renene_2025_123718
crossref_primary_10_1002_aoc_5002
crossref_primary_10_1016_j_molstruc_2019_03_048
crossref_primary_10_1016_j_seppur_2019_06_003
crossref_primary_10_1016_j_apcatb_2021_120279
crossref_primary_10_1016_j_cej_2023_144893
crossref_primary_10_1016_j_chemosphere_2018_11_111
crossref_primary_10_1016_j_matchemphys_2022_127233
crossref_primary_10_1016_j_seppur_2022_122005
crossref_primary_10_1016_j_apsusc_2022_156076
crossref_primary_10_1016_j_rsurfi_2025_100438
crossref_primary_10_1016_S1872_2067_19_63409_1
crossref_primary_10_1007_s11431_022_2151_0
crossref_primary_10_1016_j_memsci_2020_118861
crossref_primary_10_1016_j_seppur_2020_117691
crossref_primary_10_1016_j_cej_2023_146835
crossref_primary_10_1016_j_ijhydene_2022_11_181
crossref_primary_10_1016_j_chemosphere_2020_127955
crossref_primary_10_1016_j_colsurfa_2023_131031
crossref_primary_10_1016_j_cattod_2019_03_046
crossref_primary_10_1007_s10311_020_01001_0
crossref_primary_10_1080_10590501_2019_1591701
crossref_primary_10_1080_10426507_2021_2012779
crossref_primary_10_1016_j_cej_2020_126540
crossref_primary_10_1007_s13762_022_04350_1
crossref_primary_10_1016_j_bej_2025_109670
crossref_primary_10_1016_j_cej_2020_124475
crossref_primary_10_1016_j_cej_2025_165004
crossref_primary_10_1007_s11164_022_04946_9
crossref_primary_10_1016_j_watres_2022_119366
crossref_primary_10_3390_catal13010123
crossref_primary_10_1002_jctb_7553
crossref_primary_10_1016_j_jece_2024_112247
crossref_primary_10_1016_j_jhazmat_2021_127639
crossref_primary_10_1016_j_molliq_2024_124017
crossref_primary_10_1016_j_jallcom_2023_172962
crossref_primary_10_1002_pc_26994
crossref_primary_10_1016_j_jallcom_2025_179236
crossref_primary_10_1016_j_ceramint_2019_05_002
crossref_primary_10_1016_j_seppur_2023_123515
crossref_primary_10_1016_j_jphotochem_2023_114556
crossref_primary_10_1039_D3CY00242J
crossref_primary_10_1016_j_jhazmat_2020_123621
crossref_primary_10_3390_catal9040389
crossref_primary_10_1016_j_compositesb_2019_05_097
crossref_primary_10_1038_s41598_024_74147_4
crossref_primary_10_1088_2053_1591_ac8b66
crossref_primary_10_1016_j_surfin_2020_100867
crossref_primary_10_1039_D1NR01401C
crossref_primary_10_1007_s11306_021_01804_4
crossref_primary_10_1016_j_efmat_2024_12_004
crossref_primary_10_1002_aoc_7058
crossref_primary_10_1016_j_cej_2021_134356
crossref_primary_10_1016_j_cej_2021_132610
crossref_primary_10_1016_j_apsusc_2021_152287
crossref_primary_10_1016_j_inoche_2019_107451
crossref_primary_10_1016_j_seppur_2022_121613
crossref_primary_10_1080_01614940_2023_2228130
crossref_primary_10_1016_j_jece_2024_112025
crossref_primary_10_1016_j_cej_2023_147219
crossref_primary_10_1016_j_jhazmat_2020_125018
crossref_primary_10_1039_D1RA07473C
crossref_primary_10_1007_s11144_019_01712_8
crossref_primary_10_1038_s41598_024_54500_3
crossref_primary_10_1016_j_diamond_2021_108606
crossref_primary_10_1007_s12274_019_2589_z
crossref_primary_10_1016_j_jcis_2020_07_047
crossref_primary_10_1007_s41810_020_00080_4
crossref_primary_10_1007_s10853_022_07225_5
crossref_primary_10_1016_j_cej_2021_134105
crossref_primary_10_1002_tcr_202200171
crossref_primary_10_1016_j_jhazmat_2019_121255
crossref_primary_10_1016_j_seppur_2022_120999
crossref_primary_10_1039_D2NJ02309A
crossref_primary_10_1007_s42864_024_00307_8
crossref_primary_10_1039_C9EN01366K
Cites_doi 10.1111/j.1574-6968.1985.tb00864.x
10.1016/j.apcatb.2017.01.061
10.1007/s12274-014-0654-1
10.1039/c0ee00825g
10.1016/j.apcatb.2017.12.034
10.1016/j.apcatb.2017.06.027
10.1016/j.apcatb.2016.04.042
10.1016/j.mssp.2016.02.019
10.1016/j.apsusc.2015.08.173
10.1007/s10854-018-9564-4
10.1002/asia.201700540
10.1016/j.apcata.2011.10.006
10.1039/C6RA04869B
10.1016/j.apcatb.2015.04.026
10.2216/11-107.1
10.1002/chem.201505173
10.1016/j.jphotochem.2017.09.043
10.1155/2011/798051
10.1016/j.apcatb.2017.08.044
10.1016/j.apcatb.2017.05.035
10.1016/j.jhazmat.2016.09.008
10.1016/j.jcis.2017.06.089
10.1016/j.jhazmat.2017.05.011
10.1016/j.watres.2016.10.009
10.1016/j.jcis.2017.02.012
10.1039/c3cc48374f
10.1016/j.colsurfb.2017.01.003
10.1016/j.coviro.2013.12.005
10.1016/j.cej.2018.04.182
10.1016/j.carbon.2011.04.055
10.1039/C4CC02543A
10.1021/acsami.7b07657
10.1021/acs.chemrev.6b00075
10.1016/j.apcatb.2017.09.030
10.1016/j.apcatb.2010.06.001
10.1016/j.apcatb.2016.09.055
10.1039/C7EN00063D
10.1016/j.ecoenv.2016.10.030
10.1016/j.clay.2016.04.003
10.1039/c1jm12844b
10.1016/j.cej.2017.04.138
10.1016/j.microc.2004.07.008
10.1016/j.apcatb.2015.12.051
10.1016/j.chemosphere.2017.06.065
10.1016/j.apcatb.2016.05.052
10.1016/j.watres.2015.10.025
10.1039/c3tb21479f
10.1016/j.watres.2005.10.030
10.1016/j.cej.2010.11.035
10.1016/j.ceramint.2012.07.097
10.1021/acsami.8b00007
10.1016/j.envres.2017.01.018
10.1002/jccs.201600735
10.1016/j.chemosphere.2017.12.122
10.1039/C8NJ00444G
10.1039/C5RA26702A
10.1016/j.cej.2012.12.033
10.1039/C1JM13490F
10.1039/c2jm00097k
10.1021/jacs.5b11411
10.1039/c3dt53106f
10.1016/j.apcatb.2017.11.060
10.1126/science.aaa3145
10.1016/j.chemosphere.2018.05.163
10.1128/AAC.01734-09
10.1021/acssuschemeng.7b01431
10.1016/S1872-2067(14)60075-9
10.1038/nrmicro2108
10.1021/es4013504
10.2217/fmb.11.78
10.1039/C6RA05613J
10.1016/j.apcatb.2015.10.024
10.1039/C8EN00133B
10.1128/AEM.02049-07
10.1016/j.jphotochemrev.2014.01.001
10.1016/j.cej.2014.04.081
10.1007/s00253-011-3213-7
10.1016/j.nanoen.2015.07.014
10.1016/j.cej.2018.02.054
10.1016/j.colsurfa.2015.07.003
10.1016/j.apcatb.2017.11.018
10.1016/j.carbon.2018.05.010
10.1016/j.watres.2015.05.053
10.1016/j.watres.2008.08.015
10.1007/s11356-015-4251-y
10.1016/j.apcatb.2014.01.023
10.1021/la900923z
10.1016/j.rser.2017.08.020
10.1016/j.mib.2016.06.008
10.1021/jp4084184
10.1016/j.apcatb.2018.05.094
10.1021/acs.est.5b00531
10.1016/j.jhazmat.2018.06.053
10.1016/j.jallcom.2017.08.142
10.1038/nmat2317
10.1016/j.jphotobiol.2017.11.009
10.1039/C5RA22176E
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.chemosphere.2018.09.137
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
EndPage 479
ExternalDocumentID 30273880
10_1016_j_chemosphere_2018_09_137
S0045653518317995
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
7S9
L.6
ID FETCH-LOGICAL-c476t-bdf373ddb08a97a203e924dc528b46a0780da7ea53f0d45407c824c0dce0126d3
ISICitedReferencesCount 323
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449891300053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-6535
1879-1298
IngestDate Wed Oct 01 14:12:23 EDT 2025
Sun Sep 28 07:35:25 EDT 2025
Wed Feb 19 02:34:15 EST 2025
Sat Nov 29 07:27:31 EST 2025
Tue Nov 18 22:41:15 EST 2025
Fri Feb 23 02:47:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Design and performance
Inactivation mechanisms
Antimicrobials
Photocatalysis
Graphitic carbon nitride
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c476t-bdf373ddb08a97a203e924dc528b46a0780da7ea53f0d45407c824c0dce0126d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 30273880
PQID 2115754127
PQPubID 23479
PageCount 18
ParticipantIDs proquest_miscellaneous_2176346818
proquest_miscellaneous_2115754127
pubmed_primary_30273880
crossref_citationtrail_10_1016_j_chemosphere_2018_09_137
crossref_primary_10_1016_j_chemosphere_2018_09_137
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2018_09_137
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
2019-Jan
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kang, Zhang, He, Zheng, Cui, Sun, Hu (bib26) 2018; 137
Yang, Wang, Li, Wang, Wang (bib88) 2017; 12
Xu, Wang, Zhu (bib84) 2017; 9
Liao, Chen, Quan, Yu, Zhao (bib37) 2012; 22
World Health Organization (bib79) 2017
Dong, Wu, Sun, Fu, Wu, Lee (bib10) 2011; 21
Davison, Pitts, Stewart (bib7) 2010; 54
Hijnen, Beerendonk, Medema (bib19) 2006; 40
Zhao, Yu, Quan, Chen, Zhang, Zhao, Wang (bib99) 2014; 152–3
Song, Wang, Ma, Wang, Wang, Zhao (bib60) 2018; 226
Xia, Wang, Yin, Jiang, An, Li, Zhao, Wong (bib82) 2017; 214
Xu, Zhai, Li, Wang, Han, Yu (bib85) 2017; 323
Yadav, Jaiswar (bib86) 2017; 64
Zhang, Hu, Deng (bib91) 2016; 88
Tian, Zhou, Zhan, Zhu, He (bib65) 2018; 350
Zhang, Li, Wang, Zhang, Wang, Wang, Wang (bib93) 2015; 22
Zhang, Quan, Wang, Chen, Su, Li (bib96) 2017; 7
Li, Yin, Liu, Ma, Wan, Fan, Hu (bib32) 2017; 321
Adhikari, Awasthi, Lee, Park, Kim (bib1) 2016; 6
Song, Wang, Ma, Wang, Wang, Xia, Zhao (bib59) 2018; 348
Wang, Yu, Shen, Chan, Gu (bib74) 2014; 50
Pant, Pant, Sharma, Amarjargal, Kim, Park, Tijing, Kim (bib53) 2013; 39
Xu, Li, Zhou, Li, Gao, Song, Schmuki (bib83) 2016; 22
Masih, Ma, Rohani (bib44) 2017; 206
Huang, Ho, Wang (bib22) 2014; 50
Ye, Wang, Wu, Yuan (bib89) 2015; 358
Thurston, Hunter, Wayment, Cornell (bib64) 2017; 505
Sun, Yao, Zhang, Zheng, Frost (bib62) 2016; 129
World Health Organization (bib80) 2017
Wang, Wang, Zhao, Song, Su, Wang (bib77) 2018; 341
Zhao, Chen, Quan, Yu, Zhao (bib98) 2016; 194
Li, Lv, Ho, Dong, Wu, Xia (bib35) 2017; 202
Wang, Kong, Zhang, Zhu, Huang, Wang, Zhang, Liu, Hu, Suo, Wang (bib70) 2018; 225
Lin, Cong, Li, Ke, Guo, Yang, Chen (bib38) 2014; 2
Foster, Ditta, Varghese, Steele (bib13) 2011; 90
Ma, Zhan, Jia, Shi, Zhou (bib42) 2016; 186
Zhang, Li, Zhang, Wang, Wang (bib94) 2018; 195
Sun, Du, Hu, Chen, Lu, Lu, Han (bib61) 2017; 5
Hu, Liu, Zeng, Chen, Wan, Zeng, Wang, Wu, Xu, Zhang, Cheng, Hu (bib20) 2017; 184
Byrne, Fernandez-Ibañez, Dunlop, Alrousan, Hamilton (bib5) 2011; 2011
Ding, Gan, Li, Sedmak, Song (bib9) 2012; 51
Zhang, Wu, Xiao, Tang, Wang, Liu, Zhu (bib97) 2017; 12
Moreira, López-García (bib47) 2009; 7
Zhang, Li, Shuai, Zhang, Niu, Wang, Zhang (bib92) 2018; 208
Kim, Lee (bib27) 2005; 80
Yan, Li, Zou (bib87) 2009; 25
Gibson (bib16) 2014; 4
Pant, Park, Lee, Kim, Park (bib52) 2017; 496
Ouyang, Dai, Chen, Huang, Gao, Cai (bib51) 2017; 136
Wang, Yu, Xia, Wong, Li (bib75) 2013; 47
Reddy, Kavitha, Reddy, Kim (bib56) 2017; 154
Ong, Tan, Ng, Yong, Chai (bib50) 2016; 116
Allahverdiyev, Abamor, Bagirova, Rafailovich (bib3) 2011; 6
Lin, Song, Wu, Chen, Wang, Fu, Guo (bib39) 2018; 358
Huang, He, Lin, Kang, Zhang (bib21) 2013; 117
Adhikari, Pant, Kim, Kim, Park, Kim (bib2) 2015; 482
Wang, Chen, Liu, Shen, Xia, Wong, Yu (bib72) 2015; 176–7
Qi, Cheng, Yu, Ho (bib55) 2017; 727
McEvoy, Zhang (bib46) 2014; 19
Vidyasagar, Ghugal, Kulkarni, Mishra, Shende, Jagannath, Umare, Sasikala (bib66) 2018; 221
Mamba, Mishra (bib43) 2016; 198
Jiang, Xie (bib24) 2016; 6
Li, Mahendra, Lyon, Brunet, Liga, Li, Alvarez (bib33) 2008; 42
Wang, Shi, Lin, Zhu (bib78) 2011; 4
Xia, Shen, Huang, Wang, Yu, Wong (bib81) 2015; 49
Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domen, Antonietti (bib76) 2009; 8
Li, Li, Ma, Wang, Hou, Han, Zhan (bib34) 2017; 338
Ge, Han, Liu, Li (bib15) 2011; 409–10
Kang, Huang, Zhang, He, Xu, Sun, Jiang (bib25) 2018; 10
Bing, Chen, Sun, Shi, Gao, Ren, Qu (bib4) 2015; 8
Rodríguez-González, Alfaro, Torres-Martínez, Cho, Lee (bib57) 2010; 98
Li, Sun, Zhang, Yu, Zheng (bib29) 2018; 220
Ji, Chang, Hu, Qin, Shen (bib23) 2013; 218
Dou, Dupont, Pan, Chen (bib11) 2011; 166
He, Cao, Zhou, Yu (bib18) 2014; 35
Zhang, Zhang, Zhang, Wang (bib95) 2012; 22
Sirikanchana, Shisler, Marinas (bib58) 2008; 74
Liu, Han, Wang, Fan, Wang, Zhang, Shi (bib40) 2018; 29
Deng, Liang, Li, Tong (bib8) 2017; 152
Li, Nie, Chen, Jiang, An, Wong, Zhang, Zhao, Yamashita (bib31) 2015; 86
Dai, Lu, Liu, Zhu, Wei, Bai, Xuan, Wang (bib6) 2014; 43
Muñoz-Batista, Fontelles-Carceller, Ferrer, Fernández-García, Kubacka (bib48) 2016; 183
Zou, Zhang, Wang, Luo (bib101) 2016; 138
Liu, Liu, Liu, Han, Zhang, Huang, Lifshitz, Lee, Zhong, Kang (bib41) 2015; 347
Faraji, Mohaghegh, Abedini (bib12) 2018; 178
Wang, An, Li, Xia, Zhao, Yu, Wong (bib71) 2017; 217
Li, Jiang, Zhao, Zhang (bib30) 2015; 16
Wang, Zhu, He, Zhu, Hutchins, Xu, Wang (bib69) 2018; 5
Wang, Li, Xia, An, Zhao, Wong (bib73) 2017; 4
Ong, Ng, Mohammad (bib49) 2018; 81
Yun, Bae, Kim, Lee, Chin, Jin (bib90) 2011; 49
Patnaik, Martha, Parida (bib54) 2016; 6
Thurston, Hunter, Cornell (bib63) 2016; 6
Li, Zhang, Shuai, Naraginti, Wang, Zhang (bib36) 2016; 106
Zhou, Shao, Gao, Zhu, Li, Deng, Zhu (bib100) 2014; 251
Ganguly, Byrne, Breen, Pillai (bib14) 2018; 225
Vidyasagar, Ghugal, Kulkarni, Shende, Umare, Sasikala (bib67) 2018; 42
Hamblin (bib17) 2016; 33
Matsunaga, Tomoda, Nakajima, Wake (bib45) 1985; 29
Lam, Sin, Mohamed (bib28) 2016; 47
Wang, Pillai, Ho, Zeng, Li, Dionysiou (bib68) 2018; 237
Adhikari (10.1016/j.chemosphere.2018.09.137_bib2) 2015; 482
Tian (10.1016/j.chemosphere.2018.09.137_bib65) 2018; 350
Wang (10.1016/j.chemosphere.2018.09.137_bib78) 2011; 4
Zhang (10.1016/j.chemosphere.2018.09.137_bib95) 2012; 22
Li (10.1016/j.chemosphere.2018.09.137_bib31) 2015; 86
Wang (10.1016/j.chemosphere.2018.09.137_bib73) 2017; 4
Ye (10.1016/j.chemosphere.2018.09.137_bib89) 2015; 358
Huang (10.1016/j.chemosphere.2018.09.137_bib22) 2014; 50
Lin (10.1016/j.chemosphere.2018.09.137_bib38) 2014; 2
Li (10.1016/j.chemosphere.2018.09.137_bib29) 2018; 220
Dou (10.1016/j.chemosphere.2018.09.137_bib11) 2011; 166
Foster (10.1016/j.chemosphere.2018.09.137_bib13) 2011; 90
Ge (10.1016/j.chemosphere.2018.09.137_bib15) 2011; 409–10
McEvoy (10.1016/j.chemosphere.2018.09.137_bib46) 2014; 19
Zhang (10.1016/j.chemosphere.2018.09.137_bib94) 2018; 195
Xia (10.1016/j.chemosphere.2018.09.137_bib81) 2015; 49
Zhang (10.1016/j.chemosphere.2018.09.137_bib97) 2017; 12
Thurston (10.1016/j.chemosphere.2018.09.137_bib64) 2017; 505
Sun (10.1016/j.chemosphere.2018.09.137_bib61) 2017; 5
Ong (10.1016/j.chemosphere.2018.09.137_bib50) 2016; 116
Rodríguez-González (10.1016/j.chemosphere.2018.09.137_bib57) 2010; 98
Xu (10.1016/j.chemosphere.2018.09.137_bib84) 2017; 9
Ong (10.1016/j.chemosphere.2018.09.137_bib49) 2018; 81
Patnaik (10.1016/j.chemosphere.2018.09.137_bib54) 2016; 6
Wang (10.1016/j.chemosphere.2018.09.137_bib76) 2009; 8
Zhang (10.1016/j.chemosphere.2018.09.137_bib96) 2017; 7
Liu (10.1016/j.chemosphere.2018.09.137_bib40) 2018; 29
Ma (10.1016/j.chemosphere.2018.09.137_bib42) 2016; 186
Byrne (10.1016/j.chemosphere.2018.09.137_bib5) 2011; 2011
Ji (10.1016/j.chemosphere.2018.09.137_bib23) 2013; 218
Xia (10.1016/j.chemosphere.2018.09.137_bib82) 2017; 214
Li (10.1016/j.chemosphere.2018.09.137_bib30) 2015; 16
Mamba (10.1016/j.chemosphere.2018.09.137_bib43) 2016; 198
Muñoz-Batista (10.1016/j.chemosphere.2018.09.137_bib48) 2016; 183
Song (10.1016/j.chemosphere.2018.09.137_bib60) 2018; 226
Vidyasagar (10.1016/j.chemosphere.2018.09.137_bib66) 2018; 221
Pant (10.1016/j.chemosphere.2018.09.137_bib52) 2017; 496
Zhou (10.1016/j.chemosphere.2018.09.137_bib100) 2014; 251
Jiang (10.1016/j.chemosphere.2018.09.137_bib24) 2016; 6
Matsunaga (10.1016/j.chemosphere.2018.09.137_bib45) 1985; 29
Allahverdiyev (10.1016/j.chemosphere.2018.09.137_bib3) 2011; 6
Wang (10.1016/j.chemosphere.2018.09.137_bib70) 2018; 225
Vidyasagar (10.1016/j.chemosphere.2018.09.137_bib67) 2018; 42
Adhikari (10.1016/j.chemosphere.2018.09.137_bib1) 2016; 6
Masih (10.1016/j.chemosphere.2018.09.137_bib44) 2017; 206
Wang (10.1016/j.chemosphere.2018.09.137_bib69) 2018; 5
World Health Organization (10.1016/j.chemosphere.2018.09.137_bib80) 2017
Yan (10.1016/j.chemosphere.2018.09.137_bib87) 2009; 25
Sirikanchana (10.1016/j.chemosphere.2018.09.137_bib58) 2008; 74
Pant (10.1016/j.chemosphere.2018.09.137_bib53) 2013; 39
Hamblin (10.1016/j.chemosphere.2018.09.137_bib17) 2016; 33
Wang (10.1016/j.chemosphere.2018.09.137_bib71) 2017; 217
Davison (10.1016/j.chemosphere.2018.09.137_bib7) 2010; 54
Huang (10.1016/j.chemosphere.2018.09.137_bib21) 2013; 117
Thurston (10.1016/j.chemosphere.2018.09.137_bib63) 2016; 6
Yun (10.1016/j.chemosphere.2018.09.137_bib90) 2011; 49
Dong (10.1016/j.chemosphere.2018.09.137_bib10) 2011; 21
Xu (10.1016/j.chemosphere.2018.09.137_bib83) 2016; 22
Hijnen (10.1016/j.chemosphere.2018.09.137_bib19) 2006; 40
World Health Organization (10.1016/j.chemosphere.2018.09.137_bib79) 2017
Ding (10.1016/j.chemosphere.2018.09.137_bib9) 2012; 51
Bing (10.1016/j.chemosphere.2018.09.137_bib4) 2015; 8
Zhao (10.1016/j.chemosphere.2018.09.137_bib99) 2014; 152–3
Zou (10.1016/j.chemosphere.2018.09.137_bib101) 2016; 138
Li (10.1016/j.chemosphere.2018.09.137_bib34) 2017; 338
Liu (10.1016/j.chemosphere.2018.09.137_bib41) 2015; 347
Ouyang (10.1016/j.chemosphere.2018.09.137_bib51) 2017; 136
Wang (10.1016/j.chemosphere.2018.09.137_bib68) 2018; 237
Xu (10.1016/j.chemosphere.2018.09.137_bib85) 2017; 323
Yadav (10.1016/j.chemosphere.2018.09.137_bib86) 2017; 64
He (10.1016/j.chemosphere.2018.09.137_bib18) 2014; 35
Reddy (10.1016/j.chemosphere.2018.09.137_bib56) 2017; 154
Zhang (10.1016/j.chemosphere.2018.09.137_bib92) 2018; 208
Kang (10.1016/j.chemosphere.2018.09.137_bib26) 2018; 137
Deng (10.1016/j.chemosphere.2018.09.137_bib8) 2017; 152
Zhao (10.1016/j.chemosphere.2018.09.137_bib98) 2016; 194
Lam (10.1016/j.chemosphere.2018.09.137_bib28) 2016; 47
Hu (10.1016/j.chemosphere.2018.09.137_bib20) 2017; 184
Qi (10.1016/j.chemosphere.2018.09.137_bib55) 2017; 727
Lin (10.1016/j.chemosphere.2018.09.137_bib39) 2018; 358
Gibson (10.1016/j.chemosphere.2018.09.137_bib16) 2014; 4
Kang (10.1016/j.chemosphere.2018.09.137_bib25) 2018; 10
Liao (10.1016/j.chemosphere.2018.09.137_bib37) 2012; 22
Song (10.1016/j.chemosphere.2018.09.137_bib59) 2018; 348
Li (10.1016/j.chemosphere.2018.09.137_bib35) 2017; 202
Li (10.1016/j.chemosphere.2018.09.137_bib36) 2016; 106
Li (10.1016/j.chemosphere.2018.09.137_bib32) 2017; 321
Moreira (10.1016/j.chemosphere.2018.09.137_bib47) 2009; 7
Zhang (10.1016/j.chemosphere.2018.09.137_bib93) 2015; 22
Zhang (10.1016/j.chemosphere.2018.09.137_bib91) 2016; 88
Dai (10.1016/j.chemosphere.2018.09.137_bib6) 2014; 43
Kim (10.1016/j.chemosphere.2018.09.137_bib27) 2005; 80
Sun (10.1016/j.chemosphere.2018.09.137_bib62) 2016; 129
Wang (10.1016/j.chemosphere.2018.09.137_bib72) 2015; 176–7
Li (10.1016/j.chemosphere.2018.09.137_bib33) 2008; 42
Wang (10.1016/j.chemosphere.2018.09.137_bib77) 2018; 341
Wang (10.1016/j.chemosphere.2018.09.137_bib75) 2013; 47
Wang (10.1016/j.chemosphere.2018.09.137_bib74) 2014; 50
Faraji (10.1016/j.chemosphere.2018.09.137_bib12) 2018; 178
Ganguly (10.1016/j.chemosphere.2018.09.137_bib14) 2018; 225
Yang (10.1016/j.chemosphere.2018.09.137_bib88) 2017; 12
References_xml – volume: 194
  start-page: 134
  year: 2016
  end-page: 140
  ident: bib98
  article-title: Integration of microfiltration and visible-light-driven photocatalysis on g-C
  publication-title: Appl. Catal., B
– volume: 129
  start-page: 7
  year: 2016
  end-page: 14
  ident: bib62
  article-title: Enhanced visible-light photocatalytic activity of kaolinite/g-C
  publication-title: Appl. Clay Sci.
– volume: 4
  start-page: 2922
  year: 2011
  end-page: 2929
  ident: bib78
  article-title: Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C
  publication-title: Energy Environ. Sci.
– volume: 218
  start-page: 183
  year: 2013
  end-page: 190
  ident: bib23
  article-title: Photocatalytic degradation of 2,4,6-trichlorophenol over g-C
  publication-title: Chem. Eng. J.
– volume: 727
  start-page: 792
  year: 2017
  end-page: 820
  ident: bib55
  article-title: Review on the improvement of the photocatalytic and antibacterial activities of ZnO
  publication-title: J. Alloy. Comp.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 7
  ident: bib96
  article-title: Constructing a visible-light-driven photocatalytic membrane by g-C
  publication-title: Sci. Rep.
– volume: 338
  start-page: 33
  year: 2017
  end-page: 46
  ident: bib34
  article-title: Efficient water disinfection with Ag
  publication-title: J. Hazard Mater.
– volume: 29
  start-page: 211
  year: 1985
  end-page: 214
  ident: bib45
  article-title: Photoelectrochemical sterilization of microbial cells by semiconductor powders
  publication-title: FEMS Microbiol. Lett.
– volume: 5
  start-page: 1096
  year: 2018
  end-page: 1106
  ident: bib69
  article-title: Iron oxide nanowire-based filter for inactivation of airborne bacteria
  publication-title: Environ. Sci. Nano
– volume: 348
  start-page: 380
  year: 2018
  end-page: 388
  ident: bib59
  article-title: Removal of
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 933
  year: 2011
  end-page: 940
  ident: bib3
  article-title: Antimicrobial effects of TiO
  publication-title: Future Microbiol.
– volume: 186
  start-page: 77
  year: 2016
  end-page: 87
  ident: bib42
  article-title: Enhanced disinfection application of Ag-modified g-C
  publication-title: Appl. Catal., B
– volume: 154
  start-page: 296
  year: 2017
  end-page: 303
  ident: bib56
  article-title: TiO
  publication-title: Environ. Res.
– volume: 178
  start-page: 124
  year: 2018
  end-page: 132
  ident: bib12
  article-title: Ternary composite of TiO
  publication-title: J. Photochem. Photobiol., B
– volume: 51
  start-page: 567
  year: 2012
  end-page: 575
  ident: bib9
  article-title: Hydrogen peroxide induces apoptotic-like cell death in
  publication-title: Phycologia
– volume: 42
  start-page: 4591
  year: 2008
  end-page: 4602
  ident: bib33
  article-title: Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications
  publication-title: Water Res.
– volume: 206
  start-page: 556
  year: 2017
  end-page: 588
  ident: bib44
  article-title: Graphitic C
  publication-title: Appl. Catal., B
– volume: 12
  year: 2017
  ident: bib97
  article-title: Simultaneous photocatalytic and microbial degradation of dye-containing wastewater by a novel g-C
  publication-title: PLoS One
– volume: 81
  start-page: 536
  year: 2018
  end-page: 551
  ident: bib49
  article-title: A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 208
  start-page: 84
  year: 2018
  end-page: 92
  ident: bib92
  article-title: Visible-light-driven, water-surface-floating antimicrobials developed from graphitic carbon nitride and expanded perlite for water disinfection
  publication-title: Chemosphere
– volume: 98
  start-page: 229
  year: 2010
  end-page: 234
  ident: bib57
  article-title: Silver-TiO
  publication-title: Appl. Catal., B
– volume: 64
  start-page: 103
  year: 2017
  end-page: 116
  ident: bib86
  article-title: Review on undoped/doped TiO
  publication-title: J. Chin. Chem. Soc.
– volume: 8
  start-page: 1648
  year: 2015
  end-page: 1658
  ident: bib4
  article-title: Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles
  publication-title: Nano Res.
– volume: 40
  start-page: 3
  year: 2006
  end-page: 22
  ident: bib19
  article-title: Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review
  publication-title: Water Res.
– volume: 22
  start-page: 2721
  year: 2012
  end-page: 2726
  ident: bib37
  article-title: Graphene oxide modified g-C
  publication-title: J. Mater. Chem.
– volume: 47
  start-page: 8724
  year: 2013
  end-page: 8732
  ident: bib75
  article-title: Graphene and g-C
  publication-title: Environ. Sci. Technol.
– volume: 116
  start-page: 7159
  year: 2016
  end-page: 7329
  ident: bib50
  article-title: Graphitic carbon nitride (g-C
  publication-title: Chem. Rev.
– volume: 6
  start-page: 42240
  year: 2016
  end-page: 42248
  ident: bib63
  article-title: Preparation and characterization of photoactive antimicrobial graphitic carbon nitride (g-C
  publication-title: RSC Adv.
– volume: 251
  start-page: 304
  year: 2014
  end-page: 309
  ident: bib100
  article-title: Removal of
  publication-title: Chem. Eng. J.
– volume: 19
  start-page: 62
  year: 2014
  end-page: 75
  ident: bib46
  article-title: Antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions
  publication-title: J. Photoch. Photobio. C
– volume: 347
  start-page: 970
  year: 2015
  end-page: 974
  ident: bib41
  article-title: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway
  publication-title: Science
– volume: 152
  start-page: 49
  year: 2017
  end-page: 57
  ident: bib8
  article-title: Enhanced visible-light-driven photocatalytic bacteria disinfection by g-C
  publication-title: Colloids Surf., B
– volume: 47
  start-page: 62
  year: 2016
  end-page: 84
  ident: bib28
  article-title: A review on photocatalytic application of g-C
  publication-title: Mater. Sci. Semicond. Process.
– volume: 50
  start-page: 4338
  year: 2014
  end-page: 4340
  ident: bib22
  article-title: Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination
  publication-title: Chem. Commun.
– volume: 42
  start-page: 6322
  year: 2018
  end-page: 6331
  ident: bib67
  article-title: Microwave assisted in situ decoration of a g-C
  publication-title: New J. Chem.
– volume: 166
  start-page: 631
  year: 2011
  end-page: 638
  ident: bib11
  article-title: Removal of aqueous toxic Hg(II) by synthesized TiO
  publication-title: Chem. Eng. J.
– volume: 117
  start-page: 22986
  year: 2013
  end-page: 22994
  ident: bib21
  article-title: Two novel Bi-based borate photocatalysts: crystal structure, electronic structure, photoelectrochemical properties, and photocatalytic activity under simulated solar light irradiation
  publication-title: J. Phys. Chem. C
– volume: 21
  start-page: 15171
  year: 2011
  end-page: 15174
  ident: bib10
  article-title: Efficient synthesis of polymeric g-C
  publication-title: J. Mater. Chem.
– volume: 195
  start-page: 551
  year: 2018
  end-page: 558
  ident: bib94
  article-title: Metal-free virucidal effects induced by g-C
  publication-title: Chemosphere
– volume: 4
  start-page: 50
  year: 2014
  end-page: 57
  ident: bib16
  article-title: Viral pathogens in water: occurrence, public health impact, and available control strategies
  publication-title: Curr. Opin. Virol.
– volume: 29
  start-page: 14300
  year: 2018
  end-page: 14310
  ident: bib40
  article-title: Synthesis of g-C
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 323
  start-page: 520
  year: 2017
  end-page: 529
  ident: bib85
  article-title: Synergetic effect of bio-photocatalytic hybrid system: g-C
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 1421
  year: 2017
  end-page: 1434
  ident: bib88
  article-title: Strategies for efficient solar water splitting using carbon nitride
  publication-title: Chem. Asian J.
– volume: 136
  start-page: 40
  year: 2017
  end-page: 45
  ident: bib51
  article-title: Metal-free inactivation of
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 152–3
  start-page: 46
  year: 2014
  end-page: 50
  ident: bib99
  article-title: Fabrication of atomic single layer graphitic-C
  publication-title: Appl. Catal., B
– volume: 8
  start-page: 76
  year: 2009
  end-page: 80
  ident: bib76
  article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light
  publication-title: Nat. Mater.
– volume: 39
  start-page: 1503
  year: 2013
  end-page: 1510
  ident: bib53
  article-title: Antibacterial and photocatalytic properties of Ag/TiO
  publication-title: Ceram. Int.
– volume: 5
  start-page: 8693
  year: 2017
  end-page: 8701
  ident: bib61
  article-title: Antibacterial activity of graphene oxide/g-C
  publication-title: ACS Sustain. Chem. Eng.
– volume: 198
  start-page: 347
  year: 2016
  end-page: 377
  ident: bib43
  article-title: Graphitic carbon nitride (g-C
  publication-title: Appl. Catal., B
– volume: 183
  start-page: 86
  year: 2016
  end-page: 95
  ident: bib48
  article-title: Disinfection capability of Ag/g-C
  publication-title: Appl. Catal., B
– volume: 22
  start-page: 8083
  year: 2012
  end-page: 8091
  ident: bib95
  article-title: Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts
  publication-title: J. Mater. Chem.
– volume: 22
  start-page: 3947
  year: 2016
  end-page: 3951
  ident: bib83
  article-title: Graphitic C
  publication-title: Chem. Eur J.
– volume: 106
  start-page: 249
  year: 2016
  end-page: 258
  ident: bib36
  article-title: Visible-light-driven photocatalytic inactivation of MS2 by metal-free g-C
  publication-title: Water Res.
– volume: 4
  start-page: 782
  year: 2017
  end-page: 799
  ident: bib73
  article-title: Photocatalytic nanomaterials for solar-driven bacterial inactivation: recent progress and challenges
  publication-title: Environ. Sci. Nano
– volume: 25
  start-page: 10397
  year: 2009
  end-page: 10401
  ident: bib87
  article-title: Photodegradation performance of g-C
  publication-title: Langmuir
– volume: 74
  start-page: 3774
  year: 2008
  end-page: 3782
  ident: bib58
  article-title: Effect of exposure to UV-C irradiation and monochloramine on adenovirus serotype 2 early protein expression and DNA replication
  publication-title: Appl. Environ. Microbiol.
– volume: 90
  start-page: 1847
  year: 2011
  end-page: 1868
  ident: bib13
  article-title: Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 220
  start-page: 272
  year: 2018
  end-page: 282
  ident: bib29
  article-title: Highly efficient g-C
  publication-title: Appl. Catal., B
– volume: 50
  start-page: 10148
  year: 2014
  end-page: 10150
  ident: bib74
  article-title: g-C
  publication-title: Chem. Commun.
– volume: 9
  start-page: 27727
  year: 2017
  end-page: 27735
  ident: bib84
  article-title: Enhanced visible-light-driven photocatalytic disinfection performance and organic pollutant degradation activity of porous g-C
  publication-title: ACS Appl. Mater. Interfaces
– volume: 184
  start-page: 1071
  year: 2017
  end-page: 1079
  ident: bib20
  article-title: Organic matters removal from landfill leachate by immobilized
  publication-title: Chemosphere
– volume: 49
  start-page: 6264
  year: 2015
  end-page: 6273
  ident: bib81
  article-title: Red phosphorus: an earth-abundant elemental photocatalyst for “green” bacterial inactivation under visible light
  publication-title: Environ. Sci. Technol.
– year: 2017
  ident: bib79
  article-title: Diarrhoeal Disease
– volume: 137
  start-page: 19
  year: 2018
  end-page: 30
  ident: bib26
  article-title: “Alternated cooling and heating” strategy enables rapid fabrication of highly-crystalline g-C
  publication-title: Carbon
– year: 2017
  ident: bib80
  article-title: Drinking Water
– volume: 35
  start-page: 989
  year: 2014
  end-page: 1007
  ident: bib18
  article-title: Recent advances in visible light Bi-based photocatalysts
  publication-title: Chin. J. Catal.
– volume: 350
  start-page: 10
  year: 2018
  end-page: 16
  ident: bib65
  article-title: Mechanisms on the enhanced sterilization performance of fluorocarbon resin composite coatings modified by g-C
  publication-title: J. Photochem. Photobiol., A
– volume: 358
  start-page: 15
  year: 2015
  end-page: 27
  ident: bib89
  article-title: A review on g-C
  publication-title: Appl. Surf. Sci.
– volume: 6
  start-page: 55079
  year: 2016
  end-page: 55091
  ident: bib1
  article-title: Synthesis, characterization, organic compound degradation activity and antimicrobial performance of g-C
  publication-title: RSC Adv.
– volume: 33
  start-page: 67
  year: 2016
  end-page: 73
  ident: bib17
  article-title: Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes
  publication-title: Curr. Opin. Microbiol.
– volume: 80
  start-page: 227
  year: 2005
  end-page: 232
  ident: bib27
  article-title: Preparation of TiO
  publication-title: Microchem. J.
– volume: 88
  start-page: 403
  year: 2016
  end-page: 427
  ident: bib91
  article-title: Silver nanoparticles in aquatic environments: physiochemical behavior and antimicrobial mechanisms
  publication-title: Water Res.
– volume: 6
  start-page: 3186
  year: 2016
  end-page: 3197
  ident: bib24
  article-title: In situ growth of Ag/Ag
  publication-title: RSC Adv.
– volume: 2
  start-page: 1031
  year: 2014
  end-page: 1037
  ident: bib38
  article-title: Graphitic-phase C
  publication-title: J. Mater. Chem. B
– volume: 6
  start-page: 46929
  year: 2016
  end-page: 46951
  ident: bib54
  article-title: An overview of the structural, textural and morphological modulations of g-C
  publication-title: RSC Adv.
– volume: 237
  start-page: 721
  year: 2018
  end-page: 741
  ident: bib68
  article-title: Plasmonic-based nanomaterials for environmental remediation
  publication-title: Appl. Catal., B
– volume: 358
  start-page: 62
  year: 2018
  end-page: 68
  ident: bib39
  article-title: Boron- and phenyl-codoped graphitic carbon nitride with greatly enhanced light responsive range for photocatalytic disinfection
  publication-title: J. Hazard Mater.
– volume: 505
  start-page: 910
  year: 2017
  end-page: 918
  ident: bib64
  article-title: Urea-derived graphitic carbon nitride (u-g-C
  publication-title: J. Colloid Interface Sci.
– volume: 176–7
  start-page: 444
  year: 2015
  end-page: 453
  ident: bib72
  article-title: Monoclinic dibismuth tetraoxide: a new visible-light-driven photocatalyst for environmental remediation
  publication-title: Appl. Catal., B
– volume: 54
  start-page: 2920
  year: 2010
  end-page: 2927
  ident: bib7
  article-title: Spatial and temporal patterns of biocide action against
  publication-title: Antimicrob. Agents Chemother.
– volume: 202
  start-page: 611
  year: 2017
  end-page: 619
  ident: bib35
  article-title: Hybridization of rutile TiO
  publication-title: Appl. Catal., B
– volume: 214
  start-page: 23
  year: 2017
  end-page: 33
  ident: bib82
  article-title: Enhanced photocatalytic inactivation of
  publication-title: Appl. Catal., B
– volume: 22
  start-page: 10444
  year: 2015
  end-page: 10451
  ident: bib93
  article-title: Ag@helical chiral TiO
  publication-title: Environ. Sci. Pollut. Res.
– volume: 341
  start-page: 516
  year: 2018
  end-page: 525
  ident: bib77
  article-title: Adsorption-photocatalysis functional expanded graphite C/C composite for in-situ photocatalytic inactivation of
  publication-title: Chem. Eng. J.
– volume: 217
  start-page: 570
  year: 2017
  end-page: 580
  ident: bib71
  article-title: Earth-abundant Ni
  publication-title: Appl. Catal., B
– volume: 321
  start-page: 183
  year: 2017
  end-page: 192
  ident: bib32
  article-title: In situ growing Bi
  publication-title: J. Hazard Mater.
– volume: 225
  start-page: 228
  year: 2018
  end-page: 237
  ident: bib70
  article-title: Mechanism insight into rapid photocatalytic disinfection of
  publication-title: Appl. Catal., B
– volume: 86
  start-page: 17
  year: 2015
  end-page: 24
  ident: bib31
  article-title: Enhanced visible-light-driven photocatalytic inactivation of
  publication-title: Water Res.
– volume: 226
  start-page: 83
  year: 2018
  end-page: 92
  ident: bib60
  article-title: Visible-light-driven in situ inactivation of
  publication-title: Appl. Catal., B
– volume: 482
  start-page: 477
  year: 2015
  end-page: 484
  ident: bib2
  article-title: One pot synthesis and characterization of Ag-ZnO/g-C
  publication-title: Colloids Surf., A
– volume: 7
  start-page: 306
  year: 2009
  end-page: 311
  ident: bib47
  article-title: Ten reasons to exclude viruses from the tree of life
  publication-title: Nat. Rev. Microbiol.
– volume: 43
  start-page: 6295
  year: 2014
  end-page: 6299
  ident: bib6
  article-title: Sonication assisted preparation of graphene oxide/graphitic-C
  publication-title: Dalton Trans.
– volume: 496
  start-page: 343
  year: 2017
  end-page: 352
  ident: bib52
  article-title: Novel magnetically separable silver-iron oxide nanoparticles decorated graphitic carbon nitride nano-sheets: a multifunctional photocatalyst via one-step hydrothermal process
  publication-title: J. Colloid Interface Sci.
– volume: 49
  start-page: 3553
  year: 2011
  end-page: 3559
  ident: bib90
  article-title: Reinforcing effects of adding alkylated graphene oxide to polypropylene
  publication-title: Carbon
– volume: 10
  start-page: 13796
  year: 2018
  end-page: 13804
  ident: bib25
  article-title: Moderate bacterial etching allows scalable and clean delamination of g-C
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 488
  year: 2015
  end-page: 515
  ident: bib30
  article-title: Graphene oxide: a promising nanomaterial for energy and environmental applications
  publication-title: Nano Energy
– volume: 138
  start-page: 2064
  year: 2016
  end-page: 2077
  ident: bib101
  article-title: Mechanisms of the antimicrobial activities of graphene materials
  publication-title: J. Am. Chem. Soc.
– volume: 221
  start-page: 339
  year: 2018
  end-page: 348
  ident: bib66
  article-title: Silver/Silver(II) oxide (Ag/AgO) loaded graphitic carbon nitride microspheres: an effective visible light active photocatalyst for degradation of acidic dyes and bacterial inactivation
  publication-title: Appl. Catal., B
– volume: 409–10
  start-page: 215
  year: 2011
  end-page: 222
  ident: bib15
  article-title: Enhanced visible light photocatalytic activity of novel polymeric g-C
  publication-title: Appl. Catal., A
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 12
  ident: bib5
  article-title: Photocatalytic enhancement for solar disinfection of water: a review
  publication-title: Int. J. Photoenergy
– volume: 225
  start-page: 51
  year: 2018
  end-page: 75
  ident: bib14
  article-title: Antimicrobial activity of photocatalysts: fundamentals, mechanisms, kinetics and recent advances
  publication-title: Appl. Catal., B
– volume: 29
  start-page: 211
  year: 1985
  ident: 10.1016/j.chemosphere.2018.09.137_bib45
  article-title: Photoelectrochemical sterilization of microbial cells by semiconductor powders
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.1985.tb00864.x
– volume: 206
  start-page: 556
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.137_bib44
  article-title: Graphitic C3N4 based noble-metal-free photocatalyst systems: a review
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.01.061
– volume: 8
  start-page: 1648
  year: 2015
  ident: 10.1016/j.chemosphere.2018.09.137_bib4
  article-title: Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0654-1
– volume: 4
  start-page: 2922
  year: 2011
  ident: 10.1016/j.chemosphere.2018.09.137_bib78
  article-title: Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00825g
– volume: 226
  start-page: 83
  year: 2018
  ident: 10.1016/j.chemosphere.2018.09.137_bib60
  article-title: Visible-light-driven in situ inactivation of Microcystis aeruginosa with the use of floating g-C3N4 heterojunction photocatalyst: performance, mechanisms and implications
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.12.034
– volume: 217
  start-page: 570
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.137_bib71
  article-title: Earth-abundant Ni2P/g-C3N4 lamellar nanohydrids for enhanced photocatalytic hydrogen evolution and bacterial inactivation under visible light irradiation
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.06.027
– volume: 194
  start-page: 134
  year: 2016
  ident: 10.1016/j.chemosphere.2018.09.137_bib98
  article-title: Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2016.04.042
– volume: 47
  start-page: 62
  year: 2016
  ident: 10.1016/j.chemosphere.2018.09.137_bib28
  article-title: A review on photocatalytic application of g-C3N4/semiconductor (CNS) nanocomposites towards the erasure of dyeing wastewater
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2016.02.019
– volume: 358
  start-page: 15
  year: 2015
  ident: 10.1016/j.chemosphere.2018.09.137_bib89
  article-title: A review on g-C3N4 for photocatalytic water splitting and CO2 reduction
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.08.173
– volume: 29
  start-page: 14300
  year: 2018
  ident: 10.1016/j.chemosphere.2018.09.137_bib40
  article-title: Synthesis of g-C3N4/BiOI/BiOBr heterostructures for efficient visible-light-induced photocatalytic and antibacterial activity
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-018-9564-4
– volume: 12
  start-page: 1421
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.137_bib88
  article-title: Strategies for efficient solar water splitting using carbon nitride
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.201700540
– volume: 409–10
  start-page: 215
  year: 2011
  ident: 10.1016/j.chemosphere.2018.09.137_bib15
  article-title: Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2011.10.006
– volume: 6
  start-page: 55079
  year: 2016
  ident: 10.1016/j.chemosphere.2018.09.137_bib1
  article-title: Synthesis, characterization, organic compound degradation activity and antimicrobial performance of g-C3N4 sheets customized with metal nanoparticles-decorated TiO2 nanofibers
  publication-title: RSC Adv.
  doi: 10.1039/C6RA04869B
– volume: 176–7
  start-page: 444
  year: 2015
  ident: 10.1016/j.chemosphere.2018.09.137_bib72
  article-title: Monoclinic dibismuth tetraoxide: a new visible-light-driven photocatalyst for environmental remediation
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2015.04.026
– volume: 51
  start-page: 567
  year: 2012
  ident: 10.1016/j.chemosphere.2018.09.137_bib9
  article-title: Hydrogen peroxide induces apoptotic-like cell death in Microcystis aeruginosa (Chroococcales, Cyanobacteria) in a dose-dependent manner
  publication-title: Phycologia
  doi: 10.2216/11-107.1
– volume: 22
  start-page: 3947
  year: 2016
  ident: 10.1016/j.chemosphere.2018.09.137_bib83
  article-title: Graphitic C3N4-sensitized TiO2 nanotube layers: a visible-light activated efficient metal-free antimicrobial platform
  publication-title: Chem. Eur J.
  doi: 10.1002/chem.201505173
– volume: 350
  start-page: 10
  year: 2018
  ident: 10.1016/j.chemosphere.2018.09.137_bib65
  article-title: Mechanisms on the enhanced sterilization performance of fluorocarbon resin composite coatings modified by g-C3N4/Bi2MoO6 under the visible-light
  publication-title: J. Photochem. Photobiol., A
  doi: 10.1016/j.jphotochem.2017.09.043
– volume: 2011
  start-page: 1
  year: 2011
  ident: 10.1016/j.chemosphere.2018.09.137_bib5
  article-title: Photocatalytic enhancement for solar disinfection of water: a review
  publication-title: Int. J. Photoenergy
  doi: 10.1155/2011/798051
– volume: 220
  start-page: 272
  year: 2018
  ident: 10.1016/j.chemosphere.2018.09.137_bib29
  article-title: Highly efficient g-C3N4/TiO2/kaolinite composite with novel three-dimensional structure and enhanced visible light responding ability towards ciprofloxacin and S. aureus
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.08.044
– volume: 214
  start-page: 23
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.137_bib82
  article-title: Enhanced photocatalytic inactivation of Escherichia coli by a novel Z-scheme g-C3N4/m-Bi2O4 hybrid photocatalyst under visible light: the role of reactive oxygen species
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.05.035
– volume: 321
  start-page: 183
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.137_bib32
  article-title: In situ growing Bi2MoO6 on g-C3N4 nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2016.09.008
– volume: 505
  start-page: 910
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.137_bib64
  article-title: Urea-derived graphitic carbon nitride (u-g-C3N4) films with highly enhanced antimicrobial and sporicidal activity
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.06.089
– volume: 338
  start-page: 33
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.137_bib34
  article-title: Efficient water disinfection with Ag2WO4-doped mesoporous g-C3N4 under visible light
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2017.05.011
– volume: 106
  start-page: 249
  year: 2016
  ident: 10.1016/j.chemosphere.2018.09.137_bib36
  article-title: Visible-light-driven photocatalytic inactivation of MS2 by metal-free g-C3N4: virucidal performance and mechanism
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.10.009
– volume: 496
  start-page: 343
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.137_bib52
  article-title: Novel magnetically separable silver-iron oxide nanoparticles decorated graphitic carbon nitride nano-sheets: a multifunctional photocatalyst via one-step hydrothermal process
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.02.012
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.137_bib96
  article-title: Constructing a visible-light-driven photocatalytic membrane by g-C3N4 quantum dots and TiO2 nanotube array for enhanced water treatment
  publication-title: Sci. Rep.
– volume: 50
  start-page: 4338
  year: 2014
  ident: 10.1016/j.chemosphere.2018.09.137_bib22
  article-title: Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc48374f
– volume: 152
  start-page: 49
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.137_bib8
  article-title: Enhanced visible-light-driven photocatalytic bacteria disinfection by g-C3N4-AgBr
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2017.01.003
– volume: 4
  start-page: 50
  year: 2014
  ident: 10.1016/j.chemosphere.2018.09.137_bib16
  article-title: Viral pathogens in water: occurrence, public health impact, and available control strategies
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2013.12.005
– volume: 348
  start-page: 380
  year: 2018
  ident: 10.1016/j.chemosphere.2018.09.137_bib59
  article-title: Removal of Microcystis aeruginosa and Microcystin-LR using a graphitic-C3N4/TiO2 floating photocatalyst under visible light irradiation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.04.182
– volume: 49
  start-page: 3553
  year: 2011
  ident: 10.1016/j.chemosphere.2018.09.137_bib90
  article-title: Reinforcing effects of adding alkylated graphene oxide to polypropylene
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.04.055
– volume: 50
  start-page: 10148
  year: 2014
  ident: 10.1016/j.chemosphere.2018.09.137_bib74
  article-title: g-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC02543A
– volume: 9
  start-page: 27727
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.137_bib84
  article-title: Enhanced visible-light-driven photocatalytic disinfection performance and organic pollutant degradation activity of porous g-C3N4 nanosheets
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b07657
– volume: 116
  start-page: 7159
  year: 2016
  ident: 10.1016/j.chemosphere.2018.09.137_bib50
  article-title: Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00075
– volume: 221
  start-page: 339
  year: 2018
  ident: 10.1016/j.chemosphere.2018.09.137_bib66
  article-title: Silver/Silver(II) oxide (Ag/AgO) loaded graphitic carbon nitride microspheres: an effective visible light active photocatalyst for degradation of acidic dyes and bacterial inactivation
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.09.030
– volume: 98
  start-page: 229
  year: 2010
  ident: 10.1016/j.chemosphere.2018.09.137_bib57
  article-title: Silver-TiO2 nanocomposites: synthesis and harmful algae bloom UV-photoelimination
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2010.06.001
– volume: 202
  start-page: 611
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.137_bib35
  article-title: Hybridization of rutile TiO2 (rTiO2) with g-C3N4 quantum dots (CN QDs): an efficient visible-light-driven Z-scheme hybridized photocatalyst
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2016.09.055
– volume: 4
  start-page: 782
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.137_bib73
  article-title: Photocatalytic nanomaterials for solar-driven bacterial inactivation: recent progress and challenges
  publication-title: Environ. Sci. Nano
  doi: 10.1039/C7EN00063D
– volume: 136
  start-page: 40
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.137_bib51
  article-title: Metal-free inactivation of E. coli O157:H7 by fullerene/C3N4 hybrid under visible light irradiation
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2016.10.030
– volume: 129
  start-page: 7
  year: 2016
  ident: 10.1016/j.chemosphere.2018.09.137_bib62
  article-title: Enhanced visible-light photocatalytic activity of kaolinite/g-C3N4 composite synthesized via mechanochemical treatment
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2016.04.003
– volume: 21
  start-page: 15171
  year: 2011
  ident: 10.1016/j.chemosphere.2018.09.137_bib10
  article-title: Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm12844b
– volume: 323
  start-page: 520
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.137_bib85
  article-title: Synergetic effect of bio-photocatalytic hybrid system: g-C3N4 and Acinetobacter sp. JLS1 for enhanced degradation of C16 alkane
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.04.138
– volume: 80
  start-page: 227
  year: 2005
  ident: 10.1016/j.chemosphere.2018.09.137_bib27
  article-title: Preparation of TiO2-coated hollow glass beads and their application to the control of algal growth in eutrophic water
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2004.07.008
– volume: 186
  start-page: 77
  year: 2016
  ident: 10.1016/j.chemosphere.2018.09.137_bib42
  article-title: Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2015.12.051
– volume: 184
  start-page: 1071
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.137_bib20
  article-title: Organic matters removal from landfill leachate by immobilized Phanerochaete chrysosporium loaded with graphitic carbon nitride under visible light irradiation
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.06.065
– year: 2017
  ident: 10.1016/j.chemosphere.2018.09.137_bib80
– volume: 198
  start-page: 347
  year: 2016
  ident: 10.1016/j.chemosphere.2018.09.137_bib43
  article-title: Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2016.05.052
– volume: 88
  start-page: 403
  year: 2016
  ident: 10.1016/j.chemosphere.2018.09.137_bib91
  article-title: Silver nanoparticles in aquatic environments: physiochemical behavior and antimicrobial mechanisms
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.10.025
– volume: 2
  start-page: 1031
  year: 2014
  ident: 10.1016/j.chemosphere.2018.09.137_bib38
  article-title: Graphitic-phase C3N4 nanosheets as efficient photosensitizers and pH-responsive drug nanocarriers for cancer imaging and therapy
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c3tb21479f
– volume: 40
  start-page: 3
  year: 2006
  ident: 10.1016/j.chemosphere.2018.09.137_bib19
  article-title: Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2005.10.030
– volume: 166
  start-page: 631
  year: 2011
  ident: 10.1016/j.chemosphere.2018.09.137_bib11
  article-title: Removal of aqueous toxic Hg(II) by synthesized TiO2 nanoparticles and TiO2/montmorillonite
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.11.035
– volume: 39
  start-page: 1503
  year: 2013
  ident: 10.1016/j.chemosphere.2018.09.137_bib53
  article-title: Antibacterial and photocatalytic properties of Ag/TiO2/ZnO nano-flowers prepared by facile one-pot hydrothermal process
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2012.07.097
– volume: 10
  start-page: 13796
  year: 2018
  ident: 10.1016/j.chemosphere.2018.09.137_bib25
  article-title: Moderate bacterial etching allows scalable and clean delamination of g-C3N4 with enriched unpaired electrons for highly improved photocatalytic water disinfection
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00007
– volume: 154
  start-page: 296
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.137_bib56
  article-title: TiO2-based photocatalytic disinfection of microbes in aqueous media: a review
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2017.01.018
– volume: 64
  start-page: 103
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.137_bib86
  article-title: Review on undoped/doped TiO2 nanomaterial: synthesis and photocatalytic and antimicrobial activity
  publication-title: J. Chin. Chem. Soc.
  doi: 10.1002/jccs.201600735
– volume: 195
  start-page: 551
  year: 2018
  ident: 10.1016/j.chemosphere.2018.09.137_bib94
  article-title: Metal-free virucidal effects induced by g-C3N4 under visible light irradiation: statistical analysis and parameter optimization
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.12.122
– volume: 42
  start-page: 6322
  year: 2018
  ident: 10.1016/j.chemosphere.2018.09.137_bib67
  article-title: Microwave assisted in situ decoration of a g-C3N4 surface with CdCO3 nanoparticles for visible light driven photocatalysis
  publication-title: New J. Chem.
  doi: 10.1039/C8NJ00444G
– volume: 6
  start-page: 46929
  year: 2016
  ident: 10.1016/j.chemosphere.2018.09.137_bib54
  article-title: An overview of the structural, textural and morphological modulations of g-C3N4 towards photocatalytic hydrogen production
  publication-title: RSC Adv.
  doi: 10.1039/C5RA26702A
– volume: 218
  start-page: 183
  year: 2013
  ident: 10.1016/j.chemosphere.2018.09.137_bib23
  article-title: Photocatalytic degradation of 2,4,6-trichlorophenol over g-C3N4 under visible light irradiation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.12.033
– volume: 22
  start-page: 2721
  year: 2012
  ident: 10.1016/j.chemosphere.2018.09.137_bib37
  article-title: Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation
  publication-title: J. Mater. Chem.
  doi: 10.1039/C1JM13490F
– volume: 22
  start-page: 8083
  year: 2012
  ident: 10.1016/j.chemosphere.2018.09.137_bib95
  article-title: Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm00097k
– volume: 138
  start-page: 2064
  year: 2016
  ident: 10.1016/j.chemosphere.2018.09.137_bib101
  article-title: Mechanisms of the antimicrobial activities of graphene materials
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11411
– volume: 43
  start-page: 6295
  year: 2014
  ident: 10.1016/j.chemosphere.2018.09.137_bib6
  article-title: Sonication assisted preparation of graphene oxide/graphitic-C3N4 nanosheet hybrid with reinforced photocurrent for photocatalyst applications
  publication-title: Dalton Trans.
  doi: 10.1039/c3dt53106f
– volume: 225
  start-page: 228
  year: 2018
  ident: 10.1016/j.chemosphere.2018.09.137_bib70
  article-title: Mechanism insight into rapid photocatalytic disinfection of Salmonella based on vanadate QDs-interspersed g-C3N4 heterostructures
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.11.060
– volume: 347
  start-page: 970
  year: 2015
  ident: 10.1016/j.chemosphere.2018.09.137_bib41
  article-title: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway
  publication-title: Science
  doi: 10.1126/science.aaa3145
– volume: 208
  start-page: 84
  year: 2018
  ident: 10.1016/j.chemosphere.2018.09.137_bib92
  article-title: Visible-light-driven, water-surface-floating antimicrobials developed from graphitic carbon nitride and expanded perlite for water disinfection
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.05.163
– volume: 12
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.137_bib97
  article-title: Simultaneous photocatalytic and microbial degradation of dye-containing wastewater by a novel g-C3N4-P25/photosynthetic bacteria composite
  publication-title: PLoS One
– year: 2017
  ident: 10.1016/j.chemosphere.2018.09.137_bib79
– volume: 54
  start-page: 2920
  year: 2010
  ident: 10.1016/j.chemosphere.2018.09.137_bib7
  article-title: Spatial and temporal patterns of biocide action against Staphylococcus epidermidis biofilms
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01734-09
– volume: 5
  start-page: 8693
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.137_bib61
  article-title: Antibacterial activity of graphene oxide/g-C3N4 composite through photocatalytic disinfection under visible light
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b01431
– volume: 35
  start-page: 989
  year: 2014
  ident: 10.1016/j.chemosphere.2018.09.137_bib18
  article-title: Recent advances in visible light Bi-based photocatalysts
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(14)60075-9
– volume: 7
  start-page: 306
  year: 2009
  ident: 10.1016/j.chemosphere.2018.09.137_bib47
  article-title: Ten reasons to exclude viruses from the tree of life
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2108
– volume: 47
  start-page: 8724
  year: 2013
  ident: 10.1016/j.chemosphere.2018.09.137_bib75
  article-title: Graphene and g-C3N4 nanosheets cowrapped elemental alpha-sulfur as a novel metal-free heterojunction photocatalyst for bacterial inactivation under visible-light
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4013504
– volume: 6
  start-page: 933
  year: 2011
  ident: 10.1016/j.chemosphere.2018.09.137_bib3
  article-title: Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites
  publication-title: Future Microbiol.
  doi: 10.2217/fmb.11.78
– volume: 6
  start-page: 42240
  year: 2016
  ident: 10.1016/j.chemosphere.2018.09.137_bib63
  article-title: Preparation and characterization of photoactive antimicrobial graphitic carbon nitride (g-C3N4) films
  publication-title: RSC Adv.
  doi: 10.1039/C6RA05613J
– volume: 183
  start-page: 86
  year: 2016
  ident: 10.1016/j.chemosphere.2018.09.137_bib48
  article-title: Disinfection capability of Ag/g-C3N4 composite photocatalysts under UV and visible light illumination
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2015.10.024
– volume: 5
  start-page: 1096
  year: 2018
  ident: 10.1016/j.chemosphere.2018.09.137_bib69
  article-title: Iron oxide nanowire-based filter for inactivation of airborne bacteria
  publication-title: Environ. Sci. Nano
  doi: 10.1039/C8EN00133B
– volume: 74
  start-page: 3774
  year: 2008
  ident: 10.1016/j.chemosphere.2018.09.137_bib58
  article-title: Effect of exposure to UV-C irradiation and monochloramine on adenovirus serotype 2 early protein expression and DNA replication
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02049-07
– volume: 19
  start-page: 62
  year: 2014
  ident: 10.1016/j.chemosphere.2018.09.137_bib46
  article-title: Antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions
  publication-title: J. Photoch. Photobio. C
  doi: 10.1016/j.jphotochemrev.2014.01.001
– volume: 251
  start-page: 304
  year: 2014
  ident: 10.1016/j.chemosphere.2018.09.137_bib100
  article-title: Removal of Microcystis aeruginosa by potassium ferrate (VI): impacts on cells integrity, intracellular organic matter release and disinfection by-products formation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.04.081
– volume: 90
  start-page: 1847
  year: 2011
  ident: 10.1016/j.chemosphere.2018.09.137_bib13
  article-title: Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-011-3213-7
– volume: 16
  start-page: 488
  year: 2015
  ident: 10.1016/j.chemosphere.2018.09.137_bib30
  article-title: Graphene oxide: a promising nanomaterial for energy and environmental applications
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.07.014
– volume: 341
  start-page: 516
  year: 2018
  ident: 10.1016/j.chemosphere.2018.09.137_bib77
  article-title: Adsorption-photocatalysis functional expanded graphite C/C composite for in-situ photocatalytic inactivation of Microcystis aeruginosa
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.02.054
– volume: 482
  start-page: 477
  year: 2015
  ident: 10.1016/j.chemosphere.2018.09.137_bib2
  article-title: One pot synthesis and characterization of Ag-ZnO/g-C3N4 photocatalyst with improved photoactivity and antibacterial properties
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2015.07.003
– volume: 225
  start-page: 51
  year: 2018
  ident: 10.1016/j.chemosphere.2018.09.137_bib14
  article-title: Antimicrobial activity of photocatalysts: fundamentals, mechanisms, kinetics and recent advances
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.11.018
– volume: 137
  start-page: 19
  year: 2018
  ident: 10.1016/j.chemosphere.2018.09.137_bib26
  article-title: “Alternated cooling and heating” strategy enables rapid fabrication of highly-crystalline g-C3N4 nanosheets for efficient photocatalytic water purification under visible light irradiation
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.05.010
– volume: 86
  start-page: 17
  year: 2015
  ident: 10.1016/j.chemosphere.2018.09.137_bib31
  article-title: Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.05.053
– volume: 42
  start-page: 4591
  year: 2008
  ident: 10.1016/j.chemosphere.2018.09.137_bib33
  article-title: Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications
  publication-title: Water Res.
  doi: 10.1016/j.watres.2008.08.015
– volume: 22
  start-page: 10444
  year: 2015
  ident: 10.1016/j.chemosphere.2018.09.137_bib93
  article-title: Ag@helical chiral TiO2 nanofibers for visible light photocatalytic degradation of 17α-ethinylestradiol
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-015-4251-y
– volume: 152–3
  start-page: 46
  year: 2014
  ident: 10.1016/j.chemosphere.2018.09.137_bib99
  article-title: Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2014.01.023
– volume: 25
  start-page: 10397
  year: 2009
  ident: 10.1016/j.chemosphere.2018.09.137_bib87
  article-title: Photodegradation performance of g-C3N4 fabricated by directly heating melamine
  publication-title: Langmuir
  doi: 10.1021/la900923z
– volume: 81
  start-page: 536
  year: 2018
  ident: 10.1016/j.chemosphere.2018.09.137_bib49
  article-title: A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.08.020
– volume: 33
  start-page: 67
  year: 2016
  ident: 10.1016/j.chemosphere.2018.09.137_bib17
  article-title: Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2016.06.008
– volume: 117
  start-page: 22986
  year: 2013
  ident: 10.1016/j.chemosphere.2018.09.137_bib21
  article-title: Two novel Bi-based borate photocatalysts: crystal structure, electronic structure, photoelectrochemical properties, and photocatalytic activity under simulated solar light irradiation
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4084184
– volume: 237
  start-page: 721
  year: 2018
  ident: 10.1016/j.chemosphere.2018.09.137_bib68
  article-title: Plasmonic-based nanomaterials for environmental remediation
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.05.094
– volume: 49
  start-page: 6264
  year: 2015
  ident: 10.1016/j.chemosphere.2018.09.137_bib81
  article-title: Red phosphorus: an earth-abundant elemental photocatalyst for “green” bacterial inactivation under visible light
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00531
– volume: 358
  start-page: 62
  year: 2018
  ident: 10.1016/j.chemosphere.2018.09.137_bib39
  article-title: Boron- and phenyl-codoped graphitic carbon nitride with greatly enhanced light responsive range for photocatalytic disinfection
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2018.06.053
– volume: 727
  start-page: 792
  year: 2017
  ident: 10.1016/j.chemosphere.2018.09.137_bib55
  article-title: Review on the improvement of the photocatalytic and antibacterial activities of ZnO
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2017.08.142
– volume: 8
  start-page: 76
  year: 2009
  ident: 10.1016/j.chemosphere.2018.09.137_bib76
  article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2317
– volume: 178
  start-page: 124
  year: 2018
  ident: 10.1016/j.chemosphere.2018.09.137_bib12
  article-title: Ternary composite of TiO2 nanotubes/Ti plates modified by g-C3N4 and SnO2 with enhanced photocatalytic activity for enhancing antibacterial and photocatalytic activity
  publication-title: J. Photochem. Photobiol., B
  doi: 10.1016/j.jphotobiol.2017.11.009
– volume: 6
  start-page: 3186
  year: 2016
  ident: 10.1016/j.chemosphere.2018.09.137_bib24
  article-title: In situ growth of Ag/Ag2O nanoparticles on g-C3N4 by a natural carbon nanodot-assisted green method for synergistic photocatalytic activity
  publication-title: RSC Adv.
  doi: 10.1039/C5RA22176E
SSID ssj0001659
Score 2.677709
SecondaryResourceType review_article
Snippet Microbial contamination in drinking water is of great concern around the world because of high pathogenic risks to humans. Semiconductor photocatalysis has...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 462
SubjectTerms Anti-Infective Agents - pharmacology
antimicrobial properties
Antimicrobials
bacteria
Bacteria - drug effects
Bacteria - radiation effects
carbon dioxide
carbon nitride
Catalysis
cost effectiveness
Design and performance
disinfection
Disinfection - methods
drinking water
energy conversion
Environmental Restoration and Remediation
graphene
Graphite - chemistry
Graphitic carbon nitride
humans
hydrogen production
Inactivation mechanisms
Light
metabolism
microalgae
microbial contamination
nanomaterials
Nitriles - chemistry
Photocatalysis
photocatalysts
pollutants
polymers
remediation
risk
semiconductors
solar energy
viruses
Waste Water - microbiology
Title Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: A review
URI https://dx.doi.org/10.1016/j.chemosphere.2018.09.137
https://www.ncbi.nlm.nih.gov/pubmed/30273880
https://www.proquest.com/docview/2115754127
https://www.proquest.com/docview/2176346818
Volume 214
WOSCitedRecordID wos000449891300053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1298
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001659
  issn: 0045-6535
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6jdsLggFbuUyexANoypQmduwgXqqq3IQqpA2pe4qS2KGd1rRq07H9GP4rxz5JmoGKihAvURvVjdvvyznHzjnfIeSl4FlmFsqOVh3usNBTTshi7sRG7QsIIrSySH8Wg4EcDsMvrdaPqhbm8kLkuby6Cmf_FWo4B2Cb0tm_gLv-UjgBrwF0OALscNwI-PdGgtrktBnV6QTAhZt2PlY2lvzm9PwBg9W_Y7yXOpqNpsXU7uBcLwqrzHD0PbZNw8eLKk0Ls5UnY6vYZNVEbHI7lrTPV48WKrmDkZ5MF0aswF4RCxIb-w31DnVvNK6zgWxKwVn9_mS0jKsC-IkufSvqSFojebbMm7sVpkDqxm5FXUazylmyZplxJ-CoW3Ks0RJLYfo0YIvqylR7HdYwtqy04-i3GTal-c0l4O7E-XG6-vkmo08aedsOCs78orh9gnGuz8HcWcG8LbLjCR6C0dzpfuwPP9WuvhNwXF-V879DDlcJhGsuuC4AWrfAsYHO6QNyv1yh0C4y6yFp6XyX3O1VjQF3ye2-VTq_fkQmNdcoco2WXKOvkGmvkWf0Js8oUIJantEmzyjwjNY8oyXP3tAuRZY9Jl_f9U97H5yyf4eTMhEUTqIyX_hKJa6MQxF7rq9hta9S7smEBTEEp66KhY65n7nKKkGm0mOpq1INYVOg_CdkO5_mep9QDaPSUAYqSyEE5TpR4EfAj3uaS-lnsk1k9adGaSlub3qsXERVFuN51MAjMnhEbhgBHm3i1UNnqPCyyaC3FXJRGapiCBoB7TYZflihHQF45hldnOvpchF5RvyKs473x89AUMACCLXbZA-pUs_ct_pU0n36bxN8Ru6t7t7nZLuYL_ULciu9LMaL-QHZEkN5UN4MPwHd3t87
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphitic+carbon+nitride+%28g-C3N4%29-based+photocatalysts+for+water+disinfection+and+microbial+control%3A+A+review&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Zhang%2C+Chi&rft.au=Li%2C+Yi&rft.au=Shuai%2C+Danmeng&rft.au=Shen%2C+Yun&rft.date=2019-01-01&rft.pub=Elsevier+Ltd&rft.issn=0045-6535&rft.eissn=1879-1298&rft.volume=214&rft.spage=462&rft.epage=479&rft_id=info:doi/10.1016%2Fj.chemosphere.2018.09.137&rft.externalDocID=S0045653518317995
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon