Machine Learning Consensus Clustering Approach for Hospitalized Patients with Dysmagnesemia

Background: The objectives of this study were to classify patients with serum magnesium derangement on hospital admission into clusters using unsupervised machine learning approach and to evaluate the mortality risks among these distinct clusters. Methods: Consensus cluster analysis was performed ba...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Diagnostics (Basel) Ročník 11; číslo 11; s. 2119
Hlavní autoři: Thongprayoon, Charat, Sy-Go, Janina Paula T., Nissaisorakarn, Voravech, Dumancas, Carissa Y., Keddis, Mira T., Kattah, Andrea G., Pattharanitima, Pattharawin, Vallabhajosyula, Saraschandra, Mao, Michael A., Qureshi, Fawad, Garovic, Vesna D., Dillon, John J., Erickson, Stephen B., Cheungpasitporn, Wisit
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 15.11.2021
MDPI
Témata:
ISSN:2075-4418, 2075-4418
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background: The objectives of this study were to classify patients with serum magnesium derangement on hospital admission into clusters using unsupervised machine learning approach and to evaluate the mortality risks among these distinct clusters. Methods: Consensus cluster analysis was performed based on demographic information, principal diagnoses, comorbidities, and laboratory data in hypomagnesemia (serum magnesium ≤ 1.6 mg/dL) and hypermagnesemia cohorts (serum magnesium ≥ 2.4 mg/dL). Each cluster’s key features were determined using the standardized mean difference. The associations of the clusters with hospital mortality and one-year mortality were assessed. Results: In hypomagnesemia cohort (n = 13,320), consensus cluster analysis identified three clusters. Cluster 1 patients had the highest comorbidity burden and lowest serum magnesium. Cluster 2 patients had the youngest age, lowest comorbidity burden, and highest kidney function. Cluster 3 patients had the oldest age and lowest kidney function. Cluster 1 and cluster 3 were associated with higher hospital and one-year mortality compared to cluster 2. In hypermagnesemia cohort (n = 4671), the analysis identified two clusters. Compared to cluster 1, the key features of cluster 2 included older age, higher comorbidity burden, more hospital admissions primarily due to kidney disease, more acute kidney injury, and lower kidney function. Compared to cluster 1, cluster 2 was associated with higher hospital mortality and one-year mortality. Conclusion: Our cluster analysis identified clinically distinct phenotypes with differing mortality risks in hospitalized patients with dysmagnesemia. Future studies are required to assess the application of this ML consensus clustering approach to care for hospitalized patients with dysmagnesemia.
AbstractList The objectives of this study were to classify patients with serum magnesium derangement on hospital admission into clusters using unsupervised machine learning approach and to evaluate the mortality risks among these distinct clusters.BACKGROUNDThe objectives of this study were to classify patients with serum magnesium derangement on hospital admission into clusters using unsupervised machine learning approach and to evaluate the mortality risks among these distinct clusters.Consensus cluster analysis was performed based on demographic information, principal diagnoses, comorbidities, and laboratory data in hypomagnesemia (serum magnesium ≤ 1.6 mg/dL) and hypermagnesemia cohorts (serum magnesium ≥ 2.4 mg/dL). Each cluster's key features were determined using the standardized mean difference. The associations of the clusters with hospital mortality and one-year mortality were assessed.METHODSConsensus cluster analysis was performed based on demographic information, principal diagnoses, comorbidities, and laboratory data in hypomagnesemia (serum magnesium ≤ 1.6 mg/dL) and hypermagnesemia cohorts (serum magnesium ≥ 2.4 mg/dL). Each cluster's key features were determined using the standardized mean difference. The associations of the clusters with hospital mortality and one-year mortality were assessed.In hypomagnesemia cohort (n = 13,320), consensus cluster analysis identified three clusters. Cluster 1 patients had the highest comorbidity burden and lowest serum magnesium. Cluster 2 patients had the youngest age, lowest comorbidity burden, and highest kidney function. Cluster 3 patients had the oldest age and lowest kidney function. Cluster 1 and cluster 3 were associated with higher hospital and one-year mortality compared to cluster 2. In hypermagnesemia cohort (n = 4671), the analysis identified two clusters. Compared to cluster 1, the key features of cluster 2 included older age, higher comorbidity burden, more hospital admissions primarily due to kidney disease, more acute kidney injury, and lower kidney function. Compared to cluster 1, cluster 2 was associated with higher hospital mortality and one-year mortality.RESULTSIn hypomagnesemia cohort (n = 13,320), consensus cluster analysis identified three clusters. Cluster 1 patients had the highest comorbidity burden and lowest serum magnesium. Cluster 2 patients had the youngest age, lowest comorbidity burden, and highest kidney function. Cluster 3 patients had the oldest age and lowest kidney function. Cluster 1 and cluster 3 were associated with higher hospital and one-year mortality compared to cluster 2. In hypermagnesemia cohort (n = 4671), the analysis identified two clusters. Compared to cluster 1, the key features of cluster 2 included older age, higher comorbidity burden, more hospital admissions primarily due to kidney disease, more acute kidney injury, and lower kidney function. Compared to cluster 1, cluster 2 was associated with higher hospital mortality and one-year mortality.Our cluster analysis identified clinically distinct phenotypes with differing mortality risks in hospitalized patients with dysmagnesemia. Future studies are required to assess the application of this ML consensus clustering approach to care for hospitalized patients with dysmagnesemia.CONCLUSIONOur cluster analysis identified clinically distinct phenotypes with differing mortality risks in hospitalized patients with dysmagnesemia. Future studies are required to assess the application of this ML consensus clustering approach to care for hospitalized patients with dysmagnesemia.
Background: The objectives of this study were to classify patients with serum magnesium derangement on hospital admission into clusters using unsupervised machine learning approach and to evaluate the mortality risks among these distinct clusters. Methods: Consensus cluster analysis was performed based on demographic information, principal diagnoses, comorbidities, and laboratory data in hypomagnesemia (serum magnesium ≤ 1.6 mg/dL) and hypermagnesemia cohorts (serum magnesium ≥ 2.4 mg/dL). Each cluster’s key features were determined using the standardized mean difference. The associations of the clusters with hospital mortality and one-year mortality were assessed. Results: In hypomagnesemia cohort (n = 13,320), consensus cluster analysis identified three clusters. Cluster 1 patients had the highest comorbidity burden and lowest serum magnesium. Cluster 2 patients had the youngest age, lowest comorbidity burden, and highest kidney function. Cluster 3 patients had the oldest age and lowest kidney function. Cluster 1 and cluster 3 were associated with higher hospital and one-year mortality compared to cluster 2. In hypermagnesemia cohort (n = 4671), the analysis identified two clusters. Compared to cluster 1, the key features of cluster 2 included older age, higher comorbidity burden, more hospital admissions primarily due to kidney disease, more acute kidney injury, and lower kidney function. Compared to cluster 1, cluster 2 was associated with higher hospital mortality and one-year mortality. Conclusion: Our cluster analysis identified clinically distinct phenotypes with differing mortality risks in hospitalized patients with dysmagnesemia. Future studies are required to assess the application of this ML consensus clustering approach to care for hospitalized patients with dysmagnesemia.
Author Cheungpasitporn, Wisit
Kattah, Andrea G.
Sy-Go, Janina Paula T.
Qureshi, Fawad
Vallabhajosyula, Saraschandra
Dumancas, Carissa Y.
Garovic, Vesna D.
Pattharanitima, Pattharawin
Erickson, Stephen B.
Mao, Michael A.
Keddis, Mira T.
Nissaisorakarn, Voravech
Thongprayoon, Charat
Dillon, John J.
AuthorAffiliation 2 Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 01702, USA; voravech.niss@gmail.com
1 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; charat.thongprayoon@gmail.com (C.T.); sy-go.janina@mayo.edu (J.P.T.S.-G.); dumancas.carissa@mayo.edu (C.Y.D.); kattah.andrea@mayo.edu (A.G.K.); Qureshi.Fawad@mayo.edu (F.Q.); garovic.Vesna@mayo.edu (V.D.G.); dillon.John@mayo.edu (J.J.D.); erickson.stephen@mayo.edu (S.B.E.)
5 Section of Cardiovascular Medicine, Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; svallabh@wakehealth.edu
3 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; keddis.Mira@mayo.edu
4 Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani 12121, Thailand; pattharawin@hotmail.com
6 Division of Nephrology and Hypertension, Departm
AuthorAffiliation_xml – name: 5 Section of Cardiovascular Medicine, Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; svallabh@wakehealth.edu
– name: 1 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; charat.thongprayoon@gmail.com (C.T.); sy-go.janina@mayo.edu (J.P.T.S.-G.); dumancas.carissa@mayo.edu (C.Y.D.); kattah.andrea@mayo.edu (A.G.K.); Qureshi.Fawad@mayo.edu (F.Q.); garovic.Vesna@mayo.edu (V.D.G.); dillon.John@mayo.edu (J.J.D.); erickson.stephen@mayo.edu (S.B.E.)
– name: 3 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; keddis.Mira@mayo.edu
– name: 6 Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, FL 85054, USA; mao.michael@mayo.edu
– name: 4 Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani 12121, Thailand; pattharawin@hotmail.com
– name: 2 Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 01702, USA; voravech.niss@gmail.com
Author_xml – sequence: 1
  givenname: Charat
  surname: Thongprayoon
  fullname: Thongprayoon, Charat
– sequence: 2
  givenname: Janina Paula T.
  surname: Sy-Go
  fullname: Sy-Go, Janina Paula T.
– sequence: 3
  givenname: Voravech
  orcidid: 0000-0002-9389-073X
  surname: Nissaisorakarn
  fullname: Nissaisorakarn, Voravech
– sequence: 4
  givenname: Carissa Y.
  surname: Dumancas
  fullname: Dumancas, Carissa Y.
– sequence: 5
  givenname: Mira T.
  orcidid: 0000-0001-8249-0848
  surname: Keddis
  fullname: Keddis, Mira T.
– sequence: 6
  givenname: Andrea G.
  surname: Kattah
  fullname: Kattah, Andrea G.
– sequence: 7
  givenname: Pattharawin
  orcidid: 0000-0002-6010-0033
  surname: Pattharanitima
  fullname: Pattharanitima, Pattharawin
– sequence: 8
  givenname: Saraschandra
  orcidid: 0000-0002-1631-8238
  surname: Vallabhajosyula
  fullname: Vallabhajosyula, Saraschandra
– sequence: 9
  givenname: Michael A.
  orcidid: 0000-0003-1814-7003
  surname: Mao
  fullname: Mao, Michael A.
– sequence: 10
  givenname: Fawad
  surname: Qureshi
  fullname: Qureshi, Fawad
– sequence: 11
  givenname: Vesna D.
  surname: Garovic
  fullname: Garovic, Vesna D.
– sequence: 12
  givenname: John J.
  surname: Dillon
  fullname: Dillon, John J.
– sequence: 13
  givenname: Stephen B.
  surname: Erickson
  fullname: Erickson, Stephen B.
– sequence: 14
  givenname: Wisit
  orcidid: 0000-0001-9954-9711
  surname: Cheungpasitporn
  fullname: Cheungpasitporn, Wisit
BookMark eNp9Uk1v1DAQtVArWkp_AZdIXLgs-CuOfUGqtoVWWlQOcOJgOc5416vEDnYCan89DlshWiHmYmv83ps343mBjkIMgNArgt8ypvC7zpttiHnyNpMSlBD1DJ1S3NQrzok8-ut-gs5z3uMSijBJ6-fohHFJFRfNKfr2ydidD1BtwKTgw7Zax5Ah5DlX637OE6QleTGOKRZk5WKqrmMe_WR6fw9d9dlMHsKUq59-2lWXd3koxiDD4M1LdOxMn-H84TxDXz9cfVlfrza3H2_WF5uV5Y2YVsQ13NQM1yCpU7JzAivlrONgqbCKQgusY0KKTjnlBJEApVthOgWcSW7ZGbo56HbR7PWY_GDSnY7G69-JmLbapDKpHjQzrcRUiZYzxlvVGNfy1uKO1oIsdYvW-4PWOLcDdLa0lkz_SPTxS_A7vY0_tBRE1WQRePMgkOL3GfKkB58t9L0JEOesqcAc04ZzUaCvn0D3cU6hjGpBUcwYE7Sg2AFlU8w5gftjhmC97IL-xy4UlnrCsuXLJh8X177_L_cX5ay_rA
CitedBy_id crossref_primary_10_1016_j_xkme_2025_101030
crossref_primary_10_1080_0886022X_2023_2170244
crossref_primary_10_3390_jpm12121992
crossref_primary_10_1186_s12872_023_03380_y
crossref_primary_10_1093_ckj_sfaf175
crossref_primary_10_3390_ani15081169
crossref_primary_10_3390_medicina58121831
crossref_primary_10_1038_s41598_024_74920_5
crossref_primary_10_1155_2023_6650620
Cites_doi 10.1093/bioinformatics/btr597
10.1093/ndtplus/sfr163
10.1038/s41598-021-96616-w
10.1007/s41666-018-0029-6
10.3390/nu12061836
10.1080/00325481.2021.1931369
10.1016/bs.acc.2015.10.002
10.1152/physrev.00012.2014
10.1080/21548331.2020.1724723
10.1023/A:1010933404324
10.3109/0886022X.2015.1057471
10.3390/diagnostics11040727
10.1016/j.cmpb.2021.106040
10.1016/j.ejim.2015.05.013
10.3390/ijerph18041919
10.3390/diagnostics11101924
10.3390/jcm9041107
10.1093/bioinformatics/btq170
10.1309/JR9Y-PPTX-AJTC-QDRD
10.1016/j.amjmed.2016.08.033
10.1038/s41408-021-00452-0
10.3390/jcm10194441
10.1097/MEG.0000000000001598
10.1016/j.jcin.2021.08.034
10.1097/SHK.0000000000000769
10.1093/ajcp/79.3.348
10.3109/0886022X.2015.1074519
10.1139/gen-2020-0131
10.1080/10934529.2020.1809925
10.2147/IJNRD.S42054
10.3109/07435800.2015.1094088
10.1007/s40620-021-01163-2
10.1038/srep06207
10.3390/diagnostics11101909
10.1023/A:1023949509487
10.1111/imj.12682
10.1371/journal.pone.0057720
10.3390/medsci8030037
10.1016/j.jbi.2019.103364
10.1136/bmjebm-2019-111322
10.1016/S0009-8981(99)00110-2
10.3945/ajcn.112.053132
10.3109/0886022X.2015.1057800
10.3390/diagnostics11101933
10.1080/17843286.2018.1516173
10.1111/ijcp.12696
10.3390/diagnostics11101908
10.1016/j.amjms.2017.08.013
10.1378/chest.95.2.257
10.1186/s12944-021-01475-z
10.3390/diagnostics11101880
10.1016/j.mayocp.2015.04.023
10.5220/0009891900980102
10.1097/00003246-198709000-00002
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3390/diagnostics11112119
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
ProQuest Central Student
Research Library Prep (ProQuest)
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_3ab80296b4334b97afb4bc0d2561f609
PMC8619519
10_3390_diagnostics11112119
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
3V.
7XB
8FK
COVID
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c476t-1f74a5305e82f98df6099fcf4ec26c92ebe3d3686d9f9f618ee1196ad9e4384c3
IEDL.DBID DOA
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000725845600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2075-4418
IngestDate Fri Oct 03 12:53:06 EDT 2025
Tue Nov 04 02:01:21 EST 2025
Fri Sep 05 13:53:46 EDT 2025
Mon Jun 30 04:29:29 EDT 2025
Tue Nov 18 21:24:42 EST 2025
Sat Nov 29 07:17:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-1f74a5305e82f98df6099fcf4ec26c92ebe3d3686d9f9f618ee1196ad9e4384c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6010-0033
0000-0003-1814-7003
0000-0001-9954-9711
0000-0002-9389-073X
0000-0002-1631-8238
0000-0001-8249-0848
OpenAccessLink https://doaj.org/article/3ab80296b4334b97afb4bc0d2561f609
PMID 34829467
PQID 2602033362
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_3ab80296b4334b97afb4bc0d2561f609
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8619519
proquest_miscellaneous_2604027446
proquest_journals_2602033362
crossref_primary_10_3390_diagnostics11112119
crossref_citationtrail_10_3390_diagnostics11112119
PublicationCentury 2000
PublicationDate 20211115
PublicationDateYYYYMMDD 2021-11-15
PublicationDate_xml – month: 11
  year: 2021
  text: 20211115
  day: 15
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Diagnostics (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Michailidis (ref_40) 2014; 4
Alyousef (ref_42) 2018; 2
MacEachern (ref_22) 2021; 64
Huijgen (ref_44) 2000; 114
ref_12
ref_11
Cheungpasitporn (ref_16) 2015; 37
Cheungpasitporn (ref_14) 2020; 48
Monti (ref_39) 2003; 52
Bokhari (ref_56) 2018; 355
Glasdam (ref_1) 2016; 73
Cheungpasitporn (ref_3) 2015; 45
Cheungpasitporn (ref_6) 2016; 41
Cheungpasitporn (ref_2) 2015; 37
ref_15
Imamura (ref_54) 2013; 98
Majoni (ref_47) 2018; 2018
Naksuk (ref_18) 2017; 130
(ref_57) 2019; 74
Yoon (ref_33) 2021; 11
ref_25
Wong (ref_9) 1983; 79
ref_23
ref_21
Wang (ref_43) 2020; 102
ref_29
ref_28
Lachmann (ref_32) 2021; 14
ref_27
ref_26
Zaloga (ref_46) 1987; 15
Jiang (ref_52) 2017; 47
ref_36
ref_35
Jiang (ref_24) 2021; 204
Cao (ref_55) 1999; 285
ref_30
Thongprayoon (ref_17) 2015; 69
Zaloga (ref_45) 1989; 95
Limaye (ref_51) 2011; 59
Hoenderop (ref_5) 2015; 95
Safavi (ref_53) 2007; 19
Cheungpasitporn (ref_8) 2015; 90
Cheungpasitporn (ref_19) 2020; 32
Gile (ref_50) 2021; 11
Thongprayoon (ref_10) 2015; 37
Wilkerson (ref_34) 2010; 26
Stekhoven (ref_41) 2012; 28
Breiman (ref_38) 2001; 45
Ketteler (ref_20) 2012; 5
Nedyalkova (ref_31) 2020; 55
Thongprayoon (ref_49) 2020; 25
Haider (ref_13) 2015; 26
Xue (ref_37) 2021; 20
ref_4
ref_7
Pham (ref_48) 2014; 7
References_xml – volume: 28
  start-page: 112
  year: 2012
  ident: ref_41
  article-title: MissForest—Non-parametric missing value imputation for mixed-type data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr597
– volume: 2018
  start-page: 9041694
  year: 2018
  ident: ref_47
  article-title: Magnesium and Human Health: Perspectives and Research Directions
  publication-title: Int. J. Endocrinol.
– volume: 5
  start-page: i3
  year: 2012
  ident: ref_20
  article-title: Magnesium basics
  publication-title: Clin. Kidney J.
  doi: 10.1093/ndtplus/sfr163
– volume: 11
  start-page: 17121
  year: 2021
  ident: ref_33
  article-title: Differential progression of coronary atherosclerosis according to plaque composition: A cluster analysis of PARADIGM registry data
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-96616-w
– volume: 2
  start-page: 402
  year: 2018
  ident: ref_42
  article-title: Nearest Consensus Clustering Classification to Identify Subclasses and Predict Disease
  publication-title: J. Healthc. Inform. Res.
  doi: 10.1007/s41666-018-0029-6
– ident: ref_11
  doi: 10.3390/nu12061836
– ident: ref_15
  doi: 10.1080/00325481.2021.1931369
– volume: 73
  start-page: 169
  year: 2016
  ident: ref_1
  article-title: The Importance of Magnesium in the Human Body: A Systematic Literature Review
  publication-title: Adv. Clin. Chem.
  doi: 10.1016/bs.acc.2015.10.002
– volume: 95
  start-page: 1
  year: 2015
  ident: ref_5
  article-title: Magnesium in man: Implications for health and disease
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00012.2014
– volume: 48
  start-page: 80
  year: 2020
  ident: ref_14
  article-title: Impact of admission serum magnesium levels on long-term mortality in hospitalized patients
  publication-title: Hosp. Pract. (1995)
  doi: 10.1080/21548331.2020.1724723
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_38
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 37
  start-page: 1175
  year: 2015
  ident: ref_16
  article-title: Admission hypomagnesemia and hypermagnesemia increase the risk of acute kidney injury
  publication-title: Ren. Fail.
  doi: 10.3109/0886022X.2015.1057471
– ident: ref_7
  doi: 10.3390/diagnostics11040727
– volume: 204
  start-page: 106040
  year: 2021
  ident: ref_24
  article-title: An explainable machine learning algorithm for risk factor analysis of in-hospital mortality in sepsis survivors with ICU readmission
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2021.106040
– volume: 26
  start-page: 504
  year: 2015
  ident: ref_13
  article-title: Hypermagnesemia is a strong independent risk factor for mortality in critically ill patients: Results from a cross-sectional study
  publication-title: Eur. J. Intern. Med.
  doi: 10.1016/j.ejim.2015.05.013
– ident: ref_30
  doi: 10.3390/ijerph18041919
– ident: ref_26
  doi: 10.3390/diagnostics11101924
– ident: ref_21
  doi: 10.3390/jcm9041107
– volume: 26
  start-page: 1572
  year: 2010
  ident: ref_34
  article-title: ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq170
– volume: 114
  start-page: 688
  year: 2000
  ident: ref_44
  article-title: Magnesium levels in critically ill patients. What should we measure?
  publication-title: Am. J. Clin. Pathol.
  doi: 10.1309/JR9Y-PPTX-AJTC-QDRD
– volume: 130
  start-page: 229.e213
  year: 2017
  ident: ref_18
  article-title: Association of Serum Magnesium on Mortality in Patients Admitted to the Intensive Cardiac Care Unit
  publication-title: Am. J. Med.
  doi: 10.1016/j.amjmed.2016.08.033
– volume: 11
  start-page: 65
  year: 2021
  ident: ref_50
  article-title: Hypomagnesemia at the time of autologous stem cell transplantation for patients with diffuse large B-cell lymphoma is associated with an increased risk of failure
  publication-title: Blood Cancer J.
  doi: 10.1038/s41408-021-00452-0
– ident: ref_36
  doi: 10.3390/jcm10194441
– volume: 32
  start-page: 650
  year: 2020
  ident: ref_19
  article-title: Hepatitis A hospitalizations among kidney transplant recipients in the United States: Nationwide inpatient sample 2005-2014
  publication-title: Eur. J. Gastroenterol. Hepatol.
  doi: 10.1097/MEG.0000000000001598
– volume: 14
  start-page: 2127
  year: 2021
  ident: ref_32
  article-title: Subphenotyping of Patients With Aortic Stenosis by Unsupervised Agglomerative Clustering of Echocardiographic and Hemodynamic Data
  publication-title: JACC Cardiovasc. Interv.
  doi: 10.1016/j.jcin.2021.08.034
– volume: 47
  start-page: 288
  year: 2017
  ident: ref_52
  article-title: Does Hypomagnesemia Impact on the Outcome of Patients Admitted to the Intensive Care Unit? A Systematic Review and Meta-Analysis
  publication-title: Shock
  doi: 10.1097/SHK.0000000000000769
– volume: 79
  start-page: 348
  year: 1983
  ident: ref_9
  article-title: A high prevalence of hypomagnesemia and hypermagnesemia in hospitalized patients
  publication-title: Am. J. Clin. Pathol.
  doi: 10.1093/ajcp/79.3.348
– volume: 37
  start-page: 1518
  year: 2015
  ident: ref_10
  article-title: Admission hypomagnesemia linked to septic shock in patients with systemic inflammatory response syndrome
  publication-title: Ren. Fail.
  doi: 10.3109/0886022X.2015.1074519
– volume: 64
  start-page: 416
  year: 2021
  ident: ref_22
  article-title: Machine learning for precision medicine
  publication-title: Genome
  doi: 10.1139/gen-2020-0131
– volume: 55
  start-page: 1450
  year: 2020
  ident: ref_31
  article-title: Fuzzy partitioning of clinical data for DMT2 patients
  publication-title: J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng.
  doi: 10.1080/10934529.2020.1809925
– volume: 7
  start-page: 219
  year: 2014
  ident: ref_48
  article-title: Hypomagnesemia: A clinical perspective
  publication-title: Int. J. Nephrol. Renovasc. Dis.
  doi: 10.2147/IJNRD.S42054
– volume: 41
  start-page: 142
  year: 2016
  ident: ref_6
  article-title: Hypomagnesemia linked to new-onset diabetes mellitus after kidney transplantation: A systematic review and meta-analysis
  publication-title: Endocr. Res.
  doi: 10.3109/07435800.2015.1094088
– volume: 19
  start-page: 645
  year: 2007
  ident: ref_53
  article-title: Admission hypomagnesemia--impact on mortality or morbidity in critically ill patients
  publication-title: Middle East. J. Anaesthesiol.
– ident: ref_35
  doi: 10.1007/s40620-021-01163-2
– volume: 4
  start-page: 6207
  year: 2014
  ident: ref_40
  article-title: Critical limitations of consensus clustering in class discovery
  publication-title: Sci. Rep.
  doi: 10.1038/srep06207
– ident: ref_28
  doi: 10.3390/diagnostics11101909
– volume: 52
  start-page: 91
  year: 2003
  ident: ref_39
  article-title: Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
  publication-title: Mach. Learn.
  doi: 10.1023/A:1023949509487
– volume: 45
  start-page: 436
  year: 2015
  ident: ref_3
  article-title: Hypomagnesaemia linked to depression: A systematic review and meta-analysis
  publication-title: Intern. Med. J.
  doi: 10.1111/imj.12682
– ident: ref_4
  doi: 10.1371/journal.pone.0057720
– ident: ref_12
  doi: 10.3390/medsci8030037
– volume: 102
  start-page: 103364
  year: 2020
  ident: ref_43
  article-title: Unsupervised machine learning for the discovery of latent disease clusters and patient subgroups using electronic health records
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2019.103364
– volume: 25
  start-page: 206
  year: 2020
  ident: ref_49
  article-title: Association of serum magnesium level change with in-hospital mortality
  publication-title: BMJ Evid. Based Med.
  doi: 10.1136/bmjebm-2019-111322
– volume: 285
  start-page: 191
  year: 1999
  ident: ref_55
  article-title: Acute hypermagnesemia and respiratory arrest following infusion of MgSO4 for tocolysis
  publication-title: Clin. Chim. Acta
  doi: 10.1016/S0009-8981(99)00110-2
– volume: 98
  start-page: 160
  year: 2013
  ident: ref_54
  article-title: Circulating and dietary magnesium and risk of cardiovascular disease: A systematic review and meta-analysis of prospective studies
  publication-title: Am. J. Clin. Nutr.
  doi: 10.3945/ajcn.112.053132
– volume: 37
  start-page: 1237
  year: 2015
  ident: ref_2
  article-title: Proton pump inhibitors linked to hypomagnesemia: A systematic review and meta-analysis of observational studies
  publication-title: Ren. Fail.
  doi: 10.3109/0886022X.2015.1057800
– volume: 59
  start-page: 19
  year: 2011
  ident: ref_51
  article-title: Hypomagnesemia in critically ill medical patients
  publication-title: J. Assoc. Physicians India
– ident: ref_25
  doi: 10.3390/diagnostics11101933
– volume: 74
  start-page: 41
  year: 2019
  ident: ref_57
  article-title: Hypomagnesemia and hypermagnesemia
  publication-title: Acta Clin. Belg.
  doi: 10.1080/17843286.2018.1516173
– volume: 69
  start-page: 1303
  year: 2015
  ident: ref_17
  article-title: Admission serum magnesium levels and the risk of acute respiratory failure
  publication-title: Int. J. Clin. Pract.
  doi: 10.1111/ijcp.12696
– ident: ref_27
  doi: 10.3390/diagnostics11101908
– volume: 355
  start-page: 390
  year: 2018
  ident: ref_56
  article-title: Fatal Hypermagnesemia Due to Laxative Use
  publication-title: Am. J. Med. Sci.
  doi: 10.1016/j.amjms.2017.08.013
– volume: 95
  start-page: 257
  year: 1989
  ident: ref_45
  article-title: Interpretation of the serum magnesium level
  publication-title: Chest
  doi: 10.1378/chest.95.2.257
– volume: 20
  start-page: 48
  year: 2021
  ident: ref_37
  article-title: Risk stratification of ST-segment elevation myocardial infarction (STEMI) patients using machine learning based on lipid profiles
  publication-title: Lipids Health Dis.
  doi: 10.1186/s12944-021-01475-z
– ident: ref_29
  doi: 10.3390/diagnostics11101880
– volume: 90
  start-page: 1001
  year: 2015
  ident: ref_8
  article-title: Dysmagnesemia in Hospitalized Patients: Prevalence and Prognostic Importance
  publication-title: Mayo Clin. Proc.
  doi: 10.1016/j.mayocp.2015.04.023
– ident: ref_23
  doi: 10.5220/0009891900980102
– volume: 15
  start-page: 813
  year: 1987
  ident: ref_46
  article-title: A simple method for determining physiologically active calcium and magnesium concentrations in critically ill patients
  publication-title: Crit. Care Med.
  doi: 10.1097/00003246-198709000-00002
SSID ssj0000913825
Score 2.2430358
Snippet Background: The objectives of this study were to classify patients with serum magnesium derangement on hospital admission into clusters using unsupervised...
The objectives of this study were to classify patients with serum magnesium derangement on hospital admission into clusters using unsupervised machine learning...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2119
SubjectTerms Age
Algorithms
Artificial intelligence
Cardiovascular disease
Clinical outcomes
Cluster analysis
clustering
Comorbidity
consensus clustering
Diabetes
dysmagnesemia
electrolytes
Hospitalization
Hospitals
Hypertension
hypomagnesemia
Laboratories
Machine learning
Mortality
Patients
Signal transduction
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BFiEuvBFpCzISR6JubK9jn1BbWnHpaoVAqsQhcvwoK7XZstlFgl_fmcS7JRLqhWtsK47HM_5mPPkG4D2ieB88_RwzCSKXiJlzIySliXkvIu4aXtiu2EQ5nerzczNLAbc2pVVubGJnqP3CUYz8AHE3HwuB9vbj9c-cqkbR7WoqoXEfdoipTI5g5-hkOvuyjbIQ6yX6QD3dkED__sD3GWzEgUzWgoYNjqSOuX8AN4fJkn-dPqdP_nfeT-Fxwp3ssN8oz-BeaJ7Dw7N0s_4Cvp91WZWBJcLVC0alPKkORsuOL9dEp0APDxMFOUOsyzY1R-Z_gmeznqC1ZRTZZZ9-t1e4AqENV3P7Er6dnnw9_pynwgu5k6Va5UUspZ2gJQiaR6N9VIgjo4syOK6c4Sh44YXSyptooip0CLiMynoTpNDSiVcwahZNeA3M6JrzUNQhyoksojOlVa6OJiBQGmtrM-Cbta9cYiWn4hiXFXonJLDqHwLL4MN20HVPynF39yMS6rYrMWp3DxbLiyopaCVsrcfcqFoKIWucZqxl7cYeIWFB35_B_ka-VVLztroVbgbvts2ooHTrYpuwWHd9ZMfDqDIoB1tpMKFhSzP_0VF9a_RvEWPv3v3yPXjEKdWGshMn-zBaLdfhDTxwv1bzdvk26cQNwuIbZw
  priority: 102
  providerName: ProQuest
Title Machine Learning Consensus Clustering Approach for Hospitalized Patients with Dysmagnesemia
URI https://www.proquest.com/docview/2602033362
https://www.proquest.com/docview/2604027446
https://pubmed.ncbi.nlm.nih.gov/PMC8619519
https://doaj.org/article/3ab80296b4334b97afb4bc0d2561f609
Volume 11
WOSCitedRecordID wos000725845600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M2O
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BQYhLxVMNLSsjcSTqxnYc-9iWVnDYJUIgLeIQOX7ASm1aNbtI8OuZSbKrjYTgwiUHx5Hs8Yznm3j8DcBrRPE-eLockweRSsTMqRGS0sS8FxG1hme2KzZRzOd6sTDlTqkvygnr6YF7wR0LW-spN6qWQsjaFDbWsnZTj646i6q_uoeoZyeY6vZgQ9x6eU8zJDCuP_Z95hpxH9MuQcRmI1fUMfaPYOY4SXLH61w8gv0BLrKTfpiP4U5onsCD2XAg_hS-zrpkyMAGntRvjCpwUvmKlp1drokFgRpPBuZwhhCVbUqFLH8Fz8qeV7Vl9EOWvf3ZXuEEQhuulvYZfL44_3T2Lh3qJaROFmqVZrGQNkcDDppHoz2Jx0QXZXBcOcNxvYQXSitvookq0yGgFJT1JkihpRPPYa-5bsIBMKNrzkNWhyhzmUWHcleujiYgvplqaxPgG9FVbiATp5oWlxUGFSTv6g_yTuDN9qObnkvj791PaU22XYkIu2tA9agG9aj-pR4JHG1WtBqss60whuNTIdB3J_Bq-xrtig5LbBOu110f2dEnqgSKkSaMBjR-0yy_dwzdGsNShMYv_scMDuEhpzwaSj3Mj2BvdbsOL-G--7FatrcTuFss9ATunZ7Py4-TzgjwOeMfsK18Pyu__AYn1RD3
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKQI2vFENBQYJdli1ZybOzAKh0lI1ahNlUaQiFsaeRxupdUqcgMpH8Y3c60fAEuquC7b2-DGe4-tzx3fOAXiNLN46S4tj-k6EEjlzqIWkMjFrhUfU8DirzCYG47E6PtaTNfjVroWhsso2JlaB2s4MzZFvIe_mkRAYb99ffAvJNYr-rrYWGjUsDtzlD0zZynfDXRzfN5zvfTza2Q8bV4HQyEGyCGM_kFkfYe4U91pZnyBJ8sZLZ3hiNMdeCSsSlVjttU9i5VyMMM2sdlIoaQSe9wasSwS76sH6ZDiafF7N6pDKJuZctbyREDrasnXFHGkuU3QiQbXOJ7ByCujQ225x5l9fu717_9tzug93G17NtusX4QGsueIh3Bo1lQOP4Muoqhp1rBGUPWFkVUo-HyXbOVuSXARt3G4k1hlyedZ6qkx_OssmtQBtyWjmmu1eluf4xF3pzqfZY_h0LV17Ar1iVrgNYFrlnLs4d172ZeyNHmSJyb12SAQjlWUB8HasU9OorpP5x1mK2RcBJP0HQAJ4uzroohYdubr5BwLRqikphlcbZvOTtAlAqchyFXGd5FIImeNt-lzmJrJIeWPqfwCbLZ7SJoyV6R8wBfBqtRsDEP1Vygo3W1ZtZKUzmQQw6EC3c0PdPcX0tJIyV5i_Yw7x9OqLv4Tb-0ejw_RwOD54Bnc4lRVRJWZ_E3qL-dI9h5vm-2Jazl807yODr9cN7d8imXlu
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBVVseCNSChgJdkST2J7EXiBUOoyoSodZgFSJRUj8KCO1mXYyAyqfxtdxbx4DkVB3XbBNnIeTk-t77ZNzAF5gFm-dpZ9jhk6EEnPmUAtJNDFrhUfU8DivzSbSyUQdHenpBvzq_oUhWmUXE-tAbeeG5sgHmHfzSAiMtwPf0iKmo_Gbs_OQHKRopbWz02ggcuAufmD5Vr3eH-G7fsn5-N2nvfdh6zAQGpkmyzD2qcyHCHmnuNfK-gQTJm-8dIYnRnPsobAiUYnVXvskVs7FCNncaieFkkbgea_B9VTioEy0Qf5xPb9DeptYfTVCR0LoaGAb7hypL1OcImm13mBYewb0Et0-TfOvcW98-39-YnfgVptts93m87gLG668B1uHLZ_gPnw5rLmkjrUys8eMDEzJ_aNieycrEpGgjbut8DrDDJ91Tiuzn86yaSNLWzGaz2aji-oUn76r3OksfwCfr6RrD2GznJfuETCtCs5dXDgvhzL2Rqd5YgqvHaaHkcrzAHj33jPTarGTJchJhjUZgSX7B1gCeLU-6KyRIrm8-VsC1Lop6YjXG-aL46wNS5nICxVxnRRSCFngbfpCFiaymAjH1P8AdjpsZW1wq7I_wArg-Xo3hiVaa8pLN1_VbWStPpkEkPZg3Luh_p5y9q0WOFdY1WNlsX35xZ_BFuI5-7A_OXgMNzlxjYieOdyBzeVi5Z7ADfN9OasWT-sPk8HXq8b1b7mOgKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Consensus+Clustering+Approach+for+Hospitalized+Patients+with+Dysmagnesemia&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Thongprayoon%2C+Charat&rft.au=Sy-Go%2C+Janina+Paula+T&rft.au=Nissaisorakarn%2C+Voravech&rft.au=Dumancas%2C+Carissa+Y&rft.date=2021-11-15&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=11&rft.issue=11&rft_id=info:doi/10.3390%2Fdiagnostics11112119&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon