Inhibition of Zinc Dendrite Growth in Zinc‐Based Batteries

Zinc deposition and dissolution is a significant process in zinc‐based batteries. During this process, the formation of zinc dendrites is pervasive, which leads to the loss of efficiency and capacity of batteries. The continually growing dendrites will finally pierce the separator and cause the batt...

Full description

Saved in:
Bibliographic Details
Published in:ChemSusChem Vol. 11; no. 23; pp. 3996 - 4006
Main Authors: Lu, Wenjing, Xie, Congxin, Zhang, Huamin, Li, Xianfeng
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 11.12.2018
Subjects:
ISSN:1864-5631, 1864-564X, 1864-564X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Zinc deposition and dissolution is a significant process in zinc‐based batteries. During this process, the formation of zinc dendrites is pervasive, which leads to the loss of efficiency and capacity of batteries. The continually growing dendrites will finally pierce the separator and cause the batteries to short circuit. Thus, employing effective methods to inhibit the formation and growth of zinc dendrites is vital for the practical application of zinc‐based batteries. This Minireview first clarifies the formation and growth principles of zinc dendrites. Then, the research and development of methods to solve the problem of zinc dendrites are reviewed, including ways to suppress the further formation and growth of dendrites as far as possible, to minimize the adverse effects of dendrites, along with ways to produce dendrite‐free deposition processes. The mechanisms, advantages, drawbacks, and perspectives of these methods are illustrated. Thus, this overview of these methods will aid understanding of the formation process of zinc dendrites and provide an extensive, comprehensive, and professional reference to resolve the problem of zinc dendrites completely. Growth misconduct: Zinc deposition and dissolution is a significant process in zinc‐based batteries, whereby the formation of zinc dendrites can lead to the loss of efficiency and capacity of the batteries. This Minireview concerns the formation and growth principles of zinc dendrites, along with the effective methods to solve the zinc dendrite problem in zinc‐based batteries.
AbstractList Zinc deposition and dissolution is a significant process in zinc‐based batteries. During this process, the formation of zinc dendrites is pervasive, which leads to the loss of efficiency and capacity of batteries. The continually growing dendrites will finally pierce the separator and cause the batteries to short circuit. Thus, employing effective methods to inhibit the formation and growth of zinc dendrites is vital for the practical application of zinc‐based batteries. This Minireview first clarifies the formation and growth principles of zinc dendrites. Then, the research and development of methods to solve the problem of zinc dendrites are reviewed, including ways to suppress the further formation and growth of dendrites as far as possible, to minimize the adverse effects of dendrites, along with ways to produce dendrite‐free deposition processes. The mechanisms, advantages, drawbacks, and perspectives of these methods are illustrated. Thus, this overview of these methods will aid understanding of the formation process of zinc dendrites and provide an extensive, comprehensive, and professional reference to resolve the problem of zinc dendrites completely. Growth misconduct: Zinc deposition and dissolution is a significant process in zinc‐based batteries, whereby the formation of zinc dendrites can lead to the loss of efficiency and capacity of the batteries. This Minireview concerns the formation and growth principles of zinc dendrites, along with the effective methods to solve the zinc dendrite problem in zinc‐based batteries.
Zinc deposition and dissolution is a significant process in zinc-based batteries. During this process, the formation of zinc dendrites is pervasive, which leads to the loss of efficiency and capacity of batteries. The continually growing dendrites will finally pierce the separator and cause the batteries to short circuit. Thus, employing effective methods to inhibit the formation and growth of zinc dendrites is vital for the practical application of zinc-based batteries. This Minireview first clarifies the formation and growth principles of zinc dendrites. Then, the research and development of methods to solve the problem of zinc dendrites are reviewed, including ways to suppress the further formation and growth of dendrites as far as possible, to minimize the adverse effects of dendrites, along with ways to produce dendrite-free deposition processes. The mechanisms, advantages, drawbacks, and perspectives of these methods are illustrated. Thus, this overview of these methods will aid understanding of the formation process of zinc dendrites and provide an extensive, comprehensive, and professional reference to resolve the problem of zinc dendrites completely.Zinc deposition and dissolution is a significant process in zinc-based batteries. During this process, the formation of zinc dendrites is pervasive, which leads to the loss of efficiency and capacity of batteries. The continually growing dendrites will finally pierce the separator and cause the batteries to short circuit. Thus, employing effective methods to inhibit the formation and growth of zinc dendrites is vital for the practical application of zinc-based batteries. This Minireview first clarifies the formation and growth principles of zinc dendrites. Then, the research and development of methods to solve the problem of zinc dendrites are reviewed, including ways to suppress the further formation and growth of dendrites as far as possible, to minimize the adverse effects of dendrites, along with ways to produce dendrite-free deposition processes. The mechanisms, advantages, drawbacks, and perspectives of these methods are illustrated. Thus, this overview of these methods will aid understanding of the formation process of zinc dendrites and provide an extensive, comprehensive, and professional reference to resolve the problem of zinc dendrites completely.
Zinc deposition and dissolution is a significant process in zinc‐based batteries. During this process, the formation of zinc dendrites is pervasive, which leads to the loss of efficiency and capacity of batteries. The continually growing dendrites will finally pierce the separator and cause the batteries to short circuit. Thus, employing effective methods to inhibit the formation and growth of zinc dendrites is vital for the practical application of zinc‐based batteries. This Minireview first clarifies the formation and growth principles of zinc dendrites. Then, the research and development of methods to solve the problem of zinc dendrites are reviewed, including ways to suppress the further formation and growth of dendrites as far as possible, to minimize the adverse effects of dendrites, along with ways to produce dendrite‐free deposition processes. The mechanisms, advantages, drawbacks, and perspectives of these methods are illustrated. Thus, this overview of these methods will aid understanding of the formation process of zinc dendrites and provide an extensive, comprehensive, and professional reference to resolve the problem of zinc dendrites completely.
Author Xie, Congxin
Li, Xianfeng
Lu, Wenjing
Zhang, Huamin
Author_xml – sequence: 1
  givenname: Wenjing
  surname: Lu
  fullname: Lu, Wenjing
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Congxin
  surname: Xie
  fullname: Xie, Congxin
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Huamin
  surname: Zhang
  fullname: Zhang, Huamin
  organization: Collaborative Innovation Center of Chemistry for Energy Materials
– sequence: 4
  givenname: Xianfeng
  orcidid: 0000-0002-8541-5779
  surname: Li
  fullname: Li, Xianfeng
  email: lixianfeng@dicp.ac.cn
  organization: Collaborative Innovation Center of Chemistry for Energy Materials
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30242975$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtKAzEUhoNUbL1sXcqAGzetuc8MuLH1CgUXVRA3IZPJ0JRppiYzlO58BJ_RJzG1F6EgZnOS8H0_h_8QtGxlNQCnCPYQhPhSea96GKIEIs7iPdBBCaddxulra3snqA0OvZ9AyGHK-QFoE4gpTmPWAVePdmwyU5vKRlURvRmrohttc2dqHd27al6PI2N__r8-PvvS6zzqy7rWzmh_DPYLWXp9sp5H4OXu9nnw0B0-3T8OroddRWMed6VEuiggTROaUsZknCThnSpOFFcZJljmkuR5xnMiISSMUpgkqlAszQgjEpMjcLHKnbnqvdG-FlPjlS5LaXXVeIFROBQTDgN6voNOqsbZsF2gGEmTkE4DdbammmyqczFzZirdQmx6CQBdAcpV3jtdCGVquWypdtKUAkGxrF8s6xfb-oPW29E2yX8K6UqYm1Iv_qHFYDQa_LrfW9uW0w
CitedBy_id crossref_primary_10_1016_j_ensm_2025_104422
crossref_primary_10_1002_smll_201804760
crossref_primary_10_1039_D3QI00279A
crossref_primary_10_1002_anie_202502103
crossref_primary_10_1016_j_jechem_2023_04_006
crossref_primary_10_1016_j_jallcom_2022_168406
crossref_primary_10_1016_j_jechem_2021_08_022
crossref_primary_10_1038_s41427_019_0167_1
crossref_primary_10_1002_smll_202400221
crossref_primary_10_1016_j_inoche_2022_110275
crossref_primary_10_1016_j_electacta_2020_137075
crossref_primary_10_1016_j_jpowsour_2021_230696
crossref_primary_10_1016_j_jcis_2022_05_168
crossref_primary_10_1002_adfm_202304878
crossref_primary_10_1007_s41918_021_00107_5
crossref_primary_10_1002_admt_202500228
crossref_primary_10_1016_j_mtener_2019_06_011
crossref_primary_10_3390_molecules28062721
crossref_primary_10_1002_aenm_202301743
crossref_primary_10_1016_j_rser_2024_114675
crossref_primary_10_1002_adfm_202100398
crossref_primary_10_1039_D3QI01222K
crossref_primary_10_1002_smtd_202300268
crossref_primary_10_1002_adfm_202213510
crossref_primary_10_1016_j_jpowsour_2024_235737
crossref_primary_10_1002_smtd_202301115
crossref_primary_10_1002_cssc_202401166
crossref_primary_10_1039_D2RA06741B
crossref_primary_10_1002_smll_202400926
crossref_primary_10_1002_adma_202510483
crossref_primary_10_1002_sstr_202400325
crossref_primary_10_1021_acsami_5c06192
crossref_primary_10_1021_acsaem_5c01110
crossref_primary_10_1016_j_coelec_2021_100898
crossref_primary_10_1016_j_jpowsour_2025_238162
crossref_primary_10_5796_electrochemistry_25_71054
crossref_primary_10_1039_D0EE01221A
crossref_primary_10_1002_smtd_202300591
crossref_primary_10_1016_j_jallcom_2022_165231
crossref_primary_10_1016_j_cclet_2023_108337
crossref_primary_10_1007_s11665_025_11869_0
crossref_primary_10_1016_j_jcis_2022_09_047
crossref_primary_10_1039_D1EE02021H
crossref_primary_10_1016_j_mtener_2023_101284
crossref_primary_10_1039_D2SC01818G
crossref_primary_10_1007_s11814_022_1333_7
crossref_primary_10_1016_j_nanoen_2019_05_059
crossref_primary_10_1016_j_surfin_2025_106694
crossref_primary_10_1002_adma_202404834
crossref_primary_10_1039_D3QI01117H
crossref_primary_10_1016_j_jpowsour_2024_234638
crossref_primary_10_1002_celc_202101724
crossref_primary_10_1016_j_mtchem_2024_102113
crossref_primary_10_1016_j_rser_2025_115604
crossref_primary_10_1038_s41467_019_13436_3
crossref_primary_10_1002_anie_202215110
crossref_primary_10_3390_inorganics11030118
crossref_primary_10_1002_adfm_202417695
crossref_primary_10_1016_j_cej_2022_139335
crossref_primary_10_1016_j_cej_2022_139577
crossref_primary_10_1039_D4SE01288G
crossref_primary_10_1016_j_cej_2024_152050
crossref_primary_10_3389_fchem_2020_00557
crossref_primary_10_1002_smll_202107033
crossref_primary_10_1016_j_carbon_2022_09_056
crossref_primary_10_1016_j_mtener_2022_101097
crossref_primary_10_1002_aenm_202300606
crossref_primary_10_1002_celc_202000372
crossref_primary_10_1016_j_jpowsour_2020_228871
crossref_primary_10_1007_s11664_024_11607_7
crossref_primary_10_1049_esi2_12161
crossref_primary_10_3390_batteries8090117
crossref_primary_10_1016_j_apsusc_2022_155147
crossref_primary_10_1002_batt_202300058
crossref_primary_10_1016_j_ensm_2025_104220
crossref_primary_10_1002_cssc_202001069
crossref_primary_10_1007_s11581_025_06649_8
crossref_primary_10_1016_j_electacta_2025_146434
crossref_primary_10_1016_j_advmem_2022_100029
crossref_primary_10_1016_j_jpowsour_2024_234977
crossref_primary_10_1016_j_electacta_2020_136189
crossref_primary_10_1002_smll_202106635
crossref_primary_10_1039_D0EE02162H
crossref_primary_10_1016_j_jpowsour_2025_238019
crossref_primary_10_3390_batteries9070386
crossref_primary_10_1016_j_jpowsour_2022_231627
crossref_primary_10_1002_ange_202502103
crossref_primary_10_1016_j_mtcomm_2022_103939
crossref_primary_10_1016_j_jcis_2021_06_057
crossref_primary_10_1016_j_jcis_2024_09_092
crossref_primary_10_1016_j_jpowsour_2020_228689
crossref_primary_10_1016_j_polymer_2025_128181
crossref_primary_10_1002_aenm_202003927
crossref_primary_10_1002_smsc_202400015
crossref_primary_10_3390_batteries8070071
crossref_primary_10_1016_j_est_2023_109060
crossref_primary_10_1002_anie_202502386
crossref_primary_10_1002_smtd_202400081
crossref_primary_10_1002_adfm_202510796
crossref_primary_10_1016_j_materresbull_2021_111347
crossref_primary_10_1016_j_elecom_2022_107291
crossref_primary_10_1002_bte2_20250017
crossref_primary_10_1016_j_jelechem_2021_115140
crossref_primary_10_3390_polym15204047
crossref_primary_10_1016_j_est_2025_117833
crossref_primary_10_1002_adma_202001854
crossref_primary_10_1002_aenm_201902798
crossref_primary_10_1016_j_jmst_2021_10_040
crossref_primary_10_3389_fchem_2019_00656
crossref_primary_10_1007_s40820_019_0322_9
crossref_primary_10_1002_aenm_202103557
crossref_primary_10_1016_j_ssi_2025_117011
crossref_primary_10_1002_advs_202304549
crossref_primary_10_1016_j_cej_2024_153239
crossref_primary_10_3389_fchem_2022_1018461
crossref_primary_10_3390_nano15030194
crossref_primary_10_1016_j_mtchem_2023_101710
crossref_primary_10_1002_celc_202000165
crossref_primary_10_1016_j_cej_2023_145313
crossref_primary_10_1002_adma_202309726
crossref_primary_10_1016_j_memsci_2020_118254
crossref_primary_10_1007_s41918_019_00047_1
crossref_primary_10_1002_aenm_202100186
crossref_primary_10_1039_D4SC05936K
crossref_primary_10_1002_cphc_202500005
crossref_primary_10_1016_j_rser_2021_111288
crossref_primary_10_1002_adfm_202106114
crossref_primary_10_1016_j_seta_2020_100820
crossref_primary_10_1002_adfm_202501968
crossref_primary_10_1002_adfm_202512051
crossref_primary_10_1016_j_electacta_2024_144509
crossref_primary_10_3390_batteries5010032
crossref_primary_10_1007_s12598_023_02571_y
crossref_primary_10_1002_cssc_202100299
crossref_primary_10_1002_smll_202506244
crossref_primary_10_1007_s10008_022_05218_7
crossref_primary_10_1142_S1793604719300044
crossref_primary_10_1002_ente_202201216
crossref_primary_10_1002_smtd_202200597
crossref_primary_10_1002_smtd_202201683
crossref_primary_10_1002_aenm_202404450
crossref_primary_10_1016_j_gee_2022_04_008
crossref_primary_10_1016_j_jpowsour_2025_238220
crossref_primary_10_1016_j_mtener_2020_100608
crossref_primary_10_1002_anie_202516233
crossref_primary_10_1002_aenm_201903589
crossref_primary_10_1016_j_ccr_2021_214299
crossref_primary_10_1016_j_jpowsour_2022_232078
crossref_primary_10_1016_j_jpowsour_2024_234931
crossref_primary_10_3390_batteries5010003
crossref_primary_10_3390_batteries9070343
crossref_primary_10_1002_inf2_12611
crossref_primary_10_1016_j_carbon_2022_07_012
crossref_primary_10_1016_j_mtener_2021_100692
crossref_primary_10_1016_j_jpowsour_2023_233323
crossref_primary_10_1016_j_jallcom_2025_178455
crossref_primary_10_1016_j_cej_2021_131705
crossref_primary_10_1016_S1872_5805_23_60740_1
crossref_primary_10_1016_j_cej_2023_146741
crossref_primary_10_1016_j_memsci_2021_119804
crossref_primary_10_1002_sstr_202000128
crossref_primary_10_1016_j_carbon_2021_09_019
crossref_primary_10_1002_ange_202502386
crossref_primary_10_1002_adfm_202407347
crossref_primary_10_1016_j_jpowsour_2020_228808
crossref_primary_10_1039_D2SC04877A
crossref_primary_10_1039_D2MH00973K
crossref_primary_10_1016_j_est_2025_115840
crossref_primary_10_1039_D1SE01749G
crossref_primary_10_1016_j_jpowsour_2022_232074
crossref_primary_10_1039_D4RA03632H
crossref_primary_10_1002_celc_202400692
crossref_primary_10_1002_adfm_202400839
crossref_primary_10_1039_D4QI00499J
crossref_primary_10_1016_j_colsurfa_2022_129171
crossref_primary_10_1002_aenm_202303411
crossref_primary_10_1039_D4SC06319H
crossref_primary_10_1002_batt_202500420
crossref_primary_10_1016_j_jcis_2023_05_171
crossref_primary_10_1016_j_jmst_2022_11_050
crossref_primary_10_1002_aenm_202503628
crossref_primary_10_3390_nano15120952
crossref_primary_10_1016_j_jcis_2022_10_127
crossref_primary_10_1016_j_jallcom_2023_169995
crossref_primary_10_1016_j_ensm_2025_104483
crossref_primary_10_1016_j_est_2023_108081
crossref_primary_10_1063_5_0192236
crossref_primary_10_1016_j_enchem_2021_100052
crossref_primary_10_1007_s12613_023_2665_y
crossref_primary_10_1007_s11581_023_05281_8
crossref_primary_10_1039_D5TA04678E
crossref_primary_10_3389_fenrg_2020_599009
crossref_primary_10_1007_s40820_023_01174_7
crossref_primary_10_1016_j_cej_2025_165147
crossref_primary_10_1016_j_est_2025_116271
crossref_primary_10_1002_smtd_202400174
crossref_primary_10_1002_batt_202100071
crossref_primary_10_1016_j_jallcom_2025_182502
crossref_primary_10_1002_aesr_202000082
crossref_primary_10_1007_s12613_024_3020_7
crossref_primary_10_1007_s40820_021_00764_7
crossref_primary_10_1002_ange_202215110
crossref_primary_10_1002_sstr_202200143
crossref_primary_10_1002_sus2_53
crossref_primary_10_1039_D2CC02553A
crossref_primary_10_3390_met14121468
crossref_primary_10_1002_aenm_202102797
crossref_primary_10_1002_smll_202303949
crossref_primary_10_1016_j_jechem_2023_03_059
crossref_primary_10_1039_D0SE01508C
crossref_primary_10_3389_fchem_2021_822624
crossref_primary_10_1039_D0EE02620D
crossref_primary_10_1039_D5TA03045E
crossref_primary_10_1038_s43246_024_00662_6
crossref_primary_10_1002_adma_202008424
crossref_primary_10_1016_j_jallcom_2022_165216
crossref_primary_10_3390_en15155727
crossref_primary_10_1039_D5CC00675A
crossref_primary_10_1039_D5TA01379H
crossref_primary_10_1038_s41467_024_50543_2
crossref_primary_10_1016_j_est_2024_113686
crossref_primary_10_1016_j_jallcom_2024_174856
crossref_primary_10_1002_aenm_202304094
crossref_primary_10_1002_aenm_202202983
crossref_primary_10_1039_D3EE03246A
crossref_primary_10_1016_j_scriptamat_2025_116541
crossref_primary_10_1016_j_cej_2025_163974
crossref_primary_10_1016_j_jpowsour_2021_230413
crossref_primary_10_1016_j_jpowsour_2022_231903
crossref_primary_10_1002_est2_635
crossref_primary_10_1002_tcr_202200088
crossref_primary_10_1016_j_mtener_2021_100897
crossref_primary_10_1002_cssc_202501387
crossref_primary_10_1016_j_est_2022_105397
crossref_primary_10_1039_C9EE03702K
crossref_primary_10_1002_adfm_202306052
crossref_primary_10_1002_ange_202516233
crossref_primary_10_1002_inf2_12306
crossref_primary_10_1016_j_ccr_2022_214642
crossref_primary_10_1016_j_jcis_2023_02_028
crossref_primary_10_1002_eom2_12505
crossref_primary_10_1016_j_jpowsour_2024_235898
crossref_primary_10_1002_cssc_201901409
crossref_primary_10_1016_j_jechem_2022_07_034
crossref_primary_10_1016_j_nantod_2023_101990
crossref_primary_10_1016_j_cej_2020_127189
crossref_primary_10_1002_celc_202000472
crossref_primary_10_1016_j_cej_2020_126684
crossref_primary_10_1002_smtd_202300832
crossref_primary_10_1016_j_electacta_2023_143622
crossref_primary_10_1002_adfm_202500909
crossref_primary_10_1016_j_coelec_2019_10_015
crossref_primary_10_1016_j_jpowsour_2022_231122
crossref_primary_10_1016_j_jpowsour_2021_230196
crossref_primary_10_1002_aesr_202000026
crossref_primary_10_1016_j_jechem_2020_08_038
crossref_primary_10_1063_5_0152214
crossref_primary_10_1016_j_gee_2022_08_009
crossref_primary_10_1021_acs_energyfuels_4c05246
crossref_primary_10_1039_C9EE02526J
crossref_primary_10_1016_j_jpowsour_2020_229376
crossref_primary_10_1002_cnl2_109
crossref_primary_10_1002_batt_202300107
crossref_primary_10_1002_adfm_202203595
crossref_primary_10_1002_smtd_202201277
crossref_primary_10_1002_adma_202108856
crossref_primary_10_1002_adma_201902025
crossref_primary_10_1002_aenm_202000477
crossref_primary_10_1016_j_jpowsour_2020_227856
crossref_primary_10_1016_j_cattod_2024_115108
crossref_primary_10_1016_j_cej_2024_149813
crossref_primary_10_1142_S1793604721300115
crossref_primary_10_1016_j_scenem_2025_100016
crossref_primary_10_1002_batt_202000060
crossref_primary_10_1002_adfm_202316619
crossref_primary_10_1002_aenm_202400063
crossref_primary_10_1016_j_est_2025_115942
crossref_primary_10_1016_j_mser_2024_100844
crossref_primary_10_1002_chem_202402325
crossref_primary_10_1088_2752_5724_acef41
crossref_primary_10_1016_j_electacta_2022_140985
crossref_primary_10_1002_celc_202001426
crossref_primary_10_1016_j_jelechem_2019_113641
crossref_primary_10_1016_j_scib_2020_12_029
crossref_primary_10_1039_D5EE00703H
crossref_primary_10_3390_batteries9050284
crossref_primary_10_1002_aenm_202302388
crossref_primary_10_1016_j_nanoen_2020_104880
Cites_doi 10.1149/1.2127235
10.1016/j.elecom.2012.02.034
10.1039/C5PY02036K
10.1149/2.0251414jes
10.1016/j.isci.2018.04.006
10.1002/anie.201509364
10.1016/j.jpowsour.2008.01.004
10.1016/0378-7753(85)80078-1
10.1149/2.0141508jes
10.1007/BF00615886
10.1016/j.jiec.2009.01.002
10.1039/C7CP05345B
10.1039/C3EE43182G
10.1016/j.electacta.2016.01.110
10.1016/S0378-7753(97)02705-5
10.1149/1.2407584
10.1149/1.2085653
10.1002/ange.201708664
10.1038/ncomms11801
10.1039/C7EE03232C
10.1149/1.2085538
10.1016/0378-7753(89)80064-3
10.1039/C4RA12812E
10.1016/0378-7753(85)80062-8
10.1016/j.jpowsour.2005.11.066
10.1038/s41563-018-0063-z
10.1149/1.2411588
10.1016/0378-7753(88)80086-7
10.1039/C4CS00015C
10.1016/j.jpowsour.2006.01.027
10.1016/j.jpowsour.2010.09.065
10.1002/ange.201803122
10.1038/ncomms7303
10.1016/j.electacta.2007.02.063
10.1149/2.0091602jes
10.1002/adma.201605815
10.1149/2.040311jes
10.1039/C5TA06366C
10.1016/S0360-3199(02)00137-4
10.1016/0013-4686(81)90015-3
10.1002/anie.201708664
10.1126/science.aak9991
10.1149/1.2100573
10.1149/1.2411297
10.1016/0378-7753(85)80070-7
10.1016/j.electacta.2014.12.100
10.1038/nenergy.2016.39
10.1039/C3EE43754J
10.1002/aenm.201400930
10.1021/am505266c
10.1016/j.jpowsour.2011.01.095
10.1007/978-1-4757-9877-7
10.1038/nenergy.2016.119
10.1038/s41598-018-24059-x
10.1016/j.jpowsour.2007.12.088
10.1016/0378-7753(85)80077-X
10.1149/1.3507925
10.1002/celc.201800572
10.1002/anie.201803122
10.1023/A:1003464011815
10.1016/0378-7753(90)80031-8
10.1149/2.1001602jes
10.1002/adma.201505000
10.1016/j.electacta.2011.04.111
10.1039/C6CS00823B
10.1002/adma.201603038
10.1016/S0378-7753(01)00489-X
10.1002/ange.201509364
10.1007/BF01023822
10.1016/j.jpowsour.2014.10.140
10.1016/j.electacta.2005.06.023
10.1016/S0378-7753(01)00789-3
10.1039/C5EE02315G
10.1016/j.electacta.2011.05.121
10.1016/0378-7753(91)80117-G
10.1149/1.2085582
10.1149/1.3599565
10.1021/acsenergylett.6b00655
10.1149/1.2404188
10.1016/j.mtener.2017.12.012
10.1016/S0378-7753(98)00040-8
10.1149/2.0221712jes
10.1016/j.rser.2018.03.016
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.201801657
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 4006
ExternalDocumentID 30242975
10_1002_cssc_201801657
CSSC201801657
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Key project of Frontier Science, CAS
  funderid: QYZDB-SSW-JSC032
– fundername: DICP funding
  funderid: ZZBS201707
– fundername: China Natural Science Foundation
  funderid: 21476224
– fundername: The funding information is correct.
– fundername: Key project of Frontier Science, CAS
  grantid: QYZDB-SSW-JSC032
– fundername: China Natural Science Foundation
  grantid: 21476224
– fundername: DICP funding
  grantid: ZZBS201707
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAMMB
AAYXX
AEFGJ
AEYWJ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4767-aa1eff049849455a788eff9c63c6cb232ada3ddb6d3a003544088cfc59b353a23
IEDL.DBID DRFUL
ISICitedReferencesCount 394
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000455584900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1864-5631
1864-564X
IngestDate Thu Oct 02 10:27:06 EDT 2025
Sat Nov 29 14:29:32 EST 2025
Thu Apr 03 07:05:56 EDT 2025
Sat Nov 29 07:16:32 EST 2025
Tue Nov 18 22:25:55 EST 2025
Wed Jan 22 16:27:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords dendrites
deposition
reaction mechanisms
batteries
zinc
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4767-aa1eff049849455a788eff9c63c6cb232ada3ddb6d3a003544088cfc59b353a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8541-5779
PMID 30242975
PQID 2153985444
PQPubID 986333
PageCount 11
ParticipantIDs proquest_miscellaneous_2111142360
proquest_journals_2153985444
pubmed_primary_30242975
crossref_citationtrail_10_1002_cssc_201801657
crossref_primary_10_1002_cssc_201801657
wiley_primary_10_1002_cssc_201801657_CSSC201801657
PublicationCentury 2000
PublicationDate December 11, 2018
PublicationDateYYYYMMDD 2018-12-11
PublicationDate_xml – month: 12
  year: 2018
  text: December 11, 2018
  day: 11
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 158
2001; 102
2017; 2
2017; 46
2012; 18
2011; 56
2011; 196
2013; 160
2017; 356
1983; 13
2008; 184
2018; 8
2018; 3
2018; 5
2015; 179
2010; 28
2018 2018; 57 130
1968; 115
2014; 161
2017; 164
1981
2006; 160
2014; 7
2016; 191
1970; 117
2014; 6
1985; 15
2009; 15
2001; 96
2015; 162
1972; 119
1990; 32
1998; 28
2015; 6
2015; 5
2015; 3
2006; 51
1991; 35
2009
1996
1981; 26
2006; 153
1981; 128
2017; 29
2007; 52
2017 2017; 56 129
2006; 159
1991; 138
2015; 8
2016; 163
2014; 43
1989; 28
2016; 7
2018; 17
1987; 134
2016; 1
2016 2016; 55 128
2015; 274
2018; 90
1988; 24
2003; 28
2017; 19
1998; 72
2008; 179
1998; 74
1969; 116
2016; 28
2018; 11
1992; 22
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_85_1
e_1_2_7_43_2
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
McBreen J. (e_1_2_7_66_1) 1981
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Wang R. Y. (e_1_2_7_53_1) 2006; 153
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_36_2
e_1_2_7_38_1
References_xml – volume: 7
  start-page: 1307
  year: 2014
  end-page: 1338
  publication-title: Energy Environ. Sci.
– year: 2009
– volume: 138
  start-page: 7
  year: 1991
  end-page: 17
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 1711
  year: 2016
  end-page: 1718
  publication-title: Polym. Chem.
– volume: 26
  start-page: 1439
  year: 1981
  end-page: 1446
  publication-title: Electrochim. Acta
– volume: 356
  start-page: 415
  year: 2017
  end-page: 418
  publication-title: Science
– volume: 43
  start-page: 5257
  year: 2014
  end-page: 5275
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 2409
  year: 2018
  end-page: 2418
  publication-title: ChemElectroChem
– volume: 163
  start-page: 351
  year: 2016
  end-page: 355
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 1117
  year: 2014
  end-page: 1124
  publication-title: Energy Environ. Sci.
– volume: 74
  start-page: 113
  year: 1998
  end-page: 116
  publication-title: J. Power Sources
– volume: 159
  start-page: 1474
  year: 2006
  end-page: 1477
  publication-title: J. Power Sources
– volume: 196
  start-page: 5174
  year: 2011
  end-page: 5185
  publication-title: J. Power Sources
– volume: 158
  start-page: 55
  year: 2011
  end-page: 79
  publication-title: J. Electrochem. Soc.
– volume: 179
  start-page: 381
  year: 2008
  end-page: 387
  publication-title: J. Power Sources
– volume: 117
  start-page: 588
  year: 1970
  end-page: 592
  publication-title: J. Electrochem. Soc.
– volume: 28
  start-page: 35
  year: 2010
  end-page: 44
  publication-title: ECS Trans.
– volume: 52
  start-page: 5407
  year: 2007
  end-page: 5416
  publication-title: Electrochim. Acta
– volume: 55 128
  start-page: 2889 2939
  year: 2016 2016
  end-page: 2893 2943
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 160
  start-page: 1436
  year: 2006
  end-page: 1441
  publication-title: J. Power Sources
– volume: 15
  start-page: 445
  year: 2009
  end-page: 450
  publication-title: J. Ind. Eng. Chem.
– volume: 56 129
  start-page: 14953 15149
  year: 2017 2017
  end-page: 14957 15153
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 28
  start-page: 345
  year: 1989
  end-page: 359
  publication-title: J. Power Sources
– volume: 3
  start-page: 22648
  year: 2015
  end-page: 22655
  publication-title: J. Mater. Chem. A
– volume: 115
  start-page: 507
  year: 1968
  end-page: 508
  publication-title: J. Electrochem. Soc.
– volume: 51
  start-page: 1342
  year: 2006
  end-page: 1350
  publication-title: Electrochim. Acta
– volume: 15
  start-page: 61
  year: 1985
  end-page: 76
  publication-title: J. Power Sources
– volume: 35
  start-page: 333
  year: 1991
  end-page: 351
  publication-title: J. Power Sources
– volume: 17
  start-page: 543
  year: 2018
  end-page: 549
  publication-title: Nat. Mater.
– volume: 191
  start-page: 724
  year: 2016
  end-page: 732
  publication-title: Electrochim. Acta
– volume: 32
  start-page: 31
  year: 1990
  end-page: 41
  publication-title: J. Power Sources
– volume: 179
  start-page: 475
  year: 2015
  end-page: 481
  publication-title: Electrochim. Acta
– volume: 116
  start-page: 1503
  year: 1969
  end-page: 1514
  publication-title: J. Electrochem. Soc.
– start-page: 81
  year: 1981
  end-page: 82
  publication-title: Proc. Electrochem. Soc.
– volume: 196
  start-page: 2340
  year: 2011
  end-page: 2345
  publication-title: J. Power Sources
– volume: 13
  start-page: 39
  year: 1983
  end-page: 53
  publication-title: J. Appl. Electrochem.
– volume: 1
  start-page: 16039
  year: 2016
  publication-title: Nat. Energy
– volume: 6
  start-page: 19471
  year: 2014
  end-page: 19476
  publication-title: ACS Appl. Mater. Interfaces
– volume: 46
  start-page: 2199
  year: 2017
  end-page: 2236
  publication-title: Chem. Soc. Rev.
– volume: 128
  start-page: 2281
  year: 1981
  end-page: 2286
  publication-title: J. Electrochem. Soc.
– volume: 5
  start-page: 1400930
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 90
  start-page: 992
  year: 2018
  end-page: 1016
  publication-title: Renewable Sustainable Energy Rev.
– volume: 134
  start-page: 782
  year: 1987
  end-page: 791
  publication-title: J. Electrochem. Soc.
– volume: 1
  start-page: 16119
  year: 2016
  publication-title: Nat. Energy
– volume: 56
  start-page: 7885
  year: 2011
  end-page: 7889
  publication-title: Electrochim. Acta
– volume: 160
  start-page: 519
  year: 2013
  end-page: 523
  publication-title: J. Electrochem. Soc.
– volume: 153
  start-page: 193
  year: 2006
  end-page: 229
  publication-title: Cancer Res.
– volume: 96
  start-page: 128
  year: 2001
  end-page: 132
  publication-title: J. Power Sources
– volume: 29
  start-page: 1605815
  year: 2017
  publication-title: Adv. Mater.
– volume: 102
  start-page: 139
  year: 2001
  end-page: 143
  publication-title: J. Power Sources
– volume: 161
  start-page: 2068
  year: 2014
  end-page: 2079
  publication-title: J. Electrochem. Soc.
– volume: 15
  start-page: 245
  year: 1985
  end-page: 260
  publication-title: J. Power Sources
– year: 1996
– volume: 184
  start-page: 663
  year: 2008
  end-page: 667
  publication-title: J. Power Sources
– volume: 164
  start-page: 2407
  year: 2017
  end-page: 2417
  publication-title: J. Electrochem. Soc.
– volume: 28
  start-page: 8732
  year: 2016
  end-page: 8739
  publication-title: Adv. Mater.
– volume: 72
  start-page: 231
  year: 1998
  end-page: 235
  publication-title: J. Power Sources
– volume: 28
  start-page: 633
  year: 2003
  end-page: 636
  publication-title: Int. J. Hydrogen Energy
– volume: 6
  start-page: 6303
  year: 2015
  publication-title: Nat. Commun.
– volume: 24
  start-page: 21
  year: 1988
  end-page: 29
  publication-title: J. Power Sources
– volume: 8
  start-page: 5740
  year: 2018
  publication-title: Sci. Rep.
– volume: 163
  start-page: 50
  year: 2016
  end-page: 56
  publication-title: J. Electrochem. Soc.
– volume: 56
  start-page: 6536
  year: 2011
  end-page: 6546
  publication-title: Electrochim. Acta
– volume: 19
  start-page: 25989
  year: 2017
  end-page: 25995
  publication-title: Phys. Chem. Chem. Phys.
– volume: 11
  start-page: 941
  year: 2018
  end-page: 951
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 40
  year: 2018
  end-page: 49
  publication-title: iScience
– volume: 274
  start-page: 1249
  year: 2015
  end-page: 1253
  publication-title: J. Power Sources
– volume: 15
  start-page: 169
  year: 1985
  end-page: 177
  publication-title: J. Power Sources
– volume: 5
  start-page: 1772
  year: 2015
  end-page: 1776
  publication-title: RSC Adv.
– volume: 22
  start-page: 182
  year: 1992
  end-page: 184
  publication-title: J. Appl. Electrochem.
– volume: 119
  start-page: 285
  year: 1972
  end-page: 295
  publication-title: J. Electrochem. Soc.
– volume: 28
  start-page: 895
  year: 1998
  end-page: 898
  publication-title: J. Appl. Electrochem.
– volume: 57 130
  start-page: 11171 11341
  year: 2018 2018
  end-page: 11176 11346
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15
  start-page: 261
  year: 1985
  end-page: 285
  publication-title: J. Power Sources
– volume: 8
  start-page: 80
  year: 2018
  end-page: 108
  publication-title: Mater. Today Energy
– volume: 8
  start-page: 2941
  year: 2015
  end-page: 2945
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 411
  year: 2017
  end-page: 416
  publication-title: ACS Energy Lett.
– volume: 28
  start-page: 2238
  year: 2016
  end-page: 2243
  publication-title: Adv. Mater.
– volume: 162
  start-page: 1439
  year: 2015
  end-page: 1444
  publication-title: J. Electrochem. Soc.
– volume: 138
  start-page: 1
  year: 1991
  end-page: 7
  publication-title: J. Electrochem. Soc.
– volume: 138
  start-page: 645
  year: 1991
  end-page: 656
  publication-title: J. Electrochem. Soc.
– volume: 18
  start-page: 119
  year: 2012
  end-page: 122
  publication-title: Electrochem. Commun.
– volume: 7
  start-page: 11801
  year: 2016
  publication-title: Nat. Commun.
– ident: e_1_2_7_67_1
  doi: 10.1149/1.2127235
– ident: e_1_2_7_73_1
– ident: e_1_2_7_82_1
  doi: 10.1016/j.elecom.2012.02.034
– ident: e_1_2_7_79_1
  doi: 10.1039/C5PY02036K
– ident: e_1_2_7_38_1
  doi: 10.1149/2.0251414jes
– ident: e_1_2_7_21_1
  doi: 10.1016/j.isci.2018.04.006
– ident: e_1_2_7_36_1
  doi: 10.1002/anie.201509364
– ident: e_1_2_7_17_1
  doi: 10.1016/j.jpowsour.2008.01.004
– ident: e_1_2_7_68_1
  doi: 10.1016/0378-7753(85)80078-1
– ident: e_1_2_7_71_1
  doi: 10.1149/2.0141508jes
– ident: e_1_2_7_84_1
  doi: 10.1007/BF00615886
– ident: e_1_2_7_7_1
  doi: 10.1016/j.jiec.2009.01.002
– ident: e_1_2_7_83_1
  doi: 10.1039/C7CP05345B
– ident: e_1_2_7_3_1
  doi: 10.1039/C3EE43182G
– ident: e_1_2_7_28_1
  doi: 10.1016/j.electacta.2016.01.110
– ident: e_1_2_7_81_1
  doi: 10.1039/C5PY02036K
– ident: e_1_2_7_31_1
  doi: 10.1016/S0378-7753(97)02705-5
– ident: e_1_2_7_27_1
  doi: 10.1149/1.2407584
– ident: e_1_2_7_6_1
  doi: 10.1149/1.2085653
– ident: e_1_2_7_43_2
  doi: 10.1002/ange.201708664
– ident: e_1_2_7_35_1
  doi: 10.1038/ncomms11801
– ident: e_1_2_7_62_1
  doi: 10.1039/C7EE03232C
– ident: e_1_2_7_50_1
  doi: 10.1149/1.2085538
– ident: e_1_2_7_64_1
  doi: 10.1016/0378-7753(89)80064-3
– ident: e_1_2_7_46_1
  doi: 10.1039/C4RA12812E
– start-page: 81
  year: 1981
  ident: e_1_2_7_66_1
  publication-title: Proc. Electrochem. Soc.
– volume: 153
  start-page: 193
  year: 2006
  ident: e_1_2_7_53_1
  publication-title: Cancer Res.
– ident: e_1_2_7_69_1
  doi: 10.1016/0378-7753(85)80062-8
– ident: e_1_2_7_12_1
  doi: 10.1016/j.jpowsour.2005.11.066
– ident: e_1_2_7_41_1
  doi: 10.1038/s41563-018-0063-z
– ident: e_1_2_7_51_1
  doi: 10.1149/1.2411588
– ident: e_1_2_7_26_1
  doi: 10.1016/0378-7753(88)80086-7
– ident: e_1_2_7_39_1
  doi: 10.1039/C4CS00015C
– ident: e_1_2_7_60_1
  doi: 10.1016/j.jpowsour.2006.01.027
– ident: e_1_2_7_72_1
  doi: 10.1016/j.jpowsour.2010.09.065
– ident: e_1_2_7_19_2
  doi: 10.1002/ange.201803122
– ident: e_1_2_7_23_1
  doi: 10.1038/ncomms7303
– ident: e_1_2_7_33_1
  doi: 10.1016/j.electacta.2007.02.063
– ident: e_1_2_7_55_1
  doi: 10.1149/2.0091602jes
– ident: e_1_2_7_85_1
  doi: 10.1002/adma.201605815
– ident: e_1_2_7_24_1
  doi: 10.1149/2.040311jes
– ident: e_1_2_7_5_1
  doi: 10.1039/C5TA06366C
– ident: e_1_2_7_15_1
  doi: 10.1016/S0360-3199(02)00137-4
– ident: e_1_2_7_16_1
  doi: 10.1016/0013-4686(81)90015-3
– ident: e_1_2_7_43_1
  doi: 10.1002/anie.201708664
– ident: e_1_2_7_56_1
  doi: 10.1126/science.aak9991
– ident: e_1_2_7_52_1
  doi: 10.1149/1.2100573
– ident: e_1_2_7_48_1
  doi: 10.1149/1.2411297
– ident: e_1_2_7_65_1
  doi: 10.1016/0378-7753(85)80070-7
– ident: e_1_2_7_25_1
  doi: 10.1016/j.electacta.2014.12.100
– ident: e_1_2_7_44_1
  doi: 10.1038/nenergy.2016.39
– ident: e_1_2_7_40_1
  doi: 10.1039/C3EE43754J
– ident: e_1_2_7_10_1
  doi: 10.1002/aenm.201400930
– ident: e_1_2_7_57_1
  doi: 10.1021/am505266c
– ident: e_1_2_7_78_1
  doi: 10.1016/j.jpowsour.2011.01.095
– ident: e_1_2_7_9_1
  doi: 10.1007/978-1-4757-9877-7
– ident: e_1_2_7_8_1
  doi: 10.1038/nenergy.2016.119
– ident: e_1_2_7_34_1
  doi: 10.1038/s41598-018-24059-x
– ident: e_1_2_7_42_1
  doi: 10.1016/j.jpowsour.2007.12.088
– ident: e_1_2_7_70_1
  doi: 10.1016/0378-7753(85)80077-X
– ident: e_1_2_7_45_1
  doi: 10.1149/1.3507925
– ident: e_1_2_7_47_1
  doi: 10.1002/celc.201800572
– ident: e_1_2_7_19_1
  doi: 10.1002/anie.201803122
– ident: e_1_2_7_77_1
  doi: 10.1023/A:1003464011815
– ident: e_1_2_7_30_1
  doi: 10.1016/0378-7753(90)80031-8
– ident: e_1_2_7_58_1
  doi: 10.1149/2.1001602jes
– ident: e_1_2_7_80_1
  doi: 10.1002/adma.201505000
– ident: e_1_2_7_63_1
  doi: 10.1016/j.electacta.2011.04.111
– ident: e_1_2_7_1_1
  doi: 10.1039/C6CS00823B
– ident: e_1_2_7_61_1
  doi: 10.1002/adma.201603038
– ident: e_1_2_7_76_1
  doi: 10.1016/S0378-7753(01)00489-X
– ident: e_1_2_7_36_2
  doi: 10.1002/ange.201509364
– ident: e_1_2_7_11_1
  doi: 10.1007/BF01023822
– ident: e_1_2_7_37_1
  doi: 10.1016/j.jpowsour.2014.10.140
– ident: e_1_2_7_32_1
  doi: 10.1016/j.electacta.2005.06.023
– ident: e_1_2_7_75_1
– ident: e_1_2_7_18_1
  doi: 10.1016/S0378-7753(01)00789-3
– ident: e_1_2_7_14_1
  doi: 10.1039/C5EE02315G
– ident: e_1_2_7_59_1
  doi: 10.1016/j.electacta.2011.05.121
– ident: e_1_2_7_20_1
  doi: 10.1016/0378-7753(91)80117-G
– ident: e_1_2_7_49_1
  doi: 10.1149/1.2085582
– ident: e_1_2_7_2_1
  doi: 10.1149/1.3599565
– ident: e_1_2_7_74_1
  doi: 10.1021/acsenergylett.6b00655
– ident: e_1_2_7_54_1
  doi: 10.1149/1.2404188
– ident: e_1_2_7_4_1
  doi: 10.1016/j.mtener.2017.12.012
– ident: e_1_2_7_22_1
  doi: 10.1016/S0378-7753(98)00040-8
– ident: e_1_2_7_29_1
  doi: 10.1149/2.0221712jes
– ident: e_1_2_7_13_1
  doi: 10.1016/j.rser.2018.03.016
SSID ssj0060966
Score 2.6655974
SecondaryResourceType review_article
Snippet Zinc deposition and dissolution is a significant process in zinc‐based batteries. During this process, the formation of zinc dendrites is pervasive, which...
Zinc deposition and dissolution is a significant process in zinc-based batteries. During this process, the formation of zinc dendrites is pervasive, which...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3996
SubjectTerms batteries
dendrites
Dendritic structure
Deposition
R&D
reaction mechanisms
Research & development
Separators
Short circuits
Zinc
Title Inhibition of Zinc Dendrite Growth in Zinc‐Based Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201801657
https://www.ncbi.nlm.nih.gov/pubmed/30242975
https://www.proquest.com/docview/2153985444
https://www.proquest.com/docview/2111142360
Volume 11
WOSCitedRecordID wos000455584900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1864-564X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060966
  issn: 1864-5631
  databaseCode: DRFUL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_sVagvam3V1OsRQehTaDb7kQ30Re88LZRSrIWjL2G_Qg8kJ5c7n_0T_Bv9S5zNV3uICO1bNtkkw8zuzm-ymd8AvMssekH0fJEUjkXooWikmUojxgqSeAekiK6LTaTn53I2yy7uZPE3_BD9Bzc_M-r12k9wpavjW9JQU1WegpBIn5CTbsF2goOXD2B78mV6ddatxgIhep1hJAWLuKCkI26Mk-PNJ2w6pr_Q5iZ4rb3P9NnD5X4OT1vkGb5vhsouPHLlC9gZdwXf9uDktLyZ6_oXrnBRhNfz0oQTV9olotLwE4brq5twXtbnf__89QHdnw0bek6Mtvfhavrx6_hz1BZXiAxLcXFUiriiwPhAsoxxrjAUxnZmBDXCaMRZyipqrRaWKr_d6CtTS1MYnmnKqUroSxiUi9K9hhCXyJhrmknNFaNSSbS2FDZGrOZiV9gAok6zuWmZx30BjG95w5mc5F4nea-TAI76_t8bzo1_9hx2hsrbuVflCGJQFhSYBfC2v4y69FshqnSLte9DfBIxFXEArxoD96-iHrZkKQ8gqe34Hxny8eXluG8d3OemN_DEH_u_ZAgZwmC1XLtDeGx-rObVcgRb6UyO2nH9B4Oz9ZQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEC58LOhF3YcaX5uFhT0Fk3Sn0wEvOjoqjsOyKsheQqe7gwOSkZnRsz_B3-gvsSovGRZZEI_d6SRFVXXV14-qAviZGPSC6Pk8KSz30EMxL-Mq9jjPg5AckAqysthE3O_L6-vkd32bkGJhqvwQ7YYbzYzSXtMEpw3p3desoXo8phyEgaSInHgW5jnqEir5_OGf7lWvMccCMXoZYiQF9yLBgiZzox_uTn9h2jP9Azen0WvpfrrLH0D4CizV2NPdr5TlM8zY4gssdJqSb19h77S4GWTlJS53mLt_B4V2D21hRohL3WNcsE9u3EFR9j8_Ph2gAzRulaAT19vf4Kp7dNk58eryCp7mMZpHpQKb57hCkDzhUaRwMYztRAumhc4QaSmjmDGZMEzRgSPVppY611GSsYipkK3CXDEs7Dq4aCT9KGOJzCLFmVQS5S2F8RGtWd_mxgGvYW2q69zjVALjNq2yJocp8SRteeLAr3b8XZV1482RW42k0nr2jVOEMUgLEswd-NE-Rl7SYYgq7PCexgQURsyE78BaJeH2V4yASxJHDoSlIP9DQ9q5uOi0rY33vPQdFk4uz3tp77R_tgmL1E93ZoJgC-Ymo3u7DZ_0w2QwHu3U6v0Ce3b4nA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fS9xAEB_sKdUX_7XVqLURCj4Fk-xmswFf9M5rpXKIVpC-hM3uBg8kJ3enz34EP6OfxJn8k0OkUPqYzSYZZnZnfpPd_Q3A98RgFMTI50lhuYcRinkZV7HHeR6EFIBUkJXFJuLBQF5fJ-f1bkI6C1PxQ7Q_3GhmlP6aJri9M_nBK2uonkyIgzCQdCIn_gDznCrJdGC-d9G_OmvcsUCMXh4xkoJ7kWBBw9zohwezb5iNTG_g5ix6LcNPf-U_CL4KyzX2dI-qwbIGc7ZYh8VuU_LtExyeFjfDrNzE5Y5y98-w0G7PFmaMuNT9gQn79MYdFmX78-PTMQZA41YEnZhvf4ar_snv7k-vLq_gaR6je1QqsHmOGYLkCY8ihckwXidaMC10hkhLGcWMyYRhihYcqTa11LmOkoxFTIXsC3SKUWE3wUUn6UcZS2QWKc6kkmhvKYyPaM36NjcOeI1qU11zj1MJjNu0Yk0OU9JJ2urEgf22_13FuvFuz53GUmk9-yYpwhiUBQXmDuy1t1GXtBiiCju6pz4BHSNmwndgo7Jw-ylGwCWJIwfC0pB_kSHtXl5226utf3noG3w87_XTs9PBr21YombaMhMEO9CZju_tV1jQD9PhZLxbj-4XD6T4Fw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibition+of+Zinc+Dendrite+Growth+in+Zinc%E2%80%90Based+Batteries&rft.jtitle=ChemSusChem&rft.au=Lu%2C+Wenjing&rft.au=Xie%2C+Congxin&rft.au=Zhang%2C+Huamin&rft.au=Li%2C+Xianfeng&rft.date=2018-12-11&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=11&rft.issue=23&rft.spage=3996&rft.epage=4006&rft_id=info:doi/10.1002%2Fcssc.201801657&rft.externalDBID=10.1002%252Fcssc.201801657&rft.externalDocID=CSSC201801657
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon