A subquadratic algorithm for minimum palindromic factorization

We give an O(nlog⁡n)-time, O(n)-space algorithm for factoring a string into the minimum number of palindromic substrings. That is, given a string S[1..n], in O(nlog⁡n) time our algorithm returns the minimum number of palindromes S1,…,Sℓ such that S=S1⋯Sℓ. We also show that the time complexity is O(n...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of discrete algorithms (Amsterdam, Netherlands) Ročník 28; s. 41 - 48
Hlavní autoři: Fici, Gabriele, Gagie, Travis, Kärkkäinen, Juha, Kempa, Dominik
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.09.2014
Témata:
ISSN:1570-8667, 1570-8675
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We give an O(nlog⁡n)-time, O(n)-space algorithm for factoring a string into the minimum number of palindromic substrings. That is, given a string S[1..n], in O(nlog⁡n) time our algorithm returns the minimum number of palindromes S1,…,Sℓ such that S=S1⋯Sℓ. We also show that the time complexity is O(n) on average and Ω(nlog⁡n) in the worst case. The last result is based on a characterization of the palindromic structure of Zimin words.
ISSN:1570-8667
1570-8675
DOI:10.1016/j.jda.2014.08.001