4D‐Printing of Photoswitchable Actuators
Shape‐switching behavior, where a transient stimulus induces an indefinitely stable deformation that can be recovered on exposure to another transient stimulus, is critical to building smart structures from responsive polymers as continue power is not needed to maintain deformations. Herein, we 4D‐p...
Gespeichert in:
| Veröffentlicht in: | Angewandte Chemie International Edition Jg. 60; H. 10; S. 5536 - 5543 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
01.03.2021
|
| Ausgabe: | International ed. in English |
| Schlagworte: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Shape‐switching behavior, where a transient stimulus induces an indefinitely stable deformation that can be recovered on exposure to another transient stimulus, is critical to building smart structures from responsive polymers as continue power is not needed to maintain deformations. Herein, we 4D‐print shape‐switching liquid crystalline elastomers (LCEs) functionalized with supramolecular crosslinks, dynamic covalent crosslinks, and azobenzene. The salient property of shape‐switching LCEs is that light induces long‐lived, deformation that can be recovered on‐demand by heating. UV‐light isomerizes azobenzene from trans to cis, and temporarily breaks the supramolecular crosslinks, resulting in a programmed deformation. After UV, the shape‐switching LCEs fix more than 90 % of the deformation over 3 days by the reformed supramolecular crosslinks. Using the shape‐switching properties, we print Braille‐like actuators that can be photoswitched to display different letters. This new class of photoswitchable actuators may impact applications such as deployable devices where continuous application of power is impractical.
Shape‐switching liquid crystal elastomers are formulated where light is used to trigger a shape change which is then stable indefinitely. The original shape can be recovered on heating. These materials can be 4D printed into reconfigurable Braille‐like actuators capable of displaying letters “L”, “C” and “E” by switching the shape‐morphing of the Archimedean chord patterns with UV light and heating. |
|---|---|
| AbstractList | Shape‐switching behavior, where a transient stimulus induces an indefinitely stable deformation that can be recovered on exposure to another transient stimulus, is critical to building smart structures from responsive polymers as continue power is not needed to maintain deformations. Herein, we 4D‐print shape‐switching liquid crystalline elastomers (LCEs) functionalized with supramolecular crosslinks, dynamic covalent crosslinks, and azobenzene. The salient property of shape‐switching LCEs is that light induces long‐lived, deformation that can be recovered on‐demand by heating. UV‐light isomerizes azobenzene from trans to cis, and temporarily breaks the supramolecular crosslinks, resulting in a programmed deformation. After UV, the shape‐switching LCEs fix more than 90 % of the deformation over 3 days by the reformed supramolecular crosslinks. Using the shape‐switching properties, we print Braille‐like actuators that can be photoswitched to display different letters. This new class of photoswitchable actuators may impact applications such as deployable devices where continuous application of power is impractical. Shape‐switching behavior, where a transient stimulus induces an indefinitely stable deformation that can be recovered on exposure to another transient stimulus, is critical to building smart structures from responsive polymers as continue power is not needed to maintain deformations. Herein, we 4D‐print shape‐switching liquid crystalline elastomers (LCEs) functionalized with supramolecular crosslinks, dynamic covalent crosslinks, and azobenzene. The salient property of shape‐switching LCEs is that light induces long‐lived, deformation that can be recovered on‐demand by heating. UV‐light isomerizes azobenzene from trans to cis, and temporarily breaks the supramolecular crosslinks, resulting in a programmed deformation. After UV, the shape‐switching LCEs fix more than 90 % of the deformation over 3 days by the reformed supramolecular crosslinks. Using the shape‐switching properties, we print Braille‐like actuators that can be photoswitched to display different letters. This new class of photoswitchable actuators may impact applications such as deployable devices where continuous application of power is impractical. Shape‐switching liquid crystal elastomers are formulated where light is used to trigger a shape change which is then stable indefinitely. The original shape can be recovered on heating. These materials can be 4D printed into reconfigurable Braille‐like actuators capable of displaying letters “L”, “C” and “E” by switching the shape‐morphing of the Archimedean chord patterns with UV light and heating. Shape‐switching behavior, where a transient stimulus induces an indefinitely stable deformation that can be recovered on exposure to another transient stimulus, is critical to building smart structures from responsive polymers as continue power is not needed to maintain deformations. Herein, we 4D‐print shape‐switching liquid crystalline elastomers (LCEs) functionalized with supramolecular crosslinks, dynamic covalent crosslinks, and azobenzene. The salient property of shape‐switching LCEs is that light induces long‐lived, deformation that can be recovered on‐demand by heating. UV‐light isomerizes azobenzene from trans to cis , and temporarily breaks the supramolecular crosslinks, resulting in a programmed deformation. After UV, the shape‐switching LCEs fix more than 90 % of the deformation over 3 days by the reformed supramolecular crosslinks. Using the shape‐switching properties, we print Braille‐like actuators that can be photoswitched to display different letters. This new class of photoswitchable actuators may impact applications such as deployable devices where continuous application of power is impractical. Shape-switching behavior, where a transient stimulus induces an indefinitely stable deformation that can be recovered on exposure to another transient stimulus, is critical to building smart structures from responsive polymers as continue power is not needed to maintain deformations. Herein, we 4D-print shape-switching liquid crystalline elastomers (LCEs) functionalized with supramolecular crosslinks, dynamic covalent crosslinks, and azobenzene. The salient property of shape-switching LCEs is that light induces long-lived, deformation that can be recovered on-demand by heating. UV-light isomerizes azobenzene from trans to cis, and temporarily breaks the supramolecular crosslinks, resulting in a programmed deformation. After UV, the shape-switching LCEs fix more than 90 % of the deformation over 3 days by the reformed supramolecular crosslinks. Using the shape-switching properties, we print Braille-like actuators that can be photoswitched to display different letters. This new class of photoswitchable actuators may impact applications such as deployable devices where continuous application of power is impractical.Shape-switching behavior, where a transient stimulus induces an indefinitely stable deformation that can be recovered on exposure to another transient stimulus, is critical to building smart structures from responsive polymers as continue power is not needed to maintain deformations. Herein, we 4D-print shape-switching liquid crystalline elastomers (LCEs) functionalized with supramolecular crosslinks, dynamic covalent crosslinks, and azobenzene. The salient property of shape-switching LCEs is that light induces long-lived, deformation that can be recovered on-demand by heating. UV-light isomerizes azobenzene from trans to cis, and temporarily breaks the supramolecular crosslinks, resulting in a programmed deformation. After UV, the shape-switching LCEs fix more than 90 % of the deformation over 3 days by the reformed supramolecular crosslinks. Using the shape-switching properties, we print Braille-like actuators that can be photoswitched to display different letters. This new class of photoswitchable actuators may impact applications such as deployable devices where continuous application of power is impractical. |
| Author | Ambulo, Cedric P. Wang, Suitu Kim, Hyun Ware, Taylor H. Searles, Kyle Lu, Xili Rivera‐Tarazona, Laura K. |
| Author_xml | – sequence: 1 givenname: Xili orcidid: 0000-0001-7725-9895 surname: Lu fullname: Lu, Xili organization: Sichuan University – sequence: 2 givenname: Cedric P. surname: Ambulo fullname: Ambulo, Cedric P. organization: University of Texas at Dallas – sequence: 3 givenname: Suitu surname: Wang fullname: Wang, Suitu organization: Texas A&M University – sequence: 4 givenname: Laura K. surname: Rivera‐Tarazona fullname: Rivera‐Tarazona, Laura K. organization: Texas A&M University – sequence: 5 givenname: Hyun surname: Kim fullname: Kim, Hyun organization: CCDC Army Research Laboratory – sequence: 6 givenname: Kyle surname: Searles fullname: Searles, Kyle organization: University of Texas at Dallas – sequence: 7 givenname: Taylor H. orcidid: 0000-0001-7996-7393 surname: Ware fullname: Ware, Taylor H. email: Taylor.Ware@tamu.edu organization: Texas A&M University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33217118$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkM1KAzEURoMo9ke3LqXgRoSpuclkJrMsWrVQtAtdD5k0Y1Omk5pkkO58BJ_RJzGltUJBXN27OOfej6-DDmtTK4TOAPcBY3Itaq36BBMMJAF-gNrACEQ0Telh2GNKo5QzaKGOc_PAc46TY9SilEAKwNvoKr79-vicWF17Xb_2TNmbzIw37l17ORNFpXoD6RvhjXUn6KgUlVOn29lFL3fD55uHaPx0P7oZjCMZpwmPWMjBuASGFVdFTEgmuCQkxGNCiVSWScZLGmdAphjitCRcFBlTRckkDyqlXXS5ubu05q1RzucL7aSqKlEr07icxAkFzDNYoxd76Nw0tg7pApWFHABpEqjzLdUUCzXNl1YvhF3lPy0EoL8BpDXOWVXuEMD5uuZ8XXO-qzkI8Z4gtRdem9pboau_tWyjvetKrf55kg8eR8Nf9xvIF48D |
| CitedBy_id | crossref_primary_10_1038_s41528_023_00281_0 crossref_primary_10_1002_adma_202104390 crossref_primary_10_1002_anie_202116689 crossref_primary_10_1002_smll_202202196 crossref_primary_10_1007_s40843_021_2018_y crossref_primary_10_1016_j_matdes_2024_113119 crossref_primary_10_1002_anie_202211959 crossref_primary_10_1016_j_eurpolymj_2022_111778 crossref_primary_10_3390_ma18143371 crossref_primary_10_1002_adfm_202210353 crossref_primary_10_1002_chem_202301027 crossref_primary_10_1039_D3NR06324K crossref_primary_10_1002_adfm_202308317 crossref_primary_10_1039_D2MH00232A crossref_primary_10_1515_nanoph_2021_0652 crossref_primary_10_1038_s41467_024_49108_0 crossref_primary_10_1002_admt_202400073 crossref_primary_10_1016_j_cej_2025_160261 crossref_primary_10_1002_pi_6600 crossref_primary_10_1088_1361_665X_ad21b5 crossref_primary_10_1016_j_cej_2023_146861 crossref_primary_10_1002_ange_202314859 crossref_primary_10_3390_mi13020243 crossref_primary_10_3390_gels11010032 crossref_primary_10_1002_ange_202116522 crossref_primary_10_1002_advs_202402358 crossref_primary_10_1002_chem_202301030 crossref_primary_10_1016_j_ceramint_2025_05_216 crossref_primary_10_1038_s41467_021_26136_8 crossref_primary_10_1002_adem_202200650 crossref_primary_10_1002_anie_202202577 crossref_primary_10_1002_pi_6715 crossref_primary_10_1002_chem_202202876 crossref_primary_10_1016_j_ijmecsci_2024_109099 crossref_primary_10_1021_jacs_4c01642 crossref_primary_10_1021_acsnano_4c15521 crossref_primary_10_1007_s40843_023_2474_8 crossref_primary_10_1002_anie_202314859 crossref_primary_10_1080_17452759_2025_2505621 crossref_primary_10_1002_pol_20210718 crossref_primary_10_1002_ange_202202577 crossref_primary_10_3390_molecules29020319 crossref_primary_10_1007_s10118_023_2983_6 crossref_primary_10_1016_j_mee_2022_111874 crossref_primary_10_1002_adma_202504551 crossref_primary_10_1016_j_apmt_2025_102667 crossref_primary_10_1002_cplu_202500049 crossref_primary_10_1002_smll_202204032 crossref_primary_10_1002_anie_202411280 crossref_primary_10_1002_smll_202507247 crossref_primary_10_1557_s43577_024_00801_x crossref_primary_10_1002_admt_202401263 crossref_primary_10_1002_ange_202211959 crossref_primary_10_3390_polym17101360 crossref_primary_10_1039_D2ME00124A crossref_primary_10_1002_adma_202508694 crossref_primary_10_1002_ange_202318434 crossref_primary_10_1002_advs_202204003 crossref_primary_10_1002_rpm_20250001 crossref_primary_10_1016_j_eurpolymj_2023_112718 crossref_primary_10_1002_smll_202406358 crossref_primary_10_1016_j_jmapro_2022_07_035 crossref_primary_10_1002_aisy_202300311 crossref_primary_10_1016_j_progpolymsci_2024_101829 crossref_primary_10_1016_j_addma_2022_102861 crossref_primary_10_1016_j_cej_2023_146161 crossref_primary_10_1016_j_mser_2025_101071 crossref_primary_10_1002_marc_202401141 crossref_primary_10_3390_polym13111889 crossref_primary_10_1002_ange_202411280 crossref_primary_10_1002_anie_202116522 crossref_primary_10_1016_j_cej_2025_168468 crossref_primary_10_3390_mi15040468 crossref_primary_10_1021_jacs_2c12133 crossref_primary_10_3389_fphys_2024_1285850 crossref_primary_10_1021_acsami_5c12533 crossref_primary_10_1002_adfm_202421987 crossref_primary_10_1002_adfm_202106843 crossref_primary_10_1002_anie_202318434 crossref_primary_10_1038_s42004_024_01141_2 crossref_primary_10_1016_j_mtchem_2024_102427 crossref_primary_10_1016_j_apmt_2025_102604 crossref_primary_10_1088_2631_7990_ad7e5f crossref_primary_10_1002_smll_202100910 crossref_primary_10_1002_adma_202501815 crossref_primary_10_1002_rpm_20230030 crossref_primary_10_1002_admt_202401369 crossref_primary_10_1088_2631_7990_ace090 crossref_primary_10_3390_cryst14100859 crossref_primary_10_1002_pol_20240084 crossref_primary_10_1002_adfm_202107145 crossref_primary_10_1002_ange_202116689 crossref_primary_10_1038_s41598_023_45519_z crossref_primary_10_3390_jmmp8020077 crossref_primary_10_1002_adma_202312263 crossref_primary_10_1002_lpor_202100090 crossref_primary_10_1016_j_desal_2023_116505 crossref_primary_10_1007_s40964_024_00670_5 crossref_primary_10_1016_j_autcon_2024_105627 crossref_primary_10_1002_adfm_202414510 crossref_primary_10_1007_s40843_021_2014_0 crossref_primary_10_1002_adma_202419195 crossref_primary_10_1016_j_reactfunctpolym_2022_105209 crossref_primary_10_1002_chem_202201957 crossref_primary_10_1002_ange_202304081 crossref_primary_10_1039_D3MH00392B crossref_primary_10_1016_j_polymer_2025_129066 crossref_primary_10_1002_admt_202101118 crossref_primary_10_1039_D5TC01194A crossref_primary_10_1016_j_cej_2024_152386 crossref_primary_10_1038_s41578_025_00809_y crossref_primary_10_1016_j_cis_2022_102605 crossref_primary_10_1080_1358314X_2025_2558371 crossref_primary_10_1016_j_amf_2024_200115 crossref_primary_10_3390_mi15060808 crossref_primary_10_1016_j_mechmat_2022_104329 crossref_primary_10_1016_j_compositesb_2025_112218 crossref_primary_10_1002_anie_202304081 crossref_primary_10_1039_D5MA00670H crossref_primary_10_1016_j_jmst_2021_02_040 crossref_primary_10_1002_marc_202100768 crossref_primary_10_1002_admi_202100672 crossref_primary_10_1016_j_addma_2023_103411 crossref_primary_10_1016_j_bioactmat_2025_01_033 crossref_primary_10_3389_fmats_2022_850722 |
| Cites_doi | 10.1002/adma.200602260 10.1088/0960-1317/22/7/075009 10.1002/adma.201604792 10.1038/nmat4544 10.1038/s41586-018-0185-0 10.1002/adma.201703554 10.1002/ange.201915694 10.1063/1.4729771 10.1038/nmat4433 10.1021/ma001639q 10.1002/ange.201603579 10.1002/adma.201805750 10.1038/nmat4569 10.1038/nmat3812 10.1002/adma.201701627 10.1002/adma.201706164 10.1038/nature22987 10.1515/epoly.2001.1.1.111 10.1016/j.sna.2004.10.001 10.1002/ange.201205964 10.1002/ange.200800760 10.1002/adfm.201504028 10.1038/srep07422 10.1002/adma.200400658 10.1126/science.1229495 10.1126/sciadv.aay5349 10.1002/anie.201611325 10.1038/nmat1118 10.1002/adma.201706597 10.1016/j.sna.2014.01.012 10.1021/ja000435m 10.1002/1521-4095(200006)12:12<874::AID-ADMA874>3.0.CO;2-C 10.1002/adfm.201906458 10.1002/anie.200503684 10.1021/cm00053a014 10.1002/ange.200602372 10.1126/science.1252610 10.1002/anie.202000181 10.1002/marc.201700710 10.1073/pnas.1917952117 10.1002/ad.1710 10.1021/acsami.7b11851 10.1002/anie.201400513 10.1002/adma.201100131 10.1021/jacs.8b11558 10.1002/anie.200602372 10.1002/ange.200503684 10.1002/adma.200904059 10.1038/nature19100 10.1038/425145a 10.1002/adma.200902879 10.1002/anie.201205964 10.1126/science.1261019 10.1021/ma202098s 10.1038/nchem.1859 10.1073/pnas.1811823115 10.1002/anie.201915694 10.1073/pnas.1804702115 10.1002/adma.201905682 10.1002/ange.201611325 10.1021/acsmacrolett.0c00265 10.1038/s41467-019-13077-6 10.1002/anie.201603579 10.1002/adma.201606712 10.1002/adma.201606467 10.1016/j.progpolymsci.2012.04.002 10.1038/ncomms13260 10.1038/ncomms11975 10.1002/adma.201503132 10.1126/sciadv.1602890 10.1002/ange.201400513 10.1002/ange.202000181 10.1002/anie.200800760 10.1098/rspa.2010.0352 10.1002/adfm.201601090 10.1021/ja905363f 10.1126/scitranslmed.3010825 |
| ContentType | Journal Article |
| Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. 2021 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. – notice: 2021 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
| DOI | 10.1002/anie.202012618 |
| DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| Edition | International ed. in English |
| EndPage | 5543 |
| ExternalDocumentID | 33217118 10_1002_anie_202012618 ANIE202012618 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Directorate for Mathematical and Physical Sciences funderid: 1752846 – fundername: Air Force Office of Scientific Research funderid: FA9550-17-1-0328 – fundername: Directorate for Mathematical and Physical Sciences grantid: 1752846 – fundername: Air Force Office of Scientific Research grantid: FA9550-17-1-0328 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT .GJ .HR .Y3 186 31~ 9M8 AAMMB AANHP AASGY AAYJJ AAYXX ABDBF ABDPE ABEFU ABJNI ABUFD ACBWZ ACRPL ACYXJ ADNMO ADXHL AEFGJ AETEA AEYWJ AGCDD AGHNM AGQPQ AGXDD AGYGG AI. AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF H~9 LW6 MVM NHB O8X OHT PALCI RIWAO RJQFR RWH S10 SAMSI VH1 WHG XOL YYP ZCG ZE2 ZGI ZXP ZY4 NPM 7TM K9. 7X8 |
| ID | FETCH-LOGICAL-c4768-561858c150e8eb4229a8c222615aea7cf698f34912d0147f28ab95ebf5c861833 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 155 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000606950500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Wed Oct 01 14:30:50 EDT 2025 Tue Oct 07 07:11:21 EDT 2025 Thu Apr 03 07:03:53 EDT 2025 Sat Nov 29 02:36:08 EST 2025 Tue Nov 18 21:19:38 EST 2025 Wed Jan 22 16:30:18 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | shape switching azobenzene 4D printing liquid crystal elastomers photoswitchable actuators |
| Language | English |
| License | 2020 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4768-561858c150e8eb4229a8c222615aea7cf698f34912d0147f28ab95ebf5c861833 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7725-9895 0000-0001-7996-7393 |
| PMID | 33217118 |
| PQID | 2491851176 |
| PQPubID | 946352 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2463108913 proquest_journals_2491851176 pubmed_primary_33217118 crossref_primary_10_1002_anie_202012618 crossref_citationtrail_10_1002_anie_202012618 wiley_primary_10_1002_anie_202012618_ANIE202012618 |
| PublicationCentury | 2000 |
| PublicationDate | March 1, 2021 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: March 1, 2021 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Angewandte Chemie International Edition |
| PublicationTitleAlternate | Angew Chem Int Ed Engl |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2014 2014; 53 126 2017; 3 2015; 347 2019; 10 2020 2020; 59 132 2004; 3 2008 2008; 47 120 2017; 9 2010; 22 2020; 6 2018; 39 2014; 4 2014; 208 2000; 12 2012 2012; 51 124 2020; 9 2014; 13 2018; 30 2011; 23 2000; 122 2014; 6 2012; 22 2007; 19 2015; 14 2019; 31 2005; 119 2017; 29 2013; 340 2009; 131 2020; 32 2017 2017; 56 129 2014; 84 2019; 141 2016; 15 2015; 7 1995; 7 2006 2006; 45 118 2011; 467 2016; 7 2016 2016; 55 128 2003; 425 2012; 112 2013; 38 2020; 30 2004; 16 2018; 558 2016; 536 2018; 115 2007 2007; 46 119 2020; 117 2001; 1 2016; 28 2001; 34 2012; 45 2016; 26 2014; 345 2017; 546 e_1_2_6_76_1 e_1_2_6_53_2 e_1_2_6_30_2 e_1_2_6_72_1 e_1_2_6_19_1 e_1_2_6_34_2 e_1_2_6_11_1 e_1_2_6_38_2 e_1_2_6_15_1 e_1_2_6_57_1 e_1_2_6_83_3 e_1_2_6_83_2 e_1_2_6_64_1 e_1_2_6_41_1 e_1_2_6_60_2 e_1_2_6_9_2 e_1_2_6_5_1 e_1_2_6_1_1 e_1_2_6_49_2 e_1_2_6_22_1 e_1_2_6_87_2 e_1_2_6_45_2 e_1_2_6_26_1 e_1_2_6_45_3 e_1_2_6_68_1 e_1_2_6_50_2 e_1_2_6_73_2 e_1_2_6_73_3 e_1_2_6_31_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_77_2 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_80_2 e_1_2_6_61_1 e_1_2_6_80_3 e_1_2_6_6_1 e_1_2_6_23_2 e_1_2_6_69_2 e_1_2_6_2_1 e_1_2_6_27_2 e_1_2_6_88_1 e_1_2_6_46_2 e_1_2_6_51_1 e_1_2_6_74_2 e_1_2_6_32_1 e_1_2_6_70_2 e_1_2_6_13_2 e_1_2_6_59_2 e_1_2_6_59_3 e_1_2_6_78_1 e_1_2_6_17_2 e_1_2_6_55_2 e_1_2_6_36_2 e_1_2_6_85_1 e_1_2_6_62_2 e_1_2_6_62_3 e_1_2_6_43_1 e_1_2_6_20_2 e_1_2_6_81_1 e_1_2_6_3_2 e_1_2_6_7_1 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_28_2 e_1_2_6_89_1 e_1_2_6_66_2 e_1_2_6_89_2 e_1_2_6_52_1 e_1_2_6_75_2 e_1_2_6_71_2 e_1_2_6_18_2 e_1_2_6_14_1 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_56_1 e_1_2_6_56_2 e_1_2_6_79_2 e_1_2_6_37_1 e_1_2_6_63_2 e_1_2_6_86_2 e_1_2_6_40_2 e_1_2_6_82_2 e_1_2_6_8_1 e_1_2_6_4_2 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_21_2 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_2 |
| References_xml | – volume: 131 start-page: 15000 year: 2009 end-page: 15004 publication-title: J. Am. Chem. Soc. – volume: 119 start-page: 316 year: 2005 end-page: 322 publication-title: Sens. Actuators A – volume: 39 year: 2018 publication-title: Macromol. Rapid Commun. – volume: 112 year: 2012 publication-title: J. Appl. Phys. – volume: 28 start-page: 4449 year: 2016 end-page: 4554 publication-title: Adv. Mater. – volume: 115 start-page: 7206 year: 2018 end-page: 7211 publication-title: Proc. Natl. Acad. Sci. USA – volume: 117 start-page: 5125 year: 2020 end-page: 5133 publication-title: Proc. Natl. Acad. Sci. USA – volume: 53 126 start-page: 10290 10456 year: 2014 2014 end-page: 10299 10465 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 47 120 start-page: 4986 5064 year: 2008 2008 end-page: 4988 5066 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 285ra year: 2015 publication-title: Sci. Transl. Med. – volume: 15 start-page: 647 year: 2016 end-page: 653 publication-title: Nat. Mater. – volume: 9 start-page: 749 year: 2020 end-page: 755 publication-title: ACS Macro Lett. – volume: 45 start-page: 1062 year: 2012 end-page: 1069 publication-title: Macromolecules – volume: 3 start-page: 307 year: 2004 end-page: 310 publication-title: Nat. Mater. – volume: 9 start-page: 37332 year: 2017 end-page: 37339 publication-title: ACS Appl. Mater. Interfaces – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 141 start-page: 1196 year: 2019 end-page: 1200 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 13260 year: 2016 publication-title: Nat. Commun. – volume: 14 start-page: 1087 year: 2015 end-page: 1098 publication-title: Nat. Mater. – volume: 347 start-page: 982 year: 2015 end-page: 984 publication-title: Science – volume: 546 start-page: 632 year: 2017 end-page: 636 publication-title: Nature – volume: 7 start-page: 899 year: 1995 end-page: 903 publication-title: Chem. Mater. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 7 start-page: 11975 year: 2016 publication-title: Nat. Commun. – volume: 26 start-page: 5819 year: 2016 end-page: 5826 publication-title: Adv. Funct. Mater. – volume: 59 132 start-page: 4925 4955 year: 2020 2020 end-page: 4931 4961 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 51 124 start-page: 12469 12637 year: 2012 2012 end-page: 12472 12640 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 22 start-page: 3366 year: 2010 end-page: 3387 publication-title: Adv. Mater. – volume: 38 start-page: 1 year: 2013 end-page: 29 publication-title: Prog. Polym. Sci. – volume: 22 year: 2012 publication-title: J. Micromech. Microeng. – volume: 59 132 start-page: 4778 4808 year: 2020 2020 end-page: 4784 4814 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 23 start-page: 2149 year: 2011 end-page: 2180 publication-title: Adv. Mater. – volume: 46 119 start-page: 506 512 year: 2007 2007 end-page: 528 535 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 467 start-page: 1121 year: 2011 end-page: 1140 publication-title: Proc. R. Soc. London Ser. A – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 16 start-page: 1922 year: 2004 end-page: 1925 publication-title: Adv. Mater. – volume: 208 start-page: 104 year: 2014 end-page: 112 publication-title: Sens. Actuators A – volume: 26 start-page: 931 year: 2016 end-page: 937 publication-title: Adv. Funct. Mater. – volume: 84 start-page: 116 year: 2014 end-page: 121 publication-title: Architectural Design – volume: 4 start-page: 7422 year: 2014 publication-title: Sci. Rep. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 22 start-page: 1361 year: 2010 end-page: 1363 publication-title: Adv. Mater. – volume: 45 118 start-page: 1378 1406 year: 2006 2006 end-page: 1382 1410 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 5057 year: 2019 publication-title: Nat. Commun. – volume: 34 start-page: 5868 year: 2001 end-page: 5875 publication-title: Macromolecules – volume: 425 start-page: 145 year: 2003 publication-title: Nature – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 115 start-page: 12950 year: 2018 end-page: 12955 publication-title: Proc. Natl. Acad. Sci. USA – volume: 1 start-page: 013 year: 2001 publication-title: e-polym. – volume: 55 128 start-page: 9908 10062 year: 2016 2016 end-page: 9912 10066 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 3261 3309 year: 2017 2017 end-page: 3265 3313 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 558 start-page: 274 year: 2018 end-page: 279 publication-title: Nature – volume: 15 start-page: 413 year: 2016 end-page: 418 publication-title: Nat. Mater. – volume: 340 start-page: 48 year: 2013 end-page: 52 publication-title: Science – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 13 start-page: 36 year: 2014 end-page: 41 publication-title: Nat. Mater. – volume: 536 start-page: 451 year: 2016 end-page: 455 publication-title: Nature – volume: 345 start-page: 644 year: 2014 end-page: 646 publication-title: Science – volume: 6 start-page: 229 year: 2014 end-page: 235 publication-title: Nat. Chem. – volume: 19 start-page: 2851 year: 2007 end-page: 2855 publication-title: Adv. Mater. – volume: 12 start-page: 874 year: 2000 end-page: 878 publication-title: Adv. Mater. – volume: 122 start-page: 7487 year: 2000 end-page: 7493 publication-title: J. Am. Chem. Soc. – ident: e_1_2_6_69_2 doi: 10.1002/adma.200602260 – ident: e_1_2_6_87_2 doi: 10.1088/0960-1317/22/7/075009 – ident: e_1_2_6_49_2 doi: 10.1002/adma.201604792 – ident: e_1_2_6_29_1 – ident: e_1_2_6_4_2 doi: 10.1038/nmat4544 – ident: e_1_2_6_5_1 doi: 10.1038/s41586-018-0185-0 – ident: e_1_2_6_21_2 doi: 10.1002/adma.201703554 – ident: e_1_2_6_73_3 doi: 10.1002/ange.201915694 – ident: e_1_2_6_58_1 – ident: e_1_2_6_44_1 – ident: e_1_2_6_84_1 doi: 10.1063/1.4729771 – ident: e_1_2_6_61_1 – ident: e_1_2_6_18_2 doi: 10.1038/nmat4433 – ident: e_1_2_6_24_2 doi: 10.1021/ma001639q – ident: e_1_2_6_62_3 doi: 10.1002/ange.201603579 – ident: e_1_2_6_63_2 doi: 10.1002/adma.201805750 – ident: e_1_2_6_20_2 doi: 10.1038/nmat4569 – ident: e_1_2_6_28_2 doi: 10.1038/nmat3812 – ident: e_1_2_6_7_1 doi: 10.1002/adma.201701627 – ident: e_1_2_6_40_2 doi: 10.1002/adma.201706164 – ident: e_1_2_6_57_1 doi: 10.1038/nature22987 – ident: e_1_2_6_23_2 doi: 10.1515/epoly.2001.1.1.111 – ident: e_1_2_6_65_1 – ident: e_1_2_6_15_1 doi: 10.1016/j.sna.2004.10.001 – ident: e_1_2_6_89_2 doi: 10.1002/ange.201205964 – ident: e_1_2_6_45_3 doi: 10.1002/ange.200800760 – ident: e_1_2_6_11_1 – ident: e_1_2_6_71_2 doi: 10.1002/adfm.201504028 – ident: e_1_2_6_3_2 doi: 10.1038/srep07422 – ident: e_1_2_6_33_2 doi: 10.1002/adma.200400658 – ident: e_1_2_6_78_1 – ident: e_1_2_6_12_2 doi: 10.1126/science.1229495 – ident: e_1_2_6_52_1 – ident: e_1_2_6_36_2 doi: 10.1126/sciadv.aay5349 – ident: e_1_2_6_56_1 doi: 10.1002/anie.201611325 – ident: e_1_2_6_2_1 – ident: e_1_2_6_27_2 doi: 10.1038/nmat1118 – ident: e_1_2_6_50_2 doi: 10.1002/adma.201706597 – ident: e_1_2_6_8_1 – ident: e_1_2_6_86_2 doi: 10.1016/j.sna.2014.01.012 – ident: e_1_2_6_66_2 doi: 10.1021/ja000435m – ident: e_1_2_6_67_2 doi: 10.1002/1521-4095(200006)12:12<874::AID-ADMA874>3.0.CO;2-C – ident: e_1_2_6_74_2 doi: 10.1002/adfm.201906458 – ident: e_1_2_6_80_2 doi: 10.1002/anie.200503684 – ident: e_1_2_6_60_2 doi: 10.1021/cm00053a014 – ident: e_1_2_6_59_3 doi: 10.1002/ange.200602372 – ident: e_1_2_6_9_2 doi: 10.1126/science.1252610 – ident: e_1_2_6_81_1 – ident: e_1_2_6_77_1 doi: 10.1002/anie.202000181 – ident: e_1_2_6_39_2 doi: 10.1002/marc.201700710 – ident: e_1_2_6_51_1 doi: 10.1073/pnas.1917952117 – ident: e_1_2_6_68_1 – ident: e_1_2_6_1_1 doi: 10.1002/ad.1710 – ident: e_1_2_6_38_2 doi: 10.1021/acsami.7b11851 – ident: e_1_2_6_83_2 doi: 10.1002/anie.201400513 – ident: e_1_2_6_85_1 – ident: e_1_2_6_82_2 doi: 10.1002/adma.201100131 – ident: e_1_2_6_37_1 – ident: e_1_2_6_64_1 doi: 10.1021/jacs.8b11558 – ident: e_1_2_6_59_2 doi: 10.1002/anie.200602372 – ident: e_1_2_6_80_3 doi: 10.1002/ange.200503684 – ident: e_1_2_6_22_1 – ident: e_1_2_6_17_2 doi: 10.1002/adma.200904059 – ident: e_1_2_6_10_2 doi: 10.1038/nature19100 – ident: e_1_2_6_43_1 doi: 10.1038/425145a – ident: e_1_2_6_79_2 doi: 10.1002/adma.200902879 – ident: e_1_2_6_72_1 – ident: e_1_2_6_89_1 doi: 10.1002/anie.201205964 – ident: e_1_2_6_30_2 doi: 10.1126/science.1261019 – ident: e_1_2_6_70_2 doi: 10.1021/ma202098s – ident: e_1_2_6_31_2 doi: 10.1038/nchem.1859 – ident: e_1_2_6_35_2 doi: 10.1073/pnas.1811823115 – ident: e_1_2_6_73_2 doi: 10.1002/anie.201915694 – ident: e_1_2_6_25_1 doi: 10.1073/pnas.1804702115 – ident: e_1_2_6_41_1 doi: 10.1002/adma.201905682 – ident: e_1_2_6_26_1 – ident: e_1_2_6_56_2 doi: 10.1002/ange.201611325 – ident: e_1_2_6_75_2 doi: 10.1021/acsmacrolett.0c00265 – ident: e_1_2_6_48_1 – ident: e_1_2_6_55_2 doi: 10.1038/s41467-019-13077-6 – ident: e_1_2_6_62_2 doi: 10.1002/anie.201603579 – ident: e_1_2_6_54_2 doi: 10.1002/adma.201606712 – ident: e_1_2_6_46_2 doi: 10.1002/adma.201606467 – ident: e_1_2_6_76_1 doi: 10.1016/j.progpolymsci.2012.04.002 – ident: e_1_2_6_47_2 doi: 10.1038/ncomms13260 – ident: e_1_2_6_53_2 doi: 10.1038/ncomms11975 – ident: e_1_2_6_14_1 doi: 10.1002/adma.201503132 – ident: e_1_2_6_19_1 – ident: e_1_2_6_6_1 doi: 10.1126/sciadv.1602890 – ident: e_1_2_6_83_3 doi: 10.1002/ange.201400513 – ident: e_1_2_6_16_1 – ident: e_1_2_6_77_2 doi: 10.1002/ange.202000181 – ident: e_1_2_6_45_2 doi: 10.1002/anie.200800760 – ident: e_1_2_6_32_1 – ident: e_1_2_6_88_1 doi: 10.1098/rspa.2010.0352 – ident: e_1_2_6_42_1 doi: 10.1002/adfm.201601090 – ident: e_1_2_6_34_2 doi: 10.1021/ja905363f – ident: e_1_2_6_13_2 doi: 10.1126/scitranslmed.3010825 |
| SSID | ssj0028806 |
| Score | 2.6577256 |
| Snippet | Shape‐switching behavior, where a transient stimulus induces an indefinitely stable deformation that can be recovered on exposure to another transient... Shape-switching behavior, where a transient stimulus induces an indefinitely stable deformation that can be recovered on exposure to another transient... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5536 |
| SubjectTerms | 4D printing Actuators Azo compounds azobenzene Crosslinking Deformation Elastomers liquid crystal elastomers Liquid crystals photoswitchable actuators Polymers shape switching Smart structures Switching Ultraviolet radiation |
| Title | 4D‐Printing of Photoswitchable Actuators |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202012618 https://www.ncbi.nlm.nih.gov/pubmed/33217118 https://www.proquest.com/docview/2491851176 https://www.proquest.com/docview/2463108913 |
| Volume | 60 |
| WOSCitedRecordID | wos000606950500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB5sK-iL91GtJYIgCKHd3SbZPJYeKEgpYqFvYZPuYkEa6aGv_gR_o7_EmSSNFhFBH8OezJGZ2d35BuACbXDoCK3seuTSaZXD7NBjxnYVMpzwyVRWbMLr9eRw6Pe_ZPGn-BD5gRtpRvK_JgVX4az2CRpKGdgY36EBwyBAFqDEUXidIpTad93BbR50oXymGUZC2FSIfgncWOe11RlWDdM3b3PVeU2sT3f7__vega3M87Saqajswpqe7MFGa1nwbR-uGu3317f-dJwUj7BiY_Uf4nk8exkjZynDympStgmV5zmAQbdz37q2s1IKdtTwKLcKl3JkhN6fljpscO4rGaFrgP6M0sqLjOtLIxo-4yOMmTzDpQp9R4fGiSQOFeIQipN4oo_BcjHiZAz13A1NculGAECSmZEwTGnfL4O9pGMQZTjjVO7iMUgRknlAFAhyCpThMu__lCJs_NizsmRLkGnaLMDwkZHX6LllOM-bkXJ08aEmOl5QHxcFjy5ky3CUsjNfSggMyhhNzhOu_bKHoNm76eRfJ38ZdAqbnB7GJA_ZKlCcTxf6DNaj5_l4Nq1CwRvKaibFH8jZ7Hc |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZS8NAEB60CvrifVSrRhAEIbSbzbF5LNbSYg1FKvgWNnEXC9JID331J_gb_SXO5JIiIoiPYU_myMzs7nwDcIY2OHK4kmYjdum0ymFm5DFtuhIZTvhkMi824QWBuL_3-_lrQsqFyfAhygM30oz0f00KTgfS9S_UUErBxgAPLRhGAWIRlmyUJRTypdZt-65XRl0ooFmKEecmVaIvkBsbVn1-hnnL9M3dnPdeU_PTXv-HjW_AWu57Gs1MWDZhQY22YOWyKPm2DRd26-PtvT8epuUjjEQb_cdkmkxeh8hbyrEympRvQgV6duCufTW47Jh5MQUztj3KrsKlHBGj_6eEimzL8qWI0TlAj0Yq6cXa9YXmts-sB4yaPG0JGfmOirQTCxzK-S5URslI7YPhYszJGGq6G-n02o0ggATTD1wzqXy_CmZByDDOkcap4MVTmGEkWyFRICwpUIXzsv9zhrHxY89awZcw17VJiAEkI7_Rc6twWjYj5ejqQ45UMqM-LooeXclWYS_jZ7kU5xiWMZrcStn2yx7CZtC9Kr8O_jLoBFY6g5te2OsG14ewatEzmfRZWw0q0_FMHcFy_DIdTsbHuTB_AnfV738 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZS8NAEB60FfXF-6hWjSAIQmg3m2PzWFqLxVKKWOhb2KS7WJCm9NBXf4K_0V_iTJJGioggPibZizkyM7s73wBcoQ0OHa6kWY1c2q1ymBl6TJuuRIYTPpnMik14nY7o9_1udpuQcmFSfIh8w400I_lfk4Kr8UBXvlBDKQUbAzy0YBgFiFUo2lRJpgDFxkOz186jLhTQNMWIc5Mq0S-QG6tWZXmEZcv0zd1c9l4T89Pc_oeF78BW5nsatVRYdmFFjfZgo74o-bYPN3bj4-29Oxkm5SOMWBvdp3gWT1-HyFvKsTJqlG9CBXoOoNe8fazfmVkxBTOyPcquwqkcEaH_p4QKbcvypYjQOUCPRirpRdr1hea2z6wBRk2etoQMfUeF2okEduX8EAqjeKSOwXAx5mQMNd0NdXLsRhBAgukB10wq3y-BuSBkEGVI41Tw4jlIMZKtgCgQ5BQowXXefpxibPzYsrzgS5Dp2jTAAJKR3-i5JbjMPyPl6OhDjlQ8pzYuih4dyZbgKOVnPhXnGJYxGtxK2PbLGoJap3WbP538pdMFrHcbzaDd6tyfwia-tunymWWXoTCbzNUZrEUvs-F0cp7J8icZK-8F |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=4D%E2%80%90Printing+of+Photoswitchable+Actuators&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Lu%2C+Xili&rft.au=Ambulo%2C+Cedric+P.&rft.au=Wang%2C+Suitu&rft.au=Rivera%E2%80%90Tarazona%2C+Laura+K.&rft.date=2021-03-01&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=10&rft.spage=5536&rft.epage=5543&rft_id=info:doi/10.1002%2Fanie.202012618&rft.externalDBID=10.1002%252Fanie.202012618&rft.externalDocID=ANIE202012618 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |