A subquadratic algorithm for minimum palindromic factorization
We give an O(nlogn)-time, O(n)-space algorithm for factoring a string into the minimum number of palindromic substrings. That is, given a string S[1..n], in O(nlogn) time our algorithm returns the minimum number of palindromes S1,…,Sℓ such that S=S1⋯Sℓ. We also show that the time complexity is O(n...
Uloženo v:
| Vydáno v: | Journal of discrete algorithms (Amsterdam, Netherlands) Ročník 28; s. 41 - 48 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.09.2014
|
| Témata: | |
| ISSN: | 1570-8667, 1570-8675 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We give an O(nlogn)-time, O(n)-space algorithm for factoring a string into the minimum number of palindromic substrings. That is, given a string S[1..n], in O(nlogn) time our algorithm returns the minimum number of palindromes S1,…,Sℓ such that S=S1⋯Sℓ. We also show that the time complexity is O(n) on average and Ω(nlogn) in the worst case. The last result is based on a characterization of the palindromic structure of Zimin words. |
|---|---|
| ISSN: | 1570-8667 1570-8675 |
| DOI: | 10.1016/j.jda.2014.08.001 |