Molecular dynamics analysis of a flexible loop at the binding interface of the SARS‐CoV‐2 spike protein receptor‐binding domain
Since the identification of the SARS‐CoV‐2 virus as the causative agent of the current COVID‐19 pandemic, considerable effort has been spent characterizing the interaction between the Spike protein receptor‐binding domain (RBD) and the human angiotensin converting enzyme 2 (ACE2) receptor. This has...
Uloženo v:
| Vydáno v: | Proteins, structure, function, and bioinformatics Ročník 90; číslo 5; s. 1044 - 1053 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2022
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 0887-3585, 1097-0134, 1097-0134 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Since the identification of the SARS‐CoV‐2 virus as the causative agent of the current COVID‐19 pandemic, considerable effort has been spent characterizing the interaction between the Spike protein receptor‐binding domain (RBD) and the human angiotensin converting enzyme 2 (ACE2) receptor. This has provided a detailed picture of the end point structure of the RBD‐ACE2 binding event, but what remains to be elucidated is the conformation and dynamics of the RBD prior to its interaction with ACE2. In this work, we utilize molecular dynamics simulations to probe the flexibility and conformational ensemble of the unbound state of the receptor‐binding domain from SARS‐CoV‐2 and SARS‐CoV. We have found that the unbound RBD has a localized region of dynamic flexibility in Loop 3 and that mutations identified during the COVID‐19 pandemic in Loop 3 do not affect this flexibility. We use a loop‐modeling protocol to generate and simulate novel conformations of the CoV2‐RBD Loop 3 region that sample conformational space beyond the ACE2 bound crystal structure. This has allowed for the identification of interesting substates of the unbound RBD that are lower energy than the ACE2‐bound conformation, and that block key residues along the ACE2 binding interface. These novel unbound substates may represent new targets for therapeutic design. |
|---|---|
| AbstractList | Since the identification of the SARS‐CoV‐2 virus as the causative agent of the current COVID‐19 pandemic, considerable effort has been spent characterizing the interaction between the Spike protein receptor‐binding domain (RBD) and the human angiotensin converting enzyme 2 (ACE2) receptor. This has provided a detailed picture of the end point structure of the RBD‐ACE2 binding event, but what remains to be elucidated is the conformation and dynamics of the RBD prior to its interaction with ACE2. In this work, we utilize molecular dynamics simulations to probe the flexibility and conformational ensemble of the unbound state of the receptor‐binding domain from SARS‐CoV‐2 and SARS‐CoV. We have found that the unbound RBD has a localized region of dynamic flexibility in Loop 3 and that mutations identified during the COVID‐19 pandemic in Loop 3 do not affect this flexibility. We use a loop‐modeling protocol to generate and simulate novel conformations of the CoV2‐RBD Loop 3 region that sample conformational space beyond the ACE2 bound crystal structure. This has allowed for the identification of interesting substates of the unbound RBD that are lower energy than the ACE2‐bound conformation, and that block key residues along the ACE2 binding interface. These novel unbound substates may represent new targets for therapeutic design. Since the identification of the SARS-CoV-2 virus as the causative agent of the current COVID-19 pandemic, considerable effort has been spent characterizing the interaction between the Spike protein receptor-binding domain (RBD) and the human angiotensin converting enzyme 2 (ACE2) receptor. This has provided a detailed picture of the end point structure of the RBD-ACE2 binding event, but what remains to be elucidated is the conformation and dynamics of the RBD prior to its interaction with ACE2. In this work, we utilize molecular dynamics simulations to probe the flexibility and conformational ensemble of the unbound state of the receptor-binding domain from SARS-CoV-2 and SARS-CoV. We have found that the unbound RBD has a localized region of dynamic flexibility in Loop 3 and that mutations identified during the COVID-19 pandemic in Loop 3 do not affect this flexibility. We use a loop-modeling protocol to generate and simulate novel conformations of the CoV2-RBD Loop 3 region that sample conformational space beyond the ACE2 bound crystal structure. This has allowed for the identification of interesting substates of the unbound RBD that are lower energy than the ACE2-bound conformation, and that block key residues along the ACE2 binding interface. These novel unbound substates may represent new targets for therapeutic design.Since the identification of the SARS-CoV-2 virus as the causative agent of the current COVID-19 pandemic, considerable effort has been spent characterizing the interaction between the Spike protein receptor-binding domain (RBD) and the human angiotensin converting enzyme 2 (ACE2) receptor. This has provided a detailed picture of the end point structure of the RBD-ACE2 binding event, but what remains to be elucidated is the conformation and dynamics of the RBD prior to its interaction with ACE2. In this work, we utilize molecular dynamics simulations to probe the flexibility and conformational ensemble of the unbound state of the receptor-binding domain from SARS-CoV-2 and SARS-CoV. We have found that the unbound RBD has a localized region of dynamic flexibility in Loop 3 and that mutations identified during the COVID-19 pandemic in Loop 3 do not affect this flexibility. We use a loop-modeling protocol to generate and simulate novel conformations of the CoV2-RBD Loop 3 region that sample conformational space beyond the ACE2 bound crystal structure. This has allowed for the identification of interesting substates of the unbound RBD that are lower energy than the ACE2-bound conformation, and that block key residues along the ACE2 binding interface. These novel unbound substates may represent new targets for therapeutic design. |
| Author | Sam, Andrew Wang, Baifan Case, David A. Baum, Jean Williams, Jonathan K. Hoop, Cody L. |
| AuthorAffiliation | 2 Institute for Quantitative Biomedicine, Rutgers University Piscataway New Jersey USA 1 Department of Chemistry and Chemical Biology Rutgers University Piscataway New Jersey USA |
| AuthorAffiliation_xml | – name: 1 Department of Chemistry and Chemical Biology Rutgers University Piscataway New Jersey USA – name: 2 Institute for Quantitative Biomedicine, Rutgers University Piscataway New Jersey USA |
| Author_xml | – sequence: 1 givenname: Jonathan K. orcidid: 0000-0002-7272-6885 surname: Williams fullname: Williams, Jonathan K. organization: Rutgers University – sequence: 2 givenname: Baifan surname: Wang fullname: Wang, Baifan organization: Rutgers University – sequence: 3 givenname: Andrew surname: Sam fullname: Sam, Andrew organization: Rutgers University – sequence: 4 givenname: Cody L. orcidid: 0000-0003-4441-8321 surname: Hoop fullname: Hoop, Cody L. organization: Rutgers University – sequence: 5 givenname: David A. surname: Case fullname: Case, David A. organization: Institute for Quantitative Biomedicine, Rutgers University – sequence: 6 givenname: Jean surname: Baum fullname: Baum, Jean email: jean.baum@chem.rutgers.edu organization: Rutgers University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34375467$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ksFu1DAQhi1URLeFCw-ALHFBlVLsOHGcC1K1olCpqKgtXC3HmbQujp3aScveuHDnGfskOGwXQYW4zBzm-3_9mpkdtOW8A4SeU7JPCclfD8GP-znPiXiEFpTUVUYoK7bQgghRZawU5TbaifGKEMJrxp-gbVawqix4tUDfP3gLerIq4HblVG90xMopu4omYt9hhTsLX01jAVvvB6xGPF4CboxrjbvAxo0QOqVhZufB2cHp2d23H0v_OdUcx8F8ATwHBONwAA3D6EMabQxa3yvjnqLHnbIRnt33XfTp8O358n12fPLuaHlwnOmi4iLjeVdpgJI30FWcV6yBgivSNowo3bBcEQqiZSUFzXXBuOhEDdDUqgZaKq3ZLnqz9h2mpodWgxuDsnIIpldhJb0y8u-JM5fywt9IURSUlzwZvLo3CP56gjjK3kQN1ioHfooyLznJ6yrVhL58gF75KaTVJooXdTqcEDP14s9Ev6NsLpQAsgZ08DEG6KQ2oxqNnwMaKymR8xPIecfy1xMkyd4Dycb1nzBdw7fGwuo_pPx4enK-1vwE41zIRg |
| CitedBy_id | crossref_primary_10_1016_j_jbc_2023_103044 crossref_primary_10_1073_pnas_2404892121 crossref_primary_10_3389_fmedt_2022_1009451 crossref_primary_10_3390_biom13020359 crossref_primary_10_1002_jmv_27927 crossref_primary_10_1002_jcb_30502 crossref_primary_10_7554_eLife_95708_3 crossref_primary_10_1016_j_bbrep_2025_102082 crossref_primary_10_1016_j_abb_2024_110210 crossref_primary_10_1016_j_bpj_2023_07_002 crossref_primary_10_1016_j_foodhyd_2023_109654 crossref_primary_10_1002_prot_26266 crossref_primary_10_1002_jcc_27108 crossref_primary_10_1016_j_jbc_2022_102732 crossref_primary_10_3390_biom15060805 crossref_primary_10_3389_fmicb_2022_875840 crossref_primary_10_3390_molecules28052333 crossref_primary_10_3390_pathogens13060520 crossref_primary_10_1038_s41598_024_72842_w crossref_primary_10_3390_ph15050620 crossref_primary_10_1016_j_compbiomed_2023_106785 crossref_primary_10_1021_acs_jafc_5c10372 crossref_primary_10_3390_v14122789 crossref_primary_10_1002_bies_202200060 crossref_primary_10_7554_eLife_95708 crossref_primary_10_1016_j_ijbiomac_2023_125153 |
| Cites_doi | 10.1002/jcc.20084 10.1021/ct300418h 10.1021/acs.jctc.7b00125 10.1063/1.470117 10.1021/acsnano.0c04674 10.1093/nar/gkm363 10.1101/2020.05.31.126615 10.1038/s41598-020-71748-7 10.1093/bioinformatics/btq007 10.1021/acs.jpcb.0c05994 10.1038/s41598-020-71188-3 10.1016/j.cbpa.2018.05.003 10.1002/jmv.25681 10.1126/science.abb9983 10.1021/ct600085e 10.1016/j.cell.2020.09.032 10.1016/j.cell.2020.08.012 10.1063/1.464397 10.1128/JVI.00127-20 10.1016/0021-9991(77)90098-5 10.1021/ct3010485 10.1111/cbdd.12066 10.1016/j.pbiomolbio.2015.01.009 10.1016/j.cell.2020.06.043 10.1038/s41579-018-0118-9 10.1080/07391102.2020.1802348 10.1073/pnas.1711490115 10.1021/ct700119m 10.1021/jz501780a 10.1021/ct400341p 10.1016/j.sbi.2017.10.010 10.1021/acs.jctc.9b00591 10.1016/j.sbi.2019.03.015 10.2807/1560-7917.ES.2017.22.13.30494 10.1021/acs.jpcb.0c04511 10.1101/2020.06.12.148726 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley Periodicals LLC. 2022 Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2021 Wiley Periodicals LLC. – notice: 2022 Wiley Periodicals LLC. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
| DOI | 10.1002/prot.26208 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Virology and AIDS Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry Biology |
| DocumentTitleAlternate | Williams et al |
| EISSN | 1097-0134 |
| EndPage | 1053 |
| ExternalDocumentID | PMC8441656 34375467 10_1002_prot_26208 PROT26208 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Rutgers University Center for COVID‐19 Response and Pandemic Preparedness funderid: CCRP2 – fundername: National Institutes of Health Grant funderid: GM136431 – fundername: NIGMS NIH HHS grantid: R35 GM136431 – fundername: Rutgers University Center for COVID‐19 Response and Pandemic Preparedness grantid: CCRP2 – fundername: National Institutes of Health Grant grantid: GM136431 |
| GroupedDBID | -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBD EBS EJD EMOBN F00 F01 F04 F5P FA8 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c4768-62f7cee56bef76673be46a0db30acb32a01e8d351ec6c4368f89eeb9a9e15acc3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 76 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000687208000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0887-3585 1097-0134 |
| IngestDate | Tue Nov 04 01:58:22 EST 2025 Sun Nov 09 11:01:49 EST 2025 Thu Nov 20 09:10:55 EST 2025 Thu Apr 03 07:04:33 EDT 2025 Tue Nov 18 21:18:32 EST 2025 Sat Nov 29 01:48:12 EST 2025 Wed Jan 22 16:24:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | SARS-CoV-2 spike glycoprotein molecular dynamics simulation protein dynamics coronavirus protein conformation protein modeling |
| Language | English |
| License | 2021 Wiley Periodicals LLC. This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4768-62f7cee56bef76673be46a0db30acb32a01e8d351ec6c4368f89eeb9a9e15acc3 |
| Notes | Funding information Rutgers University Center for COVID‐19 Response and Pandemic Preparedness, Grant/Award Number: CCRP2; National Institutes of Health Grant, Grant/Award Number: GM136431 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information Rutgers University Center for COVID‐19 Response and Pandemic Preparedness, Grant/Award Number: CCRP2; National Institutes of Health Grant, Grant/Award Number: GM136431 |
| ORCID | 0000-0003-4441-8321 0000-0002-7272-6885 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8441656 |
| PMID | 34375467 |
| PQID | 2649002880 |
| PQPubID | 1016441 |
| PageCount | 10 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8441656 proquest_miscellaneous_2560297560 proquest_journals_2649002880 pubmed_primary_34375467 crossref_citationtrail_10_1002_prot_26208 crossref_primary_10_1002_prot_26208 wiley_primary_10_1002_prot_26208_PROT26208 |
| PublicationCentury | 2000 |
| PublicationDate | May 2022 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Hokoben |
| PublicationTitle | Proteins, structure, function, and bioinformatics |
| PublicationTitleAlternate | Proteins |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2019; 55 2017; 22 2004; 25 2020; 182 2020; 183 2020; 369 2019; 17 2020; 16 2020; 14 2020; 124 2020; 10 1977; 23 2018; 44 2007; 35 2018; 48 2013; 9 2014; 5 2010; 26 2020 2020; 94 2020; 92 1993; 98 2018; 115 2017; 13 2013; 81 2015; 119 1995; 103 2007; 3 2012; 8 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – volume: 55 start-page: 147 year: 2019 end-page: 153 article-title: Importance of protein dynamics in the structure‐based drug discovery of class a G protein‐coupled receptors (GPCRs) publication-title: Curr Opin Struct Biol – volume: 182 start-page: 812 issue: 4 year: 2020 end-page: 827 article-title: Tracking changes in SARS‐CoV‐2 spike: evidence that D614G increases infectivity of the COVID‐19 virus publication-title: Cell – volume: 103 start-page: 8577 issue: 19 year: 1995 end-page: 8593 article-title: A smooth particle mesh Ewald method publication-title: J Chem Phys – volume: 5 start-page: 3863 issue: 21 year: 2014 end-page: 3871 article-title: Building water models: a different approach publication-title: J Phys Chem Lett – volume: 25 start-page: 1605 issue: 13 year: 2004 end-page: 1612 article-title: UCSF chimera—a visualization system for exploratory research and analysis publication-title: J Comput Chem – volume: 369 start-page: 330 issue: 6501 year: 2020 end-page: 333 article-title: Site‐specific glycan analysis of the SARS‐CoV‐2 spike publication-title: Science – volume: 81 start-page: 22 issue: 1 year: 2013 end-page: 32 article-title: Expanding the number of ‘Druggable’ targets: non‐enzymes and protein–protein interactions publication-title: Chem Biol Drug des – volume: 3 start-page: 2312 issue: 6 year: 2007 end-page: 2334 article-title: Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms publication-title: J Chem Theory and Comput – volume: 115 start-page: E3416 issue: 15 year: 2018 end-page: E3425 article-title: Exploring the structural origins of cryptic sites on proteins publication-title: Proc Natl Acad Sci – volume: 182 start-page: 1295 issue: 5 year: 2020 end-page: 1310 article-title: Deep mutational scanning of SARS‐CoV‐2 receptor binding domain reveals constraints on folding and ACE2 binding publication-title: Cell – volume: 17 start-page: 181 issue: 3 year: 2019 end-page: 192 article-title: Origin and evolution of pathogenic coronaviruses publication-title: Nat Rev Microbiol – volume: 183 start-page: 739 issue: 3 year: 2020 end-page: 751 article-title: Structural and functional analysis of the D614G SARS‐CoV‐2 spike protein variant publication-title: Cell – volume: 13 start-page: 3031 issue: 6 year: 2017 end-page: 3048 article-title: The Rosetta all‐atom energy function for macromolecular modeling and design publication-title: J Chem Theory Comput – volume: 8 start-page: 3314 issue: 9 year: 2012 end-page: 3321 article-title: MMPBSA.Py: an efficient program for end‐state free energy calculations publication-title: J Chem Theory Comput – volume: 10 start-page: 14991 issue: 1 year: 2020 article-title: Analysis of the SARS‐CoV‐2 spike protein glycan shield reveals implications for immune recognition publication-title: Sci Rep – volume: 9 start-page: 2020 issue: 4 year: 2013 end-page: 2034 article-title: Improved generalized born solvent model parameters for protein simulations publication-title: J Chem Theory Comput – volume: 92 start-page: 418 issue: 4 year: 2020 end-page: 423 article-title: Emerging coronaviruses: genome structure, replication, and pathogenesis publication-title: J Med Virol – volume: 16 start-page: 528 issue: 1 year: 2020 end-page: 552 article-title: ff19SB: amino‐acid‐specific protein backbone parameters trained against quantum mechanics energy surfaces in solution publication-title: J Chem Theory Comput – volume: 124 start-page: 7336 issue: 34 year: 2020 end-page: 7347 article-title: Does SARS‐CoV‐2 bind to human ACE2 more strongly than does SARS‐CoV? publication-title: J Phys Chem B – volume: 3 start-page: 156 issue: 1 year: 2007 end-page: 169 article-title: Generalized born model with a simple, robust molecular volume correction publication-title: J Chem Theory Comput – volume: 35 start-page: W460 issue: 2 year: 2007 end-page: W464 article-title: PrDOS: prediction of disordered protein regions from amino acid sequence publication-title: Nucleic Acids Res – volume: 14 start-page: 11821 issue: 9 year: 2020 end-page: 11830 article-title: Computational alanine scanning and structural analysis of the SARS‐CoV‐2 spike protein/angiotensin‐converting enzyme 2 complex publication-title: ACS Nano – volume: 119 start-page: 2 issue: 1 year: 2015 end-page: 9 article-title: Flexibility and small pockets at protein–protein interfaces: new insights into druggability publication-title: Prog Biophys Mol Biol – volume: 44 start-page: 1 year: 2018 end-page: 8 article-title: Cryptic binding sites on proteins: definition, detection, and druggability publication-title: Curr Opin Chem Biol – volume: 98 start-page: 10089 issue: 12 year: 1993 end-page: 10092 article-title: Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems publication-title: J Chem Phys – volume: 94 start-page: e00127 issue: 7 year: 2020 end-page: e00120 article-title: Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade‐long structural studies of SARS coronavirus publication-title: J Virol – volume: 26 start-page: 689 issue: 5 year: 2010 end-page: 691 article-title: PyRosetta: a script‐based interface for implementing molecular modeling algorithms using Rosetta publication-title: Bioinformatics – volume: 124 start-page: 10034 issue: 45 year: 2020 end-page: 10047 article-title: Critical sequence hotspots for binding of novel coronavirus to angiotensin converter enzyme as evaluated by molecular simulations publication-title: J Phys Chem B – volume: 10 start-page: 14214 issue: 1 year: 2020 article-title: Dynamics of the ACE2–SARS‐CoV‐2/SARS‐CoV spike protein interface reveal unique mechanisms publication-title: Sci Rep – volume: 22 issue: 13 year: 2017 article-title: GISAID: global initiative on sharing all influenza data ‐ from vision to reality publication-title: EuroSurveillance – volume: 9 start-page: 3084 issue: 7 year: 2013 end-page: 3095 article-title: PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data publication-title: J Chem Theory Comput – start-page: 1 year: 2020 end-page: 15 article-title: Effect of mutation on structure, function and dynamics of receptor binding domain of human SARS‐CoV‐2 with host cell receptor ACE2: a molecular dynamics simulations study publication-title: J Biomol Struct Dyn – volume: 48 start-page: 93 year: 2018 end-page: 102 article-title: Protein structure‐based drug design: from docking to molecular dynamics publication-title: Curr Opin Struct Biol – volume: 23 start-page: 327 issue: 3 year: 1977 end-page: 341 article-title: Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n‐alkanes publication-title: J Comput Phys – ident: e_1_2_9_40_1 doi: 10.1002/jcc.20084 – ident: e_1_2_9_37_1 doi: 10.1021/ct300418h – ident: e_1_2_9_29_1 doi: 10.1021/acs.jctc.7b00125 – ident: e_1_2_9_34_1 doi: 10.1063/1.470117 – ident: e_1_2_9_5_1 doi: 10.1021/acsnano.0c04674 – ident: e_1_2_9_13_1 doi: 10.1093/nar/gkm363 – ident: e_1_2_9_21_1 doi: 10.1101/2020.05.31.126615 – ident: e_1_2_9_12_1 doi: 10.1038/s41598-020-71748-7 – ident: e_1_2_9_17_1 – ident: e_1_2_9_19_1 doi: 10.1093/bioinformatics/btq007 – ident: e_1_2_9_14_1 doi: 10.1021/acs.jpcb.0c05994 – ident: e_1_2_9_9_1 doi: 10.1038/s41598-020-71188-3 – ident: e_1_2_9_24_1 doi: 10.1016/j.cbpa.2018.05.003 – ident: e_1_2_9_2_1 doi: 10.1002/jmv.25681 – ident: e_1_2_9_3_1 doi: 10.1126/science.abb9983 – ident: e_1_2_9_39_1 doi: 10.1021/ct600085e – ident: e_1_2_9_26_1 doi: 10.1016/j.cell.2020.09.032 – ident: e_1_2_9_32_1 – ident: e_1_2_9_15_1 doi: 10.1016/j.cell.2020.08.012 – ident: e_1_2_9_33_1 doi: 10.1063/1.464397 – ident: e_1_2_9_7_1 doi: 10.1128/JVI.00127-20 – ident: e_1_2_9_35_1 doi: 10.1016/0021-9991(77)90098-5 – ident: e_1_2_9_38_1 doi: 10.1021/ct3010485 – ident: e_1_2_9_23_1 doi: 10.1111/cbdd.12066 – ident: e_1_2_9_22_1 doi: 10.1016/j.pbiomolbio.2015.01.009 – ident: e_1_2_9_27_1 doi: 10.1016/j.cell.2020.06.043 – ident: e_1_2_9_4_1 doi: 10.1038/s41579-018-0118-9 – ident: e_1_2_9_6_1 doi: 10.1080/07391102.2020.1802348 – ident: e_1_2_9_25_1 doi: 10.1073/pnas.1711490115 – ident: e_1_2_9_20_1 doi: 10.1021/ct700119m – ident: e_1_2_9_30_1 doi: 10.1021/jz501780a – ident: e_1_2_9_36_1 doi: 10.1021/ct400341p – ident: e_1_2_9_11_1 doi: 10.1016/j.sbi.2017.10.010 – ident: e_1_2_9_18_1 – ident: e_1_2_9_31_1 doi: 10.1021/acs.jctc.9b00591 – ident: e_1_2_9_10_1 doi: 10.1016/j.sbi.2019.03.015 – ident: e_1_2_9_16_1 doi: 10.2807/1560-7917.ES.2017.22.13.30494 – ident: e_1_2_9_8_1 doi: 10.1021/acs.jpcb.0c04511 – ident: e_1_2_9_28_1 doi: 10.1101/2020.06.12.148726 |
| SSID | ssj0006936 |
| Score | 2.6082375 |
| Snippet | Since the identification of the SARS‐CoV‐2 virus as the causative agent of the current COVID‐19 pandemic, considerable effort has been spent characterizing the... Since the identification of the SARS-CoV-2 virus as the causative agent of the current COVID-19 pandemic, considerable effort has been spent characterizing the... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1044 |
| SubjectTerms | ACE2 Angiotensin Angiotensin-Converting Enzyme 2 Binding Binding Sites coronavirus COVID-19 Crystal structure Flexibility Humans Molecular dynamics Molecular Dynamics Simulation Mutation Pandemics Peptidyl-dipeptidase A Protein Binding protein conformation protein dynamics protein modeling Protein structure Proteins Receptors SARS-CoV-2 Severe acute respiratory syndrome Severe acute respiratory syndrome coronavirus 2 Special issue: SARS‐CoV‐2 special issue for Proteins spike glycoprotein Spike Glycoprotein, Coronavirus - chemistry Spike protein Viral diseases |
| Title | Molecular dynamics analysis of a flexible loop at the binding interface of the SARS‐CoV‐2 spike protein receptor‐binding domain |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.26208 https://www.ncbi.nlm.nih.gov/pubmed/34375467 https://www.proquest.com/docview/2649002880 https://www.proquest.com/docview/2560297560 https://pubmed.ncbi.nlm.nih.gov/PMC8441656 |
| Volume | 90 |
| WOSCitedRecordID | wos000687208000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0134 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006936 issn: 0887-3585 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61WxBceLQUAqUyAiGBlDYPx3EkLsvCikMp1bZFe4sc2xER22S12SJx48K9v7G_BI_zKKsiJMQlijSTxElm7M-J5_sAXnBPCRnEnkuZoi7lvnCTUESunydBrlHZPLSFwgfx4SGfTpOjNXjT1cI0_BD9BzfMDNtfY4KLrN6_Ig1FHoM9pFPn67BhrhbSAWy8m4xPD_qemCVWIrBJJIOLe3rSYP_q6NUB6RrKvL5Y8ncQa0eh8d3_a_89uNOiTzJswuU-rOlyE7aGpZl5n30nL4ldD2o_tG_Czbfd3q1Rpwq3BT8_dnq6RDVi9jURLbEJqXIiSI4Um9lMk1lVzYlYEgMxSVbY6hmC7BSLXEiNvmg4Hk6OL39cjKrPZhuQel581cSSRxQlMb2xni-rhTF1J1DVmSjKB3A6fn8y-uC2Ug6upGZC47Igj81wHLFM5zEqjWaaMuGpLPSEzMJAeL7mKox8LZlEUvycJ1pniUi0Hwkpw20YlFWpHwGJEcJmVElpoInSiisaShmwOE-MJdIOvOreZypbnnOU25ilDUNzkOJNpPbJO_C895037B5_9NrpwiJtM7w2FprghJV7DjzrzeZl4A8XUerq3PgYOImVy8z4PGyiqL9MSFF8mMUOxCvx1Tsg7_eqpSy-WP5vbiCsgeEOvLbx9ZeWp0eTTyd27_G_OD-B2wFWedh1nTswWC7O9VO4Ib8ti3qxC-vxlO-2ufYLqsQy1w |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BFlQuPFoogQJGICSQQvNwHOe4LKyK2C7Vdot6ixzbUSO2yWp3i8SNC3d-I78Ej_MoqyIkxCWKNJP3jP3Z8XwfwHPuKSGD2HMpU9Sl3BduEorI9fMkyDUqm4e2UHgUj8f85CQ5bNbmYC1MzQ_RTbhhZtj2GhMcJ6T3LlhDkcjgNfKp86uwQU0cRT3YeDsZHo-6ppglViOwziQDjDt-0mDv4uj1HukSzLy8WvJ3FGu7oeGt_3yA23CzwZ-kXwfMHbiiyy3Y7pdm7H32lbwgdkWonWrfgutv2r3NQasLtw3fD1pFXaJqOfslEQ21CalyIkiOJJvZTJNZVc2JWBEDMklW2PoZgvwUi1xIjb5oOOpPjn5--zGoPpltQJbz4rMmlj6iKIlpj_V8VS2MqT2Bqs5EUd6F4-G76WDfbcQcXEnNkMZlQR6bDjlimc5j1BrNNGXCU1noCZmFgfB8zVUY-VoyibT4OU-0zhKRaD8SUob3oFdWpb4PJEYQm1ElpQEnSiuuaChlwOI8MZZIO_Cy_aCpbJjOUXBjltYczUGKD5HaN-_As853XvN7_NFrt42LtMnxpbHQBIes3HPgaWc2HwN_uYhSV-fGxwBKrF1mxmenDqPuMiFF-WEWOxCvBVjngMzf65ayOLUM4NyAWAPEHXhlA-wvd54eTj5O7d6Df3F-Apv704NROno__vAQbgRY82FXee5Cb7U414_gmvyyKpaLx03K_QKmyzXf |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtRAEC1BwnZhSVgMARqBIoFk4qXdto_DhBGIYRhNEpSb1e5FWExsa2aCxI0Ld76RL6GrvYRREBLiYlmq8l7V_brd9R7As8STXASx51ImqUsTn7tpyCPX12mgFSqbh7ZQeBxPJsnxcTpt1-ZgLUzDD9FPuGFm2PYaE1zVUu-dsYYikcFL5FNPLsImjVJm8nJzfzY6GvdNMUutRmCTSQYY9_ykwd7Z0es90jmYeX615O8o1nZDoxv_-QA34XqLP8mgCZhbcEGVW7A9KM3Y--Qr2SV2Raidat-Cy6-6vavDThduG76_7xR1iWzk7JeEt9QmpNKEE40km_lckXlV1YSviAGZJC9s_QxBfoqF5kKhLxoOBrODn99-DKuPZhuQZV18VsTSRxQlMe2xqlfVwpi6E8jqhBflbTgavT4cvnFbMQdXUDOkcVmgY9MhRyxXOkat0VxRxj2Zhx4XeRhwz1eJDCNfCSaQFl8nqVJ5ylPlR1yI8A5slFWp7gGJEcTmVAphwIlUMpE0FCJgsU6NJVIOPO8-aCZapnMU3JhnDUdzkOFDZPbNO_C0960bfo8_eu10cZG1Ob40FprikDXxHHjSm83HwF8uvFTVqfExgBJrl5nxuduEUX-ZkKL8MIsdiNcCrHdA5u91S1l8sgzgiQGxBog78MIG2F_uPJvOPhzavfv_4vwYrkz3R9n47eTdA7gWYMmHXeS5Axurxal6CJfEl1WxXDxqM-4X5z41Wg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+dynamics+analysis+of+a+flexible+loop+at+the+binding+interface+of+the+SARS%E2%80%90CoV%E2%80%902+spike+protein+receptor%E2%80%90binding+domain&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Williams%2C+Jonathan+K.&rft.au=Wang%2C+Baifan&rft.au=Sam%2C+Andrew&rft.au=Hoop%2C+Cody+L.&rft.date=2022-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0887-3585&rft.eissn=1097-0134&rft.volume=90&rft.issue=5&rft.spage=1044&rft.epage=1053&rft_id=info:doi/10.1002%2Fprot.26208&rft.externalDBID=10.1002%252Fprot.26208&rft.externalDocID=PROT26208 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon |