4D‐Printing of Photoswitchable Actuators

Shape‐switching behavior, where a transient stimulus induces an indefinitely stable deformation that can be recovered on exposure to another transient stimulus, is critical to building smart structures from responsive polymers as continue power is not needed to maintain deformations. Herein, we 4D‐p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition Jg. 60; H. 10; S. 5536 - 5543
Hauptverfasser: Lu, Xili, Ambulo, Cedric P., Wang, Suitu, Rivera‐Tarazona, Laura K., Kim, Hyun, Searles, Kyle, Ware, Taylor H.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 01.03.2021
Ausgabe:International ed. in English
Schlagworte:
ISSN:1433-7851, 1521-3773, 1521-3773
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Shape‐switching behavior, where a transient stimulus induces an indefinitely stable deformation that can be recovered on exposure to another transient stimulus, is critical to building smart structures from responsive polymers as continue power is not needed to maintain deformations. Herein, we 4D‐print shape‐switching liquid crystalline elastomers (LCEs) functionalized with supramolecular crosslinks, dynamic covalent crosslinks, and azobenzene. The salient property of shape‐switching LCEs is that light induces long‐lived, deformation that can be recovered on‐demand by heating. UV‐light isomerizes azobenzene from trans to cis, and temporarily breaks the supramolecular crosslinks, resulting in a programmed deformation. After UV, the shape‐switching LCEs fix more than 90 % of the deformation over 3 days by the reformed supramolecular crosslinks. Using the shape‐switching properties, we print Braille‐like actuators that can be photoswitched to display different letters. This new class of photoswitchable actuators may impact applications such as deployable devices where continuous application of power is impractical. Shape‐switching liquid crystal elastomers are formulated where light is used to trigger a shape change which is then stable indefinitely. The original shape can be recovered on heating. These materials can be 4D printed into reconfigurable Braille‐like actuators capable of displaying letters “L”, “C” and “E” by switching the shape‐morphing of the Archimedean chord patterns with UV light and heating.
AbstractList Shape‐switching behavior, where a transient stimulus induces an indefinitely stable deformation that can be recovered on exposure to another transient stimulus, is critical to building smart structures from responsive polymers as continue power is not needed to maintain deformations. Herein, we 4D‐print shape‐switching liquid crystalline elastomers (LCEs) functionalized with supramolecular crosslinks, dynamic covalent crosslinks, and azobenzene. The salient property of shape‐switching LCEs is that light induces long‐lived, deformation that can be recovered on‐demand by heating. UV‐light isomerizes azobenzene from trans to cis, and temporarily breaks the supramolecular crosslinks, resulting in a programmed deformation. After UV, the shape‐switching LCEs fix more than 90 % of the deformation over 3 days by the reformed supramolecular crosslinks. Using the shape‐switching properties, we print Braille‐like actuators that can be photoswitched to display different letters. This new class of photoswitchable actuators may impact applications such as deployable devices where continuous application of power is impractical.
Shape‐switching behavior, where a transient stimulus induces an indefinitely stable deformation that can be recovered on exposure to another transient stimulus, is critical to building smart structures from responsive polymers as continue power is not needed to maintain deformations. Herein, we 4D‐print shape‐switching liquid crystalline elastomers (LCEs) functionalized with supramolecular crosslinks, dynamic covalent crosslinks, and azobenzene. The salient property of shape‐switching LCEs is that light induces long‐lived, deformation that can be recovered on‐demand by heating. UV‐light isomerizes azobenzene from trans to cis, and temporarily breaks the supramolecular crosslinks, resulting in a programmed deformation. After UV, the shape‐switching LCEs fix more than 90 % of the deformation over 3 days by the reformed supramolecular crosslinks. Using the shape‐switching properties, we print Braille‐like actuators that can be photoswitched to display different letters. This new class of photoswitchable actuators may impact applications such as deployable devices where continuous application of power is impractical. Shape‐switching liquid crystal elastomers are formulated where light is used to trigger a shape change which is then stable indefinitely. The original shape can be recovered on heating. These materials can be 4D printed into reconfigurable Braille‐like actuators capable of displaying letters “L”, “C” and “E” by switching the shape‐morphing of the Archimedean chord patterns with UV light and heating.
Shape‐switching behavior, where a transient stimulus induces an indefinitely stable deformation that can be recovered on exposure to another transient stimulus, is critical to building smart structures from responsive polymers as continue power is not needed to maintain deformations. Herein, we 4D‐print shape‐switching liquid crystalline elastomers (LCEs) functionalized with supramolecular crosslinks, dynamic covalent crosslinks, and azobenzene. The salient property of shape‐switching LCEs is that light induces long‐lived, deformation that can be recovered on‐demand by heating. UV‐light isomerizes azobenzene from trans to cis , and temporarily breaks the supramolecular crosslinks, resulting in a programmed deformation. After UV, the shape‐switching LCEs fix more than 90 % of the deformation over 3 days by the reformed supramolecular crosslinks. Using the shape‐switching properties, we print Braille‐like actuators that can be photoswitched to display different letters. This new class of photoswitchable actuators may impact applications such as deployable devices where continuous application of power is impractical.
Shape-switching behavior, where a transient stimulus induces an indefinitely stable deformation that can be recovered on exposure to another transient stimulus, is critical to building smart structures from responsive polymers as continue power is not needed to maintain deformations. Herein, we 4D-print shape-switching liquid crystalline elastomers (LCEs) functionalized with supramolecular crosslinks, dynamic covalent crosslinks, and azobenzene. The salient property of shape-switching LCEs is that light induces long-lived, deformation that can be recovered on-demand by heating. UV-light isomerizes azobenzene from trans to cis, and temporarily breaks the supramolecular crosslinks, resulting in a programmed deformation. After UV, the shape-switching LCEs fix more than 90 % of the deformation over 3 days by the reformed supramolecular crosslinks. Using the shape-switching properties, we print Braille-like actuators that can be photoswitched to display different letters. This new class of photoswitchable actuators may impact applications such as deployable devices where continuous application of power is impractical.Shape-switching behavior, where a transient stimulus induces an indefinitely stable deformation that can be recovered on exposure to another transient stimulus, is critical to building smart structures from responsive polymers as continue power is not needed to maintain deformations. Herein, we 4D-print shape-switching liquid crystalline elastomers (LCEs) functionalized with supramolecular crosslinks, dynamic covalent crosslinks, and azobenzene. The salient property of shape-switching LCEs is that light induces long-lived, deformation that can be recovered on-demand by heating. UV-light isomerizes azobenzene from trans to cis, and temporarily breaks the supramolecular crosslinks, resulting in a programmed deformation. After UV, the shape-switching LCEs fix more than 90 % of the deformation over 3 days by the reformed supramolecular crosslinks. Using the shape-switching properties, we print Braille-like actuators that can be photoswitched to display different letters. This new class of photoswitchable actuators may impact applications such as deployable devices where continuous application of power is impractical.
Author Ambulo, Cedric P.
Wang, Suitu
Kim, Hyun
Ware, Taylor H.
Searles, Kyle
Lu, Xili
Rivera‐Tarazona, Laura K.
Author_xml – sequence: 1
  givenname: Xili
  orcidid: 0000-0001-7725-9895
  surname: Lu
  fullname: Lu, Xili
  organization: Sichuan University
– sequence: 2
  givenname: Cedric P.
  surname: Ambulo
  fullname: Ambulo, Cedric P.
  organization: University of Texas at Dallas
– sequence: 3
  givenname: Suitu
  surname: Wang
  fullname: Wang, Suitu
  organization: Texas A&M University
– sequence: 4
  givenname: Laura K.
  surname: Rivera‐Tarazona
  fullname: Rivera‐Tarazona, Laura K.
  organization: Texas A&M University
– sequence: 5
  givenname: Hyun
  surname: Kim
  fullname: Kim, Hyun
  organization: CCDC Army Research Laboratory
– sequence: 6
  givenname: Kyle
  surname: Searles
  fullname: Searles, Kyle
  organization: University of Texas at Dallas
– sequence: 7
  givenname: Taylor H.
  orcidid: 0000-0001-7996-7393
  surname: Ware
  fullname: Ware, Taylor H.
  email: Taylor.Ware@tamu.edu
  organization: Texas A&M University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33217118$$D View this record in MEDLINE/PubMed
BookMark eNqFkM1KAzEURoMo9ke3LqXgRoSpuclkJrMsWrVQtAtdD5k0Y1Omk5pkkO58BJ_RJzGltUJBXN27OOfej6-DDmtTK4TOAPcBY3Itaq36BBMMJAF-gNrACEQ0Telh2GNKo5QzaKGOc_PAc46TY9SilEAKwNvoKr79-vicWF17Xb_2TNmbzIw37l17ORNFpXoD6RvhjXUn6KgUlVOn29lFL3fD55uHaPx0P7oZjCMZpwmPWMjBuASGFVdFTEgmuCQkxGNCiVSWScZLGmdAphjitCRcFBlTRckkDyqlXXS5ubu05q1RzucL7aSqKlEr07icxAkFzDNYoxd76Nw0tg7pApWFHABpEqjzLdUUCzXNl1YvhF3lPy0EoL8BpDXOWVXuEMD5uuZ8XXO-qzkI8Z4gtRdem9pboau_tWyjvetKrf55kg8eR8Nf9xvIF48D
CitedBy_id crossref_primary_10_1038_s41528_023_00281_0
crossref_primary_10_1002_adma_202104390
crossref_primary_10_1002_anie_202116689
crossref_primary_10_1002_smll_202202196
crossref_primary_10_1007_s40843_021_2018_y
crossref_primary_10_1016_j_matdes_2024_113119
crossref_primary_10_1002_anie_202211959
crossref_primary_10_1016_j_eurpolymj_2022_111778
crossref_primary_10_3390_ma18143371
crossref_primary_10_1002_adfm_202210353
crossref_primary_10_1002_chem_202301027
crossref_primary_10_1039_D3NR06324K
crossref_primary_10_1002_adfm_202308317
crossref_primary_10_1039_D2MH00232A
crossref_primary_10_1515_nanoph_2021_0652
crossref_primary_10_1038_s41467_024_49108_0
crossref_primary_10_1002_admt_202400073
crossref_primary_10_1016_j_cej_2025_160261
crossref_primary_10_1002_pi_6600
crossref_primary_10_1088_1361_665X_ad21b5
crossref_primary_10_1016_j_cej_2023_146861
crossref_primary_10_1002_ange_202314859
crossref_primary_10_3390_mi13020243
crossref_primary_10_3390_gels11010032
crossref_primary_10_1002_ange_202116522
crossref_primary_10_1002_advs_202402358
crossref_primary_10_1002_chem_202301030
crossref_primary_10_1016_j_ceramint_2025_05_216
crossref_primary_10_1038_s41467_021_26136_8
crossref_primary_10_1002_adem_202200650
crossref_primary_10_1002_anie_202202577
crossref_primary_10_1002_pi_6715
crossref_primary_10_1002_chem_202202876
crossref_primary_10_1016_j_ijmecsci_2024_109099
crossref_primary_10_1021_jacs_4c01642
crossref_primary_10_1021_acsnano_4c15521
crossref_primary_10_1007_s40843_023_2474_8
crossref_primary_10_1002_anie_202314859
crossref_primary_10_1080_17452759_2025_2505621
crossref_primary_10_1002_pol_20210718
crossref_primary_10_1002_ange_202202577
crossref_primary_10_3390_molecules29020319
crossref_primary_10_1007_s10118_023_2983_6
crossref_primary_10_1016_j_mee_2022_111874
crossref_primary_10_1002_adma_202504551
crossref_primary_10_1016_j_apmt_2025_102667
crossref_primary_10_1002_cplu_202500049
crossref_primary_10_1002_smll_202204032
crossref_primary_10_1002_anie_202411280
crossref_primary_10_1002_smll_202507247
crossref_primary_10_1557_s43577_024_00801_x
crossref_primary_10_1002_admt_202401263
crossref_primary_10_1002_ange_202211959
crossref_primary_10_3390_polym17101360
crossref_primary_10_1039_D2ME00124A
crossref_primary_10_1002_adma_202508694
crossref_primary_10_1002_ange_202318434
crossref_primary_10_1002_advs_202204003
crossref_primary_10_1002_rpm_20250001
crossref_primary_10_1016_j_eurpolymj_2023_112718
crossref_primary_10_1002_smll_202406358
crossref_primary_10_1016_j_jmapro_2022_07_035
crossref_primary_10_1002_aisy_202300311
crossref_primary_10_1016_j_progpolymsci_2024_101829
crossref_primary_10_1016_j_addma_2022_102861
crossref_primary_10_1016_j_cej_2023_146161
crossref_primary_10_1016_j_mser_2025_101071
crossref_primary_10_1002_marc_202401141
crossref_primary_10_3390_polym13111889
crossref_primary_10_1002_ange_202411280
crossref_primary_10_1002_anie_202116522
crossref_primary_10_1016_j_cej_2025_168468
crossref_primary_10_3390_mi15040468
crossref_primary_10_1021_jacs_2c12133
crossref_primary_10_3389_fphys_2024_1285850
crossref_primary_10_1021_acsami_5c12533
crossref_primary_10_1002_adfm_202421987
crossref_primary_10_1002_adfm_202106843
crossref_primary_10_1002_anie_202318434
crossref_primary_10_1038_s42004_024_01141_2
crossref_primary_10_1016_j_mtchem_2024_102427
crossref_primary_10_1016_j_apmt_2025_102604
crossref_primary_10_1088_2631_7990_ad7e5f
crossref_primary_10_1002_smll_202100910
crossref_primary_10_1002_adma_202501815
crossref_primary_10_1002_rpm_20230030
crossref_primary_10_1002_admt_202401369
crossref_primary_10_1088_2631_7990_ace090
crossref_primary_10_3390_cryst14100859
crossref_primary_10_1002_pol_20240084
crossref_primary_10_1002_adfm_202107145
crossref_primary_10_1002_ange_202116689
crossref_primary_10_1038_s41598_023_45519_z
crossref_primary_10_3390_jmmp8020077
crossref_primary_10_1002_adma_202312263
crossref_primary_10_1002_lpor_202100090
crossref_primary_10_1016_j_desal_2023_116505
crossref_primary_10_1007_s40964_024_00670_5
crossref_primary_10_1016_j_autcon_2024_105627
crossref_primary_10_1002_adfm_202414510
crossref_primary_10_1007_s40843_021_2014_0
crossref_primary_10_1002_adma_202419195
crossref_primary_10_1016_j_reactfunctpolym_2022_105209
crossref_primary_10_1002_chem_202201957
crossref_primary_10_1002_ange_202304081
crossref_primary_10_1039_D3MH00392B
crossref_primary_10_1016_j_polymer_2025_129066
crossref_primary_10_1002_admt_202101118
crossref_primary_10_1039_D5TC01194A
crossref_primary_10_1016_j_cej_2024_152386
crossref_primary_10_1038_s41578_025_00809_y
crossref_primary_10_1016_j_cis_2022_102605
crossref_primary_10_1080_1358314X_2025_2558371
crossref_primary_10_1016_j_amf_2024_200115
crossref_primary_10_3390_mi15060808
crossref_primary_10_1016_j_mechmat_2022_104329
crossref_primary_10_1016_j_compositesb_2025_112218
crossref_primary_10_1002_anie_202304081
crossref_primary_10_1039_D5MA00670H
crossref_primary_10_1016_j_jmst_2021_02_040
crossref_primary_10_1002_marc_202100768
crossref_primary_10_1002_admi_202100672
crossref_primary_10_1016_j_addma_2023_103411
crossref_primary_10_1016_j_bioactmat_2025_01_033
crossref_primary_10_3389_fmats_2022_850722
Cites_doi 10.1002/adma.200602260
10.1088/0960-1317/22/7/075009
10.1002/adma.201604792
10.1038/nmat4544
10.1038/s41586-018-0185-0
10.1002/adma.201703554
10.1002/ange.201915694
10.1063/1.4729771
10.1038/nmat4433
10.1021/ma001639q
10.1002/ange.201603579
10.1002/adma.201805750
10.1038/nmat4569
10.1038/nmat3812
10.1002/adma.201701627
10.1002/adma.201706164
10.1038/nature22987
10.1515/epoly.2001.1.1.111
10.1016/j.sna.2004.10.001
10.1002/ange.201205964
10.1002/ange.200800760
10.1002/adfm.201504028
10.1038/srep07422
10.1002/adma.200400658
10.1126/science.1229495
10.1126/sciadv.aay5349
10.1002/anie.201611325
10.1038/nmat1118
10.1002/adma.201706597
10.1016/j.sna.2014.01.012
10.1021/ja000435m
10.1002/1521-4095(200006)12:12<874::AID-ADMA874>3.0.CO;2-C
10.1002/adfm.201906458
10.1002/anie.200503684
10.1021/cm00053a014
10.1002/ange.200602372
10.1126/science.1252610
10.1002/anie.202000181
10.1002/marc.201700710
10.1073/pnas.1917952117
10.1002/ad.1710
10.1021/acsami.7b11851
10.1002/anie.201400513
10.1002/adma.201100131
10.1021/jacs.8b11558
10.1002/anie.200602372
10.1002/ange.200503684
10.1002/adma.200904059
10.1038/nature19100
10.1038/425145a
10.1002/adma.200902879
10.1002/anie.201205964
10.1126/science.1261019
10.1021/ma202098s
10.1038/nchem.1859
10.1073/pnas.1811823115
10.1002/anie.201915694
10.1073/pnas.1804702115
10.1002/adma.201905682
10.1002/ange.201611325
10.1021/acsmacrolett.0c00265
10.1038/s41467-019-13077-6
10.1002/anie.201603579
10.1002/adma.201606712
10.1002/adma.201606467
10.1016/j.progpolymsci.2012.04.002
10.1038/ncomms13260
10.1038/ncomms11975
10.1002/adma.201503132
10.1126/sciadv.1602890
10.1002/ange.201400513
10.1002/ange.202000181
10.1002/anie.200800760
10.1098/rspa.2010.0352
10.1002/adfm.201601090
10.1021/ja905363f
10.1126/scitranslmed.3010825
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202012618
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 5543
ExternalDocumentID 33217118
10_1002_anie_202012618
ANIE202012618
Genre article
Journal Article
GrantInformation_xml – fundername: Directorate for Mathematical and Physical Sciences
  funderid: 1752846
– fundername: Air Force Office of Scientific Research
  funderid: FA9550-17-1-0328
– fundername: Directorate for Mathematical and Physical Sciences
  grantid: 1752846
– fundername: Air Force Office of Scientific Research
  grantid: FA9550-17-1-0328
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
.GJ
.HR
.Y3
186
31~
9M8
AAMMB
AANHP
AASGY
AAYJJ
AAYXX
ABDBF
ABDPE
ABEFU
ABJNI
ABUFD
ACBWZ
ACRPL
ACYXJ
ADNMO
ADXHL
AEFGJ
AETEA
AEYWJ
AGCDD
AGHNM
AGQPQ
AGXDD
AGYGG
AI.
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
H~9
LW6
MVM
NHB
O8X
OHT
PALCI
RIWAO
RJQFR
RWH
S10
SAMSI
VH1
WHG
XOL
YYP
ZCG
ZE2
ZGI
ZXP
ZY4
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4768-561858c150e8eb4229a8c222615aea7cf698f34912d0147f28ab95ebf5c861833
IEDL.DBID DRFUL
ISICitedReferencesCount 155
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000606950500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Wed Oct 01 14:30:50 EDT 2025
Tue Oct 07 07:11:21 EDT 2025
Thu Apr 03 07:03:53 EDT 2025
Sat Nov 29 02:36:08 EST 2025
Tue Nov 18 21:19:38 EST 2025
Wed Jan 22 16:30:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords shape switching
azobenzene
4D printing
liquid crystal elastomers
photoswitchable actuators
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4768-561858c150e8eb4229a8c222615aea7cf698f34912d0147f28ab95ebf5c861833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7725-9895
0000-0001-7996-7393
PMID 33217118
PQID 2491851176
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2463108913
proquest_journals_2491851176
pubmed_primary_33217118
crossref_primary_10_1002_anie_202012618
crossref_citationtrail_10_1002_anie_202012618
wiley_primary_10_1002_anie_202012618_ANIE202012618
PublicationCentury 2000
PublicationDate March 1, 2021
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 1, 2021
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2017; 3
2015; 347
2019; 10
2020 2020; 59 132
2004; 3
2008 2008; 47 120
2017; 9
2010; 22
2020; 6
2018; 39
2014; 4
2014; 208
2000; 12
2012 2012; 51 124
2020; 9
2014; 13
2018; 30
2011; 23
2000; 122
2014; 6
2012; 22
2007; 19
2015; 14
2019; 31
2005; 119
2017; 29
2013; 340
2009; 131
2020; 32
2017 2017; 56 129
2014; 84
2019; 141
2016; 15
2015; 7
1995; 7
2006 2006; 45 118
2011; 467
2016; 7
2016 2016; 55 128
2003; 425
2012; 112
2013; 38
2020; 30
2004; 16
2018; 558
2016; 536
2018; 115
2007 2007; 46 119
2020; 117
2001; 1
2016; 28
2001; 34
2012; 45
2016; 26
2014; 345
2017; 546
e_1_2_6_76_1
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_72_1
e_1_2_6_19_1
e_1_2_6_34_2
e_1_2_6_11_1
e_1_2_6_38_2
e_1_2_6_15_1
e_1_2_6_57_1
e_1_2_6_83_3
e_1_2_6_83_2
e_1_2_6_64_1
e_1_2_6_41_1
e_1_2_6_60_2
e_1_2_6_9_2
e_1_2_6_5_1
e_1_2_6_1_1
e_1_2_6_49_2
e_1_2_6_22_1
e_1_2_6_87_2
e_1_2_6_45_2
e_1_2_6_26_1
e_1_2_6_45_3
e_1_2_6_68_1
e_1_2_6_50_2
e_1_2_6_73_2
e_1_2_6_73_3
e_1_2_6_31_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_77_2
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_80_2
e_1_2_6_61_1
e_1_2_6_80_3
e_1_2_6_6_1
e_1_2_6_23_2
e_1_2_6_69_2
e_1_2_6_2_1
e_1_2_6_27_2
e_1_2_6_88_1
e_1_2_6_46_2
e_1_2_6_51_1
e_1_2_6_74_2
e_1_2_6_32_1
e_1_2_6_70_2
e_1_2_6_13_2
e_1_2_6_59_2
e_1_2_6_59_3
e_1_2_6_78_1
e_1_2_6_17_2
e_1_2_6_55_2
e_1_2_6_36_2
e_1_2_6_85_1
e_1_2_6_62_2
e_1_2_6_62_3
e_1_2_6_43_1
e_1_2_6_20_2
e_1_2_6_81_1
e_1_2_6_3_2
e_1_2_6_7_1
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_28_2
e_1_2_6_89_1
e_1_2_6_66_2
e_1_2_6_89_2
e_1_2_6_52_1
e_1_2_6_75_2
e_1_2_6_71_2
e_1_2_6_18_2
e_1_2_6_14_1
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_56_1
e_1_2_6_56_2
e_1_2_6_79_2
e_1_2_6_37_1
e_1_2_6_63_2
e_1_2_6_86_2
e_1_2_6_40_2
e_1_2_6_82_2
e_1_2_6_8_1
e_1_2_6_4_2
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_21_2
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_2
References_xml – volume: 131
  start-page: 15000
  year: 2009
  end-page: 15004
  publication-title: J. Am. Chem. Soc.
– volume: 119
  start-page: 316
  year: 2005
  end-page: 322
  publication-title: Sens. Actuators A
– volume: 39
  year: 2018
  publication-title: Macromol. Rapid Commun.
– volume: 112
  year: 2012
  publication-title: J. Appl. Phys.
– volume: 28
  start-page: 4449
  year: 2016
  end-page: 4554
  publication-title: Adv. Mater.
– volume: 115
  start-page: 7206
  year: 2018
  end-page: 7211
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 117
  start-page: 5125
  year: 2020
  end-page: 5133
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 53 126
  start-page: 10290 10456
  year: 2014 2014
  end-page: 10299 10465
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 47 120
  start-page: 4986 5064
  year: 2008 2008
  end-page: 4988 5066
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 285ra
  year: 2015
  publication-title: Sci. Transl. Med.
– volume: 15
  start-page: 647
  year: 2016
  end-page: 653
  publication-title: Nat. Mater.
– volume: 9
  start-page: 749
  year: 2020
  end-page: 755
  publication-title: ACS Macro Lett.
– volume: 45
  start-page: 1062
  year: 2012
  end-page: 1069
  publication-title: Macromolecules
– volume: 3
  start-page: 307
  year: 2004
  end-page: 310
  publication-title: Nat. Mater.
– volume: 9
  start-page: 37332
  year: 2017
  end-page: 37339
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 141
  start-page: 1196
  year: 2019
  end-page: 1200
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 13260
  year: 2016
  publication-title: Nat. Commun.
– volume: 14
  start-page: 1087
  year: 2015
  end-page: 1098
  publication-title: Nat. Mater.
– volume: 347
  start-page: 982
  year: 2015
  end-page: 984
  publication-title: Science
– volume: 546
  start-page: 632
  year: 2017
  end-page: 636
  publication-title: Nature
– volume: 7
  start-page: 899
  year: 1995
  end-page: 903
  publication-title: Chem. Mater.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 7
  start-page: 11975
  year: 2016
  publication-title: Nat. Commun.
– volume: 26
  start-page: 5819
  year: 2016
  end-page: 5826
  publication-title: Adv. Funct. Mater.
– volume: 59 132
  start-page: 4925 4955
  year: 2020 2020
  end-page: 4931 4961
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51 124
  start-page: 12469 12637
  year: 2012 2012
  end-page: 12472 12640
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 22
  start-page: 3366
  year: 2010
  end-page: 3387
  publication-title: Adv. Mater.
– volume: 38
  start-page: 1
  year: 2013
  end-page: 29
  publication-title: Prog. Polym. Sci.
– volume: 22
  year: 2012
  publication-title: J. Micromech. Microeng.
– volume: 59 132
  start-page: 4778 4808
  year: 2020 2020
  end-page: 4784 4814
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 23
  start-page: 2149
  year: 2011
  end-page: 2180
  publication-title: Adv. Mater.
– volume: 46 119
  start-page: 506 512
  year: 2007 2007
  end-page: 528 535
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 467
  start-page: 1121
  year: 2011
  end-page: 1140
  publication-title: Proc. R. Soc. London Ser. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 16
  start-page: 1922
  year: 2004
  end-page: 1925
  publication-title: Adv. Mater.
– volume: 208
  start-page: 104
  year: 2014
  end-page: 112
  publication-title: Sens. Actuators A
– volume: 26
  start-page: 931
  year: 2016
  end-page: 937
  publication-title: Adv. Funct. Mater.
– volume: 84
  start-page: 116
  year: 2014
  end-page: 121
  publication-title: Architectural Design
– volume: 4
  start-page: 7422
  year: 2014
  publication-title: Sci. Rep.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 22
  start-page: 1361
  year: 2010
  end-page: 1363
  publication-title: Adv. Mater.
– volume: 45 118
  start-page: 1378 1406
  year: 2006 2006
  end-page: 1382 1410
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 5057
  year: 2019
  publication-title: Nat. Commun.
– volume: 34
  start-page: 5868
  year: 2001
  end-page: 5875
  publication-title: Macromolecules
– volume: 425
  start-page: 145
  year: 2003
  publication-title: Nature
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 115
  start-page: 12950
  year: 2018
  end-page: 12955
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 1
  start-page: 013
  year: 2001
  publication-title: e-polym.
– volume: 55 128
  start-page: 9908 10062
  year: 2016 2016
  end-page: 9912 10066
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56 129
  start-page: 3261 3309
  year: 2017 2017
  end-page: 3265 3313
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 558
  start-page: 274
  year: 2018
  end-page: 279
  publication-title: Nature
– volume: 15
  start-page: 413
  year: 2016
  end-page: 418
  publication-title: Nat. Mater.
– volume: 340
  start-page: 48
  year: 2013
  end-page: 52
  publication-title: Science
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 13
  start-page: 36
  year: 2014
  end-page: 41
  publication-title: Nat. Mater.
– volume: 536
  start-page: 451
  year: 2016
  end-page: 455
  publication-title: Nature
– volume: 345
  start-page: 644
  year: 2014
  end-page: 646
  publication-title: Science
– volume: 6
  start-page: 229
  year: 2014
  end-page: 235
  publication-title: Nat. Chem.
– volume: 19
  start-page: 2851
  year: 2007
  end-page: 2855
  publication-title: Adv. Mater.
– volume: 12
  start-page: 874
  year: 2000
  end-page: 878
  publication-title: Adv. Mater.
– volume: 122
  start-page: 7487
  year: 2000
  end-page: 7493
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_6_69_2
  doi: 10.1002/adma.200602260
– ident: e_1_2_6_87_2
  doi: 10.1088/0960-1317/22/7/075009
– ident: e_1_2_6_49_2
  doi: 10.1002/adma.201604792
– ident: e_1_2_6_29_1
– ident: e_1_2_6_4_2
  doi: 10.1038/nmat4544
– ident: e_1_2_6_5_1
  doi: 10.1038/s41586-018-0185-0
– ident: e_1_2_6_21_2
  doi: 10.1002/adma.201703554
– ident: e_1_2_6_73_3
  doi: 10.1002/ange.201915694
– ident: e_1_2_6_58_1
– ident: e_1_2_6_44_1
– ident: e_1_2_6_84_1
  doi: 10.1063/1.4729771
– ident: e_1_2_6_61_1
– ident: e_1_2_6_18_2
  doi: 10.1038/nmat4433
– ident: e_1_2_6_24_2
  doi: 10.1021/ma001639q
– ident: e_1_2_6_62_3
  doi: 10.1002/ange.201603579
– ident: e_1_2_6_63_2
  doi: 10.1002/adma.201805750
– ident: e_1_2_6_20_2
  doi: 10.1038/nmat4569
– ident: e_1_2_6_28_2
  doi: 10.1038/nmat3812
– ident: e_1_2_6_7_1
  doi: 10.1002/adma.201701627
– ident: e_1_2_6_40_2
  doi: 10.1002/adma.201706164
– ident: e_1_2_6_57_1
  doi: 10.1038/nature22987
– ident: e_1_2_6_23_2
  doi: 10.1515/epoly.2001.1.1.111
– ident: e_1_2_6_65_1
– ident: e_1_2_6_15_1
  doi: 10.1016/j.sna.2004.10.001
– ident: e_1_2_6_89_2
  doi: 10.1002/ange.201205964
– ident: e_1_2_6_45_3
  doi: 10.1002/ange.200800760
– ident: e_1_2_6_11_1
– ident: e_1_2_6_71_2
  doi: 10.1002/adfm.201504028
– ident: e_1_2_6_3_2
  doi: 10.1038/srep07422
– ident: e_1_2_6_33_2
  doi: 10.1002/adma.200400658
– ident: e_1_2_6_78_1
– ident: e_1_2_6_12_2
  doi: 10.1126/science.1229495
– ident: e_1_2_6_52_1
– ident: e_1_2_6_36_2
  doi: 10.1126/sciadv.aay5349
– ident: e_1_2_6_56_1
  doi: 10.1002/anie.201611325
– ident: e_1_2_6_2_1
– ident: e_1_2_6_27_2
  doi: 10.1038/nmat1118
– ident: e_1_2_6_50_2
  doi: 10.1002/adma.201706597
– ident: e_1_2_6_8_1
– ident: e_1_2_6_86_2
  doi: 10.1016/j.sna.2014.01.012
– ident: e_1_2_6_66_2
  doi: 10.1021/ja000435m
– ident: e_1_2_6_67_2
  doi: 10.1002/1521-4095(200006)12:12<874::AID-ADMA874>3.0.CO;2-C
– ident: e_1_2_6_74_2
  doi: 10.1002/adfm.201906458
– ident: e_1_2_6_80_2
  doi: 10.1002/anie.200503684
– ident: e_1_2_6_60_2
  doi: 10.1021/cm00053a014
– ident: e_1_2_6_59_3
  doi: 10.1002/ange.200602372
– ident: e_1_2_6_9_2
  doi: 10.1126/science.1252610
– ident: e_1_2_6_81_1
– ident: e_1_2_6_77_1
  doi: 10.1002/anie.202000181
– ident: e_1_2_6_39_2
  doi: 10.1002/marc.201700710
– ident: e_1_2_6_51_1
  doi: 10.1073/pnas.1917952117
– ident: e_1_2_6_68_1
– ident: e_1_2_6_1_1
  doi: 10.1002/ad.1710
– ident: e_1_2_6_38_2
  doi: 10.1021/acsami.7b11851
– ident: e_1_2_6_83_2
  doi: 10.1002/anie.201400513
– ident: e_1_2_6_85_1
– ident: e_1_2_6_82_2
  doi: 10.1002/adma.201100131
– ident: e_1_2_6_37_1
– ident: e_1_2_6_64_1
  doi: 10.1021/jacs.8b11558
– ident: e_1_2_6_59_2
  doi: 10.1002/anie.200602372
– ident: e_1_2_6_80_3
  doi: 10.1002/ange.200503684
– ident: e_1_2_6_22_1
– ident: e_1_2_6_17_2
  doi: 10.1002/adma.200904059
– ident: e_1_2_6_10_2
  doi: 10.1038/nature19100
– ident: e_1_2_6_43_1
  doi: 10.1038/425145a
– ident: e_1_2_6_79_2
  doi: 10.1002/adma.200902879
– ident: e_1_2_6_72_1
– ident: e_1_2_6_89_1
  doi: 10.1002/anie.201205964
– ident: e_1_2_6_30_2
  doi: 10.1126/science.1261019
– ident: e_1_2_6_70_2
  doi: 10.1021/ma202098s
– ident: e_1_2_6_31_2
  doi: 10.1038/nchem.1859
– ident: e_1_2_6_35_2
  doi: 10.1073/pnas.1811823115
– ident: e_1_2_6_73_2
  doi: 10.1002/anie.201915694
– ident: e_1_2_6_25_1
  doi: 10.1073/pnas.1804702115
– ident: e_1_2_6_41_1
  doi: 10.1002/adma.201905682
– ident: e_1_2_6_26_1
– ident: e_1_2_6_56_2
  doi: 10.1002/ange.201611325
– ident: e_1_2_6_75_2
  doi: 10.1021/acsmacrolett.0c00265
– ident: e_1_2_6_48_1
– ident: e_1_2_6_55_2
  doi: 10.1038/s41467-019-13077-6
– ident: e_1_2_6_62_2
  doi: 10.1002/anie.201603579
– ident: e_1_2_6_54_2
  doi: 10.1002/adma.201606712
– ident: e_1_2_6_46_2
  doi: 10.1002/adma.201606467
– ident: e_1_2_6_76_1
  doi: 10.1016/j.progpolymsci.2012.04.002
– ident: e_1_2_6_47_2
  doi: 10.1038/ncomms13260
– ident: e_1_2_6_53_2
  doi: 10.1038/ncomms11975
– ident: e_1_2_6_14_1
  doi: 10.1002/adma.201503132
– ident: e_1_2_6_19_1
– ident: e_1_2_6_6_1
  doi: 10.1126/sciadv.1602890
– ident: e_1_2_6_83_3
  doi: 10.1002/ange.201400513
– ident: e_1_2_6_16_1
– ident: e_1_2_6_77_2
  doi: 10.1002/ange.202000181
– ident: e_1_2_6_45_2
  doi: 10.1002/anie.200800760
– ident: e_1_2_6_32_1
– ident: e_1_2_6_88_1
  doi: 10.1098/rspa.2010.0352
– ident: e_1_2_6_42_1
  doi: 10.1002/adfm.201601090
– ident: e_1_2_6_34_2
  doi: 10.1021/ja905363f
– ident: e_1_2_6_13_2
  doi: 10.1126/scitranslmed.3010825
SSID ssj0028806
Score 2.6577256
Snippet Shape‐switching behavior, where a transient stimulus induces an indefinitely stable deformation that can be recovered on exposure to another transient...
Shape-switching behavior, where a transient stimulus induces an indefinitely stable deformation that can be recovered on exposure to another transient...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5536
SubjectTerms 4D printing
Actuators
Azo compounds
azobenzene
Crosslinking
Deformation
Elastomers
liquid crystal elastomers
Liquid crystals
photoswitchable actuators
Polymers
shape switching
Smart structures
Switching
Ultraviolet radiation
Title 4D‐Printing of Photoswitchable Actuators
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202012618
https://www.ncbi.nlm.nih.gov/pubmed/33217118
https://www.proquest.com/docview/2491851176
https://www.proquest.com/docview/2463108913
Volume 60
WOSCitedRecordID wos000606950500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB5sK-iL91GtJYIgCKHd3SbZPJYeKEgpYqFvYZPuYkEa6aGv_gR_o7_EmSSNFhFBH8OezJGZ2d35BuACbXDoCK3seuTSaZXD7NBjxnYVMpzwyVRWbMLr9eRw6Pe_ZPGn-BD5gRtpRvK_JgVX4az2CRpKGdgY36EBwyBAFqDEUXidIpTad93BbR50oXymGUZC2FSIfgncWOe11RlWDdM3b3PVeU2sT3f7__vega3M87Saqajswpqe7MFGa1nwbR-uGu3317f-dJwUj7BiY_Uf4nk8exkjZynDympStgmV5zmAQbdz37q2s1IKdtTwKLcKl3JkhN6fljpscO4rGaFrgP6M0sqLjOtLIxo-4yOMmTzDpQp9R4fGiSQOFeIQipN4oo_BcjHiZAz13A1NculGAECSmZEwTGnfL4O9pGMQZTjjVO7iMUgRknlAFAhyCpThMu__lCJs_NizsmRLkGnaLMDwkZHX6LllOM-bkXJ08aEmOl5QHxcFjy5ky3CUsjNfSggMyhhNzhOu_bKHoNm76eRfJ38ZdAqbnB7GJA_ZKlCcTxf6DNaj5_l4Nq1CwRvKaibFH8jZ7Hc
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZS8NAEB60CvrifVSrRhAEIbSbzbF5LNbSYg1FKvgWNnEXC9JID331J_gb_SXO5JIiIoiPYU_myMzs7nwDcIY2OHK4kmYjdum0ymFm5DFtuhIZTvhkMi824QWBuL_3-_lrQsqFyfAhygM30oz0f00KTgfS9S_UUErBxgAPLRhGAWIRlmyUJRTypdZt-65XRl0ooFmKEecmVaIvkBsbVn1-hnnL9M3dnPdeU_PTXv-HjW_AWu57Gs1MWDZhQY22YOWyKPm2DRd26-PtvT8epuUjjEQb_cdkmkxeh8hbyrEympRvQgV6duCufTW47Jh5MQUztj3KrsKlHBGj_6eEimzL8qWI0TlAj0Yq6cXa9YXmts-sB4yaPG0JGfmOirQTCxzK-S5URslI7YPhYszJGGq6G-n02o0ggATTD1wzqXy_CmZByDDOkcap4MVTmGEkWyFRICwpUIXzsv9zhrHxY89awZcw17VJiAEkI7_Rc6twWjYj5ejqQ45UMqM-LooeXclWYS_jZ7kU5xiWMZrcStn2yx7CZtC9Kr8O_jLoBFY6g5te2OsG14ewatEzmfRZWw0q0_FMHcFy_DIdTsbHuTB_AnfV738
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZS8NAEB60FfXF-6hWjSAIQmg3m2PzWFqLxVKKWOhb2KS7WJCm9NBXf4K_0V_iTJJGioggPibZizkyM7s73wBcoQ0OHa6kWY1c2q1ymBl6TJuuRIYTPpnMik14nY7o9_1udpuQcmFSfIh8w400I_lfk4Kr8UBXvlBDKQUbAzy0YBgFiFUo2lRJpgDFxkOz186jLhTQNMWIc5Mq0S-QG6tWZXmEZcv0zd1c9l4T89Pc_oeF78BW5nsatVRYdmFFjfZgo74o-bYPN3bj4-29Oxkm5SOMWBvdp3gWT1-HyFvKsTJqlG9CBXoOoNe8fazfmVkxBTOyPcquwqkcEaH_p4QKbcvypYjQOUCPRirpRdr1hea2z6wBRk2etoQMfUeF2okEduX8EAqjeKSOwXAx5mQMNd0NdXLsRhBAgukB10wq3y-BuSBkEGVI41Tw4jlIMZKtgCgQ5BQowXXefpxibPzYsrzgS5Dp2jTAAJKR3-i5JbjMPyPl6OhDjlQ8pzYuih4dyZbgKOVnPhXnGJYxGtxK2PbLGoJap3WbP538pdMFrHcbzaDd6tyfwia-tunymWWXoTCbzNUZrEUvs-F0cp7J8icZK-8F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=4D%E2%80%90Printing+of+Photoswitchable+Actuators&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Lu%2C+Xili&rft.au=Ambulo%2C+Cedric+P.&rft.au=Wang%2C+Suitu&rft.au=Rivera%E2%80%90Tarazona%2C+Laura+K.&rft.date=2021-03-01&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=10&rft.spage=5536&rft.epage=5543&rft_id=info:doi/10.1002%2Fanie.202012618&rft.externalDBID=10.1002%252Fanie.202012618&rft.externalDocID=ANIE202012618
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon