Learning from Peptides to Access Functional Precision Polymer Sequences

Functional precision polymers based on monodisperse oligo(N‐substituted acrylamide)s and oligo(2‐substituted‐α‐hydroxy acid)s have been synthesized. The discrete sequences originate from a direct translation of side‐chain functionality sequences of a peptide with well‐studied properties. The peptide...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Angewandte Chemie International Edition Ročník 58; číslo 31; s. 10747 - 10751
Hlavní autoři: Maron, Eva, Swisher, Jordan H., Haven, Joris J., Meyer, Tara Y., Junkers, Tanja, Börner, Hans G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: WEINHEIM Wiley 29.07.2019
Wiley Subscription Services, Inc
Vydání:International ed. in English
Témata:
ISSN:1433-7851, 1521-3773, 1521-3773
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Functional precision polymers based on monodisperse oligo(N‐substituted acrylamide)s and oligo(2‐substituted‐α‐hydroxy acid)s have been synthesized. The discrete sequences originate from a direct translation of side‐chain functionality sequences of a peptide with well‐studied properties. The peptide was previously selected to solubilize the photosensitizer meta‐tetra(hydroxyphenyl)chlorin. The resulting peptidomimetic formulation additives preserve the drug solubilization and release characteristics of the parent peptide. In some cases, superior properties are obtained, reaching up to 40 % higher payloads and 27‐times faster initial drug release. Not lost in translation: A new strategy to guide sequence design for accessing functional precision polymers is described. The direct translation of side‐chain functionality sequences into nonpeptidic backbones leads to macromolecules that mimic or improve on the properties of the parent peptide. As an example, the approach was applied to a peptide‐based formulation additive to solubilize a photosensitizer drug.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.201902217