Monitoring nature's calendar from space: Emerging topics in land surface phenology and associated opportunities for science applications
Vegetation phenology has been viewed as the nature's calendar and an integrative indicator of plant‐climate interactions. The correct representation of vegetation phenology is important for models to accurately simulate the exchange of carbon, water, and energy between the vegetated land surfac...
Saved in:
| Published in: | Global change biology Vol. 28; no. 24; pp. 7186 - 7204 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Blackwell Publishing Ltd
01.12.2022
John Wiley and Sons Inc |
| Subjects: | |
| ISSN: | 1354-1013, 1365-2486, 1365-2486 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Vegetation phenology has been viewed as the nature's calendar and an integrative indicator of plant‐climate interactions. The correct representation of vegetation phenology is important for models to accurately simulate the exchange of carbon, water, and energy between the vegetated land surface and the atmosphere. Remote sensing has advanced the monitoring of vegetation phenology by providing spatially and temporally continuous data that together with conventional ground observations offers a unique contribution to our knowledge about the environmental impact on ecosystems as well as the ecological adaptations and feedback to global climate change. Land surface phenology (LSP) is defined as the use of satellites to monitor seasonal dynamics in vegetated land surfaces and to estimate phenological transition dates. LSP, as an interdisciplinary subject among remote sensing, ecology, and biometeorology, has undergone rapid development over the past few decades. Recent advances in sensor technologies, as well as data fusion techniques, have enabled novel phenology retrieval algorithms that refine phenology details at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. As such, here we summarize the recent advances in LSP and the associated opportunities for science applications. We focus on the remaining challenges, promising techniques, and emerging topics that together we believe will truly form the very frontier of the global LSP research field.
Land surface phenology (LSP), as an interdisciplinary subject among remote sensing, ecology, and biometeorology, has undergone rapid development over the past few decades. Recent advances in sensor technologies, as well as data fusion techniques, have enabled novel phenology retrieval algorithms that refine phenology details at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. As such, we summarize the recent advances in LSP and the associated opportunities for science applications. We focus on the remaining challenges, promising techniques, and emerging topics that together we believe will truly form the very frontier of the global LSP research field. |
|---|---|
| AbstractList | Vegetation phenology has been viewed as the nature's calendar and an integrative indicator of plant‐climate interactions. The correct representation of vegetation phenology is important for models to accurately simulate the exchange of carbon, water, and energy between the vegetated land surface and the atmosphere. Remote sensing has advanced the monitoring of vegetation phenology by providing spatially and temporally continuous data that together with conventional ground observations offers a unique contribution to our knowledge about the environmental impact on ecosystems as well as the ecological adaptations and feedback to global climate change. Land surface phenology (LSP) is defined as the use of satellites to monitor seasonal dynamics in vegetated land surfaces and to estimate phenological transition dates. LSP, as an interdisciplinary subject among remote sensing, ecology, and biometeorology, has undergone rapid development over the past few decades. Recent advances in sensor technologies, as well as data fusion techniques, have enabled novel phenology retrieval algorithms that refine phenology details at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. As such, here we summarize the recent advances in LSP and the associated opportunities for science applications. We focus on the remaining challenges, promising techniques, and emerging topics that together we believe will truly form the very frontier of the global LSP research field. Land surface phenology (LSP), as an interdisciplinary subject among remote sensing, ecology, and biometeorology, has undergone rapid development over the past few decades. Recent advances in sensor technologies, as well as data fusion techniques, have enabled novel phenology retrieval algorithms that refine phenology details at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. As such, we summarize the recent advances in LSP and the associated opportunities for science applications. We focus on the remaining challenges, promising techniques, and emerging topics that together we believe will truly form the very frontier of the global LSP research field. Vegetation phenology has been viewed as the nature's calendar and an integrative indicator of plant‐climate interactions. The correct representation of vegetation phenology is important for models to accurately simulate the exchange of carbon, water, and energy between the vegetated land surface and the atmosphere. Remote sensing has advanced the monitoring of vegetation phenology by providing spatially and temporally continuous data that together with conventional ground observations offers a unique contribution to our knowledge about the environmental impact on ecosystems as well as the ecological adaptations and feedback to global climate change. Land surface phenology (LSP) is defined as the use of satellites to monitor seasonal dynamics in vegetated land surfaces and to estimate phenological transition dates. LSP, as an interdisciplinary subject among remote sensing, ecology, and biometeorology, has undergone rapid development over the past few decades. Recent advances in sensor technologies, as well as data fusion techniques, have enabled novel phenology retrieval algorithms that refine phenology details at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. As such, here we summarize the recent advances in LSP and the associated opportunities for science applications. We focus on the remaining challenges, promising techniques, and emerging topics that together we believe will truly form the very frontier of the global LSP research field. Vegetation phenology has been viewed as the nature's calendar and an integrative indicator of plant-climate interactions. The correct representation of vegetation phenology is important for models to accurately simulate the exchange of carbon, water, and energy between the vegetated land surface and the atmosphere. Remote sensing has advanced the monitoring of vegetation phenology by providing spatially and temporally continuous data that together with conventional ground observations offers a unique contribution to our knowledge about the environmental impact on ecosystems as well as the ecological adaptations and feedback to global climate change. Land surface phenology (LSP) is defined as the use of satellites to monitor seasonal dynamics in vegetated land surfaces and to estimate phenological transition dates. LSP, as an interdisciplinary subject among remote sensing, ecology, and biometeorology, has undergone rapid development over the past few decades. Recent advances in sensor technologies, as well as data fusion techniques, have enabled novel phenology retrieval algorithms that refine phenology details at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. As such, here we summarize the recent advances in LSP and the associated opportunities for science applications. We focus on the remaining challenges, promising techniques, and emerging topics that together we believe will truly form the very frontier of the global LSP research field.Vegetation phenology has been viewed as the nature's calendar and an integrative indicator of plant-climate interactions. The correct representation of vegetation phenology is important for models to accurately simulate the exchange of carbon, water, and energy between the vegetated land surface and the atmosphere. Remote sensing has advanced the monitoring of vegetation phenology by providing spatially and temporally continuous data that together with conventional ground observations offers a unique contribution to our knowledge about the environmental impact on ecosystems as well as the ecological adaptations and feedback to global climate change. Land surface phenology (LSP) is defined as the use of satellites to monitor seasonal dynamics in vegetated land surfaces and to estimate phenological transition dates. LSP, as an interdisciplinary subject among remote sensing, ecology, and biometeorology, has undergone rapid development over the past few decades. Recent advances in sensor technologies, as well as data fusion techniques, have enabled novel phenology retrieval algorithms that refine phenology details at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. As such, here we summarize the recent advances in LSP and the associated opportunities for science applications. We focus on the remaining challenges, promising techniques, and emerging topics that together we believe will truly form the very frontier of the global LSP research field. Vegetation phenology has been viewed as the nature's calendar and an integrative indicator of plant‐climate interactions. The correct representation of vegetation phenology is important for models to accurately simulate the exchange of carbon, water, and energy between the vegetated land surface and the atmosphere. Remote sensing has advanced the monitoring of vegetation phenology by providing spatially and temporally continuous data that together with conventional ground observations offers a unique contribution to our knowledge about the environmental impact on ecosystems as well as the ecological adaptations and feedback to global climate change. Land surface phenology (LSP) is defined as the use of satellites to monitor seasonal dynamics in vegetated land surfaces and to estimate phenological transition dates. LSP, as an interdisciplinary subject among remote sensing, ecology, and biometeorology, has undergone rapid development over the past few decades. Recent advances in sensor technologies, as well as data fusion techniques, have enabled novel phenology retrieval algorithms that refine phenology details at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. As such, here we summarize the recent advances in LSP and the associated opportunities for science applications. We focus on the remaining challenges, promising techniques, and emerging topics that together we believe will truly form the very frontier of the global LSP research field. Land surface phenology (LSP), as an interdisciplinary subject among remote sensing, ecology, and biometeorology, has undergone rapid development over the past few decades. Recent advances in sensor technologies, as well as data fusion techniques, have enabled novel phenology retrieval algorithms that refine phenology details at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. As such, we summarize the recent advances in LSP and the associated opportunities for science applications. We focus on the remaining challenges, promising techniques, and emerging topics that together we believe will truly form the very frontier of the global LSP research field. |
| Author | Luo, Yunpeng Zhou, Yuke Jin, Jiaxin Ma, Xuanlong Zhu, Xiaolin Xie, Qiaoyun Liu, Yuxia Tian, Jiaqi Zhao, Yuhe |
| AuthorAffiliation | 5 Key Laboratory of Ecosystem Network Observation and Modelling Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences Beijing China 8 Geospatial Sciences Center of Excellence (GSCE) South Dakota State University Brookings South Dakota USA 2 Department of Land Surveying and Geo‐Informatics The Hong Kong Polytechnic University Hong Kong China 7 Department of Environmental System Science ETH Zurich Zurich Switzerland 3 School of Life Sciences, Faculty of Science University of Technology Sydney Sydney New South Wales Australia 9 Department of Geography National University of Singapore Singapore Singapore 1 College of Earth and Environmental Sciences, Lanzhou University Lanzhou China 6 Swiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland 4 College of Hydrology and Water Resources, Hohai University Nanjing China |
| AuthorAffiliation_xml | – name: 1 College of Earth and Environmental Sciences, Lanzhou University Lanzhou China – name: 6 Swiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland – name: 7 Department of Environmental System Science ETH Zurich Zurich Switzerland – name: 3 School of Life Sciences, Faculty of Science University of Technology Sydney Sydney New South Wales Australia – name: 5 Key Laboratory of Ecosystem Network Observation and Modelling Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences Beijing China – name: 4 College of Hydrology and Water Resources, Hohai University Nanjing China – name: 8 Geospatial Sciences Center of Excellence (GSCE) South Dakota State University Brookings South Dakota USA – name: 9 Department of Geography National University of Singapore Singapore Singapore – name: 2 Department of Land Surveying and Geo‐Informatics The Hong Kong Polytechnic University Hong Kong China |
| Author_xml | – sequence: 1 givenname: Xuanlong orcidid: 0000-0003-1499-8476 surname: Ma fullname: Ma, Xuanlong email: xlma@lzu.edu.cn organization: College of Earth and Environmental Sciences, Lanzhou University – sequence: 2 givenname: Xiaolin orcidid: 0000-0001-6967-786X surname: Zhu fullname: Zhu, Xiaolin organization: The Hong Kong Polytechnic University – sequence: 3 givenname: Qiaoyun orcidid: 0000-0002-1576-6610 surname: Xie fullname: Xie, Qiaoyun organization: University of Technology Sydney – sequence: 4 givenname: Jiaxin orcidid: 0000-0003-4067-298X surname: Jin fullname: Jin, Jiaxin organization: College of Hydrology and Water Resources, Hohai University – sequence: 5 givenname: Yuke orcidid: 0000-0002-2559-0241 surname: Zhou fullname: Zhou, Yuke organization: Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences – sequence: 6 givenname: Yunpeng orcidid: 0000-0001-6383-8300 surname: Luo fullname: Luo, Yunpeng organization: ETH Zurich – sequence: 7 givenname: Yuxia orcidid: 0000-0001-6130-2991 surname: Liu fullname: Liu, Yuxia organization: South Dakota State University – sequence: 8 givenname: Jiaqi orcidid: 0000-0002-5463-1532 surname: Tian fullname: Tian, Jiaqi organization: National University of Singapore – sequence: 9 givenname: Yuhe orcidid: 0000-0002-5766-7522 surname: Zhao fullname: Zhao, Yuhe organization: College of Earth and Environmental Sciences, Lanzhou University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36114727$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkstu1TAQhi1URC-w4AWQJRbAIq0vie10gVSOSkEqYgNry3EmqavEDnYCOm_Qx8bpKRVUAixLHtnf_DOemUO054MHhJ5TckzzOultc0xFycUjdEC5qApWKrG32lVZUEL5PjpM6ZoQwhkRT9A-F5SWkskDdPMpeDeH6HyPvZmXCK8StmYA35qIuxhGnCZj4RSfjxD7FZvD5GzCzuPB-BanJXYZwNMV-DCEfovXW5NSsM7M0OIwTSHOSw7jIOEuRJysA59dzDQNzprZBZ-eosedGRI8uzuP0Nf35182H4rLzxcfN2eXhS2lEIWsVFtx0RhCFa-NFZ2siFQUakYYdEbQmoqWNh3lsmMtACdMcqoUKaGB2vAj9HanOy3NCK0FP0cz6Cm60cStDsbpP1-8u9J9-K5rxaQSKgu8vhOI4dsCadajSxaGXAwIS9JMUVrXub78_6ikVVlWomQZffkAvQ5L9LkSmeLVuqs19ovfk7_P-lc_M_BmB9gYUorQ3SOU6HVWdJ4VfTsrmT15wFo33zYj_9sN__L44QbY_l1aX2ze7Tx-AqMF0W8 |
| CitedBy_id | crossref_primary_10_1016_j_ecolind_2024_111983 crossref_primary_10_1111_aab_12858 crossref_primary_10_3389_fpls_2022_1071858 crossref_primary_10_1016_j_rse_2023_113800 crossref_primary_10_3390_su16219389 crossref_primary_10_1016_j_jclepro_2024_142021 crossref_primary_10_1088_1748_9326_ada56e crossref_primary_10_1111_ele_14260 crossref_primary_10_1038_s41598_025_07352_4 crossref_primary_10_1111_gcb_16828 crossref_primary_10_1016_j_isprsjprs_2022_12_006 crossref_primary_10_3390_rs17111853 crossref_primary_10_1007_s00484_025_02958_9 crossref_primary_10_1016_j_agrformet_2024_110141 crossref_primary_10_3390_rs16183475 crossref_primary_10_1016_j_ecoinf_2024_102917 crossref_primary_10_1111_1365_2435_14694 crossref_primary_10_1007_s11119_024_10215_z crossref_primary_10_1029_2025JG008812 crossref_primary_10_3390_rs17081381 crossref_primary_10_1111_gcb_17134 crossref_primary_10_1007_s12145_024_01443_y crossref_primary_10_1111_gcb_17451 crossref_primary_10_1016_j_rse_2023_113617 crossref_primary_10_1038_s41597_025_05519_2 crossref_primary_10_1029_2023EF004119 crossref_primary_10_3390_app142412020 crossref_primary_10_1016_j_scitotenv_2023_168488 crossref_primary_10_1016_j_isprsjprs_2024_08_011 crossref_primary_10_3390_s25072214 crossref_primary_10_1111_1365_2745_14366 crossref_primary_10_3390_rs16091580 crossref_primary_10_1080_17538947_2024_2306894 crossref_primary_10_1016_j_foreco_2024_121742 crossref_primary_10_1007_s40725_025_00245_9 crossref_primary_10_1016_j_agrformet_2025_110678 crossref_primary_10_3390_life15050826 crossref_primary_10_1016_j_rse_2025_114940 |
| Cites_doi | 10.1175/BAMS‐D‐20‐0031.1 10.1111/gcb.12863 10.1038/s41467‐021‐26876‐7 10.1016/j.compag.2022.106866 10.1038/s41586‐018‐0399‐1 10.5194/bg‐10‐541‐2013 10.1007/s00267‐013‐0097‐6 10.1038/nclimate2253 10.1016/j.agrformet.2010.08.003 10.1038/s41597‐022‐01570‐5 10.3390/rs13234736 10.1016/j.jag.2020.102291 10.1016/j.agrformet.2010.05.002 10.3390/rs12081339 10.1080/17474230701786109 10.1111/j.1469‐8137.2004.01224.x 10.1111/j.1365‐2486.2011.02562.x 10.3390/rs10081293 10.1093/treephys/tpz041 10.1016/j.agrformet.2020.108309 10.1016/j.isprsjprs.2017.05.003 10.1029/2020JG006005 10.1126/science.abg1438 10.1038/nclimate1573 10.1016/j.isprsjprs.2020.01.012 10.1016/j.envsoft.2016.06.025 10.1111/geb.13583 10.1016/j.foreco.2020.118663 10.1002/fee.2142 10.1016/j.agrformet.2018.02.030 10.5194/bg‐13‐5085‐2016 10.5194/gmd‐12‐2195‐2019 10.1007/s00484‐019‐01690‐5 10.3390/rs9070664 10.1016/j.rse.2019.111511 10.1016/j.agrformet.2014.01.003 10.1016/j.scitotenv.2020.137351 10.1038/srep07483 10.1098/rstb.2010.0142 10.1088/1748‐9326/aba57f 10.3390/rs9010099 10.1146/annurev.arplant.57.032905.105316 10.1111/gcb.15138 10.1016/j.agrformet.2011.05.012 10.1016/j.rse.2018.12.036 10.1016/j.rse.2017.06.015 10.3390/rs9121288 10.1111/nph.17416 10.1016/j.rse.2004.03.014 10.1111/gcb.12890 10.1029/2008GB003233 10.1109/JSTARS.2014.2344630 10.3389/ffgc.2021.659910 10.1038/ncomms7911 10.1038/nature13957 10.1016/j.rse.2013.11.020 10.1111/nph.15591 10.1016/S0034‐4257(02)00091‐3 10.1093/treephys/26.7.889 10.1016/j.rse.2021.112456 10.3390/rs14010100 10.3390/rs8070524 10.3390/rs14051296 10.5194/bg‐11‐4305‐2014 10.1016/j.ecolind.2017.04.006 10.1016/j.rse.2021.112716 10.1016/j.agrformet.2017.08.012 10.1016/j.scitotenv.2018.03.191 10.1016/j.agrformet.2018.07.010 10.1002/ecs2.3912 10.1016/j.agrformet.2021.108571 10.1016/j.eswa.2006.02.011 10.1007/s00484‐013‐0679‐2 10.3390/rs13020307 10.1016/j.ecolind.2021.108147 10.13031/2013.27838 10.1890/14‐0005.1 10.1111/nph.14327 10.1002/ecs2.1436 10.1038/sdata.2018.28 10.1016/j.scitotenv.2019.06.348 10.3390/rs8060502 10.1016/j.ecoinf.2017.04.007 10.1002/wcc.764 10.1016/j.rse.2018.09.002 10.1016/j.rse.2018.04.030 10.1016/j.cageo.2022.105034 10.1016/j.isprsjprs.2021.10.023 10.1088/1748‐9326/abb32f 10.1016/J.AGRFORMET.2016.01.006 10.1016/j.agrformet.2011.02.011 10.1016/j.rse.2020.112197 10.1016/j.rse.2012.04.001 10.1111/nph.18047 10.1111/gcb.13311 10.1088/1748‐9326/8/2/024027 10.1111/geb.12044 10.3390/rs12010117 10.1002/hyp.1089 10.1016/j.scitotenv.2021.147806 10.1109/IGARSS.2019.8898796 10.1016/j.agrformet.2017.02.026 10.3390/rs11192195 10.1016/j.isprsjprs.2017.09.002 10.1016/j.atmosenv.2010.09.006 10.1098/rstb.2010.0102 10.1111/nph.14939 10.1038/s41597‐019‐0229‐9 10.1016/j.agrformet.2012.06.009 10.1007/s10021‐007‐9088‐x 10.1111/gcb.14619 10.3390/rs9121271 10.1111/gcb.13562 10.1016/j.agrformet.2022.109060 10.5194/bg‐12‐5995‐2015 10.1007/s11430‐019‐9622‐2 10.1016/j.agrformet.2020.108153 10.1016/j.biocon.2016.07.027 10.1111/geb.12210 10.1098/rstb.2010.0028 10.1016/j.ecolind.2019.05.004 10.3390/rs9090970 10.1126/science.abd8911 10.3390/rs9090914 10.3354/cr01182 10.3389/fpls.2017.01532 10.1073/pnas.2121998119 10.1126/science.aad5068 10.1038/srep26901 10.1109/JSTARS.2021.3120013 10.1016/j.scitotenv.2015.08.074 10.1016/j.scitotenv.2016.11.004 10.3390/rs11182137 10.1016/j.plantsci.2018.10.022 10.3390/rs13081597 10.1007/s00484‐005‐0010‐y 10.1016/j.tree.2007.04.003 10.1038/nature12291 10.1038/nature13207 10.1146/annurev.es.21.110190.002231 10.1038/nclimate3088 10.1016/j.agrformet.2018.11.002 10.1016/j.agrformet.2012.09.012 10.1080/03632415.2013.748551 10.3390/rs11121398 10.1016/j.scitotenv.2017.04.136 10.3390/rs11141650 10.1016/j.isprsjprs.2020.11.019 10.1007/978-981-19-3816-0_2 10.1002/ece3.7548 10.1016/j.atmosenv.2013.10.057 10.3390/rs14133018 10.1073/pnas.1519620113 10.1038/nature13006 10.1016/j.rse.2017.01.001 10.1111/gcb.16104 10.1016/j.rse.2013.01.011 10.1371/journal.pbio.1002415 10.1016/j.agrformet.2008.08.013 10.1016/S0034‐4257(02)00135‐9 10.1111/gcb.15098 10.1016/j.rse.2020.112013 10.1002/fee.1222 10.1016/j.scitotenv.2020.141189 10.1016/j.rse.2016.01.021 10.1088/1748‐9326/9/5/054006 10.1016/j.agrformet.2018.03.003 10.1016/j.agrformet.2017.04.001 10.1109/ACCESS.2020.2965462 10.1016/j.compag.2018.10.017 10.1029/2006GB002888 10.1016/j.scitotenv.2019.01.394 10.1038/s41558‐022‐01283‐y 10.1093/treephys/25.6.641 10.1016/j.fcr.2022.108491 10.1109/JSTARS.2021.3087814 10.1111/j.1365‐2486.2007.01432.x 10.1016/j.agrformet.2017.04.009 10.5194/bg‐16‐1883‐2019 10.1016/j.agrformet.2011.10.014 10.1016/j.jag.2021.102323 10.1080/01431160802549237 10.1016/j.scitotenv.2015.04.001 10.34133/2021/8379391 10.1016/j.isprsjprs.2021.08.003 10.1007/s11284‐014‐1239‐x 10.1007/s00442‐004‐1524‐4 10.1016/j.agrformet.2022.108828 10.1016/j.jag.2016.09.005 10.1016/j.isprsjprs.2022.01.017 10.1126/science.1152339 10.1016/j.rse.2007.08.011 10.1111/2041‐210X.12970 10.1016/j.iac.2020.09.002 10.1038/s42256‐021‐00374‐3 10.1038/ngeo844 10.1016/j.agrformet.2011.09.009 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. published by John Wiley & Sons Ltd. 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd. – notice: 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 5PM |
| DOI | 10.1111/gcb.16436 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic MEDLINE AGRICOLA CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Public Health Biology Environmental Sciences |
| DocumentTitleAlternate | Ma et al |
| EISSN | 1365-2486 |
| EndPage | 7204 |
| ExternalDocumentID | PMC9827868 36114727 10_1111_gcb_16436 GCB16436 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: lzujbky‐2021‐ct11 – fundername: National Natural Science Foundation of China funderid: 41971374; 42171305 – fundername: Director Fund of the International Research Center of Big Data for Sustainable Development Goals funderid: CBAS2022DF006 – fundername: Natural Science Foundation of Gansu Province funderid: 21JR7RA499 – fundername: Open Fund of Key laboratory of Geographic Information Science (Ministry of Education), East China Normal University funderid: KLGIS2022A02 – fundername: Open Fund of State Key Laboratory of Remote Sensing Science funderid: OFSLRSS202229 – fundername: ; grantid: lzujbky‐2021‐ct11 – fundername: Director Fund of the International Research Center of Big Data for Sustainable Development Goals grantid: CBAS2022DF006 – fundername: ; grantid: 41971374; 42171305 – fundername: Open Fund of Key laboratory of Geographic Information Science (Ministry of Education), East China Normal University grantid: KLGIS2022A02 – fundername: ; grantid: 21JR7RA499 – fundername: Open Fund of State Key Laboratory of Remote Sensing Science grantid: OFSLRSS202229 |
| GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 24P 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 7SN 7UA C1K F1W H97 L.G 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c4766-758d536ba01839ac6f750781e9202efa61916d1bf137f2dee3027318804ebe9a3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 46 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000859769500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1354-1013 1365-2486 |
| IngestDate | Tue Nov 04 02:06:35 EST 2025 Fri Jul 11 18:28:52 EDT 2025 Wed Oct 01 14:41:38 EDT 2025 Fri Jul 25 10:34:47 EDT 2025 Wed Feb 19 02:25:14 EST 2025 Sat Nov 29 06:02:40 EST 2025 Tue Nov 18 22:18:30 EST 2025 Wed Jan 22 16:25:56 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Keywords | biodiversity carbon cycle big data vegetation dynamics global change public health |
| Language | English |
| License | Attribution 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4766-758d536ba01839ac6f750781e9202efa61916d1bf137f2dee3027318804ebe9a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-6967-786X 0000-0003-4067-298X 0000-0001-6130-2991 0000-0002-2559-0241 0000-0002-1576-6610 0000-0002-5766-7522 0000-0002-5463-1532 0000-0003-1499-8476 0000-0001-6383-8300 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16436 |
| PMID | 36114727 |
| PQID | 2735735758 |
| PQPubID | 30327 |
| PageCount | 19 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9827868 proquest_miscellaneous_2811991143 proquest_miscellaneous_2715445642 proquest_journals_2735735758 pubmed_primary_36114727 crossref_primary_10_1111_gcb_16436 crossref_citationtrail_10_1111_gcb_16436 wiley_primary_10_1111_gcb_16436_GCB16436 |
| PublicationCentury | 2000 |
| PublicationDate | December 2022 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
| PublicationTitle | Global change biology |
| PublicationTitleAlternate | Glob Chang Biol |
| PublicationYear | 2022 |
| Publisher | Blackwell Publishing Ltd John Wiley and Sons Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons Inc |
| References | 2002; 16 2018; 560 2012; 123 2017; 599–600 1995; 38 2019; 11 2017; 237–238 2019; 12 2020; 161 2019; 16 2020; 720 2020; 15 2019; 18 2012; 18 2020; 12 2019; 689 2013; 8 2019; 282 2014; 23 2022; 28 2017; 208 2018; 9 2013; 58 2018; 5 2022; 282 2015; 534 2020; 294 2013; 57 2002; 83 2018; 217 2018; 211 2017; 79 2013; 52 2006; 26 2019; 25 2015; 538 2018; 219 2010; 3 2008; 112 2014; 11 2021; 2021 2022; 323 2022; 196 2019; 6 2006; 50 2021; 300 2021; 266 2021; 788 2004; 141 2019; 39 2019; 104 2021; 260 2017; 130 2012; 38 2017; 132 2022; 119 2016; 14 2007; 13 2019; 222 2016; 13 2022; 234 2010; 44 2016; 6 1990; 21 2016; 7 2022; 185 2022; 183 2018; 633 2021; 255 2017; 54 2022; 9 2022; 12 2022; 13 2022; 14 2020; 26 2021; 371 2016; 176 2021; 131 2014; 143 2018; 10 2016; 8 2016; 9 2016; 23 2016; 22 2017; 8 2012; 165 2013; 22 2020; 63 2021; 126 2015; 30 2013; 169 2021; 480 2016; 220 2020; 249 2018; 256–257 2008; 3 2017; 198 2011; 151 2007; 32 2017; 9 2005; 25 2020; 8 2014; 4 2019; 63 2012; 154–155 2013; 10 2017; 39 2020; 370 2008; 319 2016; 113 2016; 84 2010; 150 2017; 240 2021; 231 2017; 242 2014; 9 2021; 308–309 2007; 21 2007; 22 2021; 41 2014; 7 2014; 189–190 2003; 84 2017; 247 2016; 351 2009; 23 2018; 262 2014; 515 2015; 12 2015; 6 2021; 4 2021; 3 2021; 102 2010; 365 2006; 9 2019; 665 2004; 91 2014; 83 2022; 315 2017; 213 2020; 747 2019; 265 2014; 510 2022; 159 2017; 578 2007; 58 2021; 180 2021; 14 2021; 13 2012; 152 2018; 155 2015; 25 2012; 2 2009; 30 2021; 97 2021; 12 2021; 11 2014; 506 2021; 99 2005; 165 2022 2015; 21 2017; 190 2021; 171 2020; 237 2019 2013; 499 2013; 132 2020; 119 2009; 149 e_1_2_12_130_1 e_1_2_12_191_1 e_1_2_12_2_1 e_1_2_12_138_1 e_1_2_12_115_1 e_1_2_12_153_1 e_1_2_12_199_1 e_1_2_12_176_1 e_1_2_12_85_1 e_1_2_12_24_1 e_1_2_12_47_1 e_1_2_12_62_1 e_1_2_12_180_1 e_1_2_12_104_1 e_1_2_12_127_1 e_1_2_12_142_1 e_1_2_12_165_1 e_1_2_12_188_1 e_1_2_12_96_1 e_1_2_12_139_1 e_1_2_12_35_1 e_1_2_12_58_1 e_1_2_12_12_1 e_1_2_12_73_1 e_1_2_12_50_1 e_1_2_12_3_1 e_1_2_12_152_1 e_1_2_12_190_1 e_1_2_12_137_1 e_1_2_12_114_1 e_1_2_12_175_1 e_1_2_12_198_1 e_1_2_12_63_1 e_1_2_12_86_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_40_1 e_1_2_12_141_1 e_1_2_12_149_1 e_1_2_12_126_1 e_1_2_12_164_1 e_1_2_12_103_1 e_1_2_12_187_1 e_1_2_12_74_1 e_1_2_12_97_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_13_1 e_1_2_12_51_1 e_1_2_12_193_1 e_1_2_12_19_1 e_1_2_12_170_1 e_1_2_12_132_1 e_1_2_12_178_1 e_1_2_12_155_1 e_1_2_12_106_1 e_1_2_12_129_1 e_1_2_12_22_1 e_1_2_12_45_1 e_1_2_12_68_1 e_1_2_12_83_1 e_1_2_12_60_1 e_1_2_12_182_1 e_1_2_12_121_1 e_1_2_12_144_1 e_1_2_12_167_1 e_1_2_12_118_1 e_1_2_12_33_1 e_1_2_12_56_1 e_1_2_12_79_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_94_1 e_1_2_12_71_1 e_1_2_12_192_1 e_1_2_12_116_1 e_1_2_12_131_1 e_1_2_12_154_1 e_1_2_12_177_1 e_1_2_12_128_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_69_1 e_1_2_12_61_1 e_1_2_12_84_1 e_1_2_12_181_1 e_1_2_12_120_1 e_1_2_12_105_1 e_1_2_12_143_1 e_1_2_12_189_1 e_1_2_12_166_1 e_1_2_12_117_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_11_1 e_1_2_12_72_1 e_1_2_12_95_1 e_1_2_12_9_1 e_1_2_12_195_1 e_1_2_12_6_1 e_1_2_12_172_1 e_1_2_12_17_1 e_1_2_12_111_1 e_1_2_12_157_1 e_1_2_12_134_1 e_1_2_12_108_1 e_1_2_12_20_1 e_1_2_12_66_1 e_1_2_12_43_1 e_1_2_12_89_1 e_1_2_12_81_1 e_1_2_12_161_1 e_1_2_12_184_1 e_1_2_12_100_1 e_1_2_12_123_1 e_1_2_12_146_1 e_1_2_12_169_1 e_1_2_12_28_1 e_1_2_12_31_1 e_1_2_12_77_1 e_1_2_12_54_1 e_1_2_12_92_1 e_1_2_12_171_1 e_1_2_12_194_1 e_1_2_12_18_1 e_1_2_12_110_1 e_1_2_12_179_1 e_1_2_12_133_1 e_1_2_12_156_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_67_1 e_1_2_12_82_1 e_1_2_12_160_1 e_1_2_12_183_1 e_1_2_12_122_1 e_1_2_12_168_1 e_1_2_12_29_1 e_1_2_12_145_1 e_1_2_12_119_1 e_1_2_12_32_1 e_1_2_12_55_1 Mehajan R. K. (e_1_2_12_107_1) 2020; 119 e_1_2_12_78_1 e_1_2_12_7_1 e_1_2_12_70_1 e_1_2_12_93_1 e_1_2_12_4_1 e_1_2_12_174_1 e_1_2_12_151_1 e_1_2_12_38_1 e_1_2_12_136_1 e_1_2_12_159_1 e_1_2_12_113_1 e_1_2_12_197_1 e_1_2_12_41_1 e_1_2_12_87_1 e_1_2_12_64_1 e_1_2_12_26_1 e_1_2_12_140_1 e_1_2_12_163_1 e_1_2_12_49_1 e_1_2_12_148_1 e_1_2_12_102_1 e_1_2_12_125_1 e_1_2_12_186_1 e_1_2_12_52_1 e_1_2_12_98_1 e_1_2_12_75_1 e_1_2_12_37_1 e_1_2_12_14_1 e_1_2_12_90_1 e_1_2_12_150_1 e_1_2_12_173_1 e_1_2_12_196_1 e_1_2_12_5_1 e_1_2_12_16_1 e_1_2_12_112_1 e_1_2_12_135_1 e_1_2_12_158_1 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_88_1 e_1_2_12_109_1 e_1_2_12_80_1 e_1_2_12_200_1 e_1_2_12_185_1 e_1_2_12_162_1 e_1_2_12_27_1 e_1_2_12_101_1 e_1_2_12_147_1 e_1_2_12_124_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_76_1 e_1_2_12_99_1 e_1_2_12_15_1 e_1_2_12_91_1 |
| References_xml | – volume: 6 start-page: 222 issue: 1 year: 2019 article-title: Tracking vegetation phenology across diverse biomes using Version 2.0 of the PhenoCam Dataset publication-title: Scientific Data – volume: 83 start-page: 135 year: 2002 end-page: 148 article-title: First operational BRDF, albedo nadir reflectance products from MODIS publication-title: Remote Sensing of Environment – volume: 22 start-page: 357 issue: 7 year: 2007 end-page: 365 article-title: Shifting plant phenology in response to global change publication-title: Trends in Ecology & Evolution – volume: 102 start-page: 1016 issue: 5 year: 2021 end-page: 1032 article-title: Outlook for exploiting artificial intelligence in the earth and environmental sciences publication-title: Bulletin of the American Meteorological Society – volume: 4 start-page: 598 issue: 7 year: 2014 end-page: 604 article-title: Net carbon uptake has increased through warming‐induced changes in temperate forest phenology publication-title: Nature Climate Change – volume: 4 year: 2021 article-title: Usefulness of social sensing using text mining of tweets for detection of autumn phenology publication-title: Frontiers in Forests and Global Change – volume: 44 start-page: 5101 issue: 39 year: 2010 end-page: 5111 article-title: Forecasting daily pollen concentrations using data‐driven modeling methods in Thessaloniki, Greece publication-title: Atmospheric Environment – volume: 213 start-page: 1945 issue: 4 year: 2017 end-page: 1955 article-title: Climate drives shifts in grass reproductive phenology across the western USA publication-title: New Phytologist – volume: 6 start-page: 6911 year: 2015 article-title: Leaf onset in the northern hemisphere triggered by daytime temperature publication-title: Nature Communications – volume: 58 start-page: 521 issue: 4 year: 2013 end-page: 528 article-title: The spatial pattern of leaf phenology and its response to climate change in China publication-title: International Journal of Biometeorology – volume: 217 start-page: 1507 issue: 4 year: 2018 end-page: 1520 article-title: Biological processes dominate seasonality of remotely sensed canopy greenness in an Amazon evergreen forest publication-title: New Phytologist – volume: 189–190 start-page: 71 year: 2014 end-page: 80 article-title: Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai–Tibetan Plateau publication-title: Agricultural and Forest Meteorology – volume: 165 start-page: 104 year: 2012 end-page: 113 article-title: Spring vegetation green‐up date in China inferred from SPOT NDVI data: A multiple model analysis publication-title: Agricultural and Forest Meteorology – volume: 260 year: 2021 article-title: Calibrating vegetation phenology from Sentinel‐2 using eddy covariance, PhenoCam, and PEP725 networks across Europe publication-title: Remote Sensing of Environment – volume: 22 start-page: 994 issue: 8 year: 2013 end-page: 1006 article-title: Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn publication-title: Global Ecology and Biogeography – volume: 247 start-page: 280 year: 2017 end-page: 292 article-title: On the relationship between continuous measures of canopy greenness derived using near‐surface remote sensing and satellite‐derived vegetation products publication-title: Agricultural and Forest Meteorology – volume: 242 start-page: 33 year: 2017 end-page: 46 article-title: Intercomparison and evaluation of spring phenology products using National Phenology Network and AmeriFlux observations in the contiguous United States publication-title: Agricultural and Forest Meteorology – volume: 665 start-page: 620 year: 2019 end-page: 631 article-title: Contrasting wheat phenological responses to climate change in global scale publication-title: Science of the Total Environment – volume: 52 start-page: 234 issue: 1 year: 2013 end-page: 249 article-title: Land surface phenology and land surface temperature changes along an urban‐rural gradient in Yangtze River Delta, China publication-title: Environment Management – volume: 149 start-page: 256 issue: 2 year: 2009 end-page: 262 article-title: Predicting the start and peak dates of the Poaceae pollen season in Spain using process‐based models publication-title: Agricultural and Forest Meteorology – volume: 220 start-page: 141 year: 2016 end-page: 150 article-title: Phenopix: A R package for image‐based vegetation phenology publication-title: Agricultural and Forest Meteorology – volume: 365 start-page: 3149 issue: 1555 year: 2010 end-page: 3160 article-title: Why does phenology drive species distribution? publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 21 start-page: 2687 issue: 7 year: 2015 end-page: 2697 article-title: Increased heat requirement for leaf flushing in temperate woody species over 1980–2012: Effects of chilling, precipitation and insolation publication-title: Global Change Biology – volume: 9 start-page: 970 issue: 9 year: 2017 article-title: Impacts of urbanization on vegetation phenology over the past three decades in Shanghai, China publication-title: Remote Sensing – volume: 26 start-page: 4042 issue: 7 year: 2020 end-page: 4055 article-title: Interactive climate factors restrict future increases in spring productivity of temperate and boreal trees publication-title: Global Change Biology – volume: 150 start-page: 1203 issue: 9 year: 2010 end-page: 1210 article-title: A method for producing airborne pollen source inventories: An example of Ambrosia (ragweed) on the Pannonian Plain publication-title: Agricultural and Forest Meteorology – volume: 323 year: 2022 article-title: Evergreen broadleaf greenness and its relationship with leaf flushing, aging, and water fluxes publication-title: Agricultural and Forest Meteorology – volume: 99 year: 2021 article-title: Spatiotemporal image fusion in Google Earth Engine for annual estimates of land surface phenology in a heterogenous landscape publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 152 start-page: 159 year: 2012 end-page: 177 article-title: Digital repeat photography for phenological research in forest ecosystems publication-title: Agricultural and Forest Meteorology – volume: 315 year: 2022 article-title: Earlier snowmelt predominates advanced spring vegetation greenup in Alaska publication-title: Agricultural and Forest Meteorology – volume: 2021 start-page: 1 year: 2021 end-page: 14 article-title: Mapping crop phenology in near real‐time using satellite remote sensing: Challenges and opportunities publication-title: Journal of Remote Sensing – volume: 41 start-page: 1 issue: 1 year: 2021 end-page: 16 article-title: Global climate change and pollen aeroallergens: A southern hemisphere perspective publication-title: Immunology and Allergy Clinics – volume: 10 start-page: 1293 issue: 8 year: 2018 article-title: Using near‐infrared‐enabled digital repeat photography to track structural and physiological phenology in mediterranean tree–grass ecosystems publication-title: Remote Sensing – volume: 240 start-page: 78 year: 2017 end-page: 89 article-title: Timing of cherry tree blooming: Contrasting effects of rising winter low temperatures and early spring temperatures publication-title: Agricultural and Forest Meteorology – volume: 2 start-page: 742 issue: 10 year: 2012 end-page: 746 article-title: Soil‐mediated effects of subambient to increased carbon dioxide on grassland productivity publication-title: Nature Climate Change – volume: 155 start-page: 157 year: 2018 end-page: 166 article-title: Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery publication-title: Computers and Electronics in Agriculture – volume: 9 start-page: 1128 issue: 7 year: 2006 end-page: 1144 article-title: Response of net ecosystem productivity of three boreal forest stands to drought publication-title: Ecosystems – volume: 13 start-page: 5085 issue: 17 year: 2016 end-page: 5102 article-title: Reviews and syntheses: Australian vegetation phenology: New insights from satellite remote sensing and digital repeat photography publication-title: Biogeosciences – volume: 9 start-page: 914 issue: 9 year: 2016 article-title: Land surface phenology and seasonality using cool earthlight in croplands of eastern Africa and the linkages to crop production publication-title: Remote Sensing – volume: 560 start-page: 368 issue: 7718 year: 2018 end-page: 371 article-title: Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures publication-title: Nature – volume: 176 start-page: 152 year: 2016 end-page: 162 article-title: Improved modeling of land surface phenology using MODIS land surface reflectance and temperature at evergreen needleleaf forests of central North America publication-title: Remote Sensing of Environment – volume: 3 start-page: 667 issue: 8 year: 2021 end-page: 674 article-title: Towards neural Earth system modelling by integrating artificial intelligence in Earth system science publication-title: Nature Machine Intelligence – volume: 30 start-page: 211 issue: 2 year: 2015 end-page: 223 article-title: Review: Development of an in situ observation network for terrestrial ecological remote sensing: The Phenological Eyes Network (PEN) publication-title: Ecological Research – volume: 255 year: 2021 article-title: Satellite prediction of forest flowering phenology publication-title: Remote Sensing of Environment – volume: 633 start-page: 441 year: 2018 end-page: 451 article-title: Dynamic ecological observations from satellites inform aerobiology of allergenic grass pollen publication-title: Science of the Total Environment – volume: 10 start-page: 541 issue: 1 year: 2013 end-page: 554 article-title: Identifying urban sources as cause of elevated grass pollen concentrations using GIS and remote sensing publication-title: Biogeosciences – volume: 84 start-page: 134 year: 2016 end-page: 139 article-title: A smart classifier for extracting environmental data from digital image time‐series: Applications for PhenoCam data in a tidal salt marsh publication-title: Environmental Modelling & Software – volume: 151 start-page: 916 issue: 7 year: 2011 end-page: 926 article-title: Tracking the structural and functional development of a perennial pepperweed ( L.) infestation using a multi‐year archive of webcam imagery and eddy covariance measurements publication-title: Agricultural and Forest Meteorology – volume: 23 start-page: 2818 issue: 7 year: 2016 end-page: 2830 article-title: Response of vegetation phenology to urbanization in the conterminous United States publication-title: Global Change Biology – volume: 14 start-page: 84 issue: 2 year: 2016 end-page: 93 article-title: Using PhenoCams to monitor our changing Earth: Toward a Global PhenoCam Network publication-title: Frontiers in Ecology and the Environment – volume: 21 start-page: 423 year: 1990 end-page: 447 article-title: The ecology and economics of storage in plants publication-title: Annual Review of Ecology and Systematics – volume: 39 start-page: 1277 issue: 8 year: 2019 end-page: 1284 article-title: Nutrient availability alters the correlation between spring leaf‐out and autumn leaf senescence dates publication-title: Tree Physiology – volume: 22 start-page: 3702 issue: 11 year: 2016 end-page: 3711 article-title: Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology publication-title: Global Change Biology – volume: 151 start-page: 1325 issue: 10 year: 2011 end-page: 1337 article-title: Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO uptake publication-title: Agricultural and Forest Meteorology – volume: 249 year: 2020 article-title: Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States publication-title: Remote Sensing of Environment – volume: 365 start-page: 3227 issue: 1555 year: 2010 end-page: 3246 article-title: Influence of spring and autumn phenological transitions on forest ecosystem productivity publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 6 start-page: 836 issue: 9 year: 2016 end-page: 843 article-title: Key ecological responses to nitrogen are altered by climate change publication-title: Nature Climate Change – volume: 190 start-page: 318 year: 2017 end-page: 330 article-title: Exploration of scaling effects on coarse resolution land surface phenology publication-title: Remote Sensing of Environment – volume: 119 start-page: 424 issue: 3 year: 2020 article-title: Prospective applications of artificial intelligence/machine learning techniques in earth sciences publication-title: Current Science – volume: 180 start-page: 29 year: 2021 end-page: 44 article-title: Improving the accuracy of spring phenology detection by optimally smoothing satellite vegetation index time series based on local cloud frequency publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 14 start-page: 6179 year: 2021 end-page: 6193 article-title: Optimal color composition method for generating high‐quality daily photographic time series from PhenoCam publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 237 year: 2020 article-title: A review of vegetation phenological metrics extraction using time‐series, multispectral satellite data publication-title: Remote Sensing of Environment – volume: 141 start-page: 194 issue: 2 year: 2004 end-page: 210 article-title: Modifying the ‘pulse–reserve’ paradigm for deserts of North America: Precipitation pulses, soil water, and plant responses publication-title: Oecologia – volume: 308–309 year: 2021 article-title: Combined control of multiple extreme climate stressors on autumn vegetation phenology on the Tibetan Plateau under past and future climate change publication-title: Agricultural and Forest Meteorology – volume: 7 start-page: 3373 issue: 8 year: 2014 end-page: 3379 article-title: Mapping Asian cropping intensity with MODIS publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 38 start-page: 259 issue: 1 year: 1995 end-page: 269 article-title: Color indices for weed identification under various soil, residue, and lighting conditions publication-title: American Society of Agricultural Engineers – start-page: 1 year: 2022 end-page: 16 article-title: Divergent responses of autumn vegetation phenology to climate extremes over northern middle and high latitudes publication-title: Global Ecology and Biogeography – volume: 16 start-page: 1883 issue: 9 year: 2019 end-page: 1901 article-title: N:P stoichiometry and habitat effects on Mediterranean savanna seasonal root dynamics publication-title: Biogeosciences – volume: 538 start-page: 672 year: 2015 end-page: 682 article-title: Effect of land uses and wind direction on the contribution of local sources to airborne pollen publication-title: Science of the Total Environment – volume: 9 start-page: 1271 issue: 12 year: 2017 article-title: Performance of smoothing methods for reconstructing NDVI time‐series and estimating vegetation phenology from MODIS data publication-title: Remote Sensing – volume: 84 start-page: 471 year: 2003 end-page: 475 article-title: Monitoring vegetation phenology using MODIS publication-title: Remote Sensing of Environment – volume: 15 start-page: 104086 issue: 10 year: 2020 article-title: Understanding the role of phenology and summer physiology in controlling net ecosystem production: a multiscale comparison of satellite, PhenoCam and eddy covariance data publication-title: Environmental Research Letters – volume: 113 start-page: 5880 issue: 21 year: 2016 end-page: 5885 article-title: Warm spring reduced carbon cycle impact of the 2012 US summer drought publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 256–257 start-page: 116 year: 2018 end-page: 124 article-title: Productivity of an Australian mountain grassland is limited by temperature and dryness despite long growing seasons publication-title: Agricultural and Forest Meteorology – volume: 196 year: 2022 article-title: Monitoring crop phenology with street‐level imagery using computer vision publication-title: Computers and Electronics in Agriculture – volume: 50 start-page: 233 issue: 4 year: 2006 end-page: 242 article-title: A 30‐day‐ahead forecast model for grass pollen in north London, United Kingdom publication-title: International Journal of Biometeorology – volume: 265 start-page: 327 year: 2019 end-page: 337 article-title: Monitoring crop phenology using a smartphone based near‐surface remote sensing approach publication-title: Agricultural and Forest Meteorology – volume: 371 start-page: 6533 year: 2021 article-title: Comment on “Increased growing‐season productivity drives earlier autumn leaf senescence in temperate trees” publication-title: Science – volume: 14 issue: 3 year: 2016 article-title: Remotely sensed high‐resolution global cloud dynamics for predicting ecosystem and biodiversity distributions publication-title: PLoS Biology – volume: 282 start-page: 95 year: 2019 end-page: 103 article-title: A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi‐spectral UAV platform publication-title: Plant Science – volume: 25 start-page: 641 year: 2005 end-page: 650 article-title: Responses of deciduous forest trees to severe drought in Central Europe publication-title: Tree Physiology – volume: 83 start-page: 62 year: 2014 end-page: 71 article-title: Ragweed pollen source inventory for France—The second largest centre of Ambrosia in Europe publication-title: Atmospheric Environment – volume: 126 issue: 5 year: 2021 article-title: How nitrogen and phosphorus availability change water use efficiency in a mediterranean savanna ecosystem publication-title: Journal of Geophysical Research: Biogeosciences – volume: 256–257 start-page: 137 year: 2018 end-page: 149 article-title: Evaluation of land surface phenology from VIIRS data using time series of PhenoCam imagery publication-title: Agricultural and Forest Meteorology – volume: 788 year: 2021 article-title: Enhanced spatiotemporal heterogeneity and the climatic and biotic controls of autumn phenology in northern grasslands publication-title: Science of the Total Environment – volume: 499 start-page: 324 issue: 7458 year: 2013 end-page: 327 article-title: Increase in forest water‐use efficiency as atmospheric carbon dioxide concentrations rise publication-title: Nature – volume: 161 start-page: 37 year: 2020 end-page: 51 article-title: Development and evaluation of a new algorithm for detecting 30 m land surface phenology from VIIRS and HLS time series publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 39 start-page: 123 year: 2017 end-page: 129 article-title: Developing an integrated cloud‐based spatial‐temporal system for monitoring phenology publication-title: Ecological Informatics – volume: 11 start-page: 1398 issue: 12 year: 2019 article-title: Interaction of seasonal sun‐angle and Savanna phenology observed and modelled using MODIS publication-title: Remote Sensing – volume: 165 start-page: 351 issue: 2 year: 2005 end-page: 371 article-title: What have we learned from 15 years of free‐air CO enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO publication-title: New Phytologist – volume: 169 start-page: 156 year: 2013 end-page: 173 article-title: Climate change, phenology, and phenological control of vegetation feedbacks to the climate system publication-title: Agricultural and Forest Meteorology – volume: 231 start-page: 987 issue: 3 year: 2021 end-page: 995 article-title: Late spring freezes coupled with warming winters alter temperate tree phenology and growth publication-title: New Phytologist – volume: 13 start-page: 307 issue: 2 year: 2021 article-title: Mangrove phenology and water influences measured with digital repeat photography publication-title: Remote Sensing – volume: 4 start-page: 7483 year: 2014 article-title: How is water‐use efficiency of terrestrial ecosystems distributed and changing on Earth? publication-title: Scientific Reports – volume: 8 start-page: 502 issue: 6 year: 2016 article-title: Synergistic use of citizen science and remote sensing for continental‐scale measurements of forest tree phenology publication-title: Remote Sensing – volume: 130 start-page: 246 year: 2017 end-page: 255 article-title: Predicting grain yield in rice using multi‐temporal vegetation indices from UAV‐based multispectral and digital imagery publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 26 start-page: 4379 issue: 8 year: 2020 end-page: 4400 article-title: Nutrients and water availability constrain the seasonality of vegetation activity in a Mediterranean ecosystem publication-title: Global Change Biology – volume: 25 start-page: 99 issue: 1 year: 2015 end-page: 115 article-title: Greenness indices from digital cameras predict the timing and seasonal dynamics of canopy‐scale photosynthesis publication-title: Ecological Applications – volume: 58 start-page: 115 year: 2007 end-page: 136 article-title: Leaf senescence publication-title: Annual Review of Plant Biology – volume: 294 year: 2020 article-title: Investigating the urban‐induced microclimate effects on winter wheat spring phenology using Sentinel‐2 time series publication-title: Agricultural and Forest Meteorology – volume: 12 start-page: 117 issue: 1 year: 2020 article-title: Coarse‐resolution satellite images overestimate urbanization effects on vegetation spring phenology publication-title: Remote Sensing – volume: 234 start-page: 1654 issue: 5 year: 2022 end-page: 1663 article-title: Trait phenology and fire seasonality co‐drive seasonal variation in fire effects on tree crowns publication-title: New Phytologist – volume: 91 start-page: 332 issue: 3–4 year: 2004 end-page: 344 article-title: A simple method for reconstructing a high‐quality NDVI time‐series data set based on the Savitzky–Golay filter publication-title: Remote Sensing of Environment – volume: 32 start-page: 1218 issue: 4 year: 2007 end-page: 1225 article-title: Forecasting airborne pollen concentration time series with neural and neuro‐fuzzy models publication-title: Expert Systems with Applications – volume: 30 start-page: 2061 issue: 8 year: 2009 end-page: 2074 article-title: Sensitivity of vegetation phenology detection to the temporal resolution of satellite data publication-title: International Journal of Remote Sensing – volume: 21 issue: 3 year: 2007 article-title: Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades publication-title: Global Biogeochemical Cycles – volume: 578 start-page: 586 year: 2017 end-page: 600 article-title: Mapping the birch and grass pollen seasons in the UK using satellite sensor time‐series publication-title: Science of the Total Environment – volume: 282 year: 2022 article-title: Estimating the maize above‐ground biomass by constructing the tridimensional concept model based on UAV‐based digital and multi‐spectral images publication-title: Field Crops Research – volume: 159 year: 2022 article-title: A review of Earth Artificial Intelligence publication-title: Computers and Geosciences – volume: 14 start-page: 10500 year: 2021 end-page: 10508 article-title: Impacts of satellite revisit frequency on spring phenology monitoring of deciduous broad‐leaved forests based on vegetation index time series publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 16 start-page: 3065 issue: 15 year: 2002 end-page: 3077 article-title: Variability and trends in the annual snow‐cover cycle in Northern Hemisphere land areas, 1972–2000 publication-title: Hydrological Processes – volume: 9 start-page: 99 issue: 1 year: 2017 article-title: Modeling the effects of the urban built‐up environment on plant phenology using fused satellite data publication-title: Remote Sensing – volume: 8 start-page: 1532 year: 2017 article-title: Multi‐spectral imaging from an unmanned aerial vehicle enables the assessment of seasonal leaf area dynamics of sorghum breeding lines publication-title: Frontiers in Plant Science – volume: 720 year: 2020 article-title: Using crowd‐sourced allergic rhinitis symptom data to improve grass pollen forecasts and predict individual symptoms publication-title: Science of the Total Environment – volume: 9 start-page: 1288 issue: 12 year: 2017 article-title: Uncertainty of remote sensing data in monitoring vegetation phenology: A comparison of MODIS C and C vegetation index products on the Tibetan Plateau publication-title: Remote Sensing – volume: 131 year: 2021 article-title: Monitoring agroecosystem productivity and phenology at a national scale: A metric assessment framework publication-title: Ecological Indicators – volume: 14 start-page: 1296 issue: 5 year: 2022 article-title: Land surface phenology retrieval through spectral and angular harmonization of Landsat‐8, Sentinel‐2 and Gaofen‐1 data publication-title: Remote Sensing – volume: 7 issue: 8 year: 2016 article-title: Emerging opportunities and challenges in phenology: A review publication-title: Ecosphere – year: 2022 – volume: 12 start-page: 2195 year: 2019 end-page: 2214 article-title: Development and evaluation of pollen source methodologies for the Victorian Grass Pollen Emissions Module VGPEM1.0 publication-title: Geoscientific Model Development – volume: 506 start-page: 221 year: 2014 end-page: 224 article-title: Amazon forests maintain consistent canopy structure and greenness during the dry season publication-title: Nature – volume: 63 start-page: 763 issue: 6 year: 2019 end-page: 775 article-title: New satellite‐based estimates show significant trends in spring phenology and complex sensitivities to temperature and precipitation at northern European latitudes publication-title: International Journal of Biometeorology – volume: 5 year: 2018 article-title: Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery publication-title: Scientific Data – volume: 12 start-page: 6879 year: 2021 article-title: Carbon response of tundra ecosystems to advancing greenup and snowmelt in Alaska publication-title: Nature Communications – volume: 8 start-page: 524 issue: 7 year: 2016 article-title: Mapping presence and predicting phenological status of invasive buffelgrass in Southern Arizona using MODIS, climate and citizen science observation data publication-title: Remote Sensing – volume: 510 start-page: 259 issue: 7504 year: 2014 end-page: 262 article-title: Elevated CO further lengthens growing season under warming conditions publication-title: Nature – volume: 262 start-page: 258 year: 2018 end-page: 278 article-title: Drivers of spatio‐temporal variability of carbon dioxide and energy fluxes in a Mediterranean savanna ecosystem publication-title: Agricultural and Forest Meteorology – volume: 171 start-page: 330 year: 2021 end-page: 347 article-title: Land surface phenology as indicator of global terrestrial ecosystem dynamics: A systematic review publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 13 start-page: 1597 issue: 8 year: 2021 article-title: Assessing forest phenology: A multi‐scale comparison of near‐surface (UAV, spectral reflectance sensor, PhenoCam) and satellite (MODIS, Sentinel‐2) remote sensing publication-title: Remote Sensing – volume: 183 start-page: 19 year: 2022 end-page: 33 article-title: Monitoring leaf phenology in moist tropical forests by applying a superpixel‐based deep learning method to time‐series images of tree canopies publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 8 start-page: 13151 year: 2020 end-page: 13160 article-title: Leveraging artificial intelligence for large‐scale plant phenology studies from noisy time‐lapse images publication-title: IEEE Access – volume: 63 start-page: 1237 issue: 9 year: 2020 end-page: 1247 article-title: Progress in plant phenology modeling under global climate change publication-title: Science China Earth Sciences – volume: 15 issue: 9 year: 2020 article-title: Satellite‐observed decrease in the sensitivity of spring phenology to climate change under high nitrogen deposition publication-title: Environmental Research Letters – volume: 18 start-page: 76 issue: 2 year: 2019 end-page: 82 article-title: Crowd‐sourced data reveal social‐ecological mismatches in phenology driven by climate publication-title: Frontiers in Ecology and the Environment – volume: 515 start-page: 398 issue: 7527 year: 2014 end-page: 401 article-title: Direct human influence on atmospheric CO seasonality from increased cropland productivity publication-title: Nature – volume: 11 start-page: 4305 issue: 16 year: 2014 end-page: 4320 article-title: Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery publication-title: Biogeosciences – volume: 3 start-page: 95 issue: 2–3 year: 2008 end-page: 111 article-title: War, drought, and phenology: Changes in the land surface phenology of Afghanistan since 1982 publication-title: Journal of Land Use Science – volume: 13 issue: 1 year: 2022 article-title: Exploring discrepancies between in situ phenology and remotely derived phenometrics at NEON sites publication-title: Ecosphere – volume: 222 start-page: 1742 issue: 4 year: 2019 end-page: 1750 article-title: Tracking seasonal rhythms of plants in diverse ecosystems with digital camera imagery publication-title: New Phytologist – volume: 8 issue: 2 year: 2013 article-title: Earlier springs decrease peak summer productivity in North American boreal forests publication-title: Environmental Research Letters – volume: 28 start-page: 3083 issue: 9 year: 2022 end-page: 3093 article-title: No evidence for a negative effect of growing season photosynthesis on leaf senescence timing publication-title: Global Change Biology – volume: 208 start-page: 121 year: 2017 end-page: 126 article-title: Lessons from citizen science: Assessing volunteer‐collected plant phenology data with Mountain Watch publication-title: Biological Conservation – volume: 599–600 start-page: 483 year: 2017 end-page: 499 article-title: Mapping allergenic pollen vegetation in UK to study environmental exposure and human health publication-title: Science of the Total Environment – volume: 237–238 start-page: 311 year: 2017 end-page: 325 article-title: Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales publication-title: Agricultural and Forest Meteorology – start-page: 9 year: 2022 end-page: 16 – volume: 25 start-page: 1922 issue: 6 year: 2019 end-page: 1940 article-title: Plant phenology and global climate change: Current progresses and challenges publication-title: Global Change Biology – volume: 97 year: 2021 article-title: Trail camera networks provide insights into satellite‐derived phenology for ecological studies publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 211 start-page: 338 year: 2018 end-page: 344 article-title: The mixed pixel effect in land surface phenology: A simulation study publication-title: Remote Sensing of Environment – volume: 54 start-page: 72 year: 2017 end-page: 83 article-title: Phenology from Landsat when data is scarce: Using MODIS and Dynamic Time‐Warping to combine multi‐year Landsat imagery to derive annual phenology curves publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 365 start-page: 2047 issue: 1549 year: 2010 end-page: 2056 article-title: A global comparison of grassland biomass responses to CO and nitrogen enrichment publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 132 start-page: 185 year: 2017 end-page: 198 article-title: Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 9 issue: 5 year: 2014 article-title: A tale of two springs: Using recent climate anomalies to characterize the sensitivity of temperate forest phenology to climate change publication-title: Environmental Research Letters – start-page: 5429 year: 2019 end-page: 5432 – volume: 480 year: 2021 article-title: Remote sensing of temperate and boreal forest phenology: A review of progress, challenges and opportunities in the intercomparison of in‐situ and satellite phenological metrics publication-title: Forest Ecology and Management – volume: 26 start-page: 889 issue: 7 year: 2006 end-page: 898 article-title: Climate warming and the risk of frost damage to boreal forest trees: Identification of critical ecophysiological traits publication-title: Tree Physiology – volume: 11 start-page: 6993 issue: 11 year: 2021 end-page: 7002 article-title: Agriculture is adapting to phenological shifts caused by climate change, but grassland songbirds are not publication-title: Ecology and Evolution – volume: 266 year: 2021 article-title: Multiscale assessment of land surface phenology from harmonized Landsat 8 and Sentinel‐2, PlanetScope, and PhenoCam imagery publication-title: Remote Sensing of Environment – volume: 9 start-page: 1276 issue: 5 year: 2018 end-page: 1285 article-title: An integrated phenology modelling framework in R publication-title: Methods in Ecology and Evolution – volume: 11 start-page: 1650 issue: 14 year: 2019 article-title: Sensitivity of seven MODIS vegetation indices to BRDF effects during the Amazonian dry season publication-title: Remote Sensing – volume: 747 year: 2020 article-title: Tracking seasonal changes in diversity of pollen allergen exposure: Targeted metabarcoding of a subtropical aerobiome publication-title: Science of the Total Environment – volume: 13 year: 2022 article-title: Climate change and phenology publication-title: Wiley Interdisciplinary Reviews: Climate Change – volume: 3 start-page: 315 issue: 5 year: 2010 end-page: 322 article-title: Reduction of forest soil respiration in response to nitrogen deposition publication-title: Nature Geoscience – volume: 11 start-page: 2195 issue: 19 year: 2019 article-title: Investigating the impact of land parcelization on forest composition and structure in Southeastern Ohio using multi‐source remotely sensed data publication-title: Remote Sensing – volume: 104 start-page: 365 year: 2019 end-page: 377 article-title: Effects of data temporal resolution on phenology extractions from the alpine grasslands of the Tibetan Plateau publication-title: Ecological Indicators – volume: 79 start-page: 122 year: 2017 end-page: 127 article-title: Water use efficiency in response to interannual variations in flux‐based photosynthetic onset in temperate deciduous broadleaf forests publication-title: Ecological Indicators – volume: 123 start-page: 400 year: 2012 end-page: 417 article-title: Inter‐comparison of four models for smoothing satellite sensor time‐series data to estimate vegetation phenology publication-title: Remote Sensing of Environment – volume: 9 start-page: 448 issue: 1 year: 2022 article-title: A high spatial resolution land surface phenology dataset for AmeriFlux and NEON sites publication-title: Scientific Data – volume: 23 start-page: 1255 issue: 11 year: 2014 end-page: 1263 article-title: Recent spring phenology shifts in western Central Europe based on multiscale observations publication-title: Global Ecology and Biogeography – volume: 219 start-page: 145 year: 2018 end-page: 161 article-title: The Harmonized Landsat and Sentinel‐2 surface reflectance product publication-title: Remote Sensing of Environment – volume: 150 start-page: 1476 issue: 11 year: 2010 end-page: 1484 article-title: Interannual variation of evapotranspiration from forest and grassland ecosystems in western Canada in relation to drought publication-title: Agricultural and Forest Meteorology – volume: 132 start-page: 176 year: 2013 end-page: 185 article-title: Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data publication-title: Remote Sensing of Environment – volume: 6 year: 2016 article-title: Exogenous N addition enhances the responses of gross primary productivity to individual precipitation events in a temperate grassland publication-title: Scientific Reports – volume: 11 start-page: 2137 issue: 18 year: 2019 article-title: How does scale effect influence spring vegetation phenology estimated from satellite‐derived vegetation indexes? publication-title: Remote Sensing – volume: 119 issue: 14 year: 2022 article-title: Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980 publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 12 start-page: 300 issue: 4 year: 2022 end-page: 302 article-title: The great acceleration of plant phenological shifts publication-title: Nature Climate Change – volume: 300 year: 2021 article-title: Biophysical drivers of net ecosystem and methane exchange across phenological phases in a tidal salt marsh publication-title: Agricultural and Forest Meteorology – volume: 12 start-page: 5995 issue: 20 year: 2015 end-page: 6015 article-title: Interpreting canopy development and physiology using a European phenology camera network at flux sites publication-title: Biogeosciences – volume: 9 start-page: 664 issue: 7 year: 2017 article-title: Phenology plays an important role in the regulation of terrestrial ecosystem water‐use efficiency in the northern hemisphere publication-title: Remote Sensing – volume: 198 start-page: 203 year: 2017 end-page: 212 article-title: Disentangling remotely‐sensed plant phenology and snow seasonality at northern Europe using MODIS and the plant phenology index publication-title: Remote Sensing of Environment – volume: 57 start-page: 249 year: 2013 end-page: 258 article-title: Shifts in spring phenophases, frost events and frost risk for woody plants in temperate China publication-title: Climate Research – volume: 370 start-page: 1066 issue: 6520 year: 2020 end-page: 1071 article-title: Increased growing‐season productivity drives earlier autumn leaf senescence in temperate trees publication-title: Science – volume: 14 start-page: 100 issue: 1 year: 2021 article-title: Comparing time‐lapse PhenoCams with satellite observations across the boreal forest of Quebec, Canada publication-title: Remote Sensing – volume: 222 start-page: 267 year: 2019 end-page: 274 article-title: Characterizing the relationship between satellite phenology and pollen season: A case study of birch publication-title: Remote Sensing of Environment – volume: 38 start-page: 26 year: 2012 end-page: 35 article-title: The national ecological observatory network: A large facility observatory poised to expand spatiotemporal scales of inquiry in fisheries science publication-title: Fisheries – volume: 18 start-page: 566 issue: 2 year: 2012 end-page: 584 article-title: Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American Carbon Program Site Synthesis publication-title: Global Change Biology – volume: 13 start-page: 2110 issue: 10 year: 2007 end-page: 2127 article-title: Photosynthesis drives anomalies in net carbon‐exchange of pine forests at different latitudes publication-title: Global Change Biology – volume: 23 issue: 2 year: 2009 article-title: Temporal and among‐site variability of inherent water use efficiency at the ecosystem level publication-title: Global Biogeochemical Cycles – volume: 689 start-page: 109 year: 2019 end-page: 125 article-title: Detecting distant sources of airborne pollen for Poland: Integrating back‐trajectory and dispersion modelling with a satellite‐based phenology publication-title: Science of the Total Environment – volume: 534 start-page: 85 year: 2015 end-page: 96 article-title: Trans‐disciplinary research in synthesis of grass pollen aerobiology and its importance for respiratory health in Australasia publication-title: Science of the Total Environment – volume: 112 start-page: 1196 issue: 3 year: 2008 end-page: 1211 article-title: The availability of cloud‐free Landsat ETM+ data over the conterminous United States and globally publication-title: Remote Sensing of Environment – volume: 13 start-page: 4736 issue: 23 year: 2021 article-title: Characterization of dry‐season phenology in tropical forests by reconstructing cloud‐free Landsat time series publication-title: Remote Sensing – volume: 351 start-page: 972 issue: 6276 year: 2016 end-page: 976 article-title: Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests publication-title: Science – volume: 185 start-page: 129 year: 2022 end-page: 145 article-title: Land surface phenology retrievals for arid and semi‐arid ecosystems publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 319 start-page: 607 issue: 5863 year: 2008 end-page: 610 article-title: Prioritizing climate change adaptation needs for food security in 2030 publication-title: Science – volume: 143 start-page: 154 year: 2014 end-page: 170 article-title: Remotely sensed trends in the phenology of northern high latitude terrestrial vegetation, controlling for land cover change and vegetation type publication-title: Remote Sensing of Environment – volume: 21 start-page: 2634 issue: 7 year: 2015 end-page: 2641 article-title: The timing of autumn senescence is affected by the timing of spring phenology: Implications for predictive models publication-title: Global Change Biology – volume: 154–155 start-page: 113 year: 2012 end-page: 126 article-title: An alternative method using digital cameras for continuous monitoring of crop status publication-title: Agricultural and Forest Meteorology – volume: 12 start-page: 1339 issue: 8 year: 2020 article-title: Sun‐angle effects on remote‐sensing phenology observed and modelled using Himawari‐8 publication-title: Remote Sensing – volume: 14 start-page: 3018 issue: 13 year: 2022 article-title: Comparison of vegetation phenology derived from solar‐induced chlorophyll fluorescence and Enhanced Vegetation Index, and their relationship with climate limitations publication-title: Remote Sensing – ident: e_1_2_12_10_1 doi: 10.1175/BAMS‐D‐20‐0031.1 – ident: e_1_2_12_48_1 doi: 10.1111/gcb.12863 – ident: e_1_2_12_77_1 doi: 10.1038/s41467‐021‐26876‐7 – ident: e_1_2_12_30_1 doi: 10.1016/j.compag.2022.106866 – ident: e_1_2_12_138_1 doi: 10.1038/s41586‐018‐0399‐1 – ident: e_1_2_12_149_1 doi: 10.5194/bg‐10‐541‐2013 – ident: e_1_2_12_57_1 doi: 10.1007/s00267‐013‐0097‐6 – ident: e_1_2_12_72_1 doi: 10.1038/nclimate2253 – ident: e_1_2_12_187_1 doi: 10.1016/j.agrformet.2010.08.003 – ident: e_1_2_12_111_1 doi: 10.1038/s41597‐022‐01570‐5 – ident: e_1_2_12_197_1 doi: 10.3390/rs13234736 – ident: e_1_2_12_89_1 doi: 10.1016/j.jag.2020.102291 – ident: e_1_2_12_150_1 doi: 10.1016/j.agrformet.2010.05.002 – ident: e_1_2_12_101_1 doi: 10.3390/rs12081339 – ident: e_1_2_12_33_1 doi: 10.1080/17474230701786109 – ident: e_1_2_12_2_1 doi: 10.1111/j.1469‐8137.2004.01224.x – ident: e_1_2_12_135_1 doi: 10.1111/j.1365‐2486.2011.02562.x – ident: e_1_2_12_98_1 doi: 10.3390/rs10081293 – ident: e_1_2_12_46_1 doi: 10.1093/treephys/tpz041 – ident: e_1_2_12_169_1 doi: 10.1016/j.agrformet.2020.108309 – ident: e_1_2_12_196_1 doi: 10.1016/j.isprsjprs.2017.05.003 – ident: e_1_2_12_38_1 doi: 10.1029/2020JG006005 – ident: e_1_2_12_119_1 doi: 10.1126/science.abg1438 – ident: e_1_2_12_42_1 doi: 10.1038/nclimate1573 – ident: e_1_2_12_192_1 doi: 10.1016/j.isprsjprs.2020.01.012 – ident: e_1_2_12_121_1 doi: 10.1016/j.envsoft.2016.06.025 – ident: e_1_2_12_174_1 doi: 10.1111/geb.13583 – ident: e_1_2_12_7_1 doi: 10.1016/j.foreco.2020.118663 – ident: e_1_2_12_11_1 doi: 10.1002/fee.2142 – ident: e_1_2_12_104_1 doi: 10.1016/j.agrformet.2018.02.030 – ident: e_1_2_12_112_1 doi: 10.5194/bg‐13‐5085‐2016 – ident: e_1_2_12_41_1 doi: 10.5194/gmd‐12‐2195‐2019 – ident: e_1_2_12_68_1 doi: 10.1007/s00484‐019‐01690‐5 – ident: e_1_2_12_69_1 doi: 10.3390/rs9070664 – ident: e_1_2_12_186_1 doi: 10.1016/j.rse.2019.111511 – ident: e_1_2_12_145_1 doi: 10.1016/j.agrformet.2014.01.003 – ident: e_1_2_12_148_1 doi: 10.1016/j.scitotenv.2020.137351 – ident: e_1_2_12_159_1 doi: 10.1038/srep07483 – ident: e_1_2_12_23_1 doi: 10.1098/rstb.2010.0142 – ident: e_1_2_12_175_1 doi: 10.1088/1748‐9326/aba57f – ident: e_1_2_12_52_1 doi: 10.3390/rs9010099 – ident: e_1_2_12_86_1 doi: 10.1146/annurev.arplant.57.032905.105316 – ident: e_1_2_12_97_1 doi: 10.1111/gcb.15138 – ident: e_1_2_12_109_1 doi: 10.1016/j.agrformet.2011.05.012 – ident: e_1_2_12_85_1 doi: 10.1016/j.rse.2018.12.036 – ident: e_1_2_12_67_1 doi: 10.1016/j.rse.2017.06.015 – ident: e_1_2_12_194_1 doi: 10.3390/rs9121288 – ident: e_1_2_12_19_1 doi: 10.1111/nph.17416 – volume: 119 start-page: 424 issue: 3 year: 2020 ident: e_1_2_12_107_1 article-title: Prospective applications of artificial intelligence/machine learning techniques in earth sciences publication-title: Current Science – ident: e_1_2_12_21_1 doi: 10.1016/j.rse.2004.03.014 – ident: e_1_2_12_74_1 doi: 10.1111/gcb.12890 – ident: e_1_2_12_6_1 doi: 10.1029/2008GB003233 – ident: e_1_2_12_53_1 doi: 10.1109/JSTARS.2014.2344630 – ident: e_1_2_12_115_1 doi: 10.3389/ffgc.2021.659910 – ident: e_1_2_12_127_1 doi: 10.1038/ncomms7911 – ident: e_1_2_12_54_1 doi: 10.1038/nature13957 – ident: e_1_2_12_66_1 doi: 10.1016/j.rse.2013.11.020 – ident: e_1_2_12_134_1 doi: 10.1111/nph.15591 – ident: e_1_2_12_143_1 doi: 10.1016/S0034‐4257(02)00091‐3 – ident: e_1_2_12_58_1 doi: 10.1093/treephys/26.7.889 – ident: e_1_2_12_162_1 doi: 10.1016/j.rse.2021.112456 – ident: e_1_2_12_75_1 doi: 10.3390/rs14010100 – ident: e_1_2_12_172_1 doi: 10.3390/rs8070524 – ident: e_1_2_12_95_1 doi: 10.3390/rs14051296 – ident: e_1_2_12_79_1 doi: 10.5194/bg‐11‐4305‐2014 – ident: e_1_2_12_70_1 doi: 10.1016/j.ecolind.2017.04.006 – ident: e_1_2_12_110_1 doi: 10.1016/j.rse.2021.112716 – ident: e_1_2_12_12_1 doi: 10.1016/j.agrformet.2017.08.012 – ident: e_1_2_12_34_1 doi: 10.1016/j.scitotenv.2018.03.191 – ident: e_1_2_12_39_1 doi: 10.1016/j.agrformet.2018.07.010 – ident: e_1_2_12_36_1 doi: 10.1002/ecs2.3912 – ident: e_1_2_12_82_1 doi: 10.1016/j.agrformet.2021.108571 – ident: e_1_2_12_142_1 doi: 10.1016/j.eswa.2006.02.011 – ident: e_1_2_12_29_1 doi: 10.1007/s00484‐013‐0679‐2 – ident: e_1_2_12_153_1 doi: 10.3390/rs13020307 – ident: e_1_2_12_14_1 doi: 10.1016/j.ecolind.2021.108147 – ident: e_1_2_12_179_1 doi: 10.13031/2013.27838 – ident: e_1_2_12_167_1 doi: 10.1890/14‐0005.1 – ident: e_1_2_12_114_1 doi: 10.1111/nph.14327 – ident: e_1_2_12_158_1 doi: 10.1002/ecs2.1436 – ident: e_1_2_12_137_1 doi: 10.1038/sdata.2018.28 – ident: e_1_2_12_9_1 doi: 10.1016/j.scitotenv.2019.06.348 – ident: e_1_2_12_40_1 doi: 10.3390/rs8060502 – ident: e_1_2_12_27_1 doi: 10.1016/j.ecoinf.2017.04.007 – ident: e_1_2_12_63_1 doi: 10.1002/wcc.764 – ident: e_1_2_12_24_1 doi: 10.1016/j.rse.2018.09.002 – ident: e_1_2_12_22_1 doi: 10.1016/j.rse.2018.04.030 – ident: e_1_2_12_157_1 doi: 10.1016/j.cageo.2022.105034 – ident: e_1_2_12_152_1 doi: 10.1016/j.isprsjprs.2021.10.023 – ident: e_1_2_12_92_1 doi: 10.1088/1748‐9326/abb32f – ident: e_1_2_12_43_1 doi: 10.1016/J.AGRFORMET.2016.01.006 – ident: e_1_2_12_154_1 doi: 10.1016/j.agrformet.2011.02.011 – ident: e_1_2_12_35_1 doi: 10.1016/j.rse.2020.112197 – ident: e_1_2_12_4_1 doi: 10.1016/j.rse.2012.04.001 – ident: e_1_2_12_8_1 doi: 10.1111/nph.18047 – ident: e_1_2_12_90_1 doi: 10.1111/gcb.13311 – ident: e_1_2_12_15_1 doi: 10.1088/1748‐9326/8/2/024027 – ident: e_1_2_12_181_1 doi: 10.1111/geb.12044 – ident: e_1_2_12_166_1 doi: 10.3390/rs12010117 – ident: e_1_2_12_37_1 doi: 10.1002/hyp.1089 – ident: e_1_2_12_130_1 doi: 10.1016/j.scitotenv.2021.147806 – ident: e_1_2_12_60_1 doi: 10.1109/IGARSS.2019.8898796 – ident: e_1_2_12_91_1 doi: 10.1016/j.agrformet.2017.02.026 – ident: e_1_2_12_198_1 doi: 10.3390/rs11192195 – ident: e_1_2_12_123_1 doi: 10.1016/j.isprsjprs.2017.09.002 – ident: e_1_2_12_171_1 doi: 10.1016/j.atmosenv.2010.09.006 – ident: e_1_2_12_136_1 doi: 10.1098/rstb.2010.0102 – ident: e_1_2_12_183_1 doi: 10.1111/nph.14939 – ident: e_1_2_12_144_1 doi: 10.1038/s41597‐019‐0229‐9 – ident: e_1_2_12_26_1 doi: 10.1016/j.agrformet.2012.06.009 – ident: e_1_2_12_78_1 doi: 10.1007/s10021‐007‐9088‐x – ident: e_1_2_12_126_1 doi: 10.1111/gcb.14619 – ident: e_1_2_12_16_1 doi: 10.3390/rs9121271 – ident: e_1_2_12_84_1 doi: 10.1111/gcb.13562 – ident: e_1_2_12_178_1 – ident: e_1_2_12_99_1 doi: 10.1016/j.agrformet.2022.109060 – ident: e_1_2_12_177_1 doi: 10.5194/bg‐12‐5995‐2015 – ident: e_1_2_12_45_1 doi: 10.1007/s11430‐019‐9622‐2 – ident: e_1_2_12_164_1 doi: 10.1016/j.agrformet.2020.108153 – ident: e_1_2_12_103_1 doi: 10.1016/j.biocon.2016.07.027 – ident: e_1_2_12_47_1 doi: 10.1111/geb.12210 – ident: e_1_2_12_80_1 doi: 10.1098/rstb.2010.0028 – ident: e_1_2_12_199_1 doi: 10.1016/j.ecolind.2019.05.004 – ident: e_1_2_12_129_1 doi: 10.3390/rs9090970 – ident: e_1_2_12_185_1 doi: 10.1126/science.abd8911 – ident: e_1_2_12_3_1 doi: 10.3390/rs9090914 – ident: e_1_2_12_51_1 doi: 10.3354/cr01182 – ident: e_1_2_12_128_1 doi: 10.3389/fpls.2017.01532 – ident: e_1_2_12_88_1 doi: 10.1073/pnas.2121998119 – ident: e_1_2_12_182_1 doi: 10.1126/science.aad5068 – ident: e_1_2_12_56_1 doi: 10.1038/srep26901 – ident: e_1_2_12_165_1 doi: 10.1109/JSTARS.2021.3120013 – ident: e_1_2_12_140_1 doi: 10.1016/j.scitotenv.2015.08.074 – ident: e_1_2_12_76_1 doi: 10.1016/j.scitotenv.2016.11.004 – ident: e_1_2_12_87_1 doi: 10.3390/rs11182137 – ident: e_1_2_12_59_1 doi: 10.1016/j.plantsci.2018.10.022 – ident: e_1_2_12_160_1 doi: 10.3390/rs13081597 – ident: e_1_2_12_151_1 doi: 10.1007/s00484‐005‐0010‐y – ident: e_1_2_12_25_1 doi: 10.1016/j.tree.2007.04.003 – ident: e_1_2_12_73_1 doi: 10.1038/nature12291 – ident: e_1_2_12_132_1 doi: 10.1038/nature13207 – ident: e_1_2_12_20_1 doi: 10.1146/annurev.es.21.110190.002231 – ident: e_1_2_12_55_1 doi: 10.1038/nclimate3088 – ident: e_1_2_12_62_1 doi: 10.1016/j.agrformet.2018.11.002 – ident: e_1_2_12_139_1 doi: 10.1016/j.agrformet.2012.09.012 – ident: e_1_2_12_168_1 doi: 10.1080/03632415.2013.748551 – ident: e_1_2_12_102_1 doi: 10.3390/rs11121398 – ident: e_1_2_12_106_1 doi: 10.1016/j.scitotenv.2017.04.136 – ident: e_1_2_12_124_1 doi: 10.3390/rs11141650 – ident: e_1_2_12_18_1 doi: 10.1016/j.isprsjprs.2020.11.019 – ident: e_1_2_12_195_1 doi: 10.1007/978-981-19-3816-0_2 – ident: e_1_2_12_105_1 doi: 10.1002/ece3.7548 – ident: e_1_2_12_161_1 doi: 10.1016/j.atmosenv.2013.10.057 – ident: e_1_2_12_173_1 doi: 10.3390/rs14133018 – ident: e_1_2_12_180_1 doi: 10.1073/pnas.1519620113 – ident: e_1_2_12_113_1 doi: 10.1038/nature13006 – ident: e_1_2_12_191_1 doi: 10.1016/j.rse.2017.01.001 – ident: e_1_2_12_96_1 doi: 10.1111/gcb.16104 – ident: e_1_2_12_108_1 doi: 10.1016/j.rse.2013.01.011 – ident: e_1_2_12_176_1 doi: 10.1371/journal.pbio.1002415 – ident: e_1_2_12_50_1 doi: 10.1016/j.agrformet.2008.08.013 – ident: e_1_2_12_189_1 doi: 10.1016/S0034‐4257(02)00135‐9 – ident: e_1_2_12_200_1 doi: 10.1111/gcb.15098 – ident: e_1_2_12_120_1 doi: 10.1016/j.rse.2020.112013 – ident: e_1_2_12_13_1 doi: 10.1002/fee.1222 – ident: e_1_2_12_17_1 doi: 10.1016/j.scitotenv.2020.141189 – ident: e_1_2_12_93_1 doi: 10.1016/j.rse.2016.01.021 – ident: e_1_2_12_44_1 doi: 10.1088/1748‐9326/9/5/054006 – ident: e_1_2_12_190_1 doi: 10.1016/j.agrformet.2018.03.003 – ident: e_1_2_12_146_1 doi: 10.1016/j.agrformet.2017.04.001 – ident: e_1_2_12_28_1 doi: 10.1109/ACCESS.2020.2965462 – ident: e_1_2_12_156_1 doi: 10.1016/j.compag.2018.10.017 – ident: e_1_2_12_125_1 doi: 10.1029/2006GB002888 – ident: e_1_2_12_131_1 doi: 10.1016/j.scitotenv.2019.01.394 – ident: e_1_2_12_170_1 doi: 10.1038/s41558‐022‐01283‐y – ident: e_1_2_12_81_1 doi: 10.1093/treephys/25.6.641 – ident: e_1_2_12_147_1 doi: 10.1016/j.fcr.2022.108491 – ident: e_1_2_12_83_1 doi: 10.1109/JSTARS.2021.3087814 – ident: e_1_2_12_100_1 doi: 10.1111/j.1365‐2486.2007.01432.x – ident: e_1_2_12_122_1 doi: 10.1016/j.agrformet.2017.04.009 – ident: e_1_2_12_116_1 doi: 10.5194/bg‐16‐1883‐2019 – ident: e_1_2_12_141_1 doi: 10.1016/j.agrformet.2011.10.014 – ident: e_1_2_12_118_1 doi: 10.1016/j.jag.2021.102323 – ident: e_1_2_12_188_1 doi: 10.1080/01431160802549237 – ident: e_1_2_12_31_1 doi: 10.1016/j.scitotenv.2015.04.001 – ident: e_1_2_12_49_1 doi: 10.34133/2021/8379391 – ident: e_1_2_12_163_1 doi: 10.1016/j.isprsjprs.2021.08.003 – ident: e_1_2_12_117_1 doi: 10.1007/s11284‐014‐1239‐x – ident: e_1_2_12_133_1 doi: 10.1007/s00442‐004‐1524‐4 – ident: e_1_2_12_193_1 doi: 10.1016/j.agrformet.2022.108828 – ident: e_1_2_12_5_1 doi: 10.1016/j.jag.2016.09.005 – ident: e_1_2_12_184_1 doi: 10.1016/j.isprsjprs.2022.01.017 – ident: e_1_2_12_94_1 doi: 10.1126/science.1152339 – ident: e_1_2_12_71_1 doi: 10.1016/j.rse.2007.08.011 – ident: e_1_2_12_61_1 doi: 10.1111/2041‐210X.12970 – ident: e_1_2_12_32_1 doi: 10.1016/j.iac.2020.09.002 – ident: e_1_2_12_64_1 doi: 10.1038/s42256‐021‐00374‐3 – ident: e_1_2_12_65_1 doi: 10.1038/ngeo844 – ident: e_1_2_12_155_1 doi: 10.1016/j.agrformet.2011.09.009 |
| SSID | ssj0003206 |
| Score | 2.593796 |
| SecondaryResourceType | review_article |
| Snippet | Vegetation phenology has been viewed as the nature's calendar and an integrative indicator of plant‐climate interactions. The correct representation of... Vegetation phenology has been viewed as the nature's calendar and an integrative indicator of plant-climate interactions. The correct representation of... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 7186 |
| SubjectTerms | Adaptation Algorithms Atmospheric models big data bioclimatology biodiversity Biological Sciences Biometeorology Carbon carbon cycle Climate Change Climate models Data integration Dynamics Ecological adaptation Ecosystem Ecosystem dynamics ecosystems energy Environmental impact global change Global climate Interdisciplinary subjects Monitoring Multisensor fusion Phenology public health Remote sensing Review Reviews Seasonal variations Seasons Vegetation vegetation dynamics Water |
| Title | Monitoring nature's calendar from space: Emerging topics in land surface phenology and associated opportunities for science applications |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16436 https://www.ncbi.nlm.nih.gov/pubmed/36114727 https://www.proquest.com/docview/2735735758 https://www.proquest.com/docview/2715445642 https://www.proquest.com/docview/2811991143 https://pubmed.ncbi.nlm.nih.gov/PMC9827868 |
| Volume | 28 |
| WOSCitedRecordID | wos000859769500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1365-2486 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003206 issn: 1354-1013 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ti9NAEB7OOwVBfKn3Ej2PVUTvSyTJJtmNftJ61Q_ncYgn_RY22Y0GjqQ0reA_8Gc7s5vGllMRhFJKMiFbdmb3mdmZZwCe6iQWJohDX-sUHRS0N19JXfq8iLVKRJFxW8f9-VScncnpNDvfglerWhjHDzEE3Mgy7HpNBq6Kbs3Iv5TFC8T6PL0GO2HIJfVtiOLzYRnmkW2sGfIkxrUm5D2tEKXxDI9ubkZXEObVRMl1AGt3oMmd_xr7XbjdA0_22mnKPdgyzQhuuFaU30ewd_Kr4g3FepPvRuB9QFjdzq0Ye8bGlzVi3P6hWy7ox1wt03344VYIChUyxxj6vGOoBIaiFYwqWRguYKV5ySgWRu2R2KKd1WXH6oZRiiXrlvMKBRhlnrlX0lXV65DRrJ2Rw7BsLBEsQ8TN-j2crR_F78LF5OTT-L3ft3rwy1ikqY9ei054WqiAEJsq0wqRjJChyaIgMpVCNy9MdVhUIRdVpI2h41ZOXHIxamGm-B5sN21jDoDRzJdCcRXEGtFWUSjccBHHycBEmS6VB8erOc_Lnged2nFc5it_CGcnt7PjwZNBdObIP34ndLhSnLy3_y7HwSX0SaQHj4fbaLl0HKMa0y5JxjIhoQP4FxkZUm4agloP9p0uDiPhKV5H-OmB2NDSQYCYwzfvNPVXyyCeyUjIFMd2bLX0z38ufzd-Y388-HfRh3AzohoRm_NzCNuL-dI8guvlt0XdzY-skeK3mMoj2Hn7cXJx-hM2tUQH |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9qVRTEj9NqtOoqon2JJNl8ii96tFa8Hn2opW9hs7vRQEmOy53gf-Cf7czuXryjKoKQhyOZkD12Pn4zOx8AL1QSZzqIQ1-pFB0UlDdf5Er6vIqVSLKq4KaO-3SSTaf52VlxvAVvV7Uwtj_EEHAjyTD6mgScAtJrUv5FVq8R7PP0ElyO0coQl0fx8aCHeWQma4Y8iVHZhNz1FaI8nuHVTWt0AWJezJRcR7DGBB3c-r_F34abDnqyd5ZX7sCWbkdw1Q6j_D6Cnf1fNW9I5oS-H4F3hMC6mxsy9pKNzxtEue6lGzbsx2w10134YXUEBQuZ7Rn6qmfIBpriFYxqWRiqMKnfMIqG0YAktuhmjexZ0zJKsmT9cl4jAaPcM_tJuiscF2nFuhm5DMvWtIJliLmZs-Js_TD-Hnw-2D8ZH_pu2IMv4yxNffRbVMLTSgSE2YRMa8QyWR7qIgoiXQt09MJUhVUd8qyOlNZ04Mqpm1yMfFgIvgPbbdfqB8Bo62UmuAhihXirqgSaXERyeaCjQknhwd5q00vpOqHTQI7zcuUR4e6UZnc8eD6Qzmz7j98R7a44p3QaoC9xcQldSe7Bs-Exyi4dyIhWd0uiMb2Q0AX8C00eUnYasrcH9y0zDivhKd5HAOpBtsGmAwH1Dt980jZfTQ_xIo-yPMW17Rk2_fOfKz-M35sfD_-d9ClcOzw5mpSTj9NPj-B6RBUjJgNoF7YX86V-DFfkt0XTz58Yif0Jo6dFag |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ti9NAEB7Onh6C-FLvNHrqKqL3JZJk8yp-0d5VxVoOuZP7Fja7Gw0cSWlawX_gz3ZmN40tpyII-VCSCdmyM7PP7M48A_BURWGivdB3lYoxQEF7c0WqpMuLUIkoKTJu6rg_T5LpND07y4634NWqFsbyQ_QbbmQZxl-TgeuZKtes_IssXiDY5_El2A6picwAtg8_jU8nvSfmgemt6fMoRHfj845ZiDJ5-pc316MLIPNiruQ6hjWL0PjG_w3_JlzvwCd7bbXlFmzpeghXbDvK70PYO_pV9YZindm3Q3A-IrRu5kaMPWOj8wpxbvfSNbvxx2w90234Yb0EbRcyyxr6vGWoCJp2LBhVszB0YlK_ZLQfRi2S2KKZVbJlVc0ozZK1y3mJAoyyz-wn6a7o9Egr1swoaFjWhgyWIepm3TrO1o_jd-F0fHQyeud27R5cGSZx7GLkoiIeF8Ij1CZkXCKaSVJfZ4EX6FJgqOfHyi9KnydloLSmI1dOfHIhamIm-B4M6qbWd4HR1MtEcOGFChFXUQhcdBHLpZ4OMiWFAwerSc9lx4VOLTnO81VMhLOTm9lx4EkvOrMEIL8T2l9pTt75gDbHwUV0RakDj_vHaL10JCNq3SxJxrAhYRD4F5nUp_w0BLYO3LHK2I-Ex3gfIagDyYaa9gLEHr75pK6-GhbxLA2SNMaxHRg1_fOfy9-O3pgf9_5d9BHsHB-O88n76Yf7cDWgkhGTArQPg8V8qR_AZfltUbXzh53J_gSlgEaA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+nature%27s+calendar+from+space%3A+Emerging+topics+in+land+surface+phenology+and+associated+opportunities+for+science+applications&rft.jtitle=Global+change+biology&rft.au=Ma%2C+Xuanlong&rft.au=Zhu%2C+Xiaolin&rft.au=Xie%2C+Qiaoyun&rft.au=Jin%2C+Jiaxin&rft.date=2022-12-01&rft.issn=1354-1013&rft.volume=28&rft.issue=24+p.7186-7204&rft.spage=7186&rft.epage=7204&rft_id=info:doi/10.1111%2Fgcb.16436&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |