A block floating-point treatment to the LMS algorithm: efficient realization and a roundoff error analysis

An efficient scheme is presented for implementing the LMS-based transversal adaptive filter in block floating-point (BFP) format, which permits processing of data over a wide dynamic range, at temporal and hardware complexities significantly less than that of a floating-point processor. Appropriate...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Transactions on Signal Processing Ročník 53; číslo 12; s. 4536 - 4544
Hlavní autoři: Mitra, A., Chakraborty, M., Sakai, H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.12.2005
Institute of Electrical and Electronics Engineers (IEEE)
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:An efficient scheme is presented for implementing the LMS-based transversal adaptive filter in block floating-point (BFP) format, which permits processing of data over a wide dynamic range, at temporal and hardware complexities significantly less than that of a floating-point processor. Appropriate BFP formats for both the data and the filter coefficients are adopted, taking care so that they remain invariant to interblock transition and weight updating operation, respectively. Care is also taken to prevent overflow during filtering, as well as weight updating processes jointly, by using a dynamic scaling of the data and a slightly reduced range for the step size, with the latter having only marginal effect on convergence speed. Extensions of the proposed scheme to the sign-sign LMS and the signed regressor LMS algorithms are taken up next, in order to reduce the processing time further. Finally, a roundoff error analysis of the proposed scheme under finite precision is carried out. It is shown that in the steady state, the quantization noise component in the output mean-square error depends on the step size both linearly and inversely. An optimum step size that minimizes this error is also found out.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2005.859342