Estimating Forest Structure from UAV-Mounted LiDAR Point Cloud Using Machine Learning

Monitoring the structure of forest stands is of high importance for forest managers to help them in maintaining ecosystem services. For that purpose, Unmanned Aerial Vehicles (UAVs) open new prospects, especially in combination with Light Detection and Ranging (LiDAR) technology. Indeed, the shorter...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing (Basel, Switzerland) Ročník 13; číslo 3; s. 352 - 19
Hlavní autoři: Neuville, Romain, Bates, Jordan Steven, Jonard, François
Médium: Journal Article
Jazyk:angličtina
Vydáno: MDPI AG 20.01.2021
Témata:
ISSN:2072-4292, 2072-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Monitoring the structure of forest stands is of high importance for forest managers to help them in maintaining ecosystem services. For that purpose, Unmanned Aerial Vehicles (UAVs) open new prospects, especially in combination with Light Detection and Ranging (LiDAR) technology. Indeed, the shorter distance from the Earth’s surface significantly increases the point density beneath the canopy, thus offering new possibilities for the extraction of the underlying semantics. For example, tree stems can now be captured with sufficient detail, which is a gateway to accurately locating trees and directly retrieving metrics—e.g., the Diameter at Breast Height (DBH). Current practices usually require numerous site-specific parameters, which may preclude their use when applied beyond their initial application context. To overcome this shortcoming, the machine learning Hierarchical Density-Based Spatial Clustering of Application of Noise (HDBSCAN) clustering algorithm was further improved and implemented to segment tree stems. Afterwards, Principal Component Analysis (PCA) was applied to extract tree stem orientation for subsequent DBH estimation. This workflow was then validated using LiDAR point clouds collected in a temperate deciduous closed-canopy forest stand during the leaf-on and leaf-off seasons, along with multiple scanning angle ranges. The results show that the proposed methodology can correctly detect up to 82% of tree stems (with a precision of 98%) during the leaf-off season and have a Maximum Scanning Angle Range (MSAR) of 75 degrees, without having to set up any site-specific parameters for the segmentation procedure. In the future, our method could then minimize the omission and commission errors when initially detecting trees, along with assisting further tree metrics retrieval. Finally, this research shows that, under the study conditions, the point density within an approximately 1.3-meter height above the ground remains low within closed-canopy forest stands even during the leaf-off season, thus restricting the accurate estimation of the DBH. As a result, autonomous UAVs that can both fly above and under the canopy provide a clear opportunity to achieve this purpose.
AbstractList Monitoring the structure of forest stands is of high importance for forest managers to help them in maintaining ecosystem services. For that purpose, Unmanned Aerial Vehicles (UAVs) open new prospects, especially in combination with Light Detection and Ranging (LiDAR) technology. Indeed, the shorter distance from the Earth’s surface significantly increases the point density beneath the canopy, thus offering new possibilities for the extraction of the underlying semantics. For example, tree stems can now be captured with sufficient detail, which is a gateway to accurately locating trees and directly retrieving metrics—e.g., the Diameter at Breast Height (DBH). Current practices usually require numerous site-specific parameters, which may preclude their use when applied beyond their initial application context. To overcome this shortcoming, the machine learning Hierarchical Density-Based Spatial Clustering of Application of Noise (HDBSCAN) clustering algorithm was further improved and implemented to segment tree stems. Afterwards, Principal Component Analysis (PCA) was applied to extract tree stem orientation for subsequent DBH estimation. This workflow was then validated using LiDAR point clouds collected in a temperate deciduous closed-canopy forest stand during the leaf-on and leaf-off seasons, along with multiple scanning angle ranges. The results show that the proposed methodology can correctly detect up to 82% of tree stems (with a precision of 98%) during the leaf-off season and have a Maximum Scanning Angle Range (MSAR) of 75 degrees, without having to set up any site-specific parameters for the segmentation procedure. In the future, our method could then minimize the omission and commission errors when initially detecting trees, along with assisting further tree metrics retrieval. Finally, this research shows that, under the study conditions, the point density within an approximately 1.3-meter height above the ground remains low within closed-canopy forest stands even during the leaf-off season, thus restricting the accurate estimation of the DBH. As a result, autonomous UAVs that can both fly above and under the canopy provide a clear opportunity to achieve this purpose.
Monitoring the structure of forest stands is of high importance for forest managers to help them in maintaining ecosystem services. For that purpose, Unmanned Aerial Vehicles (UAVs) open new prospects, especially in combination with Light Detection and Ranging (LiDAR) technology. Indeed, the shorter distance from the Earth’s surface significantly increases the point density beneath the canopy, thus offering new possibilities for the extraction of the underlying semantics. For example, tree stems can now be captured with sufficient detail, which is a gateway to accurately locating trees and directly retrieving metrics—e.g., the Diameter at Breast Height (DBH). Current practices usually require numerous site-specific parameters, which may preclude their use when applied beyond their initial application context. To overcome this shortcoming, the machine learning Hierarchical Density-Based Spatial Clustering of Application of Noise (HDBSCAN) clustering algorithm was further improved and implemented to segment tree stems. Afterwards, Principal Component Analysis (PCA) was applied to extract tree stem orientation for subsequent DBH estimation. This workflow was then validated using LiDAR point clouds collected in a temperate deciduous closed-canopy forest stand during the leaf-on and leaf-off seasons, along with multiple scanning angle ranges. The results show that the proposed methodology can correctly detect up to 82% of tree stems (with a precision of 98%) during the leaf-off season and have a Maximum Scanning Angle Range (MSAR) of 75 degrees, without having to set up any site-specific parameters for the segmentation procedure. In the future, our method could then minimize the omission and commission errors when initially detecting trees, along with assisting further tree metrics retrieval. Finally, this research shows that, under the study conditions, the point density within an approximately 1.3-meter height above the ground remains low within closed-canopy forest stands even during the leaf-off season, thus restricting the accurate estimation of the DBH. As a result, autonomous UAVs that can both fly above and under the canopy provide a clear opportunity to achieve this purpose. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Author Jonard, François
Neuville, Romain
Bates, Jordan Steven
Author_xml – sequence: 1
  givenname: Romain
  orcidid: 0000-0003-1949-1332
  surname: Neuville
  fullname: Neuville, Romain
– sequence: 2
  givenname: Jordan Steven
  orcidid: 0000-0002-1349-7189
  surname: Bates
  fullname: Bates, Jordan Steven
– sequence: 3
  givenname: François
  orcidid: 0000-0002-8562-2073
  surname: Jonard
  fullname: Jonard, François
BookMark eNptkd9rFDEQx4NUsNa--BfkUYTV_Nrs7uNxtlq4UrE9X8NsdnKm7CU1yQr-96Z3iiKdeZhh-H6-MDMvyUmIAQl5zdk7KQf2PmUuWc1WPCOngnWiUWIQJ__0L8h5zveshpR8YOqUbC9y8XsoPuzoZUyYC70tabFlSUhdinu6XX1truMSCk504z-svtDP0YdC13NcJrrNj-Q12G8-IN0gpFAHr8hzB3PG89_1jGwvL-7Wn5rNzcer9WrTWNXp0gx2nITi3Ek58R5sJ62TnVbgwDLlBEiQymmEQWnHoEPdj7plo9bW6U5M8oxcHX2nCPfmIdVN0k8TwZvDIKadgVS8ndH0Ix-4AmwFA9VrB73VEq3GfoShc6x6yaPX7HGHlR29-SEOZod-mauZNSMaIXRvhJa6ayv15kg9pPh9qecze58tzjMEjEs2om350Oqe8SplR6lNMeeEzlhf6uVjKAn8bDgzj280f99Ykbf_IX92fEL8Cwtkne8
CitedBy_id crossref_primary_10_3390_rs14235992
crossref_primary_10_3390_mi15060712
crossref_primary_10_3390_rs16122215
crossref_primary_10_3390_rs17071271
crossref_primary_10_1016_j_foreco_2025_122977
crossref_primary_10_3390_agronomy12030555
crossref_primary_10_3390_sym14040726
crossref_primary_10_1139_cjfr_2021_0217
crossref_primary_10_3390_f14061159
crossref_primary_10_3390_s22010139
crossref_primary_10_1016_j_isprsjprs_2025_03_014
crossref_primary_10_1186_s13595_025_01291_w
crossref_primary_10_3390_f16081347
crossref_primary_10_1016_j_rse_2021_112522
crossref_primary_10_3390_su15032649
crossref_primary_10_3390_rs17101682
crossref_primary_10_1080_19475705_2024_2327399
crossref_primary_10_3390_ijgi11080423
crossref_primary_10_3390_rs17132245
crossref_primary_10_1016_j_rsase_2024_101260
crossref_primary_10_3390_ijgi10110762
crossref_primary_10_3390_f14091876
crossref_primary_10_3390_rs14030720
crossref_primary_10_1109_JSTARS_2025_3546651
crossref_primary_10_1016_j_jenvman_2023_117693
crossref_primary_10_1080_01431161_2022_2161853
crossref_primary_10_3390_rs16101734
crossref_primary_10_1016_j_rsase_2023_100997
crossref_primary_10_3390_f15071111
crossref_primary_10_1016_j_ecoinf_2025_103127
crossref_primary_10_1088_1755_1315_806_1_012033
crossref_primary_10_3390_rs15010115
crossref_primary_10_1016_j_optlaseng_2022_107178
crossref_primary_10_3390_rs17050785
crossref_primary_10_1016_j_srs_2025_100254
crossref_primary_10_3390_f16030457
crossref_primary_10_1016_j_ufug_2025_129018
crossref_primary_10_1007_s40725_025_00251_x
crossref_primary_10_1080_22797254_2025_2491750
crossref_primary_10_1109_TGRS_2024_3518567
crossref_primary_10_1109_JSTARS_2023_3317500
crossref_primary_10_3390_drones6090240
crossref_primary_10_4005_jjfs_107_85
crossref_primary_10_3390_rs17020229
crossref_primary_10_3390_f16030453
crossref_primary_10_3390_s25185798
crossref_primary_10_3390_rs13040710
crossref_primary_10_3390_rs14010235
crossref_primary_10_3390_f13071039
crossref_primary_10_3390_rs14225904
crossref_primary_10_1038_s41598_025_86704_6
crossref_primary_10_3390_f14122392
crossref_primary_10_1016_j_compag_2022_107209
crossref_primary_10_34133_plantphenomics_0264
crossref_primary_10_1109_JSYST_2021_3100278
crossref_primary_10_3390_s22072666
crossref_primary_10_3390_rs13132627
crossref_primary_10_1016_j_jhydrol_2022_128681
crossref_primary_10_1111_2041_210X_13912
crossref_primary_10_3390_s24165409
crossref_primary_10_3390_rs14194757
crossref_primary_10_1016_j_jag_2025_104493
crossref_primary_10_3390_f16091481
crossref_primary_10_3390_rs14122753
crossref_primary_10_3389_fpls_2023_1139232
crossref_primary_10_3390_f13122077
crossref_primary_10_3390_app13010276
crossref_primary_10_1080_01431161_2024_2370499
crossref_primary_10_3390_f16091483
crossref_primary_10_3390_rs17020328
crossref_primary_10_3390_rs16101783
crossref_primary_10_3390_agriculture13112097
crossref_primary_10_3390_f14122456
crossref_primary_10_3390_f12070856
crossref_primary_10_3390_rs15092380
crossref_primary_10_3390_rs15092263
crossref_primary_10_1007_s42979_023_02592_5
crossref_primary_10_3390_app11125340
crossref_primary_10_3390_rs14215487
crossref_primary_10_3390_rs17081456
crossref_primary_10_3390_land13111856
crossref_primary_10_1109_JSTARS_2025_3545482
crossref_primary_10_1016_j_rsase_2025_101691
crossref_primary_10_1061_JSUED2_SUENG_1410
crossref_primary_10_1016_j_ecoleng_2022_106671
crossref_primary_10_32604_cmc_2023_034892
crossref_primary_10_1016_j_compag_2022_106966
crossref_primary_10_1080_01431161_2024_2398228
crossref_primary_10_1016_j_ymssp_2023_111050
crossref_primary_10_1109_ACCESS_2023_3296066
crossref_primary_10_3390_wevj16030171
crossref_primary_10_3390_f16071155
crossref_primary_10_1155_2022_3175998
crossref_primary_10_1080_10106049_2022_2048902
crossref_primary_10_1016_j_infrared_2023_104802
crossref_primary_10_1016_j_rse_2021_112540
crossref_primary_10_3390_rs13214312
crossref_primary_10_3390_en15145245
Cites_doi 10.3390/f10030277
10.3390/f9070395
10.1007/BF01934268
10.1016/j.isprsjprs.2018.04.019
10.1016/j.foreco.2004.07.077
10.3390/rs5020584
10.3390/rs12101667
10.3390/f7030062
10.1023/A:1007586507433
10.1002/eap.2154
10.1016/j.isprsjprs.2014.03.014
10.1016/j.isprsjprs.2010.08.002
10.3390/f9010006
10.1002/rob.21863
10.1007/BF00892986
10.1016/j.isprsjprs.2009.04.002
10.1080/01431161.2016.1277044
10.1109/TNN.2005.845141
10.1016/j.foreco.2015.06.003
10.1016/j.envsci.2010.12.004
10.3390/rs6054323
10.1016/S0898-1221(98)00101-1
10.1016/j.isprsjprs.2017.11.013
10.3390/rs12081245
10.3390/f9070398
10.1016/j.rse.2006.03.003
10.1126/science.aax0848
10.1109/ICCV.2017.569
10.3390/s140101228
10.1016/j.envsoft.2016.04.025
10.3390/rs70708631
10.1029/93WR03553
10.1109/TGRS.2003.810682
10.1007/978-3-662-03664-8
10.3390/rs12050885
10.1080/07038992.2014.987376
10.1191/0309133305pp432ra
10.3390/rs11131550
10.3390/rs10091403
10.1016/B978-044482107-2/50036-4
10.2737/PNW-GTR-768
10.1080/01431160701736406
10.1029/1999WR900034
10.3390/rs12050863
10.3390/rs5020491
10.3390/rs9080785
10.1109/TGRS.2014.2308208
10.1109/TGRS.2006.890412
10.3390/rs11232781
10.3233/IDA-2007-11602
10.3390/rs11060615
10.1126/science.aac6759
10.3390/f7060127
10.1007/978-3-540-31865-1_25
10.1016/j.isprsjprs.2017.07.001
10.3390/rs11111271
10.1139/juvs-2013-0017
10.14358/PERS.76.6.701
10.1109/TGRS.2011.2161613
10.3390/rs12101652
10.3390/rs12203327
10.3390/rs12152426
10.1111/gcb.13388
10.1016/j.isprsjprs.2020.01.018
10.3390/rs9111154
10.14358/PERS.78.11.1275
10.3390/f6113923
10.3133/tm11B7
10.1016/S0924-2716(98)00009-4
10.1109/TGRS.2014.2315649
10.1016/j.isprsjprs.2018.06.021
10.1016/j.jhydrol.2011.08.032
10.1111/j.1467-9671.2004.00169.x
10.3390/rs70809975
10.3390/rs10111759
10.1145/3233794
10.1139/x99-215
10.1016/j.rse.2018.12.034
10.3390/rs8060501
10.1080/01431161.2016.1219425
10.3390/rs10111845
10.14358/PERS.81.4.281
10.17221/28/2017-JFS
10.1016/j.isprsjprs.2020.03.021
10.2514/6.2009-6113
10.1016/S0378-1127(98)00431-9
10.1016/j.isprsjprs.2015.10.004
10.3390/rs12081236
10.1109/ACCESS.2020.2995389
10.1080/01431161.2010.494184
10.1038/d41586-019-01026-8
10.3390/s17102371
10.1007/s10846-016-0348-x
10.1016/j.isprsjprs.2016.03.016
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
JLOSS
Q33
DOA
DOI 10.3390/rs13030352
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only)
Université de Liège - Open Repository and Bibliography (ORBI)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef


AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Forestry
Computer Science
EISSN 2072-4292
EndPage 19
ExternalDocumentID oai_doaj_org_article_8b1914ae520a486fa8c63ec6e8ba97f0
oai_orbi_ulg_ac_be_2268_263675
10_3390_rs13030352
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7S9
L.6
PUEGO
C1A
IPNFZ
JLOSS
Q33
RIG
ID FETCH-LOGICAL-c476t-9cbd2411f33d18ac73cf3764afac04f2a3a34f6ea946f0a7e68b650b66cf672d3
IEDL.DBID DOA
ISICitedReferencesCount 117
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000615480700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Tue Oct 14 18:48:14 EDT 2025
Sat Nov 29 01:28:03 EST 2025
Thu Oct 02 07:47:38 EDT 2025
Sat Nov 29 07:14:25 EST 2025
Tue Nov 18 21:47:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-9cbd2411f33d18ac73cf3764afac04f2a3a34f6ea946f0a7e68b650b66cf672d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
scopus-id:2-s2.0-85099840710
ORCID 0000-0003-1949-1332
0000-0002-8562-2073
0000-0002-1349-7189
OpenAccessLink https://doaj.org/article/8b1914ae520a486fa8c63ec6e8ba97f0
PQID 2551956801
PQPubID 24069
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_8b1914ae520a486fa8c63ec6e8ba97f0
liege_orbi_v2_oai_orbi_ulg_ac_be_2268_263675
proquest_miscellaneous_2551956801
crossref_citationtrail_10_3390_rs13030352
crossref_primary_10_3390_rs13030352
PublicationCentury 2000
PublicationDate 20210120
PublicationDateYYYYMMDD 2021-01-20
PublicationDate_xml – month: 01
  year: 2021
  text: 20210120
  day: 20
PublicationDecade 2020
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wallace (ref_28) 2014; 52
Liang (ref_49) 2014; 14
ref_92
Zhang (ref_83) 1994; 30
Wang (ref_100) 2008; 36
ref_11
Buttazzo (ref_21) 2016; 83
ref_98
ref_95
ref_19
Zhao (ref_78) 2016; 117
ref_17
Forsman (ref_30) 2018; 135
Liang (ref_42) 2018; 144
Boyd (ref_10) 2005; 29
Ke (ref_8) 2011; 32
Kukko (ref_50) 2020; 161
Caruso (ref_89) 1998; 35
Bastin (ref_2) 2019; 365
Guo (ref_88) 2010; 76
ref_22
ref_20
Rognant (ref_85) 1998; 32
ref_29
Zhang (ref_76) 2003; 41
ref_26
Liang (ref_48) 2018; 143
Lovell (ref_34) 2005; 214
Jonard (ref_3) 2011; 409
Pajares (ref_13) 2015; 81
Zimmerman (ref_91) 1999; 31
Xia (ref_67) 2015; 6
ref_70
ref_79
ref_74
Dey (ref_94) 2016; 7
Xu (ref_93) 2005; 16
Wu (ref_55) 2013; 5
Kienzle (ref_87) 2004; 8
Romijn (ref_6) 2015; 352
ref_84
Toth (ref_15) 2016; 115
Liang (ref_66) 2012; 50
Jaakkola (ref_14) 2010; 65
Pestana (ref_23) 2019; 36
Jucker (ref_31) 2017; 23
Salach (ref_75) 2017; 38
Yin (ref_27) 2019; 223
ref_58
ref_57
Almeida (ref_9) 2019; 79
ref_54
Wallace (ref_24) 2012; 39
ref_53
ref_51
Henning (ref_40) 2006; 52
Banskota (ref_1) 2014; 40
Gorte (ref_71) 2004; 35
Vonderach (ref_73) 2012; 39
Wang (ref_68) 2020; 8
Wallace (ref_25) 2014; 52
ref_59
Lamprecht (ref_97) 2015; 7
Maas (ref_39) 2008; 29
ref_61
Reitberger (ref_101) 2009; 64
ref_60
Williams (ref_33) 2000; 30
Jing (ref_103) 2012; 78
ref_64
ref_63
ref_62
Muhairwe (ref_32) 1999; 113
Walker (ref_86) 1999; 35
Chisholm (ref_56) 2013; 01
Trumbore (ref_4) 2015; 349
Sattar (ref_105) 2006; Volume 4304
Lu (ref_106) 2014; 94
Rahman (ref_102) 2014; 38
ref_36
ref_35
Hamraz (ref_37) 2017; 130
ref_111
ref_110
Cressie (ref_90) 1988; 20
ref_113
Omran (ref_96) 2007; 11
ref_112
ref_38
Evans (ref_80) 2007; 45
(ref_52) 2017; 63
Kraus (ref_81) 1998; 53
Goodwin (ref_12) 2006; 103
Goutte (ref_104) 2005; Volume 3408
ref_108
ref_107
(ref_7) 2011; 14
Gander (ref_99) 1994; 34
Lewis (ref_5) 2019; 568
Montealegre (ref_77) 2015; 7
ref_109
ref_46
Hakala (ref_69) 2020; 164
ref_45
ref_44
ref_43
ref_41
Marselis (ref_47) 2016; 82
Ioki (ref_82) 2012; 02
Raumonen (ref_72) 2013; 5
Goodbody (ref_16) 2017; 38
Hepp (ref_18) 2018; 38
Olofsson (ref_65) 2014; 6
References_xml – ident: ref_74
– ident: ref_46
  doi: 10.3390/f10030277
– ident: ref_53
  doi: 10.3390/f9070395
– volume: 34
  start-page: 558
  year: 1994
  ident: ref_99
  article-title: Least-Squares Fitting of Circles and Ellipses
  publication-title: BIT
  doi: 10.1007/BF01934268
– volume: 143
  start-page: 97
  year: 2018
  ident: ref_48
  article-title: In-Situ Measurements from Mobile Platforms: An Emerging Approach to Address the Old Challenges Associated with Forest Inventories
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.04.019
– volume: 214
  start-page: 398
  year: 2005
  ident: ref_34
  article-title: Simulation Study for Finding Optimal Lidar Acquisition Parameters for Forest Height Retrieval
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2004.07.077
– volume: 5
  start-page: 584
  year: 2013
  ident: ref_55
  article-title: A Voxel-Based Method for Automated Identification and Morphological Parameters Estimation of Individual Street Trees from Mobile Laser Scanning Data
  publication-title: Remote Sens.
  doi: 10.3390/rs5020584
– ident: ref_111
  doi: 10.3390/rs12101667
– ident: ref_26
  doi: 10.3390/f7030062
– volume: 31
  start-page: 375
  year: 1999
  ident: ref_91
  article-title: An Experimental Comparison of Ordinary and Universal Kriging and Inverse Distance Weighting
  publication-title: Math. Geol.
  doi: 10.1023/A:1007586507433
– ident: ref_36
  doi: 10.1002/eap.2154
– volume: 94
  start-page: 1
  year: 2014
  ident: ref_106
  article-title: A Bottom-up Approach to Segment Individual Deciduous Trees Using Leaf-off Lidar Point Cloud Data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.03.014
– volume: 65
  start-page: 514
  year: 2010
  ident: ref_14
  article-title: A Low-Cost Multi-Sensoral Mobile Mapping System and Its Feasibility for Tree Measurements
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2010.08.002
– ident: ref_43
  doi: 10.3390/f9010006
– volume: 36
  start-page: 734
  year: 2019
  ident: ref_23
  article-title: Overview Obstacle Maps for Obstacle-Aware Navigation of Autonomous Drones
  publication-title: J. Field Robot.
  doi: 10.1002/rob.21863
– volume: 20
  start-page: 17
  year: 1988
  ident: ref_90
  article-title: Spatial Prediction and Ordinary Kriging
  publication-title: Math. Geol.
  doi: 10.1007/BF00892986
– volume: 64
  start-page: 561
  year: 2009
  ident: ref_101
  article-title: 3D Segmentation of Single Trees Exploiting Full Waveform LIDAR Data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.04.002
– volume: 38
  start-page: 2921
  year: 2017
  ident: ref_75
  article-title: Evaluation of the Accuracy of Lidar Data Acquired Using a UAS for Levee Monitoring: Preliminary Results
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1277044
– volume: 16
  start-page: 645
  year: 2005
  ident: ref_93
  article-title: Survey of Clustering Algorithms
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.845141
– volume: 352
  start-page: 109
  year: 2015
  ident: ref_6
  article-title: Assessing Change in National Forest Monitoring Capacities of 99 Tropical Countries
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2015.06.003
– volume: 14
  start-page: 181
  year: 2011
  ident: ref_7
  article-title: Community Forest Monitoring in REDD+: The ‘M’ in MRV?
  publication-title: Environ. Sci. Policy
  doi: 10.1016/j.envsci.2010.12.004
– volume: 6
  start-page: 4323
  year: 2014
  ident: ref_65
  article-title: Tree Stem and Height Measurements Using Terrestrial Laser Scanning and the RANSAC Algorithm
  publication-title: Remote Sens.
  doi: 10.3390/rs6054323
– volume: 39
  start-page: 451
  year: 2012
  ident: ref_73
  article-title: Voxel-Based Approach for Estimating Urban Tree Volume from Terrestrial Laser Scanning Data
  publication-title: ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
– volume: 35
  start-page: 109
  year: 1998
  ident: ref_89
  article-title: Interpolation Methods Comparison
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(98)00101-1
– volume: 135
  start-page: 84
  year: 2018
  ident: ref_30
  article-title: Bias of Cylinder Diameter Estimation from Ground-Based Laser Scanners with Different Beam Widths: A Simulation Study
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.11.013
– ident: ref_60
  doi: 10.3390/rs12081245
– volume: 36
  start-page: 45
  year: 2008
  ident: ref_100
  article-title: LiDAR Point Cloud Based Fully Automatic 3d Single Tree Modelling in Forest and Evaluations of the Procedure
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
– ident: ref_41
  doi: 10.3390/f9070398
– volume: 103
  start-page: 140
  year: 2006
  ident: ref_12
  article-title: Assessment of Forest Structure with Airborne LiDAR and the Effects of Platform Altitude
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.03.003
– volume: 365
  start-page: 76
  year: 2019
  ident: ref_2
  article-title: The Global Tree Restoration Potential
  publication-title: Science
  doi: 10.1126/science.aax0848
– ident: ref_17
  doi: 10.1109/ICCV.2017.569
– volume: 14
  start-page: 1228
  year: 2014
  ident: ref_49
  article-title: Possibilities of a Personal Laser Scanning System for Forest Mapping and Ecosystem Services
  publication-title: Sensors
  doi: 10.3390/s140101228
– ident: ref_92
– volume: 82
  start-page: 142
  year: 2016
  ident: ref_47
  article-title: Deriving Comprehensive Forest Structure Information from Mobile Laser Scanning Observations Using Automated Point Cloud Classification
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2016.04.025
– volume: 7
  start-page: 8631
  year: 2015
  ident: ref_77
  article-title: Interpolation Routines Assessment in ALS-Derived Digital Elevation Models for Forestry Applications
  publication-title: Remote Sens.
  doi: 10.3390/rs70708631
– volume: 30
  start-page: 1019
  year: 1994
  ident: ref_83
  article-title: Digital Elevation Model Grid Size, Landscape Representation, and Hydrologic Simulations
  publication-title: Water Resour. Res.
  doi: 10.1029/93WR03553
– volume: 41
  start-page: 872
  year: 2003
  ident: ref_76
  article-title: A Progressive Morphological Filter for Removing Nonground Measurements from Airborne LIDAR Data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.810682
– volume: 02
  start-page: 89
  year: 2012
  ident: ref_82
  article-title: Estimating Vertical Distribution of Vegetation Cover in Temperate Heterogeneous Forests Using Airborne Laser Scanning Data
  publication-title: Open J. For.
– ident: ref_35
  doi: 10.1007/978-3-662-03664-8
– ident: ref_70
  doi: 10.3390/rs12050885
– volume: 40
  start-page: 362
  year: 2014
  ident: ref_1
  article-title: Forest Monitoring Using Landsat Time Series Data: A Review
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2014.987376
– volume: 29
  start-page: 1
  year: 2005
  ident: ref_10
  article-title: Satellite Remote Sensing of Forest Resources: Three Decades of Research Development
  publication-title: Prog. Phys. Geogr. Earth Environ.
  doi: 10.1191/0309133305pp432ra
– volume: 38
  start-page: 123
  year: 2014
  ident: ref_102
  article-title: Tree Crown Delineation from High Resolution Airborne Lidar Based on Densities of High Points
  publication-title: Int. Arch. Photogramm. Remote Sens.
– ident: ref_22
  doi: 10.3390/rs11131550
– ident: ref_51
  doi: 10.3390/rs10091403
– ident: ref_98
  doi: 10.1016/B978-044482107-2/50036-4
– ident: ref_107
  doi: 10.2737/PNW-GTR-768
– volume: 29
  start-page: 1579
  year: 2008
  ident: ref_39
  article-title: Automatic Forest Inventory Parameter Determination from Terrestrial Laser Scanner Data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701736406
– volume: 35
  start-page: 2259
  year: 1999
  ident: ref_86
  article-title: On the Effect of Digital Elevation Model Accuracy on Hydrology and Geomorphology
  publication-title: Water Resour. Res.
  doi: 10.1029/1999WR900034
– volume: Volume 4304
  start-page: 1015
  year: 2006
  ident: ref_105
  article-title: Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation
  publication-title: AI 2006: Advances in Artificial Intelligence
– ident: ref_58
  doi: 10.3390/rs12050863
– ident: ref_64
– ident: ref_19
– ident: ref_95
– volume: 5
  start-page: 491
  year: 2013
  ident: ref_72
  article-title: Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data
  publication-title: Remote Sens.
  doi: 10.3390/rs5020491
– ident: ref_59
  doi: 10.3390/rs9080785
– volume: 52
  start-page: 7160
  year: 2014
  ident: ref_28
  article-title: An Assessment of the Repeatability of Automatic Forest Inventory Metrics Derived From UAV-Borne Laser Scanning Data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2308208
– volume: 45
  start-page: 1029
  year: 2007
  ident: ref_80
  article-title: A Multiscale Curvature Algorithm for Classifying Discrete Return LiDAR in Forested Environments
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.890412
– ident: ref_109
  doi: 10.3390/rs11232781
– ident: ref_113
– volume: 11
  start-page: 583
  year: 2007
  ident: ref_96
  article-title: An Overview of Clustering Methods
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-2007-11602
– ident: ref_108
  doi: 10.3390/rs11060615
– volume: 349
  start-page: 814
  year: 2015
  ident: ref_4
  article-title: Forest Health and Global Change
  publication-title: Science
  doi: 10.1126/science.aac6759
– volume: 79
  start-page: 192
  year: 2019
  ident: ref_9
  article-title: Monitoring the Structure of Forest Restoration Plantations with a Drone-Lidar System
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_45
  doi: 10.3390/f7060127
– volume: Volume 3408
  start-page: 345
  year: 2005
  ident: ref_104
  article-title: A Probabilistic Interpretation of Precision, Recall and F -Score, with Implication for Evaluation
  publication-title: Proceedings of the Advances in Information Retrieval
  doi: 10.1007/978-3-540-31865-1_25
– volume: 130
  start-page: 385
  year: 2017
  ident: ref_37
  article-title: Vertical Stratification of Forest Canopy for Segmentation of Understory Trees within Small-Footprint Airborne LiDAR Point Clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.07.001
– ident: ref_11
  doi: 10.3390/rs11111271
– volume: 01
  start-page: 61
  year: 2013
  ident: ref_56
  article-title: UAV LiDAR for Below-Canopy Forest Surveys
  publication-title: J. Unmanned Veh. Syst.
  doi: 10.1139/juvs-2013-0017
– volume: 76
  start-page: 701
  year: 2010
  ident: ref_88
  article-title: Effects of Topographic Variability and Lidar Sampling Density on Several DEM Interpolation Methods
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.76.6.701
– volume: 50
  start-page: 661
  year: 2012
  ident: ref_66
  article-title: Automatic Stem Mapping Using Single-Scan Terrestrial Laser Scanning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2161613
– ident: ref_110
  doi: 10.3390/rs12101652
– ident: ref_62
  doi: 10.3390/rs12203327
– ident: ref_112
  doi: 10.3390/rs12152426
– volume: 23
  start-page: 177
  year: 2017
  ident: ref_31
  article-title: Allometric Equations for Integrating Remote Sensing Imagery into Forest Monitoring Programmes
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.13388
– volume: 161
  start-page: 246
  year: 2020
  ident: ref_50
  article-title: Accurate Derivation of Stem Curve and Volume Using Backpack Mobile Laser Scanning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.01.018
– ident: ref_57
  doi: 10.3390/rs9111154
– volume: 78
  start-page: 1275
  year: 2012
  ident: ref_103
  article-title: Automated Delineation of Individual Tree Crowns from Lidar Data by Multi-Scale Analysis and Segmentation
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.78.11.1275
– volume: 6
  start-page: 3923
  year: 2015
  ident: ref_67
  article-title: Detecting Stems in Dense and Homogeneous Forest Using Single-Scan TLS
  publication-title: Forests
  doi: 10.3390/f6113923
– ident: ref_84
  doi: 10.3133/tm11B7
– volume: 39
  start-page: 499
  year: 2012
  ident: ref_24
  article-title: Assessing the Feasibility of Uav-Based Lidar for High Resolution Forest Change Detection
  publication-title: ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
– volume: 53
  start-page: 193
  year: 1998
  ident: ref_81
  article-title: Determination of terrain models in wooded areas with airborne laser scanner data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/S0924-2716(98)00009-4
– volume: 52
  start-page: 7619
  year: 2014
  ident: ref_25
  article-title: Evaluating Tree Detection and Segmentation Routines on Very High Resolution UAV LiDAR Data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2315649
– volume: 144
  start-page: 137
  year: 2018
  ident: ref_42
  article-title: International Benchmarking of Terrestrial Laser Scanning Approaches for Forest Inventories
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.06.021
– volume: 409
  start-page: 371
  year: 2011
  ident: ref_3
  article-title: Sap Flux Density and Stomatal Conductance of European Beech and Common Oak Trees in Pure and Mixed Stands during the Summer Drought of 2003
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.08.032
– volume: 32
  start-page: 494
  year: 1998
  ident: ref_85
  article-title: Triangulated Digital Elevation Model: Definition of a New Representation
  publication-title: Int. Arch. Photogramm. Remote Sens.
– volume: 8
  start-page: 83
  year: 2004
  ident: ref_87
  article-title: The Effect of DEM Raster Resolution on First Order, Second Order and Compound Terrain Derivatives
  publication-title: Trans. GIS
  doi: 10.1111/j.1467-9671.2004.00169.x
– volume: 7
  start-page: 9975
  year: 2015
  ident: ref_97
  article-title: ATrunk—An ALS-Based Trunk Detection Algorithm
  publication-title: Remote Sens.
  doi: 10.3390/rs70809975
– ident: ref_54
  doi: 10.3390/rs10111759
– volume: 38
  start-page: 1
  year: 2018
  ident: ref_18
  article-title: Plan3D: Viewpoint and Trajectory Optimization for Aerial Multi-View Stereo Reconstruction
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3233794
– volume: 30
  start-page: 306
  year: 2000
  ident: ref_33
  article-title: Guidelines for Choosing Volume Equations in the Presence of Measurement Error in Height
  publication-title: Can. J. For. Res.
  doi: 10.1139/x99-215
– volume: 223
  start-page: 34
  year: 2019
  ident: ref_27
  article-title: Individual Mangrove Tree Measurement Using UAV-Based LiDAR Data: Possibilities and Challenges
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.12.034
– ident: ref_63
– ident: ref_79
  doi: 10.3390/rs8060501
– volume: 38
  start-page: 2938
  year: 2017
  ident: ref_16
  article-title: Updating Residual Stem Volume Estimates Using ALS- and UAV-Acquired Stereo-Photogrammetric Point Clouds
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1219425
– ident: ref_44
  doi: 10.3390/rs10111845
– volume: 81
  start-page: 281
  year: 2015
  ident: ref_13
  article-title: Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs)
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.81.4.281
– volume: 63
  start-page: 433
  year: 2017
  ident: ref_52
  article-title: Estimation of Diameter at Breast Height from Mobile Laser Scanning Data Collected under a Heavy Forest Canopy
  publication-title: J. For. Sci.
  doi: 10.17221/28/2017-JFS
– volume: 164
  start-page: 41
  year: 2020
  ident: ref_69
  article-title: Under-Canopy UAV Laser Scanning for Accurate Forest Field Measurements
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.03.021
– ident: ref_20
  doi: 10.2514/6.2009-6113
– volume: 113
  start-page: 251
  year: 1999
  ident: ref_32
  article-title: Taper Equations for Eucalyptus Pilularis and Eucalyptus Grandis for the North Coast in New South Wales, Australia
  publication-title: For. Ecol. Manag.
  doi: 10.1016/S0378-1127(98)00431-9
– volume: 115
  start-page: 22
  year: 2016
  ident: ref_15
  article-title: Remote Sensing Platforms and Sensors: A Survey
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.10.004
– ident: ref_29
– ident: ref_61
  doi: 10.3390/rs12081236
– volume: 7
  start-page: 6
  year: 2016
  ident: ref_94
  article-title: Machine Learning Algorithms: A Review
  publication-title: Int. J. Comput. Sci. Inf. Technol.
– volume: 8
  start-page: 99783
  year: 2020
  ident: ref_68
  article-title: Combining Trunk Detection With Canopy Segmentation to Delineate Single Deciduous Trees Using Airborne LiDAR Data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2995389
– volume: 32
  start-page: 4725
  year: 2011
  ident: ref_8
  article-title: A Review of Methods for Automatic Individual Tree-Crown Detection and Delineation from Passive Remote Sensing
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2010.494184
– volume: 35
  start-page: 929
  year: 2004
  ident: ref_71
  article-title: Structuring Laser-Scanned Trees Using 3d Mathematical Morphology
  publication-title: Nternational Arch. Photogramm. Remote Sens.
– volume: 568
  start-page: 25
  year: 2019
  ident: ref_5
  article-title: Restoring Natural Forests Is the Best Way to Remove Atmospheric Carbon
  publication-title: Nature
  doi: 10.1038/d41586-019-01026-8
– ident: ref_38
  doi: 10.3390/s17102371
– volume: 83
  start-page: 445
  year: 2016
  ident: ref_21
  article-title: Coverage Path Planning for UAVs Photogrammetry with Energy and Resolution Constraints
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-016-0348-x
– volume: 117
  start-page: 79
  year: 2016
  ident: ref_78
  article-title: Improved Progressive TIN Densification Filtering Algorithm for Airborne LiDAR Data in Forested Areas
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.03.016
– volume: 52
  start-page: 67
  year: 2006
  ident: ref_40
  article-title: Detailed Stem Measurements of Standing Trees from Ground-Based Scanning Lidar
  publication-title: For. Sci.
SSID ssj0000331904
Score 2.5868657
Snippet Monitoring the structure of forest stands is of high importance for forest managers to help them in maintaining ecosystem services. For that purpose, Unmanned...
SourceID doaj
liege
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 352
SubjectTerms Accurate estimation
Aircraft detection
algorithms
Antennas
Application contexts
Biologie végétale (sciences végétales, sylviculture, mycologie...)
canopy
Clustering algorithms
Computer science
data collection
Density-Based Spatial Clustering
Diameter-at-breast heights
Earth sciences & physical geography
Ecosystems
Engineering, computing & technology
Environmental sciences & ecology
forest stands
Forestry
forests
HDBSCAN
Hierarchical clustering
Ingénierie, informatique & technologie
LiDAR
Life sciences
Light detection and ranging
Machine learning
Omission and commission errors
Optical radar
PCA
Physical, chemical, mathematical & earth Sciences
Physique, chimie, mathématiques & sciences de la terre
Phytobiology (plant sciences, forestry, mycology...)
Point cloud
principal component analysis
Sciences de la terre & géographie physique
Sciences de l’environnement & écologie
Sciences du vivant
Sciences informatiques
Segmentation procedure
Semantics
Site-specific parameters
tree and stand measurements
Tree diameter
Tree stem segmentation
trees
UAV
Unmanned aerial vehicles (UAV)
Title Estimating Forest Structure from UAV-Mounted LiDAR Point Cloud Using Machine Learning
URI https://www.proquest.com/docview/2551956801
https://orbi.uliege.be/handle/2268/263675
https://doaj.org/article/8b1914ae520a486fa8c63ec6e8ba97f0
Volume 13
WOSCitedRecordID wos000615480700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SBX0RP_GsHhF9EVya3eSS7OO1XqnQO5bWk-pLSLJJe3Dslfso-NK_vTPZbT2o4IsvYdnNhjCTTOZHZn5DyCcZZXS2VlnMIweAgpS3LlhAKbYeiMi9zVOi8LGaTPTZWVltlfrCmLCWHrgV3J52yEBmw6BgVmgZrfaSBy-DdrZUMaF1psotMJVsMIelxUTLR8oB1-8tV2itWcow2jqBElE_OKZzvKK-Z4_TIXP4jDztvEM6bGf1nDwIzQvyuCtUfvH7JZmOYEuik9mcU6yquVrT08QAu1kGiqkidDr8kY2xAESo6fHs6_CEVotZs6YH88WmpilCgI5TBGWgHbnq-SsyPRx9PzjKusoImRdKrrPSuxqOXhAvr3NtveI-gqUQNlrPRCwst1xEGWwpZGRWBakduGJOSh-lKmr-muw0iya8IRT8Vce9V1gfXQStytyWfhCCzGPpmIo98vlWWsZ3tOFYvWJuAD6gZM0fyfbIx7u-ly1Zxl977aPQ73ogwXV6AWo3ndrNv9TeI1-SyuAnNzNXRRolPW_mMIo3LhjwLLUpJAdM1CMfbjVrYP_gpYhtwmKzMgCpUsoky9_-j3ntkicFRr2wHOzPO7IDSyC8J4_81Xq2WvbJw_3RpDrpp8XaxzjTU2yvR9BWg1_wvfo2rn7eAA8d8yQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+Forest+Structure+from+UAV-Mounted+LiDAR+Point+Cloud+Using+Machine+Learning&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Neuville%2C+Romain&rft.au=Bates%2C+Jordan+Steven&rft.au=Jonard%2C+Fran%C3%A7ois&rft.date=2021-01-20&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=13&rft.issue=3&rft_id=info:doi/10.3390%2Frs13030352&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon