Spatial Pooling of Heterogeneous Features for Image Classification

In image classification tasks, one of the most successful algorithms is the bag-of-features (BoFs) model. Although the BoF model has many advantages, such as simplicity, generality, and scalability, it still suffers from several drawbacks, including the limited semantic description of local descript...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing Jg. 23; H. 5; S. 1994 - 2008
Hauptverfasser: Xie, Lingxi, Tian, Qi, Wang, Meng, Zhang, Bo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.05.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1057-7149, 1941-0042, 1941-0042
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In image classification tasks, one of the most successful algorithms is the bag-of-features (BoFs) model. Although the BoF model has many advantages, such as simplicity, generality, and scalability, it still suffers from several drawbacks, including the limited semantic description of local descriptors, lack of robust structures upon single visual words, and missing of efficient spatial weighting. To overcome these shortcomings, various techniques have been proposed, such as extracting multiple descriptors, spatial context modeling, and interest region detection. Though they have been proven to improve the BoF model to some extent, there still lacks a coherent scheme to integrate each individual module together. To address the problems above, we propose a novel framework with spatial pooling of complementary features. Our model expands the traditional BoF model on three aspects. First, we propose a new scheme for combining texture and edge-based local features together at the descriptor extraction level. Next, we build geometric visual phrases to model spatial context upon complementary features for midlevel image representation. Finally, based on a smoothed edgemap, a simple and effective spatial weighting scheme is performed to capture the image saliency. We test the proposed framework on several benchmark data sets for image classification. The extensive results show the superior performance of our algorithm over the state-of-the-art methods.
AbstractList In image classification tasks, one of the most successful algorithms is the bag-of-features (BoFs) model. Although the BoF model has many advantages, such as simplicity, generality, and scalability, it still suffers from several drawbacks, including the limited semantic description of local descriptors, lack of robust structures upon single visual words, and missing of efficient spatial weighting. To overcome these shortcomings, various techniques have been proposed, such as extracting multiple descriptors, spatial context modeling, and interest region detection. Though they have been proven to improve the BoF model to some extent, there still lacks a coherent scheme to integrate each individual module together. To address the problems above, we propose a novel framework with spatial pooling of complementary features. Our model expands the traditional BoF model on three aspects. First, we propose a new scheme for combining texture and edge-based local features together at the descriptor extraction level. Next, we build geometric visual phrases to model spatial context upon complementary features for midlevel image representation. Finally, based on a smoothed edgemap, a simple and effective spatial weighting scheme is performed to capture the image saliency. We test the proposed framework on several benchmark data sets for image classification. The extensive results show the superior performance of our algorithm over the state-of-the-art methods.In image classification tasks, one of the most successful algorithms is the bag-of-features (BoFs) model. Although the BoF model has many advantages, such as simplicity, generality, and scalability, it still suffers from several drawbacks, including the limited semantic description of local descriptors, lack of robust structures upon single visual words, and missing of efficient spatial weighting. To overcome these shortcomings, various techniques have been proposed, such as extracting multiple descriptors, spatial context modeling, and interest region detection. Though they have been proven to improve the BoF model to some extent, there still lacks a coherent scheme to integrate each individual module together. To address the problems above, we propose a novel framework with spatial pooling of complementary features. Our model expands the traditional BoF model on three aspects. First, we propose a new scheme for combining texture and edge-based local features together at the descriptor extraction level. Next, we build geometric visual phrases to model spatial context upon complementary features for midlevel image representation. Finally, based on a smoothed edgemap, a simple and effective spatial weighting scheme is performed to capture the image saliency. We test the proposed framework on several benchmark data sets for image classification. The extensive results show the superior performance of our algorithm over the state-of-the-art methods.
In image classification tasks, one of the most successful algorithms is the bag-of-features (BoFs) model. Although the BoF model has many advantages, such as simplicity, generality, and scalability, it still suffers from several drawbacks, including the limited semantic description of local descriptors, lack of robust structures upon single visual words, and missing of efficient spatial weighting. To overcome these shortcomings, various techniques have been proposed, such as extracting multiple descriptors, spatial context modeling, and interest region detection. Though they have been proven to improve the BoF model to some extent, there still lacks a coherent scheme to integrate each individual module together. To address the problems above, we propose a novel framework with spatial pooling of complementary features. Our model expands the traditional BoF model on three aspects. First, we propose a new scheme for combining texture and edge-based local features together at the descriptor extraction level. Next, we build geometric visual phrases to model spatial context upon complementary features for midlevel image representation. Finally, based on a smoothed edgemap, a simple and effective spatial weighting scheme is performed to capture the image saliency. We test the proposed framework on several benchmark data sets for image classification. The extensive results show the superior performance of our algorithm over the state-of-the-art methods.
Author Bo Zhang
Qi Tian
Meng Wang
Lingxi Xie
Author_xml – sequence: 1
  givenname: Lingxi
  surname: Xie
  fullname: Xie, Lingxi
– sequence: 2
  givenname: Qi
  surname: Tian
  fullname: Tian, Qi
– sequence: 3
  givenname: Meng
  surname: Wang
  fullname: Wang, Meng
– sequence: 4
  givenname: Bo
  surname: Zhang
  fullname: Zhang, Bo
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28528563$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24710400$$D View this record in MEDLINE/PubMed
BookMark eNqN0ctr3DAQB2BRUppHey8UgiEEcvFWY-thHdMlj4VAA03PYqwdLwpeayPZh_z31WY3LeQQCgLp8P1G0swxOxjCQIx9BT4D4Ob7w-J-VnEQs6oGDqA_sCMwAkrORXWQz1zqUoMwh-w4pUeepQT1iR1WQgMXnB-xH782OHrsi_sQej-sitAVtzRSDCsaKEypuCYcp0ip6EIsFmtcUTHvMSXfeZejYfjMPnbYJ_qy30_Y7-urh_lteffzZjG_vCud0GostUEDbZOv1kJLgaaVhEa0vBMtYSPdsulQtlW1lLRsjaqkU61yhABGkxD1CbvY1d3E8DRRGu3aJ0d9jy8PtSBzE3itav0fFHJBEE2T6dkb-himOOSPbFWltFJSZXW6V1O7pqXdRL_G-GxfG5nB-R5gcth3EQfn0z_XyLxUnZ3aORdDSpE66_z40sYxou8tcLudrM2TtdvJ2v1kc5C_Cb7WfifybRfxRPSXKy01F7L-A102qr4
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_neunet_2018_05_015
crossref_primary_10_1016_j_jvcir_2015_07_005
crossref_primary_10_1016_j_neucom_2016_02_045
crossref_primary_10_1007_s11042_018_6712_z
crossref_primary_10_1016_j_neucom_2015_12_008
crossref_primary_10_1109_JBHI_2020_2977937
crossref_primary_10_1007_s11042_020_08666_3
crossref_primary_10_1109_JSTARS_2016_2547638
crossref_primary_10_1016_j_patcog_2023_109482
crossref_primary_10_1109_TCSVT_2015_2461978
crossref_primary_10_1007_s42001_017_0009_2
crossref_primary_10_1016_j_neucom_2020_07_147
crossref_primary_10_1109_TIP_2014_2330763
crossref_primary_10_1109_TIP_2015_2432673
crossref_primary_10_1109_TIP_2017_2695884
crossref_primary_10_1016_j_patcog_2019_107094
crossref_primary_10_1109_TPAMI_2019_2933510
crossref_primary_10_1007_s11042_018_6224_x
crossref_primary_10_1109_TIP_2017_2686017
crossref_primary_10_1007_s11063_020_10246_3
crossref_primary_10_1155_2018_4945304
crossref_primary_10_1371_journal_pone_0170629
crossref_primary_10_1109_TIP_2015_2509425
crossref_primary_10_1109_JBHI_2017_2775662
crossref_primary_10_1186_s13640_016_0140_7
crossref_primary_10_1109_TIP_2014_2329182
crossref_primary_10_1007_s11042_018_5712_3
crossref_primary_10_1109_TIP_2015_2405337
crossref_primary_10_1109_TMM_2015_2408566
crossref_primary_10_1007_s00530_022_00899_6
crossref_primary_10_3389_fpls_2024_1334362
crossref_primary_10_1016_j_neucom_2017_01_067
crossref_primary_10_1016_j_patrec_2018_09_010
crossref_primary_10_1145_3587253
crossref_primary_10_1016_j_neucom_2015_01_043
crossref_primary_10_1515_amcs_2017_0059
crossref_primary_10_1109_TCSVT_2020_2975845
crossref_primary_10_1007_s11263_016_0970_x
crossref_primary_10_1109_TIFS_2023_3234861
crossref_primary_10_1109_TMM_2015_2399851
crossref_primary_10_1016_j_asoc_2020_106310
Cites_doi 10.1109/ICCV.2007.4409066
10.1016/j.imavis.2004.02.006
10.1109/TMM.2010.2046292
10.1145/1873951.1874182
10.1109/CVPR.2005.177
10.1007/s11042-010-0636-6
10.1109/CVPR.1999.784624
10.1109/ICCV.2013.47
10.1109/CVPR.2011.5995528
10.1109/TPAMI.1986.4767851
10.1109/CVPR.2010.5539963
10.1145/1873951.1874019
10.1109/CVPR.2006.68
10.1109/ICCV.2009.5459169
10.1109/CVPR.2006.42
10.1109/CVPR.2009.5206537
10.1145/1631272.1631285
10.1109/ICIP.2013.6738537
10.1023/B:VISI.0000029664.99615.94
10.1145/2393347.2393423
10.1145/1873951.1874018
10.1016/j.imavis.2008.04.022
10.1109/TPAMI.2009.154
10.1109/CVPR.2010.5540018
10.5244/C.18.98
10.1109/CVPR.2011.5995476
10.1109/CVPR.2010.5540021
10.1109/34.730558
10.1145/1873951.1874249
10.1109/ICCV.2013.206
10.1109/CVPR.2014.477
10.1109/34.993558
10.1109/CVPR.2006.264
10.1109/ICCV.2013.215
10.1109/CVPR.2007.383222
10.1016/j.cviu.2005.09.012
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TIP.2014.2310117
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList MEDLINE - Academic

Technology Research Database
PubMed
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 2008
ExternalDocumentID 3266337871
24710400
28528563
10_1109_TIP_2014_2310117
6757045
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
IQODW
RIG
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c476t-79a91b824774754a9b5ea94b0f4bea85cd8fa5b22d5edb9625c6b6cea1197e443
IEDL.DBID RIE
ISICitedReferencesCount 69
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000334526000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Sat Sep 27 19:10:38 EDT 2025
Wed Oct 01 14:01:07 EDT 2025
Sun Nov 09 08:27:44 EST 2025
Thu Apr 03 07:01:42 EDT 2025
Wed Apr 02 07:17:46 EDT 2025
Sat Nov 29 03:20:54 EST 2025
Tue Nov 18 22:35:39 EST 2025
Tue Aug 26 16:50:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords BoF model
geometric phrases pooling
complementary descriptors
spatial weighting
Image classification
Performance evaluation
State of the art
Image processing
Scalability
Pattern recognition
Signal representation
Shape detection
Algorithm
Modeling
Texture
Interest region
Weighting
Semantics
Image representation
Edge detection
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-79a91b824774754a9b5ea94b0f4bea85cd8fa5b22d5edb9625c6b6cea1197e443
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 24710400
PQID 1512676656
PQPubID 85429
PageCount 15
ParticipantIDs crossref_primary_10_1109_TIP_2014_2310117
proquest_miscellaneous_1531003637
pascalfrancis_primary_28528563
ieee_primary_6757045
proquest_miscellaneous_1514431488
proquest_journals_1512676656
crossref_citationtrail_10_1109_TIP_2014_2310117
pubmed_primary_24710400
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2014
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref52
ref11
ref10
ref17
ref16
ref18
yang (ref25) 0
ref50
ref46
wah (ref37) 2011
lee (ref24) 0
ref48
ref47
ref42
ref41
nowak (ref3) 0
everingham (ref43) 2011
ref8
ref9
ref4
ref6
ref5
ref40
ref36
ref31
csurka (ref1) 0
ref33
ref32
lu (ref7) 2010; 12
ref39
ref38
bo (ref51) 2011; 1
fan (ref34) 2008
ref23
ref26
ref20
ref22
ref21
bosch (ref19) 0
perronnin (ref35) 0
ref28
ref27
gao (ref45) 0
ref29
griffin (ref44) 2007
li (ref49) 2010
marszalek (ref2) 0
liu (ref30) 0
feng (ref12) 0
References_xml – start-page: 2609
  year: 0
  ident: ref12
  article-title: Geometric $\ell{\rm p}$ norm feature pooling for image classification
  publication-title: Proc Comput Vis Pattern Recognit
– ident: ref9
  doi: 10.1109/ICCV.2007.4409066
– ident: ref18
  doi: 10.1016/j.imavis.2004.02.006
– volume: 1
  start-page: 1
  year: 2011
  ident: ref51
  article-title: Hierarchical matching pursuit for image classification: Architecture and fast algorithms
  publication-title: Neural Inf Process Syst
– volume: 12
  start-page: 288
  year: 2010
  ident: ref7
  article-title: Constructing lexica of high-level concepts with small semantic gap
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2010.2046292
– ident: ref21
  doi: 10.1145/1873951.1874182
– start-page: 2118
  year: 0
  ident: ref2
  article-title: Spatial weighting for bag-of-features
  publication-title: Proc Comput Vis Pattern Recognit
– ident: ref17
  doi: 10.1109/CVPR.2005.177
– ident: ref22
  doi: 10.1007/s11042-010-0636-6
– start-page: 1
  year: 0
  ident: ref30
  article-title: Integrated feature selection and higher-order spatial feature extraction for object categorization
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref13
  doi: 10.1109/CVPR.1999.784624
– start-page: 1794
  year: 0
  ident: ref25
  article-title: Linear spatial pyramid matching using sparse coding for image classification
  publication-title: Proc Comput Vis Pattern Recognit
– start-page: 1817
  year: 2008
  ident: ref34
  article-title: LIBLINEAR: A library for large linear classification
  publication-title: J Mach Learn Res
– ident: ref39
  doi: 10.1109/ICCV.2013.47
– ident: ref11
  doi: 10.1109/CVPR.2011.5995528
– ident: ref14
  doi: 10.1109/TPAMI.1986.4767851
– start-page: 1
  year: 2010
  ident: ref49
  article-title: Object bank: A high-level image representation for scene classification and semantic feature sparsification
  publication-title: Neuron Inf Process Syst
– ident: ref10
  doi: 10.1109/CVPR.2010.5539963
– ident: ref27
  doi: 10.1145/1873951.1874019
– ident: ref15
  doi: 10.1109/CVPR.2006.68
– start-page: 1
  year: 0
  ident: ref45
  article-title: Kernel sparse representation for image classification and face recognition
  publication-title: Proc Eur Conf Comput Vis
– ident: ref48
  doi: 10.1109/ICCV.2009.5459169
– ident: ref36
  doi: 10.1109/CVPR.2006.42
– year: 2011
  ident: ref37
  publication-title: The Caltech-UCSD Birds-200-2011 Dataset
– ident: ref50
  doi: 10.1109/CVPR.2009.5206537
– ident: ref31
  doi: 10.1145/1631272.1631285
– ident: ref33
  doi: 10.1109/ICIP.2013.6738537
– start-page: 490
  year: 0
  ident: ref3
  article-title: Sampling strategies for bag-of-features image classification
  publication-title: Proc Comput Vis Pattern Recognit
– year: 2007
  ident: ref44
  publication-title: Caltech-256 Object Category Dataset
– start-page: 517
  year: 0
  ident: ref19
  article-title: Scene classification via pLSA
  publication-title: Proc Int Conf Comput Vis
– ident: ref5
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref16
  doi: 10.1145/2393347.2393423
– ident: ref23
  doi: 10.1145/1873951.1874018
– ident: ref47
  doi: 10.1016/j.imavis.2008.04.022
– ident: ref20
  doi: 10.1109/TPAMI.2009.154
– ident: ref26
  doi: 10.1109/CVPR.2010.5540018
– ident: ref46
  doi: 10.5244/C.18.98
– ident: ref32
  doi: 10.1109/CVPR.2011.5995476
– ident: ref4
  doi: 10.1109/CVPR.2010.5540021
– ident: ref41
  doi: 10.1109/34.730558
– ident: ref42
  doi: 10.1145/1873951.1874249
– start-page: 1
  year: 0
  ident: ref1
  article-title: Visual Categorization with Bags of Keypoints
  publication-title: Proc Workshop Statist Learn Comput Vis Eur Con Comput Vis
– ident: ref38
  doi: 10.1109/ICCV.2013.206
– ident: ref28
  doi: 10.1109/CVPR.2014.477
– ident: ref52
  doi: 10.1109/34.993558
– start-page: 801
  year: 0
  ident: ref24
  article-title: Efficient sparse coding algorithms
  publication-title: Proc Neural Inf Process Syst
– ident: ref6
  doi: 10.1109/CVPR.2006.264
– ident: ref40
  doi: 10.1109/ICCV.2013.215
– year: 2011
  ident: ref43
  publication-title: The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results
– ident: ref8
  doi: 10.1109/CVPR.2007.383222
– start-page: 143
  year: 0
  ident: ref35
  article-title: Improving the fisher kernel for large-scale image classification
  publication-title: Proc Eur Conf Comput Vis
– ident: ref29
  doi: 10.1016/j.cviu.2005.09.012
SSID ssj0014516
Score 2.4428318
Snippet In image classification tasks, one of the most successful algorithms is the bag-of-features (BoFs) model. Although the BoF model has many advantages, such as...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1994
SubjectTerms Accuracy
Algorithms
Applied sciences
Basic converters
Construction
Exact sciences and technology
Feature extraction
Image classification
Image edge detection
Image processing
Information, signal and communications theory
Mathematical models
Oxygen steel making
Pattern recognition
Quantization (signal)
Shape
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
Telecommunications and information theory
Texture
Vectors
Visualization
Title Spatial Pooling of Heterogeneous Features for Image Classification
URI https://ieeexplore.ieee.org/document/6757045
https://www.ncbi.nlm.nih.gov/pubmed/24710400
https://www.proquest.com/docview/1512676656
https://www.proquest.com/docview/1514431488
https://www.proquest.com/docview/1531003637
Volume 23
WOSCitedRecordID wos000334526000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9swEB52Qw_toftIH-5mgwq9FOpNbMuSfewuGxIoIYdtyc3IslQKbVziuL-_M7LibaANFHwwWAZ5Hp5vPOP5AN5hzDO8EiKMUqlDHseWioQ6rCKJ8c_GiXCjlL58kstltl7nqxP40P8LY4xxzWfmhk5dLb-qdUufyiYIbiVCkFM4lVJ2_2r1FQMinHWVzVSGEmH_viQ5zScPixX1cPEbwjJRRLx7Mb6TyXwPopGjV6HmSNWgfGxHbPFv5Oki0Ozs__Z-Ds890mQfO9O4gBOzuYQzjzqZ9-nmEp79MZJwCLfEUYw2yVY10fl8ZbVlc2qZqdHSTN02jEBji0k6Q7jLFj_wfcQcsyb1HDk1v4DPs_uHu3noeRZCzaXYhTJXeVRmKBPMLVKu8jI1Kufl1PLSqIzGB1iVlnFcpaYqc8yYtCiFNopKkIbz5CUMNvXGvAZWYcJoU4t-nWDYk1GZaOEmxkR2qiItA5js5V1oP4ScuDC-Fy4ZmeYFKqsgZRVeWQG87-_42Q3gOLJ2SILv13mZBzA-UGl_Pc5SPEQSwGiv48K7cFMQFBJSIN4N4G1_GZ2PKirKSZzW4ONjRpkdW0M1FLR53N6rzn4eN-DN8M3fN34FT-nxuv7KEQx229ZcwxP9a_et2Y7RC9bZ2HnBb3Ff_hE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qFbQPrbZVU2tdwRfB9G6T_UgeVSx3eB73cErfwmazK4JepLnz7-_MZi9a0IKQh0A2sJmPzG8yk_kBvMKY50SjVMqltqnIMk9FQps2XGP881muwiilLzM9nxeXl-ViB94M_8I450LzmTun01DLb1q7oU9lIwS3GiHIHbgrhch4_7fWUDMgytlQ25Q61Qj8t0XJcTlaThfUxSXOCc1wTsx7Gb6VyYBvxKNAsELtkaZDCfme2uLf2DPEoIuD_9v9Q9iPWJO97Y3jEey41SEcRNzJold3h7D3x1DCI3hHLMVolWzREqHPV9Z6NqGmmRZtzbWbjhFs3GCazhDwsukPfCOxwK1JXUdB0cfw-eLD8v0kjUwLqRVarVNdmpLXBcoEswspTFlLZ0pRj72onSlogIA3ss6yRrqmLjFnsqpW1hkqQjoh8sewu2pX7imwBlNGLz16do6BT_M6tyrMjOF-bLjVCYy28q5sHENObBjfq5COjMsKlVWRsqqorAReD3f87Edw3LL2iAQ_rIsyT-DshkqH61kh8VB5AqdbHVfRibuKwJDSChFvAi-Hy-h-VFMxQeK0Bh8fc8ritjVURUGrx-096e3n9waiGZ78feMv4P5k-WlWzabzj8_gAT1q3215Crvrq417Dvfsr_W37uos-MI1zosAfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+Pooling+of+Heterogeneous+Features+for+Image+Classification&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=LINGXI+XIE&rft.au=QI+TIAN&rft.au=MENG+WANG&rft.au=BO+ZHANG&rft.date=2014-05-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1057-7149&rft.volume=23&rft.issue=5-6&rft.spage=1994&rft.epage=2008&rft_id=info:doi/10.1109%2Ftip.2014.2310117&rft.externalDBID=n%2Fa&rft.externalDocID=28528563
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon