The neural coding of stimulus intensity: linking the population response of mechanoreceptive afferents with psychophysical behavior
How specific aspects of a stimulus are encoded at different stages of neural processing is a critical question in sensory neuroscience. In the present study, we investigated the neural code underlying the perception of stimulus intensity in the somatosensory system. We first characterized the respon...
Saved in:
| Published in: | The Journal of neuroscience Vol. 27; no. 43; p. 11687 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
24.10.2007
|
| Subjects: | |
| ISSN: | 1529-2401, 1529-2401 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | How specific aspects of a stimulus are encoded at different stages of neural processing is a critical question in sensory neuroscience. In the present study, we investigated the neural code underlying the perception of stimulus intensity in the somatosensory system. We first characterized the responses of SA1 (slowly adapting type 1), RA (rapidly adapting), and PC (Pacinian) afferents of macaque monkeys to sinusoidal, diharmonic, and bandpass noise stimuli. We then had human subjects rate the perceived intensity of a subset of these stimuli. On the basis of these neurophysiological and psychophysical measurements, we evaluated a series of hypotheses about which aspect(s) of the neural activity evoked at the somatosensory periphery account for perception. We evaluated three types of neural codes. The first consisted of population codes based on the firing rate of neurons located directly under the probe. The second included population codes based on the firing rate of the entire population of active neurons. The third included codes based on the number of active afferents. We found that the response evoked in the localized population is logarithmic with stimulus amplitude (given a constant frequency composition), whereas the population response across all neurons is linear with stimulus amplitude. We conclude that stimulus intensity is best accounted for by the firing rate evoked in afferents located under or near the locus of stimulation, weighted by afferent type. |
|---|---|
| AbstractList | How specific aspects of a stimulus are encoded at different stages of neural processing is a critical question in sensory neuroscience. In the present study, we investigated the neural code underlying the perception of stimulus intensity in the somatosensory system. We first characterized the responses of SA1 (slowly adapting type 1), RA (rapidly adapting), and PC (Pacinian) afferents of macaque monkeys to sinusoidal, diharmonic, and bandpass noise stimuli. We then had human subjects rate the perceived intensity of a subset of these stimuli. On the basis of these neurophysiological and psychophysical measurements, we evaluated a series of hypotheses about which aspect(s) of the neural activity evoked at the somatosensory periphery account for perception. We evaluated three types of neural codes. The first consisted of population codes based on the firing rate of neurons located directly under the probe. The second included population codes based on the firing rate of the entire population of active neurons. The third included codes based on the number of active afferents. We found that the response evoked in the localized population is logarithmic with stimulus amplitude (given a constant frequency composition), whereas the population response across all neurons is linear with stimulus amplitude. We conclude that stimulus intensity is best accounted for by the firing rate evoked in afferents located under or near the locus of stimulation, weighted by afferent type. How specific aspects of a stimulus are encoded at different stages of neural processing is a critical question in sensory neuroscience. In the present study, we investigated the neural code underlying the perception of stimulus intensity in the somatosensory system. We first characterized the responses of SA1 (slowly adapting type 1), RA (rapidly adapting), and PC (Pacinian) afferents of macaque monkeys to sinusoidal, diharmonic, and bandpass noise stimuli. We then had human subjects rate the perceived intensity of a subset of these stimuli. On the basis of these neurophysiological and psychophysical measurements, we evaluated a series of hypotheses about which aspect(s) of the neural activity evoked at the somatosensory periphery account for perception. We evaluated three types of neural codes. The first consisted of population codes based on the firing rate of neurons located directly under the probe. The second included population codes based on the firing rate of the entire population of active neurons. The third included codes based on the number of active afferents. We found that the response evoked in the localized population is logarithmic with stimulus amplitude (given a constant frequency composition), whereas the population response across all neurons is linear with stimulus amplitude. We conclude that stimulus intensity is best accounted for by the firing rate evoked in afferents located under or near the locus of stimulation, weighted by afferent type.How specific aspects of a stimulus are encoded at different stages of neural processing is a critical question in sensory neuroscience. In the present study, we investigated the neural code underlying the perception of stimulus intensity in the somatosensory system. We first characterized the responses of SA1 (slowly adapting type 1), RA (rapidly adapting), and PC (Pacinian) afferents of macaque monkeys to sinusoidal, diharmonic, and bandpass noise stimuli. We then had human subjects rate the perceived intensity of a subset of these stimuli. On the basis of these neurophysiological and psychophysical measurements, we evaluated a series of hypotheses about which aspect(s) of the neural activity evoked at the somatosensory periphery account for perception. We evaluated three types of neural codes. The first consisted of population codes based on the firing rate of neurons located directly under the probe. The second included population codes based on the firing rate of the entire population of active neurons. The third included codes based on the number of active afferents. We found that the response evoked in the localized population is logarithmic with stimulus amplitude (given a constant frequency composition), whereas the population response across all neurons is linear with stimulus amplitude. We conclude that stimulus intensity is best accounted for by the firing rate evoked in afferents located under or near the locus of stimulation, weighted by afferent type. |
| Author | Hsiao, Steven S Ray, Supratim Dammann, J Frank Muniak, Michael A Bensmaia, Sliman J |
| Author_xml | – sequence: 1 givenname: Michael A surname: Muniak fullname: Muniak, Michael A organization: Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21218, USA – sequence: 2 givenname: Supratim surname: Ray fullname: Ray, Supratim – sequence: 3 givenname: Steven S surname: Hsiao fullname: Hsiao, Steven S – sequence: 4 givenname: J Frank surname: Dammann fullname: Dammann, J Frank – sequence: 5 givenname: Sliman J surname: Bensmaia fullname: Bensmaia, Sliman J |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17959811$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtPwzAQhC1URB_wFyqfuKXYeYcbqgoUVVSC9hz5sSGGxA6xU5Qzf5xUFInTrjTfzGp2ikbaaEBoTsmCRn5w8_S82r9sX5frBQ3T2CPJwickOUOTQc08PyR09G8fo6m172QgCE0u0JgmWZSllE7Q964ErKFrWYWFkUq_YVNg61TdVZ3FSjvQVrn-FldKfxxlNxga03QVc8po3IJtjLZwtNUgSqZNCwIapw6AWVFAC9pZ_KVciRvbi9I0ZW-VGO5xKNlBmfYSnRessnB1mjO0v1_tlo_eZvuwXt5tPBEmsfOY4IQPZUhIeBBLP2PcF2GQyDSjzOdFLIFknLAgC0FCISMIUxnRgstkoDnzZ-j6N7dpzWcH1uW1sgKqimkwnc3jdEgjJBrA-QnseA0yb1pVs7bP_97m_wCIX3e- |
| CitedBy_id | crossref_primary_10_1038_s41598_024_53449_7 crossref_primary_10_1152_jn_00303_2015 crossref_primary_10_1002_j_2040_4603_2022_tb00203_x crossref_primary_10_1007_s11071_025_10930_w crossref_primary_10_3389_fncel_2018_00506 crossref_primary_10_3390_electronics11050707 crossref_primary_10_1109_TOH_2016_2573298 crossref_primary_10_1027_0269_8803_a000288 crossref_primary_10_3390_mi9050230 crossref_primary_10_1088_1741_2552_aae398 crossref_primary_10_1109_TOH_2015_2412942 crossref_primary_10_1007_s10237_018_1011_1 crossref_primary_10_1152_jn_00977_2016 crossref_primary_10_1152_jn_00482_2014 crossref_primary_10_1088_1741_2552_ac9e76 crossref_primary_10_1088_1741_2560_6_6_066008 crossref_primary_10_1126_science_1255635 crossref_primary_10_1152_jn_00002_2019 crossref_primary_10_3758_s13414_021_02253_w crossref_primary_10_1016_j_mser_2021_100640 crossref_primary_10_1088_1741_2552_ad7f8c crossref_primary_10_1109_TNSRE_2022_3158067 crossref_primary_10_1371_journal_pbio_3000431 crossref_primary_10_1109_TBME_2021_3076094 crossref_primary_10_1152_jn_00848_2017 crossref_primary_10_1038_s41598_018_34910_w crossref_primary_10_1371_journal_pone_0169570 crossref_primary_10_1109_TOH_2014_2369422 crossref_primary_10_1152_jn_00502_2009 crossref_primary_10_1371_journal_pone_0124787 crossref_primary_10_1152_jn_00680_2013 crossref_primary_10_1016_j_neuroscience_2017_08_024 crossref_primary_10_1088_1741_2552_ade503 crossref_primary_10_1016_j_neuropsychologia_2015_06_010 crossref_primary_10_1007_s00221_019_05495_1 crossref_primary_10_1152_jn_00395_2012 crossref_primary_10_3109_08990220_2012_732128 crossref_primary_10_3109_08990220_2012_732127 crossref_primary_10_3389_fninf_2019_00027 crossref_primary_10_1038_s41598_023_30545_8 crossref_primary_10_1152_jn_00168_2019 crossref_primary_10_1038_s41563_021_00966_9 crossref_primary_10_1109_TBCAS_2009_2032396 crossref_primary_10_1152_jn_00436_2017 crossref_primary_10_1038_s41598_017_11306_w crossref_primary_10_1523_JNEUROSCI_2161_12_2012 crossref_primary_10_3390_mi12050574 crossref_primary_10_1109_TOH_2020_3025772 crossref_primary_10_1016_j_neubiorev_2009_02_003 crossref_primary_10_1146_annurev_psych_093008_100419 crossref_primary_10_1016_j_neuroimage_2021_118498 crossref_primary_10_1371_journal_pbio_1002271 crossref_primary_10_1162_imag_a_00341 crossref_primary_10_1038_s41598_020_80132_4 crossref_primary_10_1523_JNEUROSCI_1494_21_2021 crossref_primary_10_1016_j_jneumeth_2014_01_021 crossref_primary_10_1152_jn_00588_2016 crossref_primary_10_1073_pnas_1509265112 crossref_primary_10_1016_j_tins_2014_08_012 crossref_primary_10_3389_fnsys_2019_00052 crossref_primary_10_1111_ejn_15822 crossref_primary_10_1038_s41551_020_00630_8 crossref_primary_10_1002_jnr_24957 crossref_primary_10_1007_s00521_018_3465_6 crossref_primary_10_7554_eLife_65128 crossref_primary_10_7554_eLife_10450 crossref_primary_10_1155_2021_8819169 crossref_primary_10_1007_s10162_008_0142_y crossref_primary_10_1088_1741_2552_aab790 crossref_primary_10_1152_jn_00235_2009 crossref_primary_10_1073_pnas_1305509110 crossref_primary_10_1088_1741_2552_acd4e8 crossref_primary_10_1073_pnas_1309728110 crossref_primary_10_1016_S1672_6529_16_60332_3 crossref_primary_10_1073_pnas_2115772118 crossref_primary_10_1109_TOH_2020_2964538 crossref_primary_10_1371_journal_pbio_1002004 crossref_primary_10_1016_j_neuron_2024_07_008 crossref_primary_10_1371_journal_pbio_1001558 crossref_primary_10_1016_j_bios_2023_115873 crossref_primary_10_1163_016918611X590292 crossref_primary_10_1088_1741_2552_aabd5d crossref_primary_10_1002_j_2040_4603_2018_tb00045_x crossref_primary_10_1016_j_clinph_2017_12_027 crossref_primary_10_1073_pnas_1818501116 crossref_primary_10_1016_j_sna_2017_09_035 crossref_primary_10_1523_JNEUROSCI_1753_15_2016 crossref_primary_10_1073_pnas_1616839114 crossref_primary_10_1152_jn_00374_2017 crossref_primary_10_1038_s41598_020_77212_w crossref_primary_10_1152_jn_00790_2015 crossref_primary_10_1093_pnasnexus_pgad292 crossref_primary_10_1109_TOH_2022_3140877 crossref_primary_10_1109_TNSRE_2011_2160560 crossref_primary_10_3389_fnins_2024_1125597 crossref_primary_10_1038_srep34887 crossref_primary_10_1093_cercor_bhy337 crossref_primary_10_3109_08990220_2013_779242 crossref_primary_10_1007_s12221_019_8592_x crossref_primary_10_1371_journal_pone_0031203 crossref_primary_10_1016_j_conb_2016_07_013 crossref_primary_10_1109_TBME_2020_3007397 crossref_primary_10_1016_j_neuroimage_2016_09_034 crossref_primary_10_1038_srep20738 crossref_primary_10_1016_j_brs_2011_07_002 crossref_primary_10_3389_fpain_2025_1541078 crossref_primary_10_1109_TNSRE_2019_2908817 crossref_primary_10_1016_j_neubiorev_2009_08_009 crossref_primary_10_1038_s41593_020_00751_y crossref_primary_10_1126_scitranslmed_aaf5187 crossref_primary_10_1002_wsbm_1267 crossref_primary_10_3390_mi10050301 crossref_primary_10_1016_j_neuron_2018_08_033 crossref_primary_10_1152_jn_00187_2010 crossref_primary_10_3389_fnhum_2022_862344 crossref_primary_10_1371_journal_pone_0236684 crossref_primary_10_3390_app9204329 crossref_primary_10_1109_TIM_2015_2398952 crossref_primary_10_1073_pnas_1704856114 crossref_primary_10_1088_1741_2552_abf28c crossref_primary_10_1109_ACCESS_2019_2961122 crossref_primary_10_1109_TOH_2019_2912960 crossref_primary_10_1152_jn_00284_2022 crossref_primary_10_1002_cne_25033 crossref_primary_10_1016_j_procs_2023_10_629 crossref_primary_10_3390_polym12061380 crossref_primary_10_1016_j_jneumeth_2015_08_010 crossref_primary_10_1073_pnas_1221113110 crossref_primary_10_3390_mi12030313 crossref_primary_10_1523_JNEUROSCI_1252_24_2024 crossref_primary_10_1007_s12221_009_0371_7 crossref_primary_10_1152_jn_00564_2017 crossref_primary_10_3389_fnins_2024_1351348 crossref_primary_10_1007_s00170_013_4832_1 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1523/JNEUROSCI.1486-07.2007 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1529-2401 |
| ExternalDocumentID | 17959811 |
| Genre | Journal Article Comparative Study Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: NS-18787 – fundername: NIDCD NIH HHS grantid: T32 DC000023 – fundername: NIDCD NIH HHS grantid: DC-00095 – fundername: NIDCD NIH HHS grantid: DC-00023 – fundername: NINDS NIH HHS grantid: R01 NS018787 – fundername: NIDCD NIH HHS grantid: R01 DC000095 – fundername: NINDS NIH HHS grantid: P01 NS038034 – fundername: NINDS NIH HHS grantid: NS-38034 |
| GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 3O- 53G 5GY 5RE 5VS AAFWJ AAJMC ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD ADXHL AENEX AETEA AFCFT AFFNX AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P GX1 H13 HYE H~9 KQ8 L7B MVM NPM OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M XJT YBU YHG YKV YNH YSK 7X8 |
| ID | FETCH-LOGICAL-c476t-acb0b401040b36d29ab2c437d891a2bf6de09b0a394edefd5e48d51fbd76d2ba2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 181 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000250577500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1529-2401 |
| IngestDate | Fri Sep 05 11:38:25 EDT 2025 Mon Jul 21 05:51:32 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 43 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c476t-acb0b401040b36d29ab2c437d891a2bf6de09b0a394edefd5e48d51fbd76d2ba2 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://www.jneurosci.org/content/jneuro/27/43/11687.full.pdf |
| PMID | 17959811 |
| PQID | 68437005 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_68437005 pubmed_primary_17959811 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-10-24 |
| PublicationDateYYYYMMDD | 2007-10-24 |
| PublicationDate_xml | – month: 10 year: 2007 text: 2007-10-24 day: 24 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The Journal of neuroscience |
| PublicationTitleAlternate | J Neurosci |
| PublicationYear | 2007 |
| SSID | ssj0007017 |
| Score | 2.36199 |
| Snippet | How specific aspects of a stimulus are encoded at different stages of neural processing is a critical question in sensory neuroscience. In the present study,... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 11687 |
| SubjectTerms | Action Potentials - physiology Adult Animals Differential Threshold - physiology Female Humans Macaca mulatta Male Mechanoreceptors - physiology Neurons, Afferent - physiology Physical Stimulation - methods Psychomotor Performance - physiology Touch - physiology Vibration |
| Title | The neural coding of stimulus intensity: linking the population response of mechanoreceptive afferents with psychophysical behavior |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/17959811 https://www.proquest.com/docview/68437005 |
| Volume | 27 |
| WOSCitedRecordID | wos000250577500026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwGA_TefDiaz7mMwfxVta0WdOIIGM4VHQMVNht5FUYuHau22Bn_3G_pK2exIOXnhpI01--9_f9ELrUlFFfceMBNhKPgoHhxYoZjwpiOFeg8yPXKPzE-v14OOSDGrqpemFsWWUlE52g1pmyMfJWFNOQAWRupx-e5YyyudWSQGMN1UMwZCym2fBnVjjzHd8uKCiXQyBlfzB4Xq3Hvq2Te-k-gKCIwaNmriX9dyPTKZve9v-2uYO2SiMTdwpU7KKaSfdQo5OCgz1Z4Svsyj5dPL2BPgEo2E61hAUqs5oMZwmGiz9ZvC9yPC5K3Oera1zSLGAwGfH0m_cLz4oqW2OXTYxtJM5AitpimaXBoqBfmefYBnxx0fM1LbGBqxkB--itd_favfdKZgZPURbNPaGkL6l15XwZRjrgQgYKPlzHnIhAJpE2Ppe-CDk12iS6bWis2ySRmsHbUgQHaD3NUnOEsKCKqEARTQOfioBKwUNJDWvTJIxNqJroojroESDfpjNEarJFPqqOuokOi381mhYDOkbEEqjHhBz_ufYEbbpgLSijgJ6iegJ33pyhDbWcj_PZuQMUPPuD5y89w9na |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+neural+coding+of+stimulus+intensity%3A+linking+the+population+response+of+mechanoreceptive+afferents+with+psychophysical+behavior&rft.jtitle=The+Journal+of+neuroscience&rft.au=Muniak%2C+Michael+A&rft.au=Ray%2C+Supratim&rft.au=Hsiao%2C+Steven+S&rft.au=Dammann%2C+J+Frank&rft.date=2007-10-24&rft.issn=1529-2401&rft.eissn=1529-2401&rft.volume=27&rft.issue=43&rft.spage=11687&rft_id=info:doi/10.1523%2FJNEUROSCI.1486-07.2007&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1529-2401&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1529-2401&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1529-2401&client=summon |