Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: A review
Microbial contamination in drinking water is of great concern around the world because of high pathogenic risks to humans. Semiconductor photocatalysis has aroused an increasing interest as a promising environmental remediation technology for water disinfection and microbial control. Among various p...
Saved in:
| Published in: | Chemosphere (Oxford) Vol. 214; pp. 462 - 479 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Elsevier Ltd
01.01.2019
|
| Subjects: | |
| ISSN: | 0045-6535, 1879-1298, 1879-1298 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Microbial contamination in drinking water is of great concern around the world because of high pathogenic risks to humans. Semiconductor photocatalysis has aroused an increasing interest as a promising environmental remediation technology for water disinfection and microbial control. Among various photocatalysts, graphitic carbon nitride (g-C3N4), as a fascinating two-dimensional conjugated polymer consisting of low-cost, earth-abundant elements, has drawn broad attention as a robust, metal-free, and visible-light-active material in the fields of both environmental remediation and solar energy conversion. Photocatalytic applications of g-C3N4-based nanomaterials for water splitting, hydrogen production, carbon dioxide reduction, and pollutant degradation have been extensively investigated and systematically reviewed. In contrast, their antimicrobial properties have been explored more recently due to the complex structure and unique metabolism of living microorganisms compared with chemicals. The corresponding rapidly increasing research efforts in the last five years have inspired us to conduct the review. This review is the first to comprehensively summarize the progress in design and antimicrobial performance of g-C3N4-based photocatalysts for water disinfection and microbial control, involving not only bacteria but also viruses and microalgae. Moreover, the underlying inactivation mechanisms of photocatalysts for microorganisms are evaluated to provide further understanding of g-C3N4-based advanced disinfection processes. In addition, some exciting future opportunities and challenges at the forefront of this research platform are pointed out. It is expected that this review can pave a new avenue for the development of a facile, cost-effective, environmental-friendly, and sustainable disinfection alternative.
•An overview of design and performance of g-C3N4-based antimicrobials is presented.•Collaboration of photocatalysts with microorganisms is also introduced.•Microbial inactivation mechanisms in two different perspectives are discussed.•Future perspectives for g-C3N4-based antimicrobials are pointed out. |
|---|---|
| AbstractList | Microbial contamination in drinking water is of great concern around the world because of high pathogenic risks to humans. Semiconductor photocatalysis has aroused an increasing interest as a promising environmental remediation technology for water disinfection and microbial control. Among various photocatalysts, graphitic carbon nitride (g-C3N4), as a fascinating two-dimensional conjugated polymer consisting of low-cost, earth-abundant elements, has drawn broad attention as a robust, metal-free, and visible-light-active material in the fields of both environmental remediation and solar energy conversion. Photocatalytic applications of g-C3N4-based nanomaterials for water splitting, hydrogen production, carbon dioxide reduction, and pollutant degradation have been extensively investigated and systematically reviewed. In contrast, their antimicrobial properties have been explored more recently due to the complex structure and unique metabolism of living microorganisms compared with chemicals. The corresponding rapidly increasing research efforts in the last five years have inspired us to conduct the review. This review is the first to comprehensively summarize the progress in design and antimicrobial performance of g-C3N4-based photocatalysts for water disinfection and microbial control, involving not only bacteria but also viruses and microalgae. Moreover, the underlying inactivation mechanisms of photocatalysts for microorganisms are evaluated to provide further understanding of g-C3N4-based advanced disinfection processes. In addition, some exciting future opportunities and challenges at the forefront of this research platform are pointed out. It is expected that this review can pave a new avenue for the development of a facile, cost-effective, environmental-friendly, and sustainable disinfection alternative.Microbial contamination in drinking water is of great concern around the world because of high pathogenic risks to humans. Semiconductor photocatalysis has aroused an increasing interest as a promising environmental remediation technology for water disinfection and microbial control. Among various photocatalysts, graphitic carbon nitride (g-C3N4), as a fascinating two-dimensional conjugated polymer consisting of low-cost, earth-abundant elements, has drawn broad attention as a robust, metal-free, and visible-light-active material in the fields of both environmental remediation and solar energy conversion. Photocatalytic applications of g-C3N4-based nanomaterials for water splitting, hydrogen production, carbon dioxide reduction, and pollutant degradation have been extensively investigated and systematically reviewed. In contrast, their antimicrobial properties have been explored more recently due to the complex structure and unique metabolism of living microorganisms compared with chemicals. The corresponding rapidly increasing research efforts in the last five years have inspired us to conduct the review. This review is the first to comprehensively summarize the progress in design and antimicrobial performance of g-C3N4-based photocatalysts for water disinfection and microbial control, involving not only bacteria but also viruses and microalgae. Moreover, the underlying inactivation mechanisms of photocatalysts for microorganisms are evaluated to provide further understanding of g-C3N4-based advanced disinfection processes. In addition, some exciting future opportunities and challenges at the forefront of this research platform are pointed out. It is expected that this review can pave a new avenue for the development of a facile, cost-effective, environmental-friendly, and sustainable disinfection alternative. Microbial contamination in drinking water is of great concern around the world because of high pathogenic risks to humans. Semiconductor photocatalysis has aroused an increasing interest as a promising environmental remediation technology for water disinfection and microbial control. Among various photocatalysts, graphitic carbon nitride (g-C N ), as a fascinating two-dimensional conjugated polymer consisting of low-cost, earth-abundant elements, has drawn broad attention as a robust, metal-free, and visible-light-active material in the fields of both environmental remediation and solar energy conversion. Photocatalytic applications of g-C N -based nanomaterials for water splitting, hydrogen production, carbon dioxide reduction, and pollutant degradation have been extensively investigated and systematically reviewed. In contrast, their antimicrobial properties have been explored more recently due to the complex structure and unique metabolism of living microorganisms compared with chemicals. The corresponding rapidly increasing research efforts in the last five years have inspired us to conduct the review. This review is the first to comprehensively summarize the progress in design and antimicrobial performance of g-C N -based photocatalysts for water disinfection and microbial control, involving not only bacteria but also viruses and microalgae. Moreover, the underlying inactivation mechanisms of photocatalysts for microorganisms are evaluated to provide further understanding of g-C N -based advanced disinfection processes. In addition, some exciting future opportunities and challenges at the forefront of this research platform are pointed out. It is expected that this review can pave a new avenue for the development of a facile, cost-effective, environmental-friendly, and sustainable disinfection alternative. Microbial contamination in drinking water is of great concern around the world because of high pathogenic risks to humans. Semiconductor photocatalysis has aroused an increasing interest as a promising environmental remediation technology for water disinfection and microbial control. Among various photocatalysts, graphitic carbon nitride (g-C3N4), as a fascinating two-dimensional conjugated polymer consisting of low-cost, earth-abundant elements, has drawn broad attention as a robust, metal-free, and visible-light-active material in the fields of both environmental remediation and solar energy conversion. Photocatalytic applications of g-C3N4-based nanomaterials for water splitting, hydrogen production, carbon dioxide reduction, and pollutant degradation have been extensively investigated and systematically reviewed. In contrast, their antimicrobial properties have been explored more recently due to the complex structure and unique metabolism of living microorganisms compared with chemicals. The corresponding rapidly increasing research efforts in the last five years have inspired us to conduct the review. This review is the first to comprehensively summarize the progress in design and antimicrobial performance of g-C3N4-based photocatalysts for water disinfection and microbial control, involving not only bacteria but also viruses and microalgae. Moreover, the underlying inactivation mechanisms of photocatalysts for microorganisms are evaluated to provide further understanding of g-C3N4-based advanced disinfection processes. In addition, some exciting future opportunities and challenges at the forefront of this research platform are pointed out. It is expected that this review can pave a new avenue for the development of a facile, cost-effective, environmental-friendly, and sustainable disinfection alternative. •An overview of design and performance of g-C3N4-based antimicrobials is presented.•Collaboration of photocatalysts with microorganisms is also introduced.•Microbial inactivation mechanisms in two different perspectives are discussed.•Future perspectives for g-C3N4-based antimicrobials are pointed out. Microbial contamination in drinking water is of great concern around the world because of high pathogenic risks to humans. Semiconductor photocatalysis has aroused an increasing interest as a promising environmental remediation technology for water disinfection and microbial control. Among various photocatalysts, graphitic carbon nitride (g-C₃N₄), as a fascinating two-dimensional conjugated polymer consisting of low-cost, earth-abundant elements, has drawn broad attention as a robust, metal-free, and visible-light-active material in the fields of both environmental remediation and solar energy conversion. Photocatalytic applications of g-C₃N₄-based nanomaterials for water splitting, hydrogen production, carbon dioxide reduction, and pollutant degradation have been extensively investigated and systematically reviewed. In contrast, their antimicrobial properties have been explored more recently due to the complex structure and unique metabolism of living microorganisms compared with chemicals. The corresponding rapidly increasing research efforts in the last five years have inspired us to conduct the review. This review is the first to comprehensively summarize the progress in design and antimicrobial performance of g-C₃N₄-based photocatalysts for water disinfection and microbial control, involving not only bacteria but also viruses and microalgae. Moreover, the underlying inactivation mechanisms of photocatalysts for microorganisms are evaluated to provide further understanding of g-C₃N₄-based advanced disinfection processes. In addition, some exciting future opportunities and challenges at the forefront of this research platform are pointed out. It is expected that this review can pave a new avenue for the development of a facile, cost-effective, environmental-friendly, and sustainable disinfection alternative. |
| Author | Shen, Yun Zhang, Chi Shuai, Danmeng Li, Yi Wang, Linqiong Xiong, Wei |
| Author_xml | – sequence: 1 givenname: Chi surname: Zhang fullname: Zhang, Chi organization: Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China – sequence: 2 givenname: Yi surname: Li fullname: Li, Yi email: envly@hhu.edu.cn organization: Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China – sequence: 3 givenname: Danmeng surname: Shuai fullname: Shuai, Danmeng organization: Department of Civil and Environmental Engineering, The George Washington University, 800 22nd St NW Suite 3530, Washington, DC, 20052, USA – sequence: 4 givenname: Yun surname: Shen fullname: Shen, Yun organization: Department of Civil & Environmental Engineering, The University of Michigan, 1351 Beal Avenue, Ann Arbor, MI, 48109-2125, USA – sequence: 5 givenname: Wei surname: Xiong fullname: Xiong, Wei organization: Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China – sequence: 6 givenname: Linqiong surname: Wang fullname: Wang, Linqiong organization: Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30273880$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkcFu1DAURS1URKcDv4DMriwSnmMndtigagQFqYINrC3HfmE8SuLB9rTq3-PRtBJiNau3ufc-6ZwrcrGEBQl5x6BmwLoPu9pucQ5pv8WIdQNM1dDXjMsXZMWU7CvW9OqCrABEW3Utby_JVUo7gFJu-1fkkkMjuVKwIvNtNPutz95Sa-IQFrr4HL1Dev272vDv4n01mISO7rchB2uymR5TTnQMkT6YjJE6n_wyos2-lM3i6OxtDIM3E7VhyTFMH-kNjXjv8eE1eTmaKeGbp7smv758_rn5Wt39uP22ubmrrJBdrgY3csmdG0CZXpoGOPaNcLZt1CA6A1KBMxJNy0dwohUgrWqEBWcRWNM5vibXp919DH8OmLKefbI4TWbBcEi6YbLjolNMnRFlrWwFK8DW5O1T9DDM6PQ--tnER_1MswQ-nQIFQEoRR219NkcwORo_aQb66E_v9D_-9NGfhl4Xf2Wh_2_h-ck53c2pi4VsoR11sh4Xi87Hoke74M9Y-QtKYr0i |
| CitedBy_id | crossref_primary_10_1002_aoc_6829 crossref_primary_10_1016_j_jallcom_2025_183642 crossref_primary_10_1016_j_seppur_2021_119152 crossref_primary_10_1007_s11356_022_20326_7 crossref_primary_10_1016_j_diamond_2025_112644 crossref_primary_10_1016_j_molstruc_2021_130752 crossref_primary_10_1016_j_jece_2022_107780 crossref_primary_10_1016_j_chemosphere_2020_129135 crossref_primary_10_1002_smll_202205902 crossref_primary_10_1016_j_jpcs_2022_111109 crossref_primary_10_1088_2053_1583_ac9489 crossref_primary_10_1016_j_chemosphere_2022_136912 crossref_primary_10_1002_jcc_27464 crossref_primary_10_1007_s42823_024_00811_4 crossref_primary_10_1016_j_surfin_2024_105673 crossref_primary_10_1016_j_cej_2019_123506 crossref_primary_10_1039_D3CY01139A crossref_primary_10_1016_j_seppur_2021_120153 crossref_primary_10_1016_j_surfin_2023_103516 crossref_primary_10_1016_j_apsusc_2020_147309 crossref_primary_10_1016_j_apt_2021_03_042 crossref_primary_10_1016_j_inoche_2022_109949 crossref_primary_10_1016_j_solmat_2020_110516 crossref_primary_10_1016_j_jpcs_2022_110700 crossref_primary_10_1016_j_apsusc_2021_149478 crossref_primary_10_1016_j_apsusc_2019_143757 crossref_primary_10_1016_j_scitotenv_2019_133962 crossref_primary_10_1002_ps_7946 crossref_primary_10_1016_j_impact_2020_100268 crossref_primary_10_1016_j_jenvman_2020_110803 crossref_primary_10_1016_j_cej_2020_126365 crossref_primary_10_3390_nano11123341 crossref_primary_10_1016_j_molstruc_2022_134810 crossref_primary_10_1002_cctc_202001939 crossref_primary_10_1016_j_ecoenv_2021_112808 crossref_primary_10_1016_j_ijhydene_2024_05_174 crossref_primary_10_1007_s42114_022_00606_z crossref_primary_10_1016_j_scitotenv_2020_142588 crossref_primary_10_1002_ps_7715 crossref_primary_10_3390_en15030955 crossref_primary_10_1016_j_jece_2021_106991 crossref_primary_10_1088_2053_1591_abbdeb crossref_primary_10_3390_molecules28073199 crossref_primary_10_3390_ijms232112979 crossref_primary_10_1039_D2NJ03422K crossref_primary_10_1007_s10661_023_11907_1 crossref_primary_10_1016_j_cej_2019_123278 crossref_primary_10_1016_j_solener_2021_05_087 crossref_primary_10_1016_j_ceramint_2022_12_080 crossref_primary_10_1038_s44221_025_00500_0 crossref_primary_10_1080_14328917_2019_1634356 crossref_primary_10_1016_j_envres_2023_117019 crossref_primary_10_1007_s11666_020_01118_2 crossref_primary_10_1016_j_jwpe_2025_108485 crossref_primary_10_1007_s11356_020_12027_w crossref_primary_10_3390_ijms25147634 crossref_primary_10_3390_coatings10100917 crossref_primary_10_1016_j_jhazmat_2021_126607 crossref_primary_10_1007_s11356_022_20170_9 crossref_primary_10_3390_app11031313 crossref_primary_10_1016_j_efmat_2023_01_001 crossref_primary_10_3390_catal11040437 crossref_primary_10_1039_D1CY01096D crossref_primary_10_1016_j_coesh_2020_08_003 crossref_primary_10_1016_j_nanoen_2020_105371 crossref_primary_10_3390_app122111286 crossref_primary_10_1134_S002315842202001X crossref_primary_10_1007_s12613_023_2618_5 crossref_primary_10_1016_j_mtener_2020_100488 crossref_primary_10_3389_fnano_2021_684788 crossref_primary_10_1016_j_jwpe_2023_104231 crossref_primary_10_1016_j_scitotenv_2021_148462 crossref_primary_10_1016_j_solidstatesciences_2023_107128 crossref_primary_10_1016_j_jhazmat_2020_122357 crossref_primary_10_1016_j_chemosphere_2019_125119 crossref_primary_10_1016_j_matlet_2019_126600 crossref_primary_10_1016_j_scitotenv_2021_149678 crossref_primary_10_1016_j_clay_2021_106098 crossref_primary_10_1016_j_scitotenv_2022_159640 crossref_primary_10_1007_s10876_021_02189_z crossref_primary_10_1002_solr_202000594 crossref_primary_10_1016_j_scitotenv_2020_140341 crossref_primary_10_1007_s11356_019_05080_7 crossref_primary_10_1016_j_mssp_2019_04_036 crossref_primary_10_1016_j_desal_2022_116094 crossref_primary_10_1039_D0CY00542H crossref_primary_10_3390_catal11091084 crossref_primary_10_1515_revic_2021_0044 crossref_primary_10_1016_j_colsurfa_2022_130474 crossref_primary_10_1016_j_apsusc_2019_144245 crossref_primary_10_1016_j_watres_2021_117125 crossref_primary_10_1016_j_seppur_2021_119769 crossref_primary_10_1016_j_ijhydene_2024_12_023 crossref_primary_10_1002_smll_202409637 crossref_primary_10_1016_j_cej_2019_122294 crossref_primary_10_61186_jcc_5_2_6 crossref_primary_10_1002_cbic_201900229 crossref_primary_10_1016_j_jhazmat_2022_130013 crossref_primary_10_1016_j_jphotochem_2019_112028 crossref_primary_10_1007_s11356_020_11390_y crossref_primary_10_1002_ps_6257 crossref_primary_10_1016_j_apsusc_2020_146609 crossref_primary_10_1016_j_colsurfa_2021_127472 crossref_primary_10_1016_j_psep_2020_04_046 crossref_primary_10_3390_catal13101368 crossref_primary_10_1016_j_jece_2023_110050 crossref_primary_10_1039_C9MH01497G crossref_primary_10_3389_fmicb_2022_964401 crossref_primary_10_1016_j_ccr_2021_213985 crossref_primary_10_1007_s10853_019_03695_2 crossref_primary_10_3390_su16146104 crossref_primary_10_1016_j_ceramint_2024_02_144 crossref_primary_10_1016_j_cis_2021_102526 crossref_primary_10_1016_j_envpol_2022_118836 crossref_primary_10_1016_j_chemosphere_2021_132611 crossref_primary_10_1016_j_jphotochem_2023_115243 crossref_primary_10_1016_j_jhazmat_2022_129123 crossref_primary_10_1016_j_chemosphere_2021_130552 crossref_primary_10_1016_j_chemosphere_2023_140709 crossref_primary_10_1016_j_jpcs_2021_110514 crossref_primary_10_1016_j_molliq_2022_118655 crossref_primary_10_1016_j_jmst_2021_11_059 crossref_primary_10_1016_j_jhazmat_2018_11_033 crossref_primary_10_1002_jctb_6088 crossref_primary_10_1039_D5NR02485D crossref_primary_10_1016_j_carbon_2020_03_010 crossref_primary_10_1016_j_colsurfa_2023_132610 crossref_primary_10_1016_j_mssp_2021_106181 crossref_primary_10_1016_j_jwpe_2024_106924 crossref_primary_10_1007_s11356_023_29040_4 crossref_primary_10_1016_j_apcatb_2019_118457 crossref_primary_10_1016_j_chemosphere_2020_128850 crossref_primary_10_1016_j_jwpe_2024_105279 crossref_primary_10_1016_j_vacuum_2021_110371 crossref_primary_10_1016_j_jhazmat_2024_136257 crossref_primary_10_1016_j_chemosphere_2022_134889 crossref_primary_10_1016_j_seppur_2024_128312 crossref_primary_10_1016_j_jcis_2020_11_044 crossref_primary_10_1016_j_jphotochem_2024_115791 crossref_primary_10_1016_j_jhazmat_2021_126121 crossref_primary_10_1080_1040841X_2021_1944053 crossref_primary_10_1016_j_jallcom_2022_167837 crossref_primary_10_1016_j_cej_2024_149627 crossref_primary_10_1016_j_carbon_2021_01_112 crossref_primary_10_1016_j_cej_2023_144575 crossref_primary_10_1016_j_envres_2023_116574 crossref_primary_10_1007_s43630_022_00209_z crossref_primary_10_1016_j_ijleo_2021_167159 crossref_primary_10_1080_01614940_2023_2250652 crossref_primary_10_1002_cctc_202500419 crossref_primary_10_1016_j_eehl_2025_100178 crossref_primary_10_1016_j_cej_2022_140927 crossref_primary_10_1016_j_jes_2024_03_033 crossref_primary_10_1016_j_jhazmat_2023_131393 crossref_primary_10_1016_j_ccr_2021_214177 crossref_primary_10_1016_j_optmat_2020_109839 crossref_primary_10_1016_j_chemosphere_2019_124981 crossref_primary_10_1016_j_jallcom_2020_155612 crossref_primary_10_1016_j_rser_2020_110235 crossref_primary_10_3390_catal11010036 crossref_primary_10_1016_j_addr_2022_114420 crossref_primary_10_3390_nano12020294 crossref_primary_10_1016_j_apsusc_2021_151496 crossref_primary_10_1016_j_colsurfa_2024_134862 crossref_primary_10_1016_j_colsurfa_2025_136407 crossref_primary_10_3390_catal12090943 crossref_primary_10_1016_j_inoche_2024_112975 crossref_primary_10_1016_j_jhazmat_2019_121166 crossref_primary_10_1016_j_jwpe_2019_101015 crossref_primary_10_1016_j_ecoenv_2023_115133 crossref_primary_10_3390_molecules25092016 crossref_primary_10_1007_s10854_019_02387_6 crossref_primary_10_1016_j_jiec_2019_09_013 crossref_primary_10_1007_s11082_024_07798_2 crossref_primary_10_1016_j_jece_2023_110164 crossref_primary_10_1016_j_jhazmat_2020_123257 crossref_primary_10_1016_j_jfoodeng_2023_111820 crossref_primary_10_1080_10667857_2021_1968232 crossref_primary_10_1016_j_cej_2022_139956 crossref_primary_10_1016_j_jece_2022_108469 crossref_primary_10_1016_j_apcatb_2020_119095 crossref_primary_10_1016_j_apsusc_2020_148241 crossref_primary_10_1016_j_jece_2023_111809 crossref_primary_10_1016_j_cej_2019_122810 crossref_primary_10_1016_j_jallcom_2024_175212 crossref_primary_10_1016_j_chemosphere_2024_142517 crossref_primary_10_1016_j_optmat_2024_115727 crossref_primary_10_1016_j_ijhydene_2024_04_081 crossref_primary_10_3390_catal11121448 crossref_primary_10_1007_s00289_022_04418_5 crossref_primary_10_1016_j_ijbiomac_2024_131897 crossref_primary_10_1016_j_materresbull_2021_111386 crossref_primary_10_1021_acsanm_5c03419 crossref_primary_10_1016_j_cej_2020_126528 crossref_primary_10_3390_catal9010052 crossref_primary_10_1080_1536383X_2021_1921741 crossref_primary_10_1039_D2CP01262F crossref_primary_10_1016_j_cej_2021_129071 crossref_primary_10_1016_j_apsusc_2022_152728 crossref_primary_10_1016_j_chemosphere_2021_133063 crossref_primary_10_3390_ma17010044 crossref_primary_10_1016_j_pnsc_2022_09_009 crossref_primary_10_1016_j_inoche_2022_109335 crossref_primary_10_1016_j_jallcom_2022_167928 crossref_primary_10_1016_j_molstruc_2024_138013 crossref_primary_10_1016_j_biortech_2024_130796 crossref_primary_10_1016_j_cej_2021_129990 crossref_primary_10_1016_j_jwpe_2024_105870 crossref_primary_10_1016_j_solener_2020_12_016 crossref_primary_10_1016_j_jhazmat_2020_122868 crossref_primary_10_1016_j_apsusc_2020_146757 crossref_primary_10_1088_1361_6528_abadc7 crossref_primary_10_3390_catal15020115 crossref_primary_10_1016_j_renene_2025_123718 crossref_primary_10_1002_aoc_5002 crossref_primary_10_1016_j_molstruc_2019_03_048 crossref_primary_10_1016_j_seppur_2019_06_003 crossref_primary_10_1016_j_apcatb_2021_120279 crossref_primary_10_1016_j_cej_2023_144893 crossref_primary_10_1016_j_chemosphere_2018_11_111 crossref_primary_10_1016_j_matchemphys_2022_127233 crossref_primary_10_1016_j_seppur_2022_122005 crossref_primary_10_1016_j_apsusc_2022_156076 crossref_primary_10_1016_j_rsurfi_2025_100438 crossref_primary_10_1016_S1872_2067_19_63409_1 crossref_primary_10_1007_s11431_022_2151_0 crossref_primary_10_1016_j_memsci_2020_118861 crossref_primary_10_1016_j_seppur_2020_117691 crossref_primary_10_1016_j_cej_2023_146835 crossref_primary_10_1016_j_ijhydene_2022_11_181 crossref_primary_10_1016_j_chemosphere_2020_127955 crossref_primary_10_1016_j_colsurfa_2023_131031 crossref_primary_10_1016_j_cattod_2019_03_046 crossref_primary_10_1007_s10311_020_01001_0 crossref_primary_10_1080_10590501_2019_1591701 crossref_primary_10_1080_10426507_2021_2012779 crossref_primary_10_1016_j_cej_2020_126540 crossref_primary_10_1007_s13762_022_04350_1 crossref_primary_10_1016_j_bej_2025_109670 crossref_primary_10_1016_j_cej_2020_124475 crossref_primary_10_1016_j_cej_2025_165004 crossref_primary_10_1007_s11164_022_04946_9 crossref_primary_10_1016_j_watres_2022_119366 crossref_primary_10_3390_catal13010123 crossref_primary_10_1002_jctb_7553 crossref_primary_10_1016_j_jece_2024_112247 crossref_primary_10_1016_j_jhazmat_2021_127639 crossref_primary_10_1016_j_molliq_2024_124017 crossref_primary_10_1016_j_jallcom_2023_172962 crossref_primary_10_1002_pc_26994 crossref_primary_10_1016_j_jallcom_2025_179236 crossref_primary_10_1016_j_ceramint_2019_05_002 crossref_primary_10_1016_j_seppur_2023_123515 crossref_primary_10_1016_j_jphotochem_2023_114556 crossref_primary_10_1039_D3CY00242J crossref_primary_10_1016_j_jhazmat_2020_123621 crossref_primary_10_3390_catal9040389 crossref_primary_10_1016_j_compositesb_2019_05_097 crossref_primary_10_1038_s41598_024_74147_4 crossref_primary_10_1088_2053_1591_ac8b66 crossref_primary_10_1016_j_surfin_2020_100867 crossref_primary_10_1039_D1NR01401C crossref_primary_10_1007_s11306_021_01804_4 crossref_primary_10_1016_j_efmat_2024_12_004 crossref_primary_10_1002_aoc_7058 crossref_primary_10_1016_j_cej_2021_134356 crossref_primary_10_1016_j_cej_2021_132610 crossref_primary_10_1016_j_apsusc_2021_152287 crossref_primary_10_1016_j_inoche_2019_107451 crossref_primary_10_1016_j_seppur_2022_121613 crossref_primary_10_1080_01614940_2023_2228130 crossref_primary_10_1016_j_jece_2024_112025 crossref_primary_10_1016_j_cej_2023_147219 crossref_primary_10_1016_j_jhazmat_2020_125018 crossref_primary_10_1039_D1RA07473C crossref_primary_10_1007_s11144_019_01712_8 crossref_primary_10_1038_s41598_024_54500_3 crossref_primary_10_1016_j_diamond_2021_108606 crossref_primary_10_1007_s12274_019_2589_z crossref_primary_10_1016_j_jcis_2020_07_047 crossref_primary_10_1007_s41810_020_00080_4 crossref_primary_10_1007_s10853_022_07225_5 crossref_primary_10_1016_j_cej_2021_134105 crossref_primary_10_1002_tcr_202200171 crossref_primary_10_1016_j_jhazmat_2019_121255 crossref_primary_10_1016_j_seppur_2022_120999 crossref_primary_10_1039_D2NJ02309A crossref_primary_10_1007_s42864_024_00307_8 crossref_primary_10_1039_C9EN01366K |
| Cites_doi | 10.1111/j.1574-6968.1985.tb00864.x 10.1016/j.apcatb.2017.01.061 10.1007/s12274-014-0654-1 10.1039/c0ee00825g 10.1016/j.apcatb.2017.12.034 10.1016/j.apcatb.2017.06.027 10.1016/j.apcatb.2016.04.042 10.1016/j.mssp.2016.02.019 10.1016/j.apsusc.2015.08.173 10.1007/s10854-018-9564-4 10.1002/asia.201700540 10.1016/j.apcata.2011.10.006 10.1039/C6RA04869B 10.1016/j.apcatb.2015.04.026 10.2216/11-107.1 10.1002/chem.201505173 10.1016/j.jphotochem.2017.09.043 10.1155/2011/798051 10.1016/j.apcatb.2017.08.044 10.1016/j.apcatb.2017.05.035 10.1016/j.jhazmat.2016.09.008 10.1016/j.jcis.2017.06.089 10.1016/j.jhazmat.2017.05.011 10.1016/j.watres.2016.10.009 10.1016/j.jcis.2017.02.012 10.1039/c3cc48374f 10.1016/j.colsurfb.2017.01.003 10.1016/j.coviro.2013.12.005 10.1016/j.cej.2018.04.182 10.1016/j.carbon.2011.04.055 10.1039/C4CC02543A 10.1021/acsami.7b07657 10.1021/acs.chemrev.6b00075 10.1016/j.apcatb.2017.09.030 10.1016/j.apcatb.2010.06.001 10.1016/j.apcatb.2016.09.055 10.1039/C7EN00063D 10.1016/j.ecoenv.2016.10.030 10.1016/j.clay.2016.04.003 10.1039/c1jm12844b 10.1016/j.cej.2017.04.138 10.1016/j.microc.2004.07.008 10.1016/j.apcatb.2015.12.051 10.1016/j.chemosphere.2017.06.065 10.1016/j.apcatb.2016.05.052 10.1016/j.watres.2015.10.025 10.1039/c3tb21479f 10.1016/j.watres.2005.10.030 10.1016/j.cej.2010.11.035 10.1016/j.ceramint.2012.07.097 10.1021/acsami.8b00007 10.1016/j.envres.2017.01.018 10.1002/jccs.201600735 10.1016/j.chemosphere.2017.12.122 10.1039/C8NJ00444G 10.1039/C5RA26702A 10.1016/j.cej.2012.12.033 10.1039/C1JM13490F 10.1039/c2jm00097k 10.1021/jacs.5b11411 10.1039/c3dt53106f 10.1016/j.apcatb.2017.11.060 10.1126/science.aaa3145 10.1016/j.chemosphere.2018.05.163 10.1128/AAC.01734-09 10.1021/acssuschemeng.7b01431 10.1016/S1872-2067(14)60075-9 10.1038/nrmicro2108 10.1021/es4013504 10.2217/fmb.11.78 10.1039/C6RA05613J 10.1016/j.apcatb.2015.10.024 10.1039/C8EN00133B 10.1128/AEM.02049-07 10.1016/j.jphotochemrev.2014.01.001 10.1016/j.cej.2014.04.081 10.1007/s00253-011-3213-7 10.1016/j.nanoen.2015.07.014 10.1016/j.cej.2018.02.054 10.1016/j.colsurfa.2015.07.003 10.1016/j.apcatb.2017.11.018 10.1016/j.carbon.2018.05.010 10.1016/j.watres.2015.05.053 10.1016/j.watres.2008.08.015 10.1007/s11356-015-4251-y 10.1016/j.apcatb.2014.01.023 10.1021/la900923z 10.1016/j.rser.2017.08.020 10.1016/j.mib.2016.06.008 10.1021/jp4084184 10.1016/j.apcatb.2018.05.094 10.1021/acs.est.5b00531 10.1016/j.jhazmat.2018.06.053 10.1016/j.jallcom.2017.08.142 10.1038/nmat2317 10.1016/j.jphotobiol.2017.11.009 10.1039/C5RA22176E |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.chemosphere.2018.09.137 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Ecology |
| EISSN | 1879-1298 |
| EndPage | 479 |
| ExternalDocumentID | 30273880 10_1016_j_chemosphere_2018_09_137 S0045653518317995 |
| Genre | Journal Article Review |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM PKN 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c476t-bdf373ddb08a97a203e924dc528b46a0780da7ea53f0d45407c824c0dce0126d3 |
| ISICitedReferencesCount | 323 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449891300053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-6535 1879-1298 |
| IngestDate | Wed Oct 01 14:12:23 EDT 2025 Sun Sep 28 07:35:25 EDT 2025 Wed Feb 19 02:34:15 EST 2025 Sat Nov 29 07:27:31 EST 2025 Tue Nov 18 22:41:15 EST 2025 Fri Feb 23 02:47:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Design and performance Inactivation mechanisms Antimicrobials Photocatalysis Graphitic carbon nitride |
| Language | English |
| License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c476t-bdf373ddb08a97a203e924dc528b46a0780da7ea53f0d45407c824c0dce0126d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 30273880 |
| PQID | 2115754127 |
| PQPubID | 23479 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_2176346818 proquest_miscellaneous_2115754127 pubmed_primary_30273880 crossref_citationtrail_10_1016_j_chemosphere_2018_09_137 crossref_primary_10_1016_j_chemosphere_2018_09_137 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2018_09_137 |
| PublicationCentury | 2000 |
| PublicationDate | January 2019 2019-01-00 2019-Jan 20190101 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Chemosphere (Oxford) |
| PublicationTitleAlternate | Chemosphere |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Kang, Zhang, He, Zheng, Cui, Sun, Hu (bib26) 2018; 137 Yang, Wang, Li, Wang, Wang (bib88) 2017; 12 Xu, Wang, Zhu (bib84) 2017; 9 Liao, Chen, Quan, Yu, Zhao (bib37) 2012; 22 World Health Organization (bib79) 2017 Dong, Wu, Sun, Fu, Wu, Lee (bib10) 2011; 21 Davison, Pitts, Stewart (bib7) 2010; 54 Hijnen, Beerendonk, Medema (bib19) 2006; 40 Zhao, Yu, Quan, Chen, Zhang, Zhao, Wang (bib99) 2014; 152–3 Song, Wang, Ma, Wang, Wang, Zhao (bib60) 2018; 226 Xia, Wang, Yin, Jiang, An, Li, Zhao, Wong (bib82) 2017; 214 Xu, Zhai, Li, Wang, Han, Yu (bib85) 2017; 323 Yadav, Jaiswar (bib86) 2017; 64 Zhang, Hu, Deng (bib91) 2016; 88 Tian, Zhou, Zhan, Zhu, He (bib65) 2018; 350 Zhang, Li, Wang, Zhang, Wang, Wang, Wang (bib93) 2015; 22 Zhang, Quan, Wang, Chen, Su, Li (bib96) 2017; 7 Li, Yin, Liu, Ma, Wan, Fan, Hu (bib32) 2017; 321 Adhikari, Awasthi, Lee, Park, Kim (bib1) 2016; 6 Song, Wang, Ma, Wang, Wang, Xia, Zhao (bib59) 2018; 348 Wang, Yu, Shen, Chan, Gu (bib74) 2014; 50 Pant, Pant, Sharma, Amarjargal, Kim, Park, Tijing, Kim (bib53) 2013; 39 Xu, Li, Zhou, Li, Gao, Song, Schmuki (bib83) 2016; 22 Masih, Ma, Rohani (bib44) 2017; 206 Huang, Ho, Wang (bib22) 2014; 50 Ye, Wang, Wu, Yuan (bib89) 2015; 358 Thurston, Hunter, Wayment, Cornell (bib64) 2017; 505 Sun, Yao, Zhang, Zheng, Frost (bib62) 2016; 129 World Health Organization (bib80) 2017 Wang, Wang, Zhao, Song, Su, Wang (bib77) 2018; 341 Zhao, Chen, Quan, Yu, Zhao (bib98) 2016; 194 Li, Lv, Ho, Dong, Wu, Xia (bib35) 2017; 202 Wang, Kong, Zhang, Zhu, Huang, Wang, Zhang, Liu, Hu, Suo, Wang (bib70) 2018; 225 Lin, Cong, Li, Ke, Guo, Yang, Chen (bib38) 2014; 2 Foster, Ditta, Varghese, Steele (bib13) 2011; 90 Ma, Zhan, Jia, Shi, Zhou (bib42) 2016; 186 Zhang, Li, Zhang, Wang, Wang (bib94) 2018; 195 Sun, Du, Hu, Chen, Lu, Lu, Han (bib61) 2017; 5 Hu, Liu, Zeng, Chen, Wan, Zeng, Wang, Wu, Xu, Zhang, Cheng, Hu (bib20) 2017; 184 Byrne, Fernandez-Ibañez, Dunlop, Alrousan, Hamilton (bib5) 2011; 2011 Ding, Gan, Li, Sedmak, Song (bib9) 2012; 51 Zhang, Wu, Xiao, Tang, Wang, Liu, Zhu (bib97) 2017; 12 Moreira, López-García (bib47) 2009; 7 Zhang, Li, Shuai, Zhang, Niu, Wang, Zhang (bib92) 2018; 208 Kim, Lee (bib27) 2005; 80 Yan, Li, Zou (bib87) 2009; 25 Gibson (bib16) 2014; 4 Pant, Park, Lee, Kim, Park (bib52) 2017; 496 Ouyang, Dai, Chen, Huang, Gao, Cai (bib51) 2017; 136 Wang, Yu, Xia, Wong, Li (bib75) 2013; 47 Reddy, Kavitha, Reddy, Kim (bib56) 2017; 154 Ong, Tan, Ng, Yong, Chai (bib50) 2016; 116 Allahverdiyev, Abamor, Bagirova, Rafailovich (bib3) 2011; 6 Lin, Song, Wu, Chen, Wang, Fu, Guo (bib39) 2018; 358 Huang, He, Lin, Kang, Zhang (bib21) 2013; 117 Adhikari, Pant, Kim, Kim, Park, Kim (bib2) 2015; 482 Wang, Chen, Liu, Shen, Xia, Wong, Yu (bib72) 2015; 176–7 Qi, Cheng, Yu, Ho (bib55) 2017; 727 McEvoy, Zhang (bib46) 2014; 19 Vidyasagar, Ghugal, Kulkarni, Mishra, Shende, Jagannath, Umare, Sasikala (bib66) 2018; 221 Mamba, Mishra (bib43) 2016; 198 Jiang, Xie (bib24) 2016; 6 Li, Mahendra, Lyon, Brunet, Liga, Li, Alvarez (bib33) 2008; 42 Wang, Shi, Lin, Zhu (bib78) 2011; 4 Xia, Shen, Huang, Wang, Yu, Wong (bib81) 2015; 49 Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domen, Antonietti (bib76) 2009; 8 Li, Li, Ma, Wang, Hou, Han, Zhan (bib34) 2017; 338 Ge, Han, Liu, Li (bib15) 2011; 409–10 Kang, Huang, Zhang, He, Xu, Sun, Jiang (bib25) 2018; 10 Bing, Chen, Sun, Shi, Gao, Ren, Qu (bib4) 2015; 8 Rodríguez-González, Alfaro, Torres-Martínez, Cho, Lee (bib57) 2010; 98 Li, Sun, Zhang, Yu, Zheng (bib29) 2018; 220 Ji, Chang, Hu, Qin, Shen (bib23) 2013; 218 Dou, Dupont, Pan, Chen (bib11) 2011; 166 He, Cao, Zhou, Yu (bib18) 2014; 35 Zhang, Zhang, Zhang, Wang (bib95) 2012; 22 Sirikanchana, Shisler, Marinas (bib58) 2008; 74 Liu, Han, Wang, Fan, Wang, Zhang, Shi (bib40) 2018; 29 Deng, Liang, Li, Tong (bib8) 2017; 152 Li, Nie, Chen, Jiang, An, Wong, Zhang, Zhao, Yamashita (bib31) 2015; 86 Dai, Lu, Liu, Zhu, Wei, Bai, Xuan, Wang (bib6) 2014; 43 Muñoz-Batista, Fontelles-Carceller, Ferrer, Fernández-García, Kubacka (bib48) 2016; 183 Zou, Zhang, Wang, Luo (bib101) 2016; 138 Liu, Liu, Liu, Han, Zhang, Huang, Lifshitz, Lee, Zhong, Kang (bib41) 2015; 347 Faraji, Mohaghegh, Abedini (bib12) 2018; 178 Wang, An, Li, Xia, Zhao, Yu, Wong (bib71) 2017; 217 Li, Jiang, Zhao, Zhang (bib30) 2015; 16 Wang, Zhu, He, Zhu, Hutchins, Xu, Wang (bib69) 2018; 5 Wang, Li, Xia, An, Zhao, Wong (bib73) 2017; 4 Ong, Ng, Mohammad (bib49) 2018; 81 Yun, Bae, Kim, Lee, Chin, Jin (bib90) 2011; 49 Patnaik, Martha, Parida (bib54) 2016; 6 Thurston, Hunter, Cornell (bib63) 2016; 6 Li, Zhang, Shuai, Naraginti, Wang, Zhang (bib36) 2016; 106 Zhou, Shao, Gao, Zhu, Li, Deng, Zhu (bib100) 2014; 251 Ganguly, Byrne, Breen, Pillai (bib14) 2018; 225 Vidyasagar, Ghugal, Kulkarni, Shende, Umare, Sasikala (bib67) 2018; 42 Hamblin (bib17) 2016; 33 Matsunaga, Tomoda, Nakajima, Wake (bib45) 1985; 29 Lam, Sin, Mohamed (bib28) 2016; 47 Wang, Pillai, Ho, Zeng, Li, Dionysiou (bib68) 2018; 237 Adhikari (10.1016/j.chemosphere.2018.09.137_bib2) 2015; 482 Tian (10.1016/j.chemosphere.2018.09.137_bib65) 2018; 350 Wang (10.1016/j.chemosphere.2018.09.137_bib78) 2011; 4 Zhang (10.1016/j.chemosphere.2018.09.137_bib95) 2012; 22 Li (10.1016/j.chemosphere.2018.09.137_bib31) 2015; 86 Wang (10.1016/j.chemosphere.2018.09.137_bib73) 2017; 4 Ye (10.1016/j.chemosphere.2018.09.137_bib89) 2015; 358 Huang (10.1016/j.chemosphere.2018.09.137_bib22) 2014; 50 Lin (10.1016/j.chemosphere.2018.09.137_bib38) 2014; 2 Li (10.1016/j.chemosphere.2018.09.137_bib29) 2018; 220 Dou (10.1016/j.chemosphere.2018.09.137_bib11) 2011; 166 Foster (10.1016/j.chemosphere.2018.09.137_bib13) 2011; 90 Ge (10.1016/j.chemosphere.2018.09.137_bib15) 2011; 409–10 McEvoy (10.1016/j.chemosphere.2018.09.137_bib46) 2014; 19 Zhang (10.1016/j.chemosphere.2018.09.137_bib94) 2018; 195 Xia (10.1016/j.chemosphere.2018.09.137_bib81) 2015; 49 Zhang (10.1016/j.chemosphere.2018.09.137_bib97) 2017; 12 Thurston (10.1016/j.chemosphere.2018.09.137_bib64) 2017; 505 Sun (10.1016/j.chemosphere.2018.09.137_bib61) 2017; 5 Ong (10.1016/j.chemosphere.2018.09.137_bib50) 2016; 116 Rodríguez-González (10.1016/j.chemosphere.2018.09.137_bib57) 2010; 98 Xu (10.1016/j.chemosphere.2018.09.137_bib84) 2017; 9 Ong (10.1016/j.chemosphere.2018.09.137_bib49) 2018; 81 Patnaik (10.1016/j.chemosphere.2018.09.137_bib54) 2016; 6 Wang (10.1016/j.chemosphere.2018.09.137_bib76) 2009; 8 Zhang (10.1016/j.chemosphere.2018.09.137_bib96) 2017; 7 Liu (10.1016/j.chemosphere.2018.09.137_bib40) 2018; 29 Ma (10.1016/j.chemosphere.2018.09.137_bib42) 2016; 186 Byrne (10.1016/j.chemosphere.2018.09.137_bib5) 2011; 2011 Ji (10.1016/j.chemosphere.2018.09.137_bib23) 2013; 218 Xia (10.1016/j.chemosphere.2018.09.137_bib82) 2017; 214 Li (10.1016/j.chemosphere.2018.09.137_bib30) 2015; 16 Mamba (10.1016/j.chemosphere.2018.09.137_bib43) 2016; 198 Muñoz-Batista (10.1016/j.chemosphere.2018.09.137_bib48) 2016; 183 Song (10.1016/j.chemosphere.2018.09.137_bib60) 2018; 226 Vidyasagar (10.1016/j.chemosphere.2018.09.137_bib66) 2018; 221 Pant (10.1016/j.chemosphere.2018.09.137_bib52) 2017; 496 Zhou (10.1016/j.chemosphere.2018.09.137_bib100) 2014; 251 Jiang (10.1016/j.chemosphere.2018.09.137_bib24) 2016; 6 Matsunaga (10.1016/j.chemosphere.2018.09.137_bib45) 1985; 29 Allahverdiyev (10.1016/j.chemosphere.2018.09.137_bib3) 2011; 6 Wang (10.1016/j.chemosphere.2018.09.137_bib70) 2018; 225 Vidyasagar (10.1016/j.chemosphere.2018.09.137_bib67) 2018; 42 Adhikari (10.1016/j.chemosphere.2018.09.137_bib1) 2016; 6 Masih (10.1016/j.chemosphere.2018.09.137_bib44) 2017; 206 Wang (10.1016/j.chemosphere.2018.09.137_bib69) 2018; 5 World Health Organization (10.1016/j.chemosphere.2018.09.137_bib80) 2017 Yan (10.1016/j.chemosphere.2018.09.137_bib87) 2009; 25 Sirikanchana (10.1016/j.chemosphere.2018.09.137_bib58) 2008; 74 Pant (10.1016/j.chemosphere.2018.09.137_bib53) 2013; 39 Hamblin (10.1016/j.chemosphere.2018.09.137_bib17) 2016; 33 Wang (10.1016/j.chemosphere.2018.09.137_bib71) 2017; 217 Davison (10.1016/j.chemosphere.2018.09.137_bib7) 2010; 54 Huang (10.1016/j.chemosphere.2018.09.137_bib21) 2013; 117 Thurston (10.1016/j.chemosphere.2018.09.137_bib63) 2016; 6 Yun (10.1016/j.chemosphere.2018.09.137_bib90) 2011; 49 Dong (10.1016/j.chemosphere.2018.09.137_bib10) 2011; 21 Xu (10.1016/j.chemosphere.2018.09.137_bib83) 2016; 22 Hijnen (10.1016/j.chemosphere.2018.09.137_bib19) 2006; 40 World Health Organization (10.1016/j.chemosphere.2018.09.137_bib79) 2017 Ding (10.1016/j.chemosphere.2018.09.137_bib9) 2012; 51 Bing (10.1016/j.chemosphere.2018.09.137_bib4) 2015; 8 Zhao (10.1016/j.chemosphere.2018.09.137_bib99) 2014; 152–3 Zou (10.1016/j.chemosphere.2018.09.137_bib101) 2016; 138 Li (10.1016/j.chemosphere.2018.09.137_bib34) 2017; 338 Liu (10.1016/j.chemosphere.2018.09.137_bib41) 2015; 347 Ouyang (10.1016/j.chemosphere.2018.09.137_bib51) 2017; 136 Wang (10.1016/j.chemosphere.2018.09.137_bib68) 2018; 237 Xu (10.1016/j.chemosphere.2018.09.137_bib85) 2017; 323 Yadav (10.1016/j.chemosphere.2018.09.137_bib86) 2017; 64 He (10.1016/j.chemosphere.2018.09.137_bib18) 2014; 35 Reddy (10.1016/j.chemosphere.2018.09.137_bib56) 2017; 154 Zhang (10.1016/j.chemosphere.2018.09.137_bib92) 2018; 208 Kang (10.1016/j.chemosphere.2018.09.137_bib26) 2018; 137 Deng (10.1016/j.chemosphere.2018.09.137_bib8) 2017; 152 Zhao (10.1016/j.chemosphere.2018.09.137_bib98) 2016; 194 Lam (10.1016/j.chemosphere.2018.09.137_bib28) 2016; 47 Hu (10.1016/j.chemosphere.2018.09.137_bib20) 2017; 184 Qi (10.1016/j.chemosphere.2018.09.137_bib55) 2017; 727 Lin (10.1016/j.chemosphere.2018.09.137_bib39) 2018; 358 Gibson (10.1016/j.chemosphere.2018.09.137_bib16) 2014; 4 Kang (10.1016/j.chemosphere.2018.09.137_bib25) 2018; 10 Liao (10.1016/j.chemosphere.2018.09.137_bib37) 2012; 22 Song (10.1016/j.chemosphere.2018.09.137_bib59) 2018; 348 Li (10.1016/j.chemosphere.2018.09.137_bib35) 2017; 202 Li (10.1016/j.chemosphere.2018.09.137_bib36) 2016; 106 Li (10.1016/j.chemosphere.2018.09.137_bib32) 2017; 321 Moreira (10.1016/j.chemosphere.2018.09.137_bib47) 2009; 7 Zhang (10.1016/j.chemosphere.2018.09.137_bib93) 2015; 22 Zhang (10.1016/j.chemosphere.2018.09.137_bib91) 2016; 88 Dai (10.1016/j.chemosphere.2018.09.137_bib6) 2014; 43 Kim (10.1016/j.chemosphere.2018.09.137_bib27) 2005; 80 Sun (10.1016/j.chemosphere.2018.09.137_bib62) 2016; 129 Wang (10.1016/j.chemosphere.2018.09.137_bib72) 2015; 176–7 Li (10.1016/j.chemosphere.2018.09.137_bib33) 2008; 42 Wang (10.1016/j.chemosphere.2018.09.137_bib77) 2018; 341 Wang (10.1016/j.chemosphere.2018.09.137_bib75) 2013; 47 Wang (10.1016/j.chemosphere.2018.09.137_bib74) 2014; 50 Faraji (10.1016/j.chemosphere.2018.09.137_bib12) 2018; 178 Ganguly (10.1016/j.chemosphere.2018.09.137_bib14) 2018; 225 Yang (10.1016/j.chemosphere.2018.09.137_bib88) 2017; 12 |
| References_xml | – volume: 194 start-page: 134 year: 2016 end-page: 140 ident: bib98 article-title: Integration of microfiltration and visible-light-driven photocatalysis on g-C publication-title: Appl. Catal., B – volume: 129 start-page: 7 year: 2016 end-page: 14 ident: bib62 article-title: Enhanced visible-light photocatalytic activity of kaolinite/g-C publication-title: Appl. Clay Sci. – volume: 4 start-page: 2922 year: 2011 end-page: 2929 ident: bib78 article-title: Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C publication-title: Energy Environ. Sci. – volume: 218 start-page: 183 year: 2013 end-page: 190 ident: bib23 article-title: Photocatalytic degradation of 2,4,6-trichlorophenol over g-C publication-title: Chem. Eng. J. – volume: 727 start-page: 792 year: 2017 end-page: 820 ident: bib55 article-title: Review on the improvement of the photocatalytic and antibacterial activities of ZnO publication-title: J. Alloy. Comp. – volume: 7 start-page: 1 year: 2017 end-page: 7 ident: bib96 article-title: Constructing a visible-light-driven photocatalytic membrane by g-C publication-title: Sci. Rep. – volume: 338 start-page: 33 year: 2017 end-page: 46 ident: bib34 article-title: Efficient water disinfection with Ag publication-title: J. Hazard Mater. – volume: 29 start-page: 211 year: 1985 end-page: 214 ident: bib45 article-title: Photoelectrochemical sterilization of microbial cells by semiconductor powders publication-title: FEMS Microbiol. Lett. – volume: 5 start-page: 1096 year: 2018 end-page: 1106 ident: bib69 article-title: Iron oxide nanowire-based filter for inactivation of airborne bacteria publication-title: Environ. Sci. Nano – volume: 348 start-page: 380 year: 2018 end-page: 388 ident: bib59 article-title: Removal of publication-title: Chem. Eng. J. – volume: 6 start-page: 933 year: 2011 end-page: 940 ident: bib3 article-title: Antimicrobial effects of TiO publication-title: Future Microbiol. – volume: 186 start-page: 77 year: 2016 end-page: 87 ident: bib42 article-title: Enhanced disinfection application of Ag-modified g-C publication-title: Appl. Catal., B – volume: 154 start-page: 296 year: 2017 end-page: 303 ident: bib56 article-title: TiO publication-title: Environ. Res. – volume: 178 start-page: 124 year: 2018 end-page: 132 ident: bib12 article-title: Ternary composite of TiO publication-title: J. Photochem. Photobiol., B – volume: 51 start-page: 567 year: 2012 end-page: 575 ident: bib9 article-title: Hydrogen peroxide induces apoptotic-like cell death in publication-title: Phycologia – volume: 42 start-page: 4591 year: 2008 end-page: 4602 ident: bib33 article-title: Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications publication-title: Water Res. – volume: 206 start-page: 556 year: 2017 end-page: 588 ident: bib44 article-title: Graphitic C publication-title: Appl. Catal., B – volume: 12 year: 2017 ident: bib97 article-title: Simultaneous photocatalytic and microbial degradation of dye-containing wastewater by a novel g-C publication-title: PLoS One – volume: 81 start-page: 536 year: 2018 end-page: 551 ident: bib49 article-title: A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications publication-title: Renew. Sustain. Energy Rev. – volume: 208 start-page: 84 year: 2018 end-page: 92 ident: bib92 article-title: Visible-light-driven, water-surface-floating antimicrobials developed from graphitic carbon nitride and expanded perlite for water disinfection publication-title: Chemosphere – volume: 98 start-page: 229 year: 2010 end-page: 234 ident: bib57 article-title: Silver-TiO publication-title: Appl. Catal., B – volume: 64 start-page: 103 year: 2017 end-page: 116 ident: bib86 article-title: Review on undoped/doped TiO publication-title: J. Chin. Chem. Soc. – volume: 8 start-page: 1648 year: 2015 end-page: 1658 ident: bib4 article-title: Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles publication-title: Nano Res. – volume: 40 start-page: 3 year: 2006 end-page: 22 ident: bib19 article-title: Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review publication-title: Water Res. – volume: 22 start-page: 2721 year: 2012 end-page: 2726 ident: bib37 article-title: Graphene oxide modified g-C publication-title: J. Mater. Chem. – volume: 47 start-page: 8724 year: 2013 end-page: 8732 ident: bib75 article-title: Graphene and g-C publication-title: Environ. Sci. Technol. – volume: 116 start-page: 7159 year: 2016 end-page: 7329 ident: bib50 article-title: Graphitic carbon nitride (g-C publication-title: Chem. Rev. – volume: 6 start-page: 42240 year: 2016 end-page: 42248 ident: bib63 article-title: Preparation and characterization of photoactive antimicrobial graphitic carbon nitride (g-C publication-title: RSC Adv. – volume: 251 start-page: 304 year: 2014 end-page: 309 ident: bib100 article-title: Removal of publication-title: Chem. Eng. J. – volume: 19 start-page: 62 year: 2014 end-page: 75 ident: bib46 article-title: Antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions publication-title: J. Photoch. Photobio. C – volume: 347 start-page: 970 year: 2015 end-page: 974 ident: bib41 article-title: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway publication-title: Science – volume: 152 start-page: 49 year: 2017 end-page: 57 ident: bib8 article-title: Enhanced visible-light-driven photocatalytic bacteria disinfection by g-C publication-title: Colloids Surf., B – volume: 47 start-page: 62 year: 2016 end-page: 84 ident: bib28 article-title: A review on photocatalytic application of g-C publication-title: Mater. Sci. Semicond. Process. – volume: 50 start-page: 4338 year: 2014 end-page: 4340 ident: bib22 article-title: Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination publication-title: Chem. Commun. – volume: 42 start-page: 6322 year: 2018 end-page: 6331 ident: bib67 article-title: Microwave assisted in situ decoration of a g-C publication-title: New J. Chem. – volume: 166 start-page: 631 year: 2011 end-page: 638 ident: bib11 article-title: Removal of aqueous toxic Hg(II) by synthesized TiO publication-title: Chem. Eng. J. – volume: 117 start-page: 22986 year: 2013 end-page: 22994 ident: bib21 article-title: Two novel Bi-based borate photocatalysts: crystal structure, electronic structure, photoelectrochemical properties, and photocatalytic activity under simulated solar light irradiation publication-title: J. Phys. Chem. C – volume: 21 start-page: 15171 year: 2011 end-page: 15174 ident: bib10 article-title: Efficient synthesis of polymeric g-C publication-title: J. Mater. Chem. – volume: 195 start-page: 551 year: 2018 end-page: 558 ident: bib94 article-title: Metal-free virucidal effects induced by g-C publication-title: Chemosphere – volume: 4 start-page: 50 year: 2014 end-page: 57 ident: bib16 article-title: Viral pathogens in water: occurrence, public health impact, and available control strategies publication-title: Curr. Opin. Virol. – volume: 29 start-page: 14300 year: 2018 end-page: 14310 ident: bib40 article-title: Synthesis of g-C publication-title: J. Mater. Sci. Mater. Electron. – volume: 323 start-page: 520 year: 2017 end-page: 529 ident: bib85 article-title: Synergetic effect of bio-photocatalytic hybrid system: g-C publication-title: Chem. Eng. J. – volume: 12 start-page: 1421 year: 2017 end-page: 1434 ident: bib88 article-title: Strategies for efficient solar water splitting using carbon nitride publication-title: Chem. Asian J. – volume: 136 start-page: 40 year: 2017 end-page: 45 ident: bib51 article-title: Metal-free inactivation of publication-title: Ecotoxicol. Environ. Saf. – volume: 152–3 start-page: 46 year: 2014 end-page: 50 ident: bib99 article-title: Fabrication of atomic single layer graphitic-C publication-title: Appl. Catal., B – volume: 8 start-page: 76 year: 2009 end-page: 80 ident: bib76 article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light publication-title: Nat. Mater. – volume: 39 start-page: 1503 year: 2013 end-page: 1510 ident: bib53 article-title: Antibacterial and photocatalytic properties of Ag/TiO publication-title: Ceram. Int. – volume: 5 start-page: 8693 year: 2017 end-page: 8701 ident: bib61 article-title: Antibacterial activity of graphene oxide/g-C publication-title: ACS Sustain. Chem. Eng. – volume: 198 start-page: 347 year: 2016 end-page: 377 ident: bib43 article-title: Graphitic carbon nitride (g-C publication-title: Appl. Catal., B – volume: 183 start-page: 86 year: 2016 end-page: 95 ident: bib48 article-title: Disinfection capability of Ag/g-C publication-title: Appl. Catal., B – volume: 22 start-page: 8083 year: 2012 end-page: 8091 ident: bib95 article-title: Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts publication-title: J. Mater. Chem. – volume: 22 start-page: 3947 year: 2016 end-page: 3951 ident: bib83 article-title: Graphitic C publication-title: Chem. Eur J. – volume: 106 start-page: 249 year: 2016 end-page: 258 ident: bib36 article-title: Visible-light-driven photocatalytic inactivation of MS2 by metal-free g-C publication-title: Water Res. – volume: 4 start-page: 782 year: 2017 end-page: 799 ident: bib73 article-title: Photocatalytic nanomaterials for solar-driven bacterial inactivation: recent progress and challenges publication-title: Environ. Sci. Nano – volume: 25 start-page: 10397 year: 2009 end-page: 10401 ident: bib87 article-title: Photodegradation performance of g-C publication-title: Langmuir – volume: 74 start-page: 3774 year: 2008 end-page: 3782 ident: bib58 article-title: Effect of exposure to UV-C irradiation and monochloramine on adenovirus serotype 2 early protein expression and DNA replication publication-title: Appl. Environ. Microbiol. – volume: 90 start-page: 1847 year: 2011 end-page: 1868 ident: bib13 article-title: Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity publication-title: Appl. Microbiol. Biotechnol. – volume: 220 start-page: 272 year: 2018 end-page: 282 ident: bib29 article-title: Highly efficient g-C publication-title: Appl. Catal., B – volume: 50 start-page: 10148 year: 2014 end-page: 10150 ident: bib74 article-title: g-C publication-title: Chem. Commun. – volume: 9 start-page: 27727 year: 2017 end-page: 27735 ident: bib84 article-title: Enhanced visible-light-driven photocatalytic disinfection performance and organic pollutant degradation activity of porous g-C publication-title: ACS Appl. Mater. Interfaces – volume: 184 start-page: 1071 year: 2017 end-page: 1079 ident: bib20 article-title: Organic matters removal from landfill leachate by immobilized publication-title: Chemosphere – volume: 49 start-page: 6264 year: 2015 end-page: 6273 ident: bib81 article-title: Red phosphorus: an earth-abundant elemental photocatalyst for “green” bacterial inactivation under visible light publication-title: Environ. Sci. Technol. – year: 2017 ident: bib79 article-title: Diarrhoeal Disease – volume: 137 start-page: 19 year: 2018 end-page: 30 ident: bib26 article-title: “Alternated cooling and heating” strategy enables rapid fabrication of highly-crystalline g-C publication-title: Carbon – year: 2017 ident: bib80 article-title: Drinking Water – volume: 35 start-page: 989 year: 2014 end-page: 1007 ident: bib18 article-title: Recent advances in visible light Bi-based photocatalysts publication-title: Chin. J. Catal. – volume: 350 start-page: 10 year: 2018 end-page: 16 ident: bib65 article-title: Mechanisms on the enhanced sterilization performance of fluorocarbon resin composite coatings modified by g-C publication-title: J. Photochem. Photobiol., A – volume: 358 start-page: 15 year: 2015 end-page: 27 ident: bib89 article-title: A review on g-C publication-title: Appl. Surf. Sci. – volume: 6 start-page: 55079 year: 2016 end-page: 55091 ident: bib1 article-title: Synthesis, characterization, organic compound degradation activity and antimicrobial performance of g-C publication-title: RSC Adv. – volume: 33 start-page: 67 year: 2016 end-page: 73 ident: bib17 article-title: Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes publication-title: Curr. Opin. Microbiol. – volume: 80 start-page: 227 year: 2005 end-page: 232 ident: bib27 article-title: Preparation of TiO publication-title: Microchem. J. – volume: 88 start-page: 403 year: 2016 end-page: 427 ident: bib91 article-title: Silver nanoparticles in aquatic environments: physiochemical behavior and antimicrobial mechanisms publication-title: Water Res. – volume: 6 start-page: 3186 year: 2016 end-page: 3197 ident: bib24 article-title: In situ growth of Ag/Ag publication-title: RSC Adv. – volume: 2 start-page: 1031 year: 2014 end-page: 1037 ident: bib38 article-title: Graphitic-phase C publication-title: J. Mater. Chem. B – volume: 6 start-page: 46929 year: 2016 end-page: 46951 ident: bib54 article-title: An overview of the structural, textural and morphological modulations of g-C publication-title: RSC Adv. – volume: 237 start-page: 721 year: 2018 end-page: 741 ident: bib68 article-title: Plasmonic-based nanomaterials for environmental remediation publication-title: Appl. Catal., B – volume: 358 start-page: 62 year: 2018 end-page: 68 ident: bib39 article-title: Boron- and phenyl-codoped graphitic carbon nitride with greatly enhanced light responsive range for photocatalytic disinfection publication-title: J. Hazard Mater. – volume: 505 start-page: 910 year: 2017 end-page: 918 ident: bib64 article-title: Urea-derived graphitic carbon nitride (u-g-C publication-title: J. Colloid Interface Sci. – volume: 176–7 start-page: 444 year: 2015 end-page: 453 ident: bib72 article-title: Monoclinic dibismuth tetraoxide: a new visible-light-driven photocatalyst for environmental remediation publication-title: Appl. Catal., B – volume: 54 start-page: 2920 year: 2010 end-page: 2927 ident: bib7 article-title: Spatial and temporal patterns of biocide action against publication-title: Antimicrob. Agents Chemother. – volume: 202 start-page: 611 year: 2017 end-page: 619 ident: bib35 article-title: Hybridization of rutile TiO publication-title: Appl. Catal., B – volume: 214 start-page: 23 year: 2017 end-page: 33 ident: bib82 article-title: Enhanced photocatalytic inactivation of publication-title: Appl. Catal., B – volume: 22 start-page: 10444 year: 2015 end-page: 10451 ident: bib93 article-title: Ag@helical chiral TiO publication-title: Environ. Sci. Pollut. Res. – volume: 341 start-page: 516 year: 2018 end-page: 525 ident: bib77 article-title: Adsorption-photocatalysis functional expanded graphite C/C composite for in-situ photocatalytic inactivation of publication-title: Chem. Eng. J. – volume: 217 start-page: 570 year: 2017 end-page: 580 ident: bib71 article-title: Earth-abundant Ni publication-title: Appl. Catal., B – volume: 321 start-page: 183 year: 2017 end-page: 192 ident: bib32 article-title: In situ growing Bi publication-title: J. Hazard Mater. – volume: 225 start-page: 228 year: 2018 end-page: 237 ident: bib70 article-title: Mechanism insight into rapid photocatalytic disinfection of publication-title: Appl. Catal., B – volume: 86 start-page: 17 year: 2015 end-page: 24 ident: bib31 article-title: Enhanced visible-light-driven photocatalytic inactivation of publication-title: Water Res. – volume: 226 start-page: 83 year: 2018 end-page: 92 ident: bib60 article-title: Visible-light-driven in situ inactivation of publication-title: Appl. Catal., B – volume: 482 start-page: 477 year: 2015 end-page: 484 ident: bib2 article-title: One pot synthesis and characterization of Ag-ZnO/g-C publication-title: Colloids Surf., A – volume: 7 start-page: 306 year: 2009 end-page: 311 ident: bib47 article-title: Ten reasons to exclude viruses from the tree of life publication-title: Nat. Rev. Microbiol. – volume: 43 start-page: 6295 year: 2014 end-page: 6299 ident: bib6 article-title: Sonication assisted preparation of graphene oxide/graphitic-C publication-title: Dalton Trans. – volume: 496 start-page: 343 year: 2017 end-page: 352 ident: bib52 article-title: Novel magnetically separable silver-iron oxide nanoparticles decorated graphitic carbon nitride nano-sheets: a multifunctional photocatalyst via one-step hydrothermal process publication-title: J. Colloid Interface Sci. – volume: 49 start-page: 3553 year: 2011 end-page: 3559 ident: bib90 article-title: Reinforcing effects of adding alkylated graphene oxide to polypropylene publication-title: Carbon – volume: 10 start-page: 13796 year: 2018 end-page: 13804 ident: bib25 article-title: Moderate bacterial etching allows scalable and clean delamination of g-C publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 488 year: 2015 end-page: 515 ident: bib30 article-title: Graphene oxide: a promising nanomaterial for energy and environmental applications publication-title: Nano Energy – volume: 138 start-page: 2064 year: 2016 end-page: 2077 ident: bib101 article-title: Mechanisms of the antimicrobial activities of graphene materials publication-title: J. Am. Chem. Soc. – volume: 221 start-page: 339 year: 2018 end-page: 348 ident: bib66 article-title: Silver/Silver(II) oxide (Ag/AgO) loaded graphitic carbon nitride microspheres: an effective visible light active photocatalyst for degradation of acidic dyes and bacterial inactivation publication-title: Appl. Catal., B – volume: 409–10 start-page: 215 year: 2011 end-page: 222 ident: bib15 article-title: Enhanced visible light photocatalytic activity of novel polymeric g-C publication-title: Appl. Catal., A – volume: 2011 start-page: 1 year: 2011 end-page: 12 ident: bib5 article-title: Photocatalytic enhancement for solar disinfection of water: a review publication-title: Int. J. Photoenergy – volume: 225 start-page: 51 year: 2018 end-page: 75 ident: bib14 article-title: Antimicrobial activity of photocatalysts: fundamentals, mechanisms, kinetics and recent advances publication-title: Appl. Catal., B – volume: 29 start-page: 211 year: 1985 ident: 10.1016/j.chemosphere.2018.09.137_bib45 article-title: Photoelectrochemical sterilization of microbial cells by semiconductor powders publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.1985.tb00864.x – volume: 206 start-page: 556 year: 2017 ident: 10.1016/j.chemosphere.2018.09.137_bib44 article-title: Graphitic C3N4 based noble-metal-free photocatalyst systems: a review publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.01.061 – volume: 8 start-page: 1648 year: 2015 ident: 10.1016/j.chemosphere.2018.09.137_bib4 article-title: Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles publication-title: Nano Res. doi: 10.1007/s12274-014-0654-1 – volume: 4 start-page: 2922 year: 2011 ident: 10.1016/j.chemosphere.2018.09.137_bib78 article-title: Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4 publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00825g – volume: 226 start-page: 83 year: 2018 ident: 10.1016/j.chemosphere.2018.09.137_bib60 article-title: Visible-light-driven in situ inactivation of Microcystis aeruginosa with the use of floating g-C3N4 heterojunction photocatalyst: performance, mechanisms and implications publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.12.034 – volume: 217 start-page: 570 year: 2017 ident: 10.1016/j.chemosphere.2018.09.137_bib71 article-title: Earth-abundant Ni2P/g-C3N4 lamellar nanohydrids for enhanced photocatalytic hydrogen evolution and bacterial inactivation under visible light irradiation publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.06.027 – volume: 194 start-page: 134 year: 2016 ident: 10.1016/j.chemosphere.2018.09.137_bib98 article-title: Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2016.04.042 – volume: 47 start-page: 62 year: 2016 ident: 10.1016/j.chemosphere.2018.09.137_bib28 article-title: A review on photocatalytic application of g-C3N4/semiconductor (CNS) nanocomposites towards the erasure of dyeing wastewater publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2016.02.019 – volume: 358 start-page: 15 year: 2015 ident: 10.1016/j.chemosphere.2018.09.137_bib89 article-title: A review on g-C3N4 for photocatalytic water splitting and CO2 reduction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.08.173 – volume: 29 start-page: 14300 year: 2018 ident: 10.1016/j.chemosphere.2018.09.137_bib40 article-title: Synthesis of g-C3N4/BiOI/BiOBr heterostructures for efficient visible-light-induced photocatalytic and antibacterial activity publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-018-9564-4 – volume: 12 start-page: 1421 year: 2017 ident: 10.1016/j.chemosphere.2018.09.137_bib88 article-title: Strategies for efficient solar water splitting using carbon nitride publication-title: Chem. Asian J. doi: 10.1002/asia.201700540 – volume: 409–10 start-page: 215 year: 2011 ident: 10.1016/j.chemosphere.2018.09.137_bib15 article-title: Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2011.10.006 – volume: 6 start-page: 55079 year: 2016 ident: 10.1016/j.chemosphere.2018.09.137_bib1 article-title: Synthesis, characterization, organic compound degradation activity and antimicrobial performance of g-C3N4 sheets customized with metal nanoparticles-decorated TiO2 nanofibers publication-title: RSC Adv. doi: 10.1039/C6RA04869B – volume: 176–7 start-page: 444 year: 2015 ident: 10.1016/j.chemosphere.2018.09.137_bib72 article-title: Monoclinic dibismuth tetraoxide: a new visible-light-driven photocatalyst for environmental remediation publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2015.04.026 – volume: 51 start-page: 567 year: 2012 ident: 10.1016/j.chemosphere.2018.09.137_bib9 article-title: Hydrogen peroxide induces apoptotic-like cell death in Microcystis aeruginosa (Chroococcales, Cyanobacteria) in a dose-dependent manner publication-title: Phycologia doi: 10.2216/11-107.1 – volume: 22 start-page: 3947 year: 2016 ident: 10.1016/j.chemosphere.2018.09.137_bib83 article-title: Graphitic C3N4-sensitized TiO2 nanotube layers: a visible-light activated efficient metal-free antimicrobial platform publication-title: Chem. Eur J. doi: 10.1002/chem.201505173 – volume: 350 start-page: 10 year: 2018 ident: 10.1016/j.chemosphere.2018.09.137_bib65 article-title: Mechanisms on the enhanced sterilization performance of fluorocarbon resin composite coatings modified by g-C3N4/Bi2MoO6 under the visible-light publication-title: J. Photochem. Photobiol., A doi: 10.1016/j.jphotochem.2017.09.043 – volume: 2011 start-page: 1 year: 2011 ident: 10.1016/j.chemosphere.2018.09.137_bib5 article-title: Photocatalytic enhancement for solar disinfection of water: a review publication-title: Int. J. Photoenergy doi: 10.1155/2011/798051 – volume: 220 start-page: 272 year: 2018 ident: 10.1016/j.chemosphere.2018.09.137_bib29 article-title: Highly efficient g-C3N4/TiO2/kaolinite composite with novel three-dimensional structure and enhanced visible light responding ability towards ciprofloxacin and S. aureus publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.08.044 – volume: 214 start-page: 23 year: 2017 ident: 10.1016/j.chemosphere.2018.09.137_bib82 article-title: Enhanced photocatalytic inactivation of Escherichia coli by a novel Z-scheme g-C3N4/m-Bi2O4 hybrid photocatalyst under visible light: the role of reactive oxygen species publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.05.035 – volume: 321 start-page: 183 year: 2017 ident: 10.1016/j.chemosphere.2018.09.137_bib32 article-title: In situ growing Bi2MoO6 on g-C3N4 nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2016.09.008 – volume: 505 start-page: 910 year: 2017 ident: 10.1016/j.chemosphere.2018.09.137_bib64 article-title: Urea-derived graphitic carbon nitride (u-g-C3N4) films with highly enhanced antimicrobial and sporicidal activity publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.06.089 – volume: 338 start-page: 33 year: 2017 ident: 10.1016/j.chemosphere.2018.09.137_bib34 article-title: Efficient water disinfection with Ag2WO4-doped mesoporous g-C3N4 under visible light publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2017.05.011 – volume: 106 start-page: 249 year: 2016 ident: 10.1016/j.chemosphere.2018.09.137_bib36 article-title: Visible-light-driven photocatalytic inactivation of MS2 by metal-free g-C3N4: virucidal performance and mechanism publication-title: Water Res. doi: 10.1016/j.watres.2016.10.009 – volume: 496 start-page: 343 year: 2017 ident: 10.1016/j.chemosphere.2018.09.137_bib52 article-title: Novel magnetically separable silver-iron oxide nanoparticles decorated graphitic carbon nitride nano-sheets: a multifunctional photocatalyst via one-step hydrothermal process publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.02.012 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.chemosphere.2018.09.137_bib96 article-title: Constructing a visible-light-driven photocatalytic membrane by g-C3N4 quantum dots and TiO2 nanotube array for enhanced water treatment publication-title: Sci. Rep. – volume: 50 start-page: 4338 year: 2014 ident: 10.1016/j.chemosphere.2018.09.137_bib22 article-title: Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination publication-title: Chem. Commun. doi: 10.1039/c3cc48374f – volume: 152 start-page: 49 year: 2017 ident: 10.1016/j.chemosphere.2018.09.137_bib8 article-title: Enhanced visible-light-driven photocatalytic bacteria disinfection by g-C3N4-AgBr publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2017.01.003 – volume: 4 start-page: 50 year: 2014 ident: 10.1016/j.chemosphere.2018.09.137_bib16 article-title: Viral pathogens in water: occurrence, public health impact, and available control strategies publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2013.12.005 – volume: 348 start-page: 380 year: 2018 ident: 10.1016/j.chemosphere.2018.09.137_bib59 article-title: Removal of Microcystis aeruginosa and Microcystin-LR using a graphitic-C3N4/TiO2 floating photocatalyst under visible light irradiation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.182 – volume: 49 start-page: 3553 year: 2011 ident: 10.1016/j.chemosphere.2018.09.137_bib90 article-title: Reinforcing effects of adding alkylated graphene oxide to polypropylene publication-title: Carbon doi: 10.1016/j.carbon.2011.04.055 – volume: 50 start-page: 10148 year: 2014 ident: 10.1016/j.chemosphere.2018.09.137_bib74 article-title: g-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application publication-title: Chem. Commun. doi: 10.1039/C4CC02543A – volume: 9 start-page: 27727 year: 2017 ident: 10.1016/j.chemosphere.2018.09.137_bib84 article-title: Enhanced visible-light-driven photocatalytic disinfection performance and organic pollutant degradation activity of porous g-C3N4 nanosheets publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b07657 – volume: 116 start-page: 7159 year: 2016 ident: 10.1016/j.chemosphere.2018.09.137_bib50 article-title: Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00075 – volume: 221 start-page: 339 year: 2018 ident: 10.1016/j.chemosphere.2018.09.137_bib66 article-title: Silver/Silver(II) oxide (Ag/AgO) loaded graphitic carbon nitride microspheres: an effective visible light active photocatalyst for degradation of acidic dyes and bacterial inactivation publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.09.030 – volume: 98 start-page: 229 year: 2010 ident: 10.1016/j.chemosphere.2018.09.137_bib57 article-title: Silver-TiO2 nanocomposites: synthesis and harmful algae bloom UV-photoelimination publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2010.06.001 – volume: 202 start-page: 611 year: 2017 ident: 10.1016/j.chemosphere.2018.09.137_bib35 article-title: Hybridization of rutile TiO2 (rTiO2) with g-C3N4 quantum dots (CN QDs): an efficient visible-light-driven Z-scheme hybridized photocatalyst publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2016.09.055 – volume: 4 start-page: 782 year: 2017 ident: 10.1016/j.chemosphere.2018.09.137_bib73 article-title: Photocatalytic nanomaterials for solar-driven bacterial inactivation: recent progress and challenges publication-title: Environ. Sci. Nano doi: 10.1039/C7EN00063D – volume: 136 start-page: 40 year: 2017 ident: 10.1016/j.chemosphere.2018.09.137_bib51 article-title: Metal-free inactivation of E. coli O157:H7 by fullerene/C3N4 hybrid under visible light irradiation publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2016.10.030 – volume: 129 start-page: 7 year: 2016 ident: 10.1016/j.chemosphere.2018.09.137_bib62 article-title: Enhanced visible-light photocatalytic activity of kaolinite/g-C3N4 composite synthesized via mechanochemical treatment publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2016.04.003 – volume: 21 start-page: 15171 year: 2011 ident: 10.1016/j.chemosphere.2018.09.137_bib10 article-title: Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts publication-title: J. Mater. Chem. doi: 10.1039/c1jm12844b – volume: 323 start-page: 520 year: 2017 ident: 10.1016/j.chemosphere.2018.09.137_bib85 article-title: Synergetic effect of bio-photocatalytic hybrid system: g-C3N4 and Acinetobacter sp. JLS1 for enhanced degradation of C16 alkane publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.04.138 – volume: 80 start-page: 227 year: 2005 ident: 10.1016/j.chemosphere.2018.09.137_bib27 article-title: Preparation of TiO2-coated hollow glass beads and their application to the control of algal growth in eutrophic water publication-title: Microchem. J. doi: 10.1016/j.microc.2004.07.008 – volume: 186 start-page: 77 year: 2016 ident: 10.1016/j.chemosphere.2018.09.137_bib42 article-title: Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2015.12.051 – volume: 184 start-page: 1071 year: 2017 ident: 10.1016/j.chemosphere.2018.09.137_bib20 article-title: Organic matters removal from landfill leachate by immobilized Phanerochaete chrysosporium loaded with graphitic carbon nitride under visible light irradiation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.06.065 – year: 2017 ident: 10.1016/j.chemosphere.2018.09.137_bib80 – volume: 198 start-page: 347 year: 2016 ident: 10.1016/j.chemosphere.2018.09.137_bib43 article-title: Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2016.05.052 – volume: 88 start-page: 403 year: 2016 ident: 10.1016/j.chemosphere.2018.09.137_bib91 article-title: Silver nanoparticles in aquatic environments: physiochemical behavior and antimicrobial mechanisms publication-title: Water Res. doi: 10.1016/j.watres.2015.10.025 – volume: 2 start-page: 1031 year: 2014 ident: 10.1016/j.chemosphere.2018.09.137_bib38 article-title: Graphitic-phase C3N4 nanosheets as efficient photosensitizers and pH-responsive drug nanocarriers for cancer imaging and therapy publication-title: J. Mater. Chem. B doi: 10.1039/c3tb21479f – volume: 40 start-page: 3 year: 2006 ident: 10.1016/j.chemosphere.2018.09.137_bib19 article-title: Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review publication-title: Water Res. doi: 10.1016/j.watres.2005.10.030 – volume: 166 start-page: 631 year: 2011 ident: 10.1016/j.chemosphere.2018.09.137_bib11 article-title: Removal of aqueous toxic Hg(II) by synthesized TiO2 nanoparticles and TiO2/montmorillonite publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.11.035 – volume: 39 start-page: 1503 year: 2013 ident: 10.1016/j.chemosphere.2018.09.137_bib53 article-title: Antibacterial and photocatalytic properties of Ag/TiO2/ZnO nano-flowers prepared by facile one-pot hydrothermal process publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2012.07.097 – volume: 10 start-page: 13796 year: 2018 ident: 10.1016/j.chemosphere.2018.09.137_bib25 article-title: Moderate bacterial etching allows scalable and clean delamination of g-C3N4 with enriched unpaired electrons for highly improved photocatalytic water disinfection publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00007 – volume: 154 start-page: 296 year: 2017 ident: 10.1016/j.chemosphere.2018.09.137_bib56 article-title: TiO2-based photocatalytic disinfection of microbes in aqueous media: a review publication-title: Environ. Res. doi: 10.1016/j.envres.2017.01.018 – volume: 64 start-page: 103 year: 2017 ident: 10.1016/j.chemosphere.2018.09.137_bib86 article-title: Review on undoped/doped TiO2 nanomaterial: synthesis and photocatalytic and antimicrobial activity publication-title: J. Chin. Chem. Soc. doi: 10.1002/jccs.201600735 – volume: 195 start-page: 551 year: 2018 ident: 10.1016/j.chemosphere.2018.09.137_bib94 article-title: Metal-free virucidal effects induced by g-C3N4 under visible light irradiation: statistical analysis and parameter optimization publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.12.122 – volume: 42 start-page: 6322 year: 2018 ident: 10.1016/j.chemosphere.2018.09.137_bib67 article-title: Microwave assisted in situ decoration of a g-C3N4 surface with CdCO3 nanoparticles for visible light driven photocatalysis publication-title: New J. Chem. doi: 10.1039/C8NJ00444G – volume: 6 start-page: 46929 year: 2016 ident: 10.1016/j.chemosphere.2018.09.137_bib54 article-title: An overview of the structural, textural and morphological modulations of g-C3N4 towards photocatalytic hydrogen production publication-title: RSC Adv. doi: 10.1039/C5RA26702A – volume: 218 start-page: 183 year: 2013 ident: 10.1016/j.chemosphere.2018.09.137_bib23 article-title: Photocatalytic degradation of 2,4,6-trichlorophenol over g-C3N4 under visible light irradiation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.12.033 – volume: 22 start-page: 2721 year: 2012 ident: 10.1016/j.chemosphere.2018.09.137_bib37 article-title: Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation publication-title: J. Mater. Chem. doi: 10.1039/C1JM13490F – volume: 22 start-page: 8083 year: 2012 ident: 10.1016/j.chemosphere.2018.09.137_bib95 article-title: Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts publication-title: J. Mater. Chem. doi: 10.1039/c2jm00097k – volume: 138 start-page: 2064 year: 2016 ident: 10.1016/j.chemosphere.2018.09.137_bib101 article-title: Mechanisms of the antimicrobial activities of graphene materials publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11411 – volume: 43 start-page: 6295 year: 2014 ident: 10.1016/j.chemosphere.2018.09.137_bib6 article-title: Sonication assisted preparation of graphene oxide/graphitic-C3N4 nanosheet hybrid with reinforced photocurrent for photocatalyst applications publication-title: Dalton Trans. doi: 10.1039/c3dt53106f – volume: 225 start-page: 228 year: 2018 ident: 10.1016/j.chemosphere.2018.09.137_bib70 article-title: Mechanism insight into rapid photocatalytic disinfection of Salmonella based on vanadate QDs-interspersed g-C3N4 heterostructures publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.11.060 – volume: 347 start-page: 970 year: 2015 ident: 10.1016/j.chemosphere.2018.09.137_bib41 article-title: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway publication-title: Science doi: 10.1126/science.aaa3145 – volume: 208 start-page: 84 year: 2018 ident: 10.1016/j.chemosphere.2018.09.137_bib92 article-title: Visible-light-driven, water-surface-floating antimicrobials developed from graphitic carbon nitride and expanded perlite for water disinfection publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.05.163 – volume: 12 year: 2017 ident: 10.1016/j.chemosphere.2018.09.137_bib97 article-title: Simultaneous photocatalytic and microbial degradation of dye-containing wastewater by a novel g-C3N4-P25/photosynthetic bacteria composite publication-title: PLoS One – year: 2017 ident: 10.1016/j.chemosphere.2018.09.137_bib79 – volume: 54 start-page: 2920 year: 2010 ident: 10.1016/j.chemosphere.2018.09.137_bib7 article-title: Spatial and temporal patterns of biocide action against Staphylococcus epidermidis biofilms publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01734-09 – volume: 5 start-page: 8693 year: 2017 ident: 10.1016/j.chemosphere.2018.09.137_bib61 article-title: Antibacterial activity of graphene oxide/g-C3N4 composite through photocatalytic disinfection under visible light publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b01431 – volume: 35 start-page: 989 year: 2014 ident: 10.1016/j.chemosphere.2018.09.137_bib18 article-title: Recent advances in visible light Bi-based photocatalysts publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(14)60075-9 – volume: 7 start-page: 306 year: 2009 ident: 10.1016/j.chemosphere.2018.09.137_bib47 article-title: Ten reasons to exclude viruses from the tree of life publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2108 – volume: 47 start-page: 8724 year: 2013 ident: 10.1016/j.chemosphere.2018.09.137_bib75 article-title: Graphene and g-C3N4 nanosheets cowrapped elemental alpha-sulfur as a novel metal-free heterojunction photocatalyst for bacterial inactivation under visible-light publication-title: Environ. Sci. Technol. doi: 10.1021/es4013504 – volume: 6 start-page: 933 year: 2011 ident: 10.1016/j.chemosphere.2018.09.137_bib3 article-title: Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites publication-title: Future Microbiol. doi: 10.2217/fmb.11.78 – volume: 6 start-page: 42240 year: 2016 ident: 10.1016/j.chemosphere.2018.09.137_bib63 article-title: Preparation and characterization of photoactive antimicrobial graphitic carbon nitride (g-C3N4) films publication-title: RSC Adv. doi: 10.1039/C6RA05613J – volume: 183 start-page: 86 year: 2016 ident: 10.1016/j.chemosphere.2018.09.137_bib48 article-title: Disinfection capability of Ag/g-C3N4 composite photocatalysts under UV and visible light illumination publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2015.10.024 – volume: 5 start-page: 1096 year: 2018 ident: 10.1016/j.chemosphere.2018.09.137_bib69 article-title: Iron oxide nanowire-based filter for inactivation of airborne bacteria publication-title: Environ. Sci. Nano doi: 10.1039/C8EN00133B – volume: 74 start-page: 3774 year: 2008 ident: 10.1016/j.chemosphere.2018.09.137_bib58 article-title: Effect of exposure to UV-C irradiation and monochloramine on adenovirus serotype 2 early protein expression and DNA replication publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02049-07 – volume: 19 start-page: 62 year: 2014 ident: 10.1016/j.chemosphere.2018.09.137_bib46 article-title: Antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions publication-title: J. Photoch. Photobio. C doi: 10.1016/j.jphotochemrev.2014.01.001 – volume: 251 start-page: 304 year: 2014 ident: 10.1016/j.chemosphere.2018.09.137_bib100 article-title: Removal of Microcystis aeruginosa by potassium ferrate (VI): impacts on cells integrity, intracellular organic matter release and disinfection by-products formation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.04.081 – volume: 90 start-page: 1847 year: 2011 ident: 10.1016/j.chemosphere.2018.09.137_bib13 article-title: Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-011-3213-7 – volume: 16 start-page: 488 year: 2015 ident: 10.1016/j.chemosphere.2018.09.137_bib30 article-title: Graphene oxide: a promising nanomaterial for energy and environmental applications publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.07.014 – volume: 341 start-page: 516 year: 2018 ident: 10.1016/j.chemosphere.2018.09.137_bib77 article-title: Adsorption-photocatalysis functional expanded graphite C/C composite for in-situ photocatalytic inactivation of Microcystis aeruginosa publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.02.054 – volume: 482 start-page: 477 year: 2015 ident: 10.1016/j.chemosphere.2018.09.137_bib2 article-title: One pot synthesis and characterization of Ag-ZnO/g-C3N4 photocatalyst with improved photoactivity and antibacterial properties publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2015.07.003 – volume: 225 start-page: 51 year: 2018 ident: 10.1016/j.chemosphere.2018.09.137_bib14 article-title: Antimicrobial activity of photocatalysts: fundamentals, mechanisms, kinetics and recent advances publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.11.018 – volume: 137 start-page: 19 year: 2018 ident: 10.1016/j.chemosphere.2018.09.137_bib26 article-title: “Alternated cooling and heating” strategy enables rapid fabrication of highly-crystalline g-C3N4 nanosheets for efficient photocatalytic water purification under visible light irradiation publication-title: Carbon doi: 10.1016/j.carbon.2018.05.010 – volume: 86 start-page: 17 year: 2015 ident: 10.1016/j.chemosphere.2018.09.137_bib31 article-title: Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach publication-title: Water Res. doi: 10.1016/j.watres.2015.05.053 – volume: 42 start-page: 4591 year: 2008 ident: 10.1016/j.chemosphere.2018.09.137_bib33 article-title: Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications publication-title: Water Res. doi: 10.1016/j.watres.2008.08.015 – volume: 22 start-page: 10444 year: 2015 ident: 10.1016/j.chemosphere.2018.09.137_bib93 article-title: Ag@helical chiral TiO2 nanofibers for visible light photocatalytic degradation of 17α-ethinylestradiol publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-4251-y – volume: 152–3 start-page: 46 year: 2014 ident: 10.1016/j.chemosphere.2018.09.137_bib99 article-title: Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2014.01.023 – volume: 25 start-page: 10397 year: 2009 ident: 10.1016/j.chemosphere.2018.09.137_bib87 article-title: Photodegradation performance of g-C3N4 fabricated by directly heating melamine publication-title: Langmuir doi: 10.1021/la900923z – volume: 81 start-page: 536 year: 2018 ident: 10.1016/j.chemosphere.2018.09.137_bib49 article-title: A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.08.020 – volume: 33 start-page: 67 year: 2016 ident: 10.1016/j.chemosphere.2018.09.137_bib17 article-title: Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2016.06.008 – volume: 117 start-page: 22986 year: 2013 ident: 10.1016/j.chemosphere.2018.09.137_bib21 article-title: Two novel Bi-based borate photocatalysts: crystal structure, electronic structure, photoelectrochemical properties, and photocatalytic activity under simulated solar light irradiation publication-title: J. Phys. Chem. C doi: 10.1021/jp4084184 – volume: 237 start-page: 721 year: 2018 ident: 10.1016/j.chemosphere.2018.09.137_bib68 article-title: Plasmonic-based nanomaterials for environmental remediation publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.05.094 – volume: 49 start-page: 6264 year: 2015 ident: 10.1016/j.chemosphere.2018.09.137_bib81 article-title: Red phosphorus: an earth-abundant elemental photocatalyst for “green” bacterial inactivation under visible light publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00531 – volume: 358 start-page: 62 year: 2018 ident: 10.1016/j.chemosphere.2018.09.137_bib39 article-title: Boron- and phenyl-codoped graphitic carbon nitride with greatly enhanced light responsive range for photocatalytic disinfection publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2018.06.053 – volume: 727 start-page: 792 year: 2017 ident: 10.1016/j.chemosphere.2018.09.137_bib55 article-title: Review on the improvement of the photocatalytic and antibacterial activities of ZnO publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2017.08.142 – volume: 8 start-page: 76 year: 2009 ident: 10.1016/j.chemosphere.2018.09.137_bib76 article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light publication-title: Nat. Mater. doi: 10.1038/nmat2317 – volume: 178 start-page: 124 year: 2018 ident: 10.1016/j.chemosphere.2018.09.137_bib12 article-title: Ternary composite of TiO2 nanotubes/Ti plates modified by g-C3N4 and SnO2 with enhanced photocatalytic activity for enhancing antibacterial and photocatalytic activity publication-title: J. Photochem. Photobiol., B doi: 10.1016/j.jphotobiol.2017.11.009 – volume: 6 start-page: 3186 year: 2016 ident: 10.1016/j.chemosphere.2018.09.137_bib24 article-title: In situ growth of Ag/Ag2O nanoparticles on g-C3N4 by a natural carbon nanodot-assisted green method for synergistic photocatalytic activity publication-title: RSC Adv. doi: 10.1039/C5RA22176E |
| SSID | ssj0001659 |
| Score | 2.677709 |
| SecondaryResourceType | review_article |
| Snippet | Microbial contamination in drinking water is of great concern around the world because of high pathogenic risks to humans. Semiconductor photocatalysis has... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 462 |
| SubjectTerms | Anti-Infective Agents - pharmacology antimicrobial properties Antimicrobials bacteria Bacteria - drug effects Bacteria - radiation effects carbon dioxide carbon nitride Catalysis cost effectiveness Design and performance disinfection Disinfection - methods drinking water energy conversion Environmental Restoration and Remediation graphene Graphite - chemistry Graphitic carbon nitride humans hydrogen production Inactivation mechanisms Light metabolism microalgae microbial contamination nanomaterials Nitriles - chemistry Photocatalysis photocatalysts pollutants polymers remediation risk semiconductors solar energy viruses Waste Water - microbiology |
| Title | Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: A review |
| URI | https://dx.doi.org/10.1016/j.chemosphere.2018.09.137 https://www.ncbi.nlm.nih.gov/pubmed/30273880 https://www.proquest.com/docview/2115754127 https://www.proquest.com/docview/2176346818 |
| Volume | 214 |
| WOSCitedRecordID | wos000449891300053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1298 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001659 issn: 0045-6535 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6jdsLggFbuUyexANoypQmduwgXqqq3IQqpA2pe4qS2KGd1rRq07H9GP4rxz5JmoGKihAvURvVjdvvyznHzjnfIeSl4FlmFsqOVh3usNBTTshi7sRG7QsIIrSySH8Wg4EcDsMvrdaPqhbm8kLkuby6Cmf_FWo4B2Cb0tm_gLv-UjgBrwF0OALscNwI-PdGgtrktBnV6QTAhZt2PlY2lvzm9PwBg9W_Y7yXOpqNpsXU7uBcLwqrzHD0PbZNw8eLKk0Ls5UnY6vYZNVEbHI7lrTPV48WKrmDkZ5MF0aswF4RCxIb-w31DnVvNK6zgWxKwVn9_mS0jKsC-IkufSvqSFojebbMm7sVpkDqxm5FXUazylmyZplxJ-CoW3Ks0RJLYfo0YIvqylR7HdYwtqy04-i3GTal-c0l4O7E-XG6-vkmo08aedsOCs78orh9gnGuz8HcWcG8LbLjCR6C0dzpfuwPP9WuvhNwXF-V879DDlcJhGsuuC4AWrfAsYHO6QNyv1yh0C4y6yFp6XyX3O1VjQF3ye2-VTq_fkQmNdcoco2WXKOvkGmvkWf0Js8oUIJantEmzyjwjNY8oyXP3tAuRZY9Jl_f9U97H5yyf4eTMhEUTqIyX_hKJa6MQxF7rq9hta9S7smEBTEEp66KhY65n7nKKkGm0mOpq1INYVOg_CdkO5_mep9QDaPSUAYqSyEE5TpR4EfAj3uaS-lnsk1k9adGaSlub3qsXERVFuN51MAjMnhEbhgBHm3i1UNnqPCyyaC3FXJRGapiCBoB7TYZflihHQF45hldnOvpchF5RvyKs473x89AUMACCLXbZA-pUs_ct_pU0n36bxN8Ru6t7t7nZLuYL_ULciu9LMaL-QHZEkN5UN4MPwHd3t87 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphitic+carbon+nitride+%28g-C3N4%29-based+photocatalysts+for+water+disinfection+and+microbial+control%3A+A+review&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Zhang%2C+Chi&rft.au=Li%2C+Yi&rft.au=Shuai%2C+Danmeng&rft.au=Shen%2C+Yun&rft.date=2019-01-01&rft.pub=Elsevier+Ltd&rft.issn=0045-6535&rft.eissn=1879-1298&rft.volume=214&rft.spage=462&rft.epage=479&rft_id=info:doi/10.1016%2Fj.chemosphere.2018.09.137&rft.externalDocID=S0045653518317995 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |