The neural coding of stimulus intensity: linking the population response of mechanoreceptive afferents with psychophysical behavior

How specific aspects of a stimulus are encoded at different stages of neural processing is a critical question in sensory neuroscience. In the present study, we investigated the neural code underlying the perception of stimulus intensity in the somatosensory system. We first characterized the respon...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience Vol. 27; no. 43; p. 11687
Main Authors: Muniak, Michael A, Ray, Supratim, Hsiao, Steven S, Dammann, J Frank, Bensmaia, Sliman J
Format: Journal Article
Language:English
Published: United States 24.10.2007
Subjects:
ISSN:1529-2401, 1529-2401
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract How specific aspects of a stimulus are encoded at different stages of neural processing is a critical question in sensory neuroscience. In the present study, we investigated the neural code underlying the perception of stimulus intensity in the somatosensory system. We first characterized the responses of SA1 (slowly adapting type 1), RA (rapidly adapting), and PC (Pacinian) afferents of macaque monkeys to sinusoidal, diharmonic, and bandpass noise stimuli. We then had human subjects rate the perceived intensity of a subset of these stimuli. On the basis of these neurophysiological and psychophysical measurements, we evaluated a series of hypotheses about which aspect(s) of the neural activity evoked at the somatosensory periphery account for perception. We evaluated three types of neural codes. The first consisted of population codes based on the firing rate of neurons located directly under the probe. The second included population codes based on the firing rate of the entire population of active neurons. The third included codes based on the number of active afferents. We found that the response evoked in the localized population is logarithmic with stimulus amplitude (given a constant frequency composition), whereas the population response across all neurons is linear with stimulus amplitude. We conclude that stimulus intensity is best accounted for by the firing rate evoked in afferents located under or near the locus of stimulation, weighted by afferent type.
AbstractList How specific aspects of a stimulus are encoded at different stages of neural processing is a critical question in sensory neuroscience. In the present study, we investigated the neural code underlying the perception of stimulus intensity in the somatosensory system. We first characterized the responses of SA1 (slowly adapting type 1), RA (rapidly adapting), and PC (Pacinian) afferents of macaque monkeys to sinusoidal, diharmonic, and bandpass noise stimuli. We then had human subjects rate the perceived intensity of a subset of these stimuli. On the basis of these neurophysiological and psychophysical measurements, we evaluated a series of hypotheses about which aspect(s) of the neural activity evoked at the somatosensory periphery account for perception. We evaluated three types of neural codes. The first consisted of population codes based on the firing rate of neurons located directly under the probe. The second included population codes based on the firing rate of the entire population of active neurons. The third included codes based on the number of active afferents. We found that the response evoked in the localized population is logarithmic with stimulus amplitude (given a constant frequency composition), whereas the population response across all neurons is linear with stimulus amplitude. We conclude that stimulus intensity is best accounted for by the firing rate evoked in afferents located under or near the locus of stimulation, weighted by afferent type.
How specific aspects of a stimulus are encoded at different stages of neural processing is a critical question in sensory neuroscience. In the present study, we investigated the neural code underlying the perception of stimulus intensity in the somatosensory system. We first characterized the responses of SA1 (slowly adapting type 1), RA (rapidly adapting), and PC (Pacinian) afferents of macaque monkeys to sinusoidal, diharmonic, and bandpass noise stimuli. We then had human subjects rate the perceived intensity of a subset of these stimuli. On the basis of these neurophysiological and psychophysical measurements, we evaluated a series of hypotheses about which aspect(s) of the neural activity evoked at the somatosensory periphery account for perception. We evaluated three types of neural codes. The first consisted of population codes based on the firing rate of neurons located directly under the probe. The second included population codes based on the firing rate of the entire population of active neurons. The third included codes based on the number of active afferents. We found that the response evoked in the localized population is logarithmic with stimulus amplitude (given a constant frequency composition), whereas the population response across all neurons is linear with stimulus amplitude. We conclude that stimulus intensity is best accounted for by the firing rate evoked in afferents located under or near the locus of stimulation, weighted by afferent type.How specific aspects of a stimulus are encoded at different stages of neural processing is a critical question in sensory neuroscience. In the present study, we investigated the neural code underlying the perception of stimulus intensity in the somatosensory system. We first characterized the responses of SA1 (slowly adapting type 1), RA (rapidly adapting), and PC (Pacinian) afferents of macaque monkeys to sinusoidal, diharmonic, and bandpass noise stimuli. We then had human subjects rate the perceived intensity of a subset of these stimuli. On the basis of these neurophysiological and psychophysical measurements, we evaluated a series of hypotheses about which aspect(s) of the neural activity evoked at the somatosensory periphery account for perception. We evaluated three types of neural codes. The first consisted of population codes based on the firing rate of neurons located directly under the probe. The second included population codes based on the firing rate of the entire population of active neurons. The third included codes based on the number of active afferents. We found that the response evoked in the localized population is logarithmic with stimulus amplitude (given a constant frequency composition), whereas the population response across all neurons is linear with stimulus amplitude. We conclude that stimulus intensity is best accounted for by the firing rate evoked in afferents located under or near the locus of stimulation, weighted by afferent type.
Author Hsiao, Steven S
Ray, Supratim
Dammann, J Frank
Muniak, Michael A
Bensmaia, Sliman J
Author_xml – sequence: 1
  givenname: Michael A
  surname: Muniak
  fullname: Muniak, Michael A
  organization: Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21218, USA
– sequence: 2
  givenname: Supratim
  surname: Ray
  fullname: Ray, Supratim
– sequence: 3
  givenname: Steven S
  surname: Hsiao
  fullname: Hsiao, Steven S
– sequence: 4
  givenname: J Frank
  surname: Dammann
  fullname: Dammann, J Frank
– sequence: 5
  givenname: Sliman J
  surname: Bensmaia
  fullname: Bensmaia, Sliman J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17959811$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtPwzAQhC1URB_wFyqfuKXYeYcbqgoUVVSC9hz5sSGGxA6xU5Qzf5xUFInTrjTfzGp2ikbaaEBoTsmCRn5w8_S82r9sX5frBQ3T2CPJwickOUOTQc08PyR09G8fo6m172QgCE0u0JgmWZSllE7Q964ErKFrWYWFkUq_YVNg61TdVZ3FSjvQVrn-FldKfxxlNxga03QVc8po3IJtjLZwtNUgSqZNCwIapw6AWVFAC9pZ_KVciRvbi9I0ZW-VGO5xKNlBmfYSnRessnB1mjO0v1_tlo_eZvuwXt5tPBEmsfOY4IQPZUhIeBBLP2PcF2GQyDSjzOdFLIFknLAgC0FCISMIUxnRgstkoDnzZ-j6N7dpzWcH1uW1sgKqimkwnc3jdEgjJBrA-QnseA0yb1pVs7bP_97m_wCIX3e-
CitedBy_id crossref_primary_10_1038_s41598_024_53449_7
crossref_primary_10_1152_jn_00303_2015
crossref_primary_10_1002_j_2040_4603_2022_tb00203_x
crossref_primary_10_1007_s11071_025_10930_w
crossref_primary_10_3389_fncel_2018_00506
crossref_primary_10_3390_electronics11050707
crossref_primary_10_1109_TOH_2016_2573298
crossref_primary_10_1027_0269_8803_a000288
crossref_primary_10_3390_mi9050230
crossref_primary_10_1088_1741_2552_aae398
crossref_primary_10_1109_TOH_2015_2412942
crossref_primary_10_1007_s10237_018_1011_1
crossref_primary_10_1152_jn_00977_2016
crossref_primary_10_1152_jn_00482_2014
crossref_primary_10_1088_1741_2552_ac9e76
crossref_primary_10_1088_1741_2560_6_6_066008
crossref_primary_10_1126_science_1255635
crossref_primary_10_1152_jn_00002_2019
crossref_primary_10_3758_s13414_021_02253_w
crossref_primary_10_1016_j_mser_2021_100640
crossref_primary_10_1088_1741_2552_ad7f8c
crossref_primary_10_1109_TNSRE_2022_3158067
crossref_primary_10_1371_journal_pbio_3000431
crossref_primary_10_1109_TBME_2021_3076094
crossref_primary_10_1152_jn_00848_2017
crossref_primary_10_1038_s41598_018_34910_w
crossref_primary_10_1371_journal_pone_0169570
crossref_primary_10_1109_TOH_2014_2369422
crossref_primary_10_1152_jn_00502_2009
crossref_primary_10_1371_journal_pone_0124787
crossref_primary_10_1152_jn_00680_2013
crossref_primary_10_1016_j_neuroscience_2017_08_024
crossref_primary_10_1088_1741_2552_ade503
crossref_primary_10_1016_j_neuropsychologia_2015_06_010
crossref_primary_10_1007_s00221_019_05495_1
crossref_primary_10_1152_jn_00395_2012
crossref_primary_10_3109_08990220_2012_732128
crossref_primary_10_3109_08990220_2012_732127
crossref_primary_10_3389_fninf_2019_00027
crossref_primary_10_1038_s41598_023_30545_8
crossref_primary_10_1152_jn_00168_2019
crossref_primary_10_1038_s41563_021_00966_9
crossref_primary_10_1109_TBCAS_2009_2032396
crossref_primary_10_1152_jn_00436_2017
crossref_primary_10_1038_s41598_017_11306_w
crossref_primary_10_1523_JNEUROSCI_2161_12_2012
crossref_primary_10_3390_mi12050574
crossref_primary_10_1109_TOH_2020_3025772
crossref_primary_10_1016_j_neubiorev_2009_02_003
crossref_primary_10_1146_annurev_psych_093008_100419
crossref_primary_10_1016_j_neuroimage_2021_118498
crossref_primary_10_1371_journal_pbio_1002271
crossref_primary_10_1162_imag_a_00341
crossref_primary_10_1038_s41598_020_80132_4
crossref_primary_10_1523_JNEUROSCI_1494_21_2021
crossref_primary_10_1016_j_jneumeth_2014_01_021
crossref_primary_10_1152_jn_00588_2016
crossref_primary_10_1073_pnas_1509265112
crossref_primary_10_1016_j_tins_2014_08_012
crossref_primary_10_3389_fnsys_2019_00052
crossref_primary_10_1111_ejn_15822
crossref_primary_10_1038_s41551_020_00630_8
crossref_primary_10_1002_jnr_24957
crossref_primary_10_1007_s00521_018_3465_6
crossref_primary_10_7554_eLife_65128
crossref_primary_10_7554_eLife_10450
crossref_primary_10_1155_2021_8819169
crossref_primary_10_1007_s10162_008_0142_y
crossref_primary_10_1088_1741_2552_aab790
crossref_primary_10_1152_jn_00235_2009
crossref_primary_10_1073_pnas_1305509110
crossref_primary_10_1088_1741_2552_acd4e8
crossref_primary_10_1073_pnas_1309728110
crossref_primary_10_1016_S1672_6529_16_60332_3
crossref_primary_10_1073_pnas_2115772118
crossref_primary_10_1109_TOH_2020_2964538
crossref_primary_10_1371_journal_pbio_1002004
crossref_primary_10_1016_j_neuron_2024_07_008
crossref_primary_10_1371_journal_pbio_1001558
crossref_primary_10_1016_j_bios_2023_115873
crossref_primary_10_1163_016918611X590292
crossref_primary_10_1088_1741_2552_aabd5d
crossref_primary_10_1002_j_2040_4603_2018_tb00045_x
crossref_primary_10_1016_j_clinph_2017_12_027
crossref_primary_10_1073_pnas_1818501116
crossref_primary_10_1016_j_sna_2017_09_035
crossref_primary_10_1523_JNEUROSCI_1753_15_2016
crossref_primary_10_1073_pnas_1616839114
crossref_primary_10_1152_jn_00374_2017
crossref_primary_10_1038_s41598_020_77212_w
crossref_primary_10_1152_jn_00790_2015
crossref_primary_10_1093_pnasnexus_pgad292
crossref_primary_10_1109_TOH_2022_3140877
crossref_primary_10_1109_TNSRE_2011_2160560
crossref_primary_10_3389_fnins_2024_1125597
crossref_primary_10_1038_srep34887
crossref_primary_10_1093_cercor_bhy337
crossref_primary_10_3109_08990220_2013_779242
crossref_primary_10_1007_s12221_019_8592_x
crossref_primary_10_1371_journal_pone_0031203
crossref_primary_10_1016_j_conb_2016_07_013
crossref_primary_10_1109_TBME_2020_3007397
crossref_primary_10_1016_j_neuroimage_2016_09_034
crossref_primary_10_1038_srep20738
crossref_primary_10_1016_j_brs_2011_07_002
crossref_primary_10_3389_fpain_2025_1541078
crossref_primary_10_1109_TNSRE_2019_2908817
crossref_primary_10_1016_j_neubiorev_2009_08_009
crossref_primary_10_1038_s41593_020_00751_y
crossref_primary_10_1126_scitranslmed_aaf5187
crossref_primary_10_1002_wsbm_1267
crossref_primary_10_3390_mi10050301
crossref_primary_10_1016_j_neuron_2018_08_033
crossref_primary_10_1152_jn_00187_2010
crossref_primary_10_3389_fnhum_2022_862344
crossref_primary_10_1371_journal_pone_0236684
crossref_primary_10_3390_app9204329
crossref_primary_10_1109_TIM_2015_2398952
crossref_primary_10_1073_pnas_1704856114
crossref_primary_10_1088_1741_2552_abf28c
crossref_primary_10_1109_ACCESS_2019_2961122
crossref_primary_10_1109_TOH_2019_2912960
crossref_primary_10_1152_jn_00284_2022
crossref_primary_10_1002_cne_25033
crossref_primary_10_1016_j_procs_2023_10_629
crossref_primary_10_3390_polym12061380
crossref_primary_10_1016_j_jneumeth_2015_08_010
crossref_primary_10_1073_pnas_1221113110
crossref_primary_10_3390_mi12030313
crossref_primary_10_1523_JNEUROSCI_1252_24_2024
crossref_primary_10_1007_s12221_009_0371_7
crossref_primary_10_1152_jn_00564_2017
crossref_primary_10_3389_fnins_2024_1351348
crossref_primary_10_1007_s00170_013_4832_1
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1523/JNEUROSCI.1486-07.2007
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
ExternalDocumentID 17959811
Genre Journal Article
Comparative Study
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: NS-18787
– fundername: NIDCD NIH HHS
  grantid: T32 DC000023
– fundername: NIDCD NIH HHS
  grantid: DC-00095
– fundername: NIDCD NIH HHS
  grantid: DC-00023
– fundername: NINDS NIH HHS
  grantid: R01 NS018787
– fundername: NIDCD NIH HHS
  grantid: R01 DC000095
– fundername: NINDS NIH HHS
  grantid: P01 NS038034
– fundername: NINDS NIH HHS
  grantid: NS-38034
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
AAFWJ
AAJMC
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
ADXHL
AENEX
AETEA
AFCFT
AFFNX
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
MVM
NPM
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
7X8
ID FETCH-LOGICAL-c476t-acb0b401040b36d29ab2c437d891a2bf6de09b0a394edefd5e48d51fbd76d2ba2
IEDL.DBID 7X8
ISICitedReferencesCount 181
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000250577500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1529-2401
IngestDate Fri Sep 05 11:38:25 EDT 2025
Mon Jul 21 05:51:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-acb0b401040b36d29ab2c437d891a2bf6de09b0a394edefd5e48d51fbd76d2ba2
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.jneurosci.org/content/jneuro/27/43/11687.full.pdf
PMID 17959811
PQID 68437005
PQPubID 23479
ParticipantIDs proquest_miscellaneous_68437005
pubmed_primary_17959811
PublicationCentury 2000
PublicationDate 2007-10-24
PublicationDateYYYYMMDD 2007-10-24
PublicationDate_xml – month: 10
  year: 2007
  text: 2007-10-24
  day: 24
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2007
SSID ssj0007017
Score 2.36199
Snippet How specific aspects of a stimulus are encoded at different stages of neural processing is a critical question in sensory neuroscience. In the present study,...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 11687
SubjectTerms Action Potentials - physiology
Adult
Animals
Differential Threshold - physiology
Female
Humans
Macaca mulatta
Male
Mechanoreceptors - physiology
Neurons, Afferent - physiology
Physical Stimulation - methods
Psychomotor Performance - physiology
Touch - physiology
Vibration
Title The neural coding of stimulus intensity: linking the population response of mechanoreceptive afferents with psychophysical behavior
URI https://www.ncbi.nlm.nih.gov/pubmed/17959811
https://www.proquest.com/docview/68437005
Volume 27
WOSCitedRecordID wos000250577500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwGA_TefDiaz7mMwfxVta0WdOIIGM4VHQMVNht5FUYuHau22Bn_3G_pK2exIOXnhpI01--9_f9ELrUlFFfceMBNhKPgoHhxYoZjwpiOFeg8yPXKPzE-v14OOSDGrqpemFsWWUlE52g1pmyMfJWFNOQAWRupx-e5YyyudWSQGMN1UMwZCym2fBnVjjzHd8uKCiXQyBlfzB4Xq3Hvq2Te-k-gKCIwaNmriX9dyPTKZve9v-2uYO2SiMTdwpU7KKaSfdQo5OCgz1Z4Svsyj5dPL2BPgEo2E61hAUqs5oMZwmGiz9ZvC9yPC5K3Oera1zSLGAwGfH0m_cLz4oqW2OXTYxtJM5AitpimaXBoqBfmefYBnxx0fM1LbGBqxkB--itd_favfdKZgZPURbNPaGkL6l15XwZRjrgQgYKPlzHnIhAJpE2Ppe-CDk12iS6bWis2ySRmsHbUgQHaD3NUnOEsKCKqEARTQOfioBKwUNJDWvTJIxNqJroojroESDfpjNEarJFPqqOuokOi381mhYDOkbEEqjHhBz_ufYEbbpgLSijgJ6iegJ33pyhDbWcj_PZuQMUPPuD5y89w9na
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+neural+coding+of+stimulus+intensity%3A+linking+the+population+response+of+mechanoreceptive+afferents+with+psychophysical+behavior&rft.jtitle=The+Journal+of+neuroscience&rft.au=Muniak%2C+Michael+A&rft.au=Ray%2C+Supratim&rft.au=Hsiao%2C+Steven+S&rft.au=Dammann%2C+J+Frank&rft.date=2007-10-24&rft.issn=1529-2401&rft.eissn=1529-2401&rft.volume=27&rft.issue=43&rft.spage=11687&rft_id=info:doi/10.1523%2FJNEUROSCI.1486-07.2007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1529-2401&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1529-2401&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1529-2401&client=summon