Monitoring nature's calendar from space: Emerging topics in land surface phenology and associated opportunities for science applications

Vegetation phenology has been viewed as the nature's calendar and an integrative indicator of plant‐climate interactions. The correct representation of vegetation phenology is important for models to accurately simulate the exchange of carbon, water, and energy between the vegetated land surfac...

Full description

Saved in:
Bibliographic Details
Published in:Global change biology Vol. 28; no. 24; pp. 7186 - 7204
Main Authors: Ma, Xuanlong, Zhu, Xiaolin, Xie, Qiaoyun, Jin, Jiaxin, Zhou, Yuke, Luo, Yunpeng, Liu, Yuxia, Tian, Jiaqi, Zhao, Yuhe
Format: Journal Article
Language:English
Published: England Blackwell Publishing Ltd 01.12.2022
John Wiley and Sons Inc
Subjects:
ISSN:1354-1013, 1365-2486, 1365-2486
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Vegetation phenology has been viewed as the nature's calendar and an integrative indicator of plant‐climate interactions. The correct representation of vegetation phenology is important for models to accurately simulate the exchange of carbon, water, and energy between the vegetated land surface and the atmosphere. Remote sensing has advanced the monitoring of vegetation phenology by providing spatially and temporally continuous data that together with conventional ground observations offers a unique contribution to our knowledge about the environmental impact on ecosystems as well as the ecological adaptations and feedback to global climate change. Land surface phenology (LSP) is defined as the use of satellites to monitor seasonal dynamics in vegetated land surfaces and to estimate phenological transition dates. LSP, as an interdisciplinary subject among remote sensing, ecology, and biometeorology, has undergone rapid development over the past few decades. Recent advances in sensor technologies, as well as data fusion techniques, have enabled novel phenology retrieval algorithms that refine phenology details at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. As such, here we summarize the recent advances in LSP and the associated opportunities for science applications. We focus on the remaining challenges, promising techniques, and emerging topics that together we believe will truly form the very frontier of the global LSP research field. Land surface phenology (LSP), as an interdisciplinary subject among remote sensing, ecology, and biometeorology, has undergone rapid development over the past few decades. Recent advances in sensor technologies, as well as data fusion techniques, have enabled novel phenology retrieval algorithms that refine phenology details at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. As such, we summarize the recent advances in LSP and the associated opportunities for science applications. We focus on the remaining challenges, promising techniques, and emerging topics that together we believe will truly form the very frontier of the global LSP research field.
AbstractList Vegetation phenology has been viewed as the nature's calendar and an integrative indicator of plant‐climate interactions. The correct representation of vegetation phenology is important for models to accurately simulate the exchange of carbon, water, and energy between the vegetated land surface and the atmosphere. Remote sensing has advanced the monitoring of vegetation phenology by providing spatially and temporally continuous data that together with conventional ground observations offers a unique contribution to our knowledge about the environmental impact on ecosystems as well as the ecological adaptations and feedback to global climate change. Land surface phenology (LSP) is defined as the use of satellites to monitor seasonal dynamics in vegetated land surfaces and to estimate phenological transition dates. LSP, as an interdisciplinary subject among remote sensing, ecology, and biometeorology, has undergone rapid development over the past few decades. Recent advances in sensor technologies, as well as data fusion techniques, have enabled novel phenology retrieval algorithms that refine phenology details at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. As such, here we summarize the recent advances in LSP and the associated opportunities for science applications. We focus on the remaining challenges, promising techniques, and emerging topics that together we believe will truly form the very frontier of the global LSP research field. Land surface phenology (LSP), as an interdisciplinary subject among remote sensing, ecology, and biometeorology, has undergone rapid development over the past few decades. Recent advances in sensor technologies, as well as data fusion techniques, have enabled novel phenology retrieval algorithms that refine phenology details at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. As such, we summarize the recent advances in LSP and the associated opportunities for science applications. We focus on the remaining challenges, promising techniques, and emerging topics that together we believe will truly form the very frontier of the global LSP research field.
Vegetation phenology has been viewed as the nature's calendar and an integrative indicator of plant‐climate interactions. The correct representation of vegetation phenology is important for models to accurately simulate the exchange of carbon, water, and energy between the vegetated land surface and the atmosphere. Remote sensing has advanced the monitoring of vegetation phenology by providing spatially and temporally continuous data that together with conventional ground observations offers a unique contribution to our knowledge about the environmental impact on ecosystems as well as the ecological adaptations and feedback to global climate change. Land surface phenology (LSP) is defined as the use of satellites to monitor seasonal dynamics in vegetated land surfaces and to estimate phenological transition dates. LSP, as an interdisciplinary subject among remote sensing, ecology, and biometeorology, has undergone rapid development over the past few decades. Recent advances in sensor technologies, as well as data fusion techniques, have enabled novel phenology retrieval algorithms that refine phenology details at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. As such, here we summarize the recent advances in LSP and the associated opportunities for science applications. We focus on the remaining challenges, promising techniques, and emerging topics that together we believe will truly form the very frontier of the global LSP research field.
Vegetation phenology has been viewed as the nature's calendar and an integrative indicator of plant-climate interactions. The correct representation of vegetation phenology is important for models to accurately simulate the exchange of carbon, water, and energy between the vegetated land surface and the atmosphere. Remote sensing has advanced the monitoring of vegetation phenology by providing spatially and temporally continuous data that together with conventional ground observations offers a unique contribution to our knowledge about the environmental impact on ecosystems as well as the ecological adaptations and feedback to global climate change. Land surface phenology (LSP) is defined as the use of satellites to monitor seasonal dynamics in vegetated land surfaces and to estimate phenological transition dates. LSP, as an interdisciplinary subject among remote sensing, ecology, and biometeorology, has undergone rapid development over the past few decades. Recent advances in sensor technologies, as well as data fusion techniques, have enabled novel phenology retrieval algorithms that refine phenology details at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. As such, here we summarize the recent advances in LSP and the associated opportunities for science applications. We focus on the remaining challenges, promising techniques, and emerging topics that together we believe will truly form the very frontier of the global LSP research field.Vegetation phenology has been viewed as the nature's calendar and an integrative indicator of plant-climate interactions. The correct representation of vegetation phenology is important for models to accurately simulate the exchange of carbon, water, and energy between the vegetated land surface and the atmosphere. Remote sensing has advanced the monitoring of vegetation phenology by providing spatially and temporally continuous data that together with conventional ground observations offers a unique contribution to our knowledge about the environmental impact on ecosystems as well as the ecological adaptations and feedback to global climate change. Land surface phenology (LSP) is defined as the use of satellites to monitor seasonal dynamics in vegetated land surfaces and to estimate phenological transition dates. LSP, as an interdisciplinary subject among remote sensing, ecology, and biometeorology, has undergone rapid development over the past few decades. Recent advances in sensor technologies, as well as data fusion techniques, have enabled novel phenology retrieval algorithms that refine phenology details at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. As such, here we summarize the recent advances in LSP and the associated opportunities for science applications. We focus on the remaining challenges, promising techniques, and emerging topics that together we believe will truly form the very frontier of the global LSP research field.
Vegetation phenology has been viewed as the nature's calendar and an integrative indicator of plant‐climate interactions. The correct representation of vegetation phenology is important for models to accurately simulate the exchange of carbon, water, and energy between the vegetated land surface and the atmosphere. Remote sensing has advanced the monitoring of vegetation phenology by providing spatially and temporally continuous data that together with conventional ground observations offers a unique contribution to our knowledge about the environmental impact on ecosystems as well as the ecological adaptations and feedback to global climate change. Land surface phenology (LSP) is defined as the use of satellites to monitor seasonal dynamics in vegetated land surfaces and to estimate phenological transition dates. LSP, as an interdisciplinary subject among remote sensing, ecology, and biometeorology, has undergone rapid development over the past few decades. Recent advances in sensor technologies, as well as data fusion techniques, have enabled novel phenology retrieval algorithms that refine phenology details at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. As such, here we summarize the recent advances in LSP and the associated opportunities for science applications. We focus on the remaining challenges, promising techniques, and emerging topics that together we believe will truly form the very frontier of the global LSP research field. Land surface phenology (LSP), as an interdisciplinary subject among remote sensing, ecology, and biometeorology, has undergone rapid development over the past few decades. Recent advances in sensor technologies, as well as data fusion techniques, have enabled novel phenology retrieval algorithms that refine phenology details at even higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. As such, we summarize the recent advances in LSP and the associated opportunities for science applications. We focus on the remaining challenges, promising techniques, and emerging topics that together we believe will truly form the very frontier of the global LSP research field.
Author Luo, Yunpeng
Zhou, Yuke
Jin, Jiaxin
Ma, Xuanlong
Zhu, Xiaolin
Xie, Qiaoyun
Liu, Yuxia
Tian, Jiaqi
Zhao, Yuhe
AuthorAffiliation 5 Key Laboratory of Ecosystem Network Observation and Modelling Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences Beijing China
8 Geospatial Sciences Center of Excellence (GSCE) South Dakota State University Brookings South Dakota USA
2 Department of Land Surveying and Geo‐Informatics The Hong Kong Polytechnic University Hong Kong China
7 Department of Environmental System Science ETH Zurich Zurich Switzerland
3 School of Life Sciences, Faculty of Science University of Technology Sydney Sydney New South Wales Australia
9 Department of Geography National University of Singapore Singapore Singapore
1 College of Earth and Environmental Sciences, Lanzhou University Lanzhou China
6 Swiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland
4 College of Hydrology and Water Resources, Hohai University Nanjing China
AuthorAffiliation_xml – name: 1 College of Earth and Environmental Sciences, Lanzhou University Lanzhou China
– name: 6 Swiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland
– name: 7 Department of Environmental System Science ETH Zurich Zurich Switzerland
– name: 3 School of Life Sciences, Faculty of Science University of Technology Sydney Sydney New South Wales Australia
– name: 5 Key Laboratory of Ecosystem Network Observation and Modelling Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences Beijing China
– name: 4 College of Hydrology and Water Resources, Hohai University Nanjing China
– name: 8 Geospatial Sciences Center of Excellence (GSCE) South Dakota State University Brookings South Dakota USA
– name: 9 Department of Geography National University of Singapore Singapore Singapore
– name: 2 Department of Land Surveying and Geo‐Informatics The Hong Kong Polytechnic University Hong Kong China
Author_xml – sequence: 1
  givenname: Xuanlong
  orcidid: 0000-0003-1499-8476
  surname: Ma
  fullname: Ma, Xuanlong
  email: xlma@lzu.edu.cn
  organization: College of Earth and Environmental Sciences, Lanzhou University
– sequence: 2
  givenname: Xiaolin
  orcidid: 0000-0001-6967-786X
  surname: Zhu
  fullname: Zhu, Xiaolin
  organization: The Hong Kong Polytechnic University
– sequence: 3
  givenname: Qiaoyun
  orcidid: 0000-0002-1576-6610
  surname: Xie
  fullname: Xie, Qiaoyun
  organization: University of Technology Sydney
– sequence: 4
  givenname: Jiaxin
  orcidid: 0000-0003-4067-298X
  surname: Jin
  fullname: Jin, Jiaxin
  organization: College of Hydrology and Water Resources, Hohai University
– sequence: 5
  givenname: Yuke
  orcidid: 0000-0002-2559-0241
  surname: Zhou
  fullname: Zhou, Yuke
  organization: Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences
– sequence: 6
  givenname: Yunpeng
  orcidid: 0000-0001-6383-8300
  surname: Luo
  fullname: Luo, Yunpeng
  organization: ETH Zurich
– sequence: 7
  givenname: Yuxia
  orcidid: 0000-0001-6130-2991
  surname: Liu
  fullname: Liu, Yuxia
  organization: South Dakota State University
– sequence: 8
  givenname: Jiaqi
  orcidid: 0000-0002-5463-1532
  surname: Tian
  fullname: Tian, Jiaqi
  organization: National University of Singapore
– sequence: 9
  givenname: Yuhe
  orcidid: 0000-0002-5766-7522
  surname: Zhao
  fullname: Zhao, Yuhe
  organization: College of Earth and Environmental Sciences, Lanzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36114727$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu1TAQhi1URC-w4AWQJRbAIq0vie10gVSOSkEqYgNry3EmqavEDnYCOm_Qx8bpKRVUAixLHtnf_DOemUO054MHhJ5TckzzOultc0xFycUjdEC5qApWKrG32lVZUEL5PjpM6ZoQwhkRT9A-F5SWkskDdPMpeDeH6HyPvZmXCK8StmYA35qIuxhGnCZj4RSfjxD7FZvD5GzCzuPB-BanJXYZwNMV-DCEfovXW5NSsM7M0OIwTSHOSw7jIOEuRJysA59dzDQNzprZBZ-eosedGRI8uzuP0Nf35182H4rLzxcfN2eXhS2lEIWsVFtx0RhCFa-NFZ2siFQUakYYdEbQmoqWNh3lsmMtACdMcqoUKaGB2vAj9HanOy3NCK0FP0cz6Cm60cStDsbpP1-8u9J9-K5rxaQSKgu8vhOI4dsCadajSxaGXAwIS9JMUVrXub78_6ikVVlWomQZffkAvQ5L9LkSmeLVuqs19ovfk7_P-lc_M_BmB9gYUorQ3SOU6HVWdJ4VfTsrmT15wFo33zYj_9sN__L44QbY_l1aX2ze7Tx-AqMF0W8
CitedBy_id crossref_primary_10_1016_j_ecolind_2024_111983
crossref_primary_10_1111_aab_12858
crossref_primary_10_3389_fpls_2022_1071858
crossref_primary_10_1016_j_rse_2023_113800
crossref_primary_10_3390_su16219389
crossref_primary_10_1016_j_jclepro_2024_142021
crossref_primary_10_1088_1748_9326_ada56e
crossref_primary_10_1111_ele_14260
crossref_primary_10_1038_s41598_025_07352_4
crossref_primary_10_1111_gcb_16828
crossref_primary_10_1016_j_isprsjprs_2022_12_006
crossref_primary_10_3390_rs17111853
crossref_primary_10_1007_s00484_025_02958_9
crossref_primary_10_1016_j_agrformet_2024_110141
crossref_primary_10_3390_rs16183475
crossref_primary_10_1016_j_ecoinf_2024_102917
crossref_primary_10_1111_1365_2435_14694
crossref_primary_10_1007_s11119_024_10215_z
crossref_primary_10_1029_2025JG008812
crossref_primary_10_3390_rs17081381
crossref_primary_10_1111_gcb_17134
crossref_primary_10_1007_s12145_024_01443_y
crossref_primary_10_1111_gcb_17451
crossref_primary_10_1016_j_rse_2023_113617
crossref_primary_10_1038_s41597_025_05519_2
crossref_primary_10_1029_2023EF004119
crossref_primary_10_3390_app142412020
crossref_primary_10_1016_j_scitotenv_2023_168488
crossref_primary_10_1016_j_isprsjprs_2024_08_011
crossref_primary_10_3390_s25072214
crossref_primary_10_1111_1365_2745_14366
crossref_primary_10_3390_rs16091580
crossref_primary_10_1080_17538947_2024_2306894
crossref_primary_10_1016_j_foreco_2024_121742
crossref_primary_10_1007_s40725_025_00245_9
crossref_primary_10_1016_j_agrformet_2025_110678
crossref_primary_10_3390_life15050826
crossref_primary_10_1016_j_rse_2025_114940
Cites_doi 10.1175/BAMS‐D‐20‐0031.1
10.1111/gcb.12863
10.1038/s41467‐021‐26876‐7
10.1016/j.compag.2022.106866
10.1038/s41586‐018‐0399‐1
10.5194/bg‐10‐541‐2013
10.1007/s00267‐013‐0097‐6
10.1038/nclimate2253
10.1016/j.agrformet.2010.08.003
10.1038/s41597‐022‐01570‐5
10.3390/rs13234736
10.1016/j.jag.2020.102291
10.1016/j.agrformet.2010.05.002
10.3390/rs12081339
10.1080/17474230701786109
10.1111/j.1469‐8137.2004.01224.x
10.1111/j.1365‐2486.2011.02562.x
10.3390/rs10081293
10.1093/treephys/tpz041
10.1016/j.agrformet.2020.108309
10.1016/j.isprsjprs.2017.05.003
10.1029/2020JG006005
10.1126/science.abg1438
10.1038/nclimate1573
10.1016/j.isprsjprs.2020.01.012
10.1016/j.envsoft.2016.06.025
10.1111/geb.13583
10.1016/j.foreco.2020.118663
10.1002/fee.2142
10.1016/j.agrformet.2018.02.030
10.5194/bg‐13‐5085‐2016
10.5194/gmd‐12‐2195‐2019
10.1007/s00484‐019‐01690‐5
10.3390/rs9070664
10.1016/j.rse.2019.111511
10.1016/j.agrformet.2014.01.003
10.1016/j.scitotenv.2020.137351
10.1038/srep07483
10.1098/rstb.2010.0142
10.1088/1748‐9326/aba57f
10.3390/rs9010099
10.1146/annurev.arplant.57.032905.105316
10.1111/gcb.15138
10.1016/j.agrformet.2011.05.012
10.1016/j.rse.2018.12.036
10.1016/j.rse.2017.06.015
10.3390/rs9121288
10.1111/nph.17416
10.1016/j.rse.2004.03.014
10.1111/gcb.12890
10.1029/2008GB003233
10.1109/JSTARS.2014.2344630
10.3389/ffgc.2021.659910
10.1038/ncomms7911
10.1038/nature13957
10.1016/j.rse.2013.11.020
10.1111/nph.15591
10.1016/S0034‐4257(02)00091‐3
10.1093/treephys/26.7.889
10.1016/j.rse.2021.112456
10.3390/rs14010100
10.3390/rs8070524
10.3390/rs14051296
10.5194/bg‐11‐4305‐2014
10.1016/j.ecolind.2017.04.006
10.1016/j.rse.2021.112716
10.1016/j.agrformet.2017.08.012
10.1016/j.scitotenv.2018.03.191
10.1016/j.agrformet.2018.07.010
10.1002/ecs2.3912
10.1016/j.agrformet.2021.108571
10.1016/j.eswa.2006.02.011
10.1007/s00484‐013‐0679‐2
10.3390/rs13020307
10.1016/j.ecolind.2021.108147
10.13031/2013.27838
10.1890/14‐0005.1
10.1111/nph.14327
10.1002/ecs2.1436
10.1038/sdata.2018.28
10.1016/j.scitotenv.2019.06.348
10.3390/rs8060502
10.1016/j.ecoinf.2017.04.007
10.1002/wcc.764
10.1016/j.rse.2018.09.002
10.1016/j.rse.2018.04.030
10.1016/j.cageo.2022.105034
10.1016/j.isprsjprs.2021.10.023
10.1088/1748‐9326/abb32f
10.1016/J.AGRFORMET.2016.01.006
10.1016/j.agrformet.2011.02.011
10.1016/j.rse.2020.112197
10.1016/j.rse.2012.04.001
10.1111/nph.18047
10.1111/gcb.13311
10.1088/1748‐9326/8/2/024027
10.1111/geb.12044
10.3390/rs12010117
10.1002/hyp.1089
10.1016/j.scitotenv.2021.147806
10.1109/IGARSS.2019.8898796
10.1016/j.agrformet.2017.02.026
10.3390/rs11192195
10.1016/j.isprsjprs.2017.09.002
10.1016/j.atmosenv.2010.09.006
10.1098/rstb.2010.0102
10.1111/nph.14939
10.1038/s41597‐019‐0229‐9
10.1016/j.agrformet.2012.06.009
10.1007/s10021‐007‐9088‐x
10.1111/gcb.14619
10.3390/rs9121271
10.1111/gcb.13562
10.1016/j.agrformet.2022.109060
10.5194/bg‐12‐5995‐2015
10.1007/s11430‐019‐9622‐2
10.1016/j.agrformet.2020.108153
10.1016/j.biocon.2016.07.027
10.1111/geb.12210
10.1098/rstb.2010.0028
10.1016/j.ecolind.2019.05.004
10.3390/rs9090970
10.1126/science.abd8911
10.3390/rs9090914
10.3354/cr01182
10.3389/fpls.2017.01532
10.1073/pnas.2121998119
10.1126/science.aad5068
10.1038/srep26901
10.1109/JSTARS.2021.3120013
10.1016/j.scitotenv.2015.08.074
10.1016/j.scitotenv.2016.11.004
10.3390/rs11182137
10.1016/j.plantsci.2018.10.022
10.3390/rs13081597
10.1007/s00484‐005‐0010‐y
10.1016/j.tree.2007.04.003
10.1038/nature12291
10.1038/nature13207
10.1146/annurev.es.21.110190.002231
10.1038/nclimate3088
10.1016/j.agrformet.2018.11.002
10.1016/j.agrformet.2012.09.012
10.1080/03632415.2013.748551
10.3390/rs11121398
10.1016/j.scitotenv.2017.04.136
10.3390/rs11141650
10.1016/j.isprsjprs.2020.11.019
10.1007/978-981-19-3816-0_2
10.1002/ece3.7548
10.1016/j.atmosenv.2013.10.057
10.3390/rs14133018
10.1073/pnas.1519620113
10.1038/nature13006
10.1016/j.rse.2017.01.001
10.1111/gcb.16104
10.1016/j.rse.2013.01.011
10.1371/journal.pbio.1002415
10.1016/j.agrformet.2008.08.013
10.1016/S0034‐4257(02)00135‐9
10.1111/gcb.15098
10.1016/j.rse.2020.112013
10.1002/fee.1222
10.1016/j.scitotenv.2020.141189
10.1016/j.rse.2016.01.021
10.1088/1748‐9326/9/5/054006
10.1016/j.agrformet.2018.03.003
10.1016/j.agrformet.2017.04.001
10.1109/ACCESS.2020.2965462
10.1016/j.compag.2018.10.017
10.1029/2006GB002888
10.1016/j.scitotenv.2019.01.394
10.1038/s41558‐022‐01283‐y
10.1093/treephys/25.6.641
10.1016/j.fcr.2022.108491
10.1109/JSTARS.2021.3087814
10.1111/j.1365‐2486.2007.01432.x
10.1016/j.agrformet.2017.04.009
10.5194/bg‐16‐1883‐2019
10.1016/j.agrformet.2011.10.014
10.1016/j.jag.2021.102323
10.1080/01431160802549237
10.1016/j.scitotenv.2015.04.001
10.34133/2021/8379391
10.1016/j.isprsjprs.2021.08.003
10.1007/s11284‐014‐1239‐x
10.1007/s00442‐004‐1524‐4
10.1016/j.agrformet.2022.108828
10.1016/j.jag.2016.09.005
10.1016/j.isprsjprs.2022.01.017
10.1126/science.1152339
10.1016/j.rse.2007.08.011
10.1111/2041‐210X.12970
10.1016/j.iac.2020.09.002
10.1038/s42256‐021‐00374‐3
10.1038/ngeo844
10.1016/j.agrformet.2011.09.009
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd.
2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd.
– notice: 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
5PM
DOI 10.1111/gcb.16436
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
MEDLINE
AGRICOLA
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Public Health
Biology
Environmental Sciences
DocumentTitleAlternate Ma et al
EISSN 1365-2486
EndPage 7204
ExternalDocumentID PMC9827868
36114727
10_1111_gcb_16436
GCB16436
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: lzujbky‐2021‐ct11
– fundername: National Natural Science Foundation of China
  funderid: 41971374; 42171305
– fundername: Director Fund of the International Research Center of Big Data for Sustainable Development Goals
  funderid: CBAS2022DF006
– fundername: Natural Science Foundation of Gansu Province
  funderid: 21JR7RA499
– fundername: Open Fund of Key laboratory of Geographic Information Science (Ministry of Education), East China Normal University
  funderid: KLGIS2022A02
– fundername: Open Fund of State Key Laboratory of Remote Sensing Science
  funderid: OFSLRSS202229
– fundername: ;
  grantid: lzujbky‐2021‐ct11
– fundername: Director Fund of the International Research Center of Big Data for Sustainable Development Goals
  grantid: CBAS2022DF006
– fundername: ;
  grantid: 41971374; 42171305
– fundername: Open Fund of Key laboratory of Geographic Information Science (Ministry of Education), East China Normal University
  grantid: KLGIS2022A02
– fundername: ;
  grantid: 21JR7RA499
– fundername: Open Fund of State Key Laboratory of Remote Sensing Science
  grantid: OFSLRSS202229
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4766-758d536ba01839ac6f750781e9202efa61916d1bf137f2dee3027318804ebe9a3
IEDL.DBID 24P
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000859769500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1354-1013
1365-2486
IngestDate Tue Nov 04 02:06:35 EST 2025
Fri Jul 11 18:28:52 EDT 2025
Wed Oct 01 14:41:38 EDT 2025
Fri Jul 25 10:34:47 EDT 2025
Wed Feb 19 02:25:14 EST 2025
Sat Nov 29 06:02:40 EST 2025
Tue Nov 18 22:18:30 EST 2025
Wed Jan 22 16:25:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords biodiversity
carbon cycle
big data
vegetation dynamics
global change
public health
Language English
License Attribution
2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4766-758d536ba01839ac6f750781e9202efa61916d1bf137f2dee3027318804ebe9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6967-786X
0000-0003-4067-298X
0000-0001-6130-2991
0000-0002-2559-0241
0000-0002-1576-6610
0000-0002-5766-7522
0000-0002-5463-1532
0000-0003-1499-8476
0000-0001-6383-8300
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16436
PMID 36114727
PQID 2735735758
PQPubID 30327
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9827868
proquest_miscellaneous_2811991143
proquest_miscellaneous_2715445642
proquest_journals_2735735758
pubmed_primary_36114727
crossref_primary_10_1111_gcb_16436
crossref_citationtrail_10_1111_gcb_16436
wiley_primary_10_1111_gcb_16436_GCB16436
PublicationCentury 2000
PublicationDate December 2022
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2022
Publisher Blackwell Publishing Ltd
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons Inc
References 2002; 16
2018; 560
2012; 123
2017; 599–600
1995; 38
2019; 11
2017; 237–238
2019; 12
2020; 161
2019; 16
2020; 720
2020; 15
2019; 18
2012; 18
2020; 12
2019; 689
2013; 8
2019; 282
2014; 23
2022; 28
2017; 208
2018; 9
2013; 58
2018; 5
2022; 282
2015; 534
2020; 294
2013; 57
2002; 83
2018; 217
2018; 211
2017; 79
2013; 52
2006; 26
2019; 25
2015; 538
2018; 219
2010; 3
2008; 112
2014; 11
2021; 2021
2022; 323
2022; 196
2019; 6
2006; 50
2021; 300
2021; 266
2021; 788
2004; 141
2019; 39
2019; 104
2021; 260
2017; 130
2012; 38
2017; 132
2022; 119
2016; 14
2007; 13
2019; 222
2016; 13
2022; 234
2010; 44
2016; 6
1990; 21
2016; 7
2022; 185
2022; 183
2018; 633
2021; 255
2017; 54
2022; 9
2022; 12
2022; 13
2022; 14
2020; 26
2021; 371
2016; 176
2021; 131
2014; 143
2018; 10
2016; 8
2016; 9
2016; 23
2016; 22
2017; 8
2012; 165
2013; 22
2020; 63
2021; 126
2015; 30
2013; 169
2021; 480
2016; 220
2020; 249
2018; 256–257
2008; 3
2017; 198
2011; 151
2007; 32
2017; 9
2005; 25
2020; 8
2014; 4
2019; 63
2012; 154–155
2013; 10
2017; 39
2020; 370
2008; 319
2016; 113
2016; 84
2010; 150
2017; 240
2021; 231
2017; 242
2014; 9
2021; 308–309
2007; 21
2007; 22
2021; 41
2014; 7
2014; 189–190
2003; 84
2017; 247
2016; 351
2009; 23
2018; 262
2014; 515
2015; 12
2015; 6
2021; 4
2021; 3
2021; 102
2010; 365
2006; 9
2019; 665
2004; 91
2014; 83
2022; 315
2017; 213
2020; 747
2019; 265
2014; 510
2022; 159
2017; 578
2007; 58
2021; 180
2021; 14
2021; 13
2012; 152
2018; 155
2015; 25
2012; 2
2009; 30
2021; 97
2021; 12
2021; 11
2014; 506
2021; 99
2005; 165
2022
2015; 21
2017; 190
2021; 171
2020; 237
2019
2013; 499
2013; 132
2020; 119
2009; 149
e_1_2_12_130_1
e_1_2_12_191_1
e_1_2_12_2_1
e_1_2_12_138_1
e_1_2_12_115_1
e_1_2_12_153_1
e_1_2_12_199_1
e_1_2_12_176_1
e_1_2_12_85_1
e_1_2_12_24_1
e_1_2_12_47_1
e_1_2_12_62_1
e_1_2_12_180_1
e_1_2_12_104_1
e_1_2_12_127_1
e_1_2_12_142_1
e_1_2_12_165_1
e_1_2_12_188_1
e_1_2_12_96_1
e_1_2_12_139_1
e_1_2_12_35_1
e_1_2_12_58_1
e_1_2_12_12_1
e_1_2_12_73_1
e_1_2_12_50_1
e_1_2_12_3_1
e_1_2_12_152_1
e_1_2_12_190_1
e_1_2_12_137_1
e_1_2_12_114_1
e_1_2_12_175_1
e_1_2_12_198_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_40_1
e_1_2_12_141_1
e_1_2_12_149_1
e_1_2_12_126_1
e_1_2_12_164_1
e_1_2_12_103_1
e_1_2_12_187_1
e_1_2_12_74_1
e_1_2_12_97_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_13_1
e_1_2_12_51_1
e_1_2_12_193_1
e_1_2_12_19_1
e_1_2_12_170_1
e_1_2_12_132_1
e_1_2_12_178_1
e_1_2_12_155_1
e_1_2_12_106_1
e_1_2_12_129_1
e_1_2_12_22_1
e_1_2_12_45_1
e_1_2_12_68_1
e_1_2_12_83_1
e_1_2_12_60_1
e_1_2_12_182_1
e_1_2_12_121_1
e_1_2_12_144_1
e_1_2_12_167_1
e_1_2_12_118_1
e_1_2_12_33_1
e_1_2_12_56_1
e_1_2_12_79_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_94_1
e_1_2_12_71_1
e_1_2_12_192_1
e_1_2_12_116_1
e_1_2_12_131_1
e_1_2_12_154_1
e_1_2_12_177_1
e_1_2_12_128_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_61_1
e_1_2_12_84_1
e_1_2_12_181_1
e_1_2_12_120_1
e_1_2_12_105_1
e_1_2_12_143_1
e_1_2_12_189_1
e_1_2_12_166_1
e_1_2_12_117_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_95_1
e_1_2_12_9_1
e_1_2_12_195_1
e_1_2_12_6_1
e_1_2_12_172_1
e_1_2_12_17_1
e_1_2_12_111_1
e_1_2_12_157_1
e_1_2_12_134_1
e_1_2_12_108_1
e_1_2_12_20_1
e_1_2_12_66_1
e_1_2_12_43_1
e_1_2_12_89_1
e_1_2_12_81_1
e_1_2_12_161_1
e_1_2_12_184_1
e_1_2_12_100_1
e_1_2_12_123_1
e_1_2_12_146_1
e_1_2_12_169_1
e_1_2_12_28_1
e_1_2_12_31_1
e_1_2_12_77_1
e_1_2_12_54_1
e_1_2_12_92_1
e_1_2_12_171_1
e_1_2_12_194_1
e_1_2_12_18_1
e_1_2_12_110_1
e_1_2_12_179_1
e_1_2_12_133_1
e_1_2_12_156_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_67_1
e_1_2_12_82_1
e_1_2_12_160_1
e_1_2_12_183_1
e_1_2_12_122_1
e_1_2_12_168_1
e_1_2_12_29_1
e_1_2_12_145_1
e_1_2_12_119_1
e_1_2_12_32_1
e_1_2_12_55_1
Mehajan R. K. (e_1_2_12_107_1) 2020; 119
e_1_2_12_78_1
e_1_2_12_7_1
e_1_2_12_70_1
e_1_2_12_93_1
e_1_2_12_4_1
e_1_2_12_174_1
e_1_2_12_151_1
e_1_2_12_38_1
e_1_2_12_136_1
e_1_2_12_159_1
e_1_2_12_113_1
e_1_2_12_197_1
e_1_2_12_41_1
e_1_2_12_87_1
e_1_2_12_64_1
e_1_2_12_26_1
e_1_2_12_140_1
e_1_2_12_163_1
e_1_2_12_49_1
e_1_2_12_148_1
e_1_2_12_102_1
e_1_2_12_125_1
e_1_2_12_186_1
e_1_2_12_52_1
e_1_2_12_98_1
e_1_2_12_75_1
e_1_2_12_37_1
e_1_2_12_14_1
e_1_2_12_90_1
e_1_2_12_150_1
e_1_2_12_173_1
e_1_2_12_196_1
e_1_2_12_5_1
e_1_2_12_16_1
e_1_2_12_112_1
e_1_2_12_135_1
e_1_2_12_158_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_88_1
e_1_2_12_109_1
e_1_2_12_80_1
e_1_2_12_200_1
e_1_2_12_185_1
e_1_2_12_162_1
e_1_2_12_27_1
e_1_2_12_101_1
e_1_2_12_147_1
e_1_2_12_124_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_99_1
e_1_2_12_15_1
e_1_2_12_91_1
References_xml – volume: 6
  start-page: 222
  issue: 1
  year: 2019
  article-title: Tracking vegetation phenology across diverse biomes using Version 2.0 of the PhenoCam Dataset
  publication-title: Scientific Data
– volume: 83
  start-page: 135
  year: 2002
  end-page: 148
  article-title: First operational BRDF, albedo nadir reflectance products from MODIS
  publication-title: Remote Sensing of Environment
– volume: 22
  start-page: 357
  issue: 7
  year: 2007
  end-page: 365
  article-title: Shifting plant phenology in response to global change
  publication-title: Trends in Ecology & Evolution
– volume: 102
  start-page: 1016
  issue: 5
  year: 2021
  end-page: 1032
  article-title: Outlook for exploiting artificial intelligence in the earth and environmental sciences
  publication-title: Bulletin of the American Meteorological Society
– volume: 4
  start-page: 598
  issue: 7
  year: 2014
  end-page: 604
  article-title: Net carbon uptake has increased through warming‐induced changes in temperate forest phenology
  publication-title: Nature Climate Change
– volume: 4
  year: 2021
  article-title: Usefulness of social sensing using text mining of tweets for detection of autumn phenology
  publication-title: Frontiers in Forests and Global Change
– volume: 44
  start-page: 5101
  issue: 39
  year: 2010
  end-page: 5111
  article-title: Forecasting daily pollen concentrations using data‐driven modeling methods in Thessaloniki, Greece
  publication-title: Atmospheric Environment
– volume: 213
  start-page: 1945
  issue: 4
  year: 2017
  end-page: 1955
  article-title: Climate drives shifts in grass reproductive phenology across the western USA
  publication-title: New Phytologist
– volume: 6
  start-page: 6911
  year: 2015
  article-title: Leaf onset in the northern hemisphere triggered by daytime temperature
  publication-title: Nature Communications
– volume: 58
  start-page: 521
  issue: 4
  year: 2013
  end-page: 528
  article-title: The spatial pattern of leaf phenology and its response to climate change in China
  publication-title: International Journal of Biometeorology
– volume: 217
  start-page: 1507
  issue: 4
  year: 2018
  end-page: 1520
  article-title: Biological processes dominate seasonality of remotely sensed canopy greenness in an Amazon evergreen forest
  publication-title: New Phytologist
– volume: 189–190
  start-page: 71
  year: 2014
  end-page: 80
  article-title: Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai–Tibetan Plateau
  publication-title: Agricultural and Forest Meteorology
– volume: 165
  start-page: 104
  year: 2012
  end-page: 113
  article-title: Spring vegetation green‐up date in China inferred from SPOT NDVI data: A multiple model analysis
  publication-title: Agricultural and Forest Meteorology
– volume: 260
  year: 2021
  article-title: Calibrating vegetation phenology from Sentinel‐2 using eddy covariance, PhenoCam, and PEP725 networks across Europe
  publication-title: Remote Sensing of Environment
– volume: 22
  start-page: 994
  issue: 8
  year: 2013
  end-page: 1006
  article-title: Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn
  publication-title: Global Ecology and Biogeography
– volume: 247
  start-page: 280
  year: 2017
  end-page: 292
  article-title: On the relationship between continuous measures of canopy greenness derived using near‐surface remote sensing and satellite‐derived vegetation products
  publication-title: Agricultural and Forest Meteorology
– volume: 242
  start-page: 33
  year: 2017
  end-page: 46
  article-title: Intercomparison and evaluation of spring phenology products using National Phenology Network and AmeriFlux observations in the contiguous United States
  publication-title: Agricultural and Forest Meteorology
– volume: 665
  start-page: 620
  year: 2019
  end-page: 631
  article-title: Contrasting wheat phenological responses to climate change in global scale
  publication-title: Science of the Total Environment
– volume: 52
  start-page: 234
  issue: 1
  year: 2013
  end-page: 249
  article-title: Land surface phenology and land surface temperature changes along an urban‐rural gradient in Yangtze River Delta, China
  publication-title: Environment Management
– volume: 149
  start-page: 256
  issue: 2
  year: 2009
  end-page: 262
  article-title: Predicting the start and peak dates of the Poaceae pollen season in Spain using process‐based models
  publication-title: Agricultural and Forest Meteorology
– volume: 220
  start-page: 141
  year: 2016
  end-page: 150
  article-title: Phenopix: A R package for image‐based vegetation phenology
  publication-title: Agricultural and Forest Meteorology
– volume: 365
  start-page: 3149
  issue: 1555
  year: 2010
  end-page: 3160
  article-title: Why does phenology drive species distribution?
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 21
  start-page: 2687
  issue: 7
  year: 2015
  end-page: 2697
  article-title: Increased heat requirement for leaf flushing in temperate woody species over 1980–2012: Effects of chilling, precipitation and insolation
  publication-title: Global Change Biology
– volume: 9
  start-page: 970
  issue: 9
  year: 2017
  article-title: Impacts of urbanization on vegetation phenology over the past three decades in Shanghai, China
  publication-title: Remote Sensing
– volume: 26
  start-page: 4042
  issue: 7
  year: 2020
  end-page: 4055
  article-title: Interactive climate factors restrict future increases in spring productivity of temperate and boreal trees
  publication-title: Global Change Biology
– volume: 150
  start-page: 1203
  issue: 9
  year: 2010
  end-page: 1210
  article-title: A method for producing airborne pollen source inventories: An example of Ambrosia (ragweed) on the Pannonian Plain
  publication-title: Agricultural and Forest Meteorology
– volume: 323
  year: 2022
  article-title: Evergreen broadleaf greenness and its relationship with leaf flushing, aging, and water fluxes
  publication-title: Agricultural and Forest Meteorology
– volume: 99
  year: 2021
  article-title: Spatiotemporal image fusion in Google Earth Engine for annual estimates of land surface phenology in a heterogenous landscape
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 152
  start-page: 159
  year: 2012
  end-page: 177
  article-title: Digital repeat photography for phenological research in forest ecosystems
  publication-title: Agricultural and Forest Meteorology
– volume: 315
  year: 2022
  article-title: Earlier snowmelt predominates advanced spring vegetation greenup in Alaska
  publication-title: Agricultural and Forest Meteorology
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 14
  article-title: Mapping crop phenology in near real‐time using satellite remote sensing: Challenges and opportunities
  publication-title: Journal of Remote Sensing
– volume: 41
  start-page: 1
  issue: 1
  year: 2021
  end-page: 16
  article-title: Global climate change and pollen aeroallergens: A southern hemisphere perspective
  publication-title: Immunology and Allergy Clinics
– volume: 10
  start-page: 1293
  issue: 8
  year: 2018
  article-title: Using near‐infrared‐enabled digital repeat photography to track structural and physiological phenology in mediterranean tree–grass ecosystems
  publication-title: Remote Sensing
– volume: 240
  start-page: 78
  year: 2017
  end-page: 89
  article-title: Timing of cherry tree blooming: Contrasting effects of rising winter low temperatures and early spring temperatures
  publication-title: Agricultural and Forest Meteorology
– volume: 2
  start-page: 742
  issue: 10
  year: 2012
  end-page: 746
  article-title: Soil‐mediated effects of subambient to increased carbon dioxide on grassland productivity
  publication-title: Nature Climate Change
– volume: 155
  start-page: 157
  year: 2018
  end-page: 166
  article-title: Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery
  publication-title: Computers and Electronics in Agriculture
– volume: 9
  start-page: 1128
  issue: 7
  year: 2006
  end-page: 1144
  article-title: Response of net ecosystem productivity of three boreal forest stands to drought
  publication-title: Ecosystems
– volume: 13
  start-page: 5085
  issue: 17
  year: 2016
  end-page: 5102
  article-title: Reviews and syntheses: Australian vegetation phenology: New insights from satellite remote sensing and digital repeat photography
  publication-title: Biogeosciences
– volume: 9
  start-page: 914
  issue: 9
  year: 2016
  article-title: Land surface phenology and seasonality using cool earthlight in croplands of eastern Africa and the linkages to crop production
  publication-title: Remote Sensing
– volume: 560
  start-page: 368
  issue: 7718
  year: 2018
  end-page: 371
  article-title: Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures
  publication-title: Nature
– volume: 176
  start-page: 152
  year: 2016
  end-page: 162
  article-title: Improved modeling of land surface phenology using MODIS land surface reflectance and temperature at evergreen needleleaf forests of central North America
  publication-title: Remote Sensing of Environment
– volume: 3
  start-page: 667
  issue: 8
  year: 2021
  end-page: 674
  article-title: Towards neural Earth system modelling by integrating artificial intelligence in Earth system science
  publication-title: Nature Machine Intelligence
– volume: 30
  start-page: 211
  issue: 2
  year: 2015
  end-page: 223
  article-title: Review: Development of an in situ observation network for terrestrial ecological remote sensing: The Phenological Eyes Network (PEN)
  publication-title: Ecological Research
– volume: 255
  year: 2021
  article-title: Satellite prediction of forest flowering phenology
  publication-title: Remote Sensing of Environment
– volume: 633
  start-page: 441
  year: 2018
  end-page: 451
  article-title: Dynamic ecological observations from satellites inform aerobiology of allergenic grass pollen
  publication-title: Science of the Total Environment
– volume: 10
  start-page: 541
  issue: 1
  year: 2013
  end-page: 554
  article-title: Identifying urban sources as cause of elevated grass pollen concentrations using GIS and remote sensing
  publication-title: Biogeosciences
– volume: 84
  start-page: 134
  year: 2016
  end-page: 139
  article-title: A smart classifier for extracting environmental data from digital image time‐series: Applications for PhenoCam data in a tidal salt marsh
  publication-title: Environmental Modelling & Software
– volume: 151
  start-page: 916
  issue: 7
  year: 2011
  end-page: 926
  article-title: Tracking the structural and functional development of a perennial pepperweed ( L.) infestation using a multi‐year archive of webcam imagery and eddy covariance measurements
  publication-title: Agricultural and Forest Meteorology
– volume: 23
  start-page: 2818
  issue: 7
  year: 2016
  end-page: 2830
  article-title: Response of vegetation phenology to urbanization in the conterminous United States
  publication-title: Global Change Biology
– volume: 14
  start-page: 84
  issue: 2
  year: 2016
  end-page: 93
  article-title: Using PhenoCams to monitor our changing Earth: Toward a Global PhenoCam Network
  publication-title: Frontiers in Ecology and the Environment
– volume: 21
  start-page: 423
  year: 1990
  end-page: 447
  article-title: The ecology and economics of storage in plants
  publication-title: Annual Review of Ecology and Systematics
– volume: 39
  start-page: 1277
  issue: 8
  year: 2019
  end-page: 1284
  article-title: Nutrient availability alters the correlation between spring leaf‐out and autumn leaf senescence dates
  publication-title: Tree Physiology
– volume: 22
  start-page: 3702
  issue: 11
  year: 2016
  end-page: 3711
  article-title: Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology
  publication-title: Global Change Biology
– volume: 151
  start-page: 1325
  issue: 10
  year: 2011
  end-page: 1337
  article-title: Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO uptake
  publication-title: Agricultural and Forest Meteorology
– volume: 249
  year: 2020
  article-title: Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States
  publication-title: Remote Sensing of Environment
– volume: 365
  start-page: 3227
  issue: 1555
  year: 2010
  end-page: 3246
  article-title: Influence of spring and autumn phenological transitions on forest ecosystem productivity
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 6
  start-page: 836
  issue: 9
  year: 2016
  end-page: 843
  article-title: Key ecological responses to nitrogen are altered by climate change
  publication-title: Nature Climate Change
– volume: 190
  start-page: 318
  year: 2017
  end-page: 330
  article-title: Exploration of scaling effects on coarse resolution land surface phenology
  publication-title: Remote Sensing of Environment
– volume: 119
  start-page: 424
  issue: 3
  year: 2020
  article-title: Prospective applications of artificial intelligence/machine learning techniques in earth sciences
  publication-title: Current Science
– volume: 180
  start-page: 29
  year: 2021
  end-page: 44
  article-title: Improving the accuracy of spring phenology detection by optimally smoothing satellite vegetation index time series based on local cloud frequency
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 14
  start-page: 6179
  year: 2021
  end-page: 6193
  article-title: Optimal color composition method for generating high‐quality daily photographic time series from PhenoCam
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 237
  year: 2020
  article-title: A review of vegetation phenological metrics extraction using time‐series, multispectral satellite data
  publication-title: Remote Sensing of Environment
– volume: 141
  start-page: 194
  issue: 2
  year: 2004
  end-page: 210
  article-title: Modifying the ‘pulse–reserve’ paradigm for deserts of North America: Precipitation pulses, soil water, and plant responses
  publication-title: Oecologia
– volume: 308–309
  year: 2021
  article-title: Combined control of multiple extreme climate stressors on autumn vegetation phenology on the Tibetan Plateau under past and future climate change
  publication-title: Agricultural and Forest Meteorology
– volume: 7
  start-page: 3373
  issue: 8
  year: 2014
  end-page: 3379
  article-title: Mapping Asian cropping intensity with MODIS
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 38
  start-page: 259
  issue: 1
  year: 1995
  end-page: 269
  article-title: Color indices for weed identification under various soil, residue, and lighting conditions
  publication-title: American Society of Agricultural Engineers
– start-page: 1
  year: 2022
  end-page: 16
  article-title: Divergent responses of autumn vegetation phenology to climate extremes over northern middle and high latitudes
  publication-title: Global Ecology and Biogeography
– volume: 16
  start-page: 1883
  issue: 9
  year: 2019
  end-page: 1901
  article-title: N:P stoichiometry and habitat effects on Mediterranean savanna seasonal root dynamics
  publication-title: Biogeosciences
– volume: 538
  start-page: 672
  year: 2015
  end-page: 682
  article-title: Effect of land uses and wind direction on the contribution of local sources to airborne pollen
  publication-title: Science of the Total Environment
– volume: 9
  start-page: 1271
  issue: 12
  year: 2017
  article-title: Performance of smoothing methods for reconstructing NDVI time‐series and estimating vegetation phenology from MODIS data
  publication-title: Remote Sensing
– volume: 84
  start-page: 471
  year: 2003
  end-page: 475
  article-title: Monitoring vegetation phenology using MODIS
  publication-title: Remote Sensing of Environment
– volume: 15
  start-page: 104086
  issue: 10
  year: 2020
  article-title: Understanding the role of phenology and summer physiology in controlling net ecosystem production: a multiscale comparison of satellite, PhenoCam and eddy covariance data
  publication-title: Environmental Research Letters
– volume: 113
  start-page: 5880
  issue: 21
  year: 2016
  end-page: 5885
  article-title: Warm spring reduced carbon cycle impact of the 2012 US summer drought
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 256–257
  start-page: 116
  year: 2018
  end-page: 124
  article-title: Productivity of an Australian mountain grassland is limited by temperature and dryness despite long growing seasons
  publication-title: Agricultural and Forest Meteorology
– volume: 196
  year: 2022
  article-title: Monitoring crop phenology with street‐level imagery using computer vision
  publication-title: Computers and Electronics in Agriculture
– volume: 50
  start-page: 233
  issue: 4
  year: 2006
  end-page: 242
  article-title: A 30‐day‐ahead forecast model for grass pollen in north London, United Kingdom
  publication-title: International Journal of Biometeorology
– volume: 265
  start-page: 327
  year: 2019
  end-page: 337
  article-title: Monitoring crop phenology using a smartphone based near‐surface remote sensing approach
  publication-title: Agricultural and Forest Meteorology
– volume: 371
  start-page: 6533
  year: 2021
  article-title: Comment on “Increased growing‐season productivity drives earlier autumn leaf senescence in temperate trees”
  publication-title: Science
– volume: 14
  issue: 3
  year: 2016
  article-title: Remotely sensed high‐resolution global cloud dynamics for predicting ecosystem and biodiversity distributions
  publication-title: PLoS Biology
– volume: 282
  start-page: 95
  year: 2019
  end-page: 103
  article-title: A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi‐spectral UAV platform
  publication-title: Plant Science
– volume: 25
  start-page: 641
  year: 2005
  end-page: 650
  article-title: Responses of deciduous forest trees to severe drought in Central Europe
  publication-title: Tree Physiology
– volume: 83
  start-page: 62
  year: 2014
  end-page: 71
  article-title: Ragweed pollen source inventory for France—The second largest centre of Ambrosia in Europe
  publication-title: Atmospheric Environment
– volume: 126
  issue: 5
  year: 2021
  article-title: How nitrogen and phosphorus availability change water use efficiency in a mediterranean savanna ecosystem
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 256–257
  start-page: 137
  year: 2018
  end-page: 149
  article-title: Evaluation of land surface phenology from VIIRS data using time series of PhenoCam imagery
  publication-title: Agricultural and Forest Meteorology
– volume: 788
  year: 2021
  article-title: Enhanced spatiotemporal heterogeneity and the climatic and biotic controls of autumn phenology in northern grasslands
  publication-title: Science of the Total Environment
– volume: 499
  start-page: 324
  issue: 7458
  year: 2013
  end-page: 327
  article-title: Increase in forest water‐use efficiency as atmospheric carbon dioxide concentrations rise
  publication-title: Nature
– volume: 161
  start-page: 37
  year: 2020
  end-page: 51
  article-title: Development and evaluation of a new algorithm for detecting 30 m land surface phenology from VIIRS and HLS time series
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 39
  start-page: 123
  year: 2017
  end-page: 129
  article-title: Developing an integrated cloud‐based spatial‐temporal system for monitoring phenology
  publication-title: Ecological Informatics
– volume: 11
  start-page: 1398
  issue: 12
  year: 2019
  article-title: Interaction of seasonal sun‐angle and Savanna phenology observed and modelled using MODIS
  publication-title: Remote Sensing
– volume: 165
  start-page: 351
  issue: 2
  year: 2005
  end-page: 371
  article-title: What have we learned from 15 years of free‐air CO enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO
  publication-title: New Phytologist
– volume: 169
  start-page: 156
  year: 2013
  end-page: 173
  article-title: Climate change, phenology, and phenological control of vegetation feedbacks to the climate system
  publication-title: Agricultural and Forest Meteorology
– volume: 231
  start-page: 987
  issue: 3
  year: 2021
  end-page: 995
  article-title: Late spring freezes coupled with warming winters alter temperate tree phenology and growth
  publication-title: New Phytologist
– volume: 13
  start-page: 307
  issue: 2
  year: 2021
  article-title: Mangrove phenology and water influences measured with digital repeat photography
  publication-title: Remote Sensing
– volume: 4
  start-page: 7483
  year: 2014
  article-title: How is water‐use efficiency of terrestrial ecosystems distributed and changing on Earth?
  publication-title: Scientific Reports
– volume: 8
  start-page: 502
  issue: 6
  year: 2016
  article-title: Synergistic use of citizen science and remote sensing for continental‐scale measurements of forest tree phenology
  publication-title: Remote Sensing
– volume: 130
  start-page: 246
  year: 2017
  end-page: 255
  article-title: Predicting grain yield in rice using multi‐temporal vegetation indices from UAV‐based multispectral and digital imagery
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 26
  start-page: 4379
  issue: 8
  year: 2020
  end-page: 4400
  article-title: Nutrients and water availability constrain the seasonality of vegetation activity in a Mediterranean ecosystem
  publication-title: Global Change Biology
– volume: 25
  start-page: 99
  issue: 1
  year: 2015
  end-page: 115
  article-title: Greenness indices from digital cameras predict the timing and seasonal dynamics of canopy‐scale photosynthesis
  publication-title: Ecological Applications
– volume: 58
  start-page: 115
  year: 2007
  end-page: 136
  article-title: Leaf senescence
  publication-title: Annual Review of Plant Biology
– volume: 294
  year: 2020
  article-title: Investigating the urban‐induced microclimate effects on winter wheat spring phenology using Sentinel‐2 time series
  publication-title: Agricultural and Forest Meteorology
– volume: 12
  start-page: 117
  issue: 1
  year: 2020
  article-title: Coarse‐resolution satellite images overestimate urbanization effects on vegetation spring phenology
  publication-title: Remote Sensing
– volume: 234
  start-page: 1654
  issue: 5
  year: 2022
  end-page: 1663
  article-title: Trait phenology and fire seasonality co‐drive seasonal variation in fire effects on tree crowns
  publication-title: New Phytologist
– volume: 91
  start-page: 332
  issue: 3–4
  year: 2004
  end-page: 344
  article-title: A simple method for reconstructing a high‐quality NDVI time‐series data set based on the Savitzky–Golay filter
  publication-title: Remote Sensing of Environment
– volume: 32
  start-page: 1218
  issue: 4
  year: 2007
  end-page: 1225
  article-title: Forecasting airborne pollen concentration time series with neural and neuro‐fuzzy models
  publication-title: Expert Systems with Applications
– volume: 30
  start-page: 2061
  issue: 8
  year: 2009
  end-page: 2074
  article-title: Sensitivity of vegetation phenology detection to the temporal resolution of satellite data
  publication-title: International Journal of Remote Sensing
– volume: 21
  issue: 3
  year: 2007
  article-title: Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades
  publication-title: Global Biogeochemical Cycles
– volume: 578
  start-page: 586
  year: 2017
  end-page: 600
  article-title: Mapping the birch and grass pollen seasons in the UK using satellite sensor time‐series
  publication-title: Science of the Total Environment
– volume: 282
  year: 2022
  article-title: Estimating the maize above‐ground biomass by constructing the tridimensional concept model based on UAV‐based digital and multi‐spectral images
  publication-title: Field Crops Research
– volume: 159
  year: 2022
  article-title: A review of Earth Artificial Intelligence
  publication-title: Computers and Geosciences
– volume: 14
  start-page: 10500
  year: 2021
  end-page: 10508
  article-title: Impacts of satellite revisit frequency on spring phenology monitoring of deciduous broad‐leaved forests based on vegetation index time series
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 16
  start-page: 3065
  issue: 15
  year: 2002
  end-page: 3077
  article-title: Variability and trends in the annual snow‐cover cycle in Northern Hemisphere land areas, 1972–2000
  publication-title: Hydrological Processes
– volume: 9
  start-page: 99
  issue: 1
  year: 2017
  article-title: Modeling the effects of the urban built‐up environment on plant phenology using fused satellite data
  publication-title: Remote Sensing
– volume: 8
  start-page: 1532
  year: 2017
  article-title: Multi‐spectral imaging from an unmanned aerial vehicle enables the assessment of seasonal leaf area dynamics of sorghum breeding lines
  publication-title: Frontiers in Plant Science
– volume: 720
  year: 2020
  article-title: Using crowd‐sourced allergic rhinitis symptom data to improve grass pollen forecasts and predict individual symptoms
  publication-title: Science of the Total Environment
– volume: 9
  start-page: 1288
  issue: 12
  year: 2017
  article-title: Uncertainty of remote sensing data in monitoring vegetation phenology: A comparison of MODIS C and C vegetation index products on the Tibetan Plateau
  publication-title: Remote Sensing
– volume: 131
  year: 2021
  article-title: Monitoring agroecosystem productivity and phenology at a national scale: A metric assessment framework
  publication-title: Ecological Indicators
– volume: 14
  start-page: 1296
  issue: 5
  year: 2022
  article-title: Land surface phenology retrieval through spectral and angular harmonization of Landsat‐8, Sentinel‐2 and Gaofen‐1 data
  publication-title: Remote Sensing
– volume: 7
  issue: 8
  year: 2016
  article-title: Emerging opportunities and challenges in phenology: A review
  publication-title: Ecosphere
– year: 2022
– volume: 12
  start-page: 2195
  year: 2019
  end-page: 2214
  article-title: Development and evaluation of pollen source methodologies for the Victorian Grass Pollen Emissions Module VGPEM1.0
  publication-title: Geoscientific Model Development
– volume: 506
  start-page: 221
  year: 2014
  end-page: 224
  article-title: Amazon forests maintain consistent canopy structure and greenness during the dry season
  publication-title: Nature
– volume: 63
  start-page: 763
  issue: 6
  year: 2019
  end-page: 775
  article-title: New satellite‐based estimates show significant trends in spring phenology and complex sensitivities to temperature and precipitation at northern European latitudes
  publication-title: International Journal of Biometeorology
– volume: 5
  year: 2018
  article-title: Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery
  publication-title: Scientific Data
– volume: 12
  start-page: 6879
  year: 2021
  article-title: Carbon response of tundra ecosystems to advancing greenup and snowmelt in Alaska
  publication-title: Nature Communications
– volume: 8
  start-page: 524
  issue: 7
  year: 2016
  article-title: Mapping presence and predicting phenological status of invasive buffelgrass in Southern Arizona using MODIS, climate and citizen science observation data
  publication-title: Remote Sensing
– volume: 510
  start-page: 259
  issue: 7504
  year: 2014
  end-page: 262
  article-title: Elevated CO further lengthens growing season under warming conditions
  publication-title: Nature
– volume: 262
  start-page: 258
  year: 2018
  end-page: 278
  article-title: Drivers of spatio‐temporal variability of carbon dioxide and energy fluxes in a Mediterranean savanna ecosystem
  publication-title: Agricultural and Forest Meteorology
– volume: 171
  start-page: 330
  year: 2021
  end-page: 347
  article-title: Land surface phenology as indicator of global terrestrial ecosystem dynamics: A systematic review
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 13
  start-page: 1597
  issue: 8
  year: 2021
  article-title: Assessing forest phenology: A multi‐scale comparison of near‐surface (UAV, spectral reflectance sensor, PhenoCam) and satellite (MODIS, Sentinel‐2) remote sensing
  publication-title: Remote Sensing
– volume: 183
  start-page: 19
  year: 2022
  end-page: 33
  article-title: Monitoring leaf phenology in moist tropical forests by applying a superpixel‐based deep learning method to time‐series images of tree canopies
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 8
  start-page: 13151
  year: 2020
  end-page: 13160
  article-title: Leveraging artificial intelligence for large‐scale plant phenology studies from noisy time‐lapse images
  publication-title: IEEE Access
– volume: 63
  start-page: 1237
  issue: 9
  year: 2020
  end-page: 1247
  article-title: Progress in plant phenology modeling under global climate change
  publication-title: Science China Earth Sciences
– volume: 15
  issue: 9
  year: 2020
  article-title: Satellite‐observed decrease in the sensitivity of spring phenology to climate change under high nitrogen deposition
  publication-title: Environmental Research Letters
– volume: 18
  start-page: 76
  issue: 2
  year: 2019
  end-page: 82
  article-title: Crowd‐sourced data reveal social‐ecological mismatches in phenology driven by climate
  publication-title: Frontiers in Ecology and the Environment
– volume: 515
  start-page: 398
  issue: 7527
  year: 2014
  end-page: 401
  article-title: Direct human influence on atmospheric CO seasonality from increased cropland productivity
  publication-title: Nature
– volume: 11
  start-page: 4305
  issue: 16
  year: 2014
  end-page: 4320
  article-title: Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery
  publication-title: Biogeosciences
– volume: 3
  start-page: 95
  issue: 2–3
  year: 2008
  end-page: 111
  article-title: War, drought, and phenology: Changes in the land surface phenology of Afghanistan since 1982
  publication-title: Journal of Land Use Science
– volume: 13
  issue: 1
  year: 2022
  article-title: Exploring discrepancies between in situ phenology and remotely derived phenometrics at NEON sites
  publication-title: Ecosphere
– volume: 222
  start-page: 1742
  issue: 4
  year: 2019
  end-page: 1750
  article-title: Tracking seasonal rhythms of plants in diverse ecosystems with digital camera imagery
  publication-title: New Phytologist
– volume: 8
  issue: 2
  year: 2013
  article-title: Earlier springs decrease peak summer productivity in North American boreal forests
  publication-title: Environmental Research Letters
– volume: 28
  start-page: 3083
  issue: 9
  year: 2022
  end-page: 3093
  article-title: No evidence for a negative effect of growing season photosynthesis on leaf senescence timing
  publication-title: Global Change Biology
– volume: 208
  start-page: 121
  year: 2017
  end-page: 126
  article-title: Lessons from citizen science: Assessing volunteer‐collected plant phenology data with Mountain Watch
  publication-title: Biological Conservation
– volume: 599–600
  start-page: 483
  year: 2017
  end-page: 499
  article-title: Mapping allergenic pollen vegetation in UK to study environmental exposure and human health
  publication-title: Science of the Total Environment
– volume: 237–238
  start-page: 311
  year: 2017
  end-page: 325
  article-title: Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales
  publication-title: Agricultural and Forest Meteorology
– start-page: 9
  year: 2022
  end-page: 16
– volume: 25
  start-page: 1922
  issue: 6
  year: 2019
  end-page: 1940
  article-title: Plant phenology and global climate change: Current progresses and challenges
  publication-title: Global Change Biology
– volume: 97
  year: 2021
  article-title: Trail camera networks provide insights into satellite‐derived phenology for ecological studies
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 211
  start-page: 338
  year: 2018
  end-page: 344
  article-title: The mixed pixel effect in land surface phenology: A simulation study
  publication-title: Remote Sensing of Environment
– volume: 54
  start-page: 72
  year: 2017
  end-page: 83
  article-title: Phenology from Landsat when data is scarce: Using MODIS and Dynamic Time‐Warping to combine multi‐year Landsat imagery to derive annual phenology curves
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 365
  start-page: 2047
  issue: 1549
  year: 2010
  end-page: 2056
  article-title: A global comparison of grassland biomass responses to CO and nitrogen enrichment
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 132
  start-page: 185
  year: 2017
  end-page: 198
  article-title: Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 9
  issue: 5
  year: 2014
  article-title: A tale of two springs: Using recent climate anomalies to characterize the sensitivity of temperate forest phenology to climate change
  publication-title: Environmental Research Letters
– start-page: 5429
  year: 2019
  end-page: 5432
– volume: 480
  year: 2021
  article-title: Remote sensing of temperate and boreal forest phenology: A review of progress, challenges and opportunities in the intercomparison of in‐situ and satellite phenological metrics
  publication-title: Forest Ecology and Management
– volume: 26
  start-page: 889
  issue: 7
  year: 2006
  end-page: 898
  article-title: Climate warming and the risk of frost damage to boreal forest trees: Identification of critical ecophysiological traits
  publication-title: Tree Physiology
– volume: 11
  start-page: 6993
  issue: 11
  year: 2021
  end-page: 7002
  article-title: Agriculture is adapting to phenological shifts caused by climate change, but grassland songbirds are not
  publication-title: Ecology and Evolution
– volume: 266
  year: 2021
  article-title: Multiscale assessment of land surface phenology from harmonized Landsat 8 and Sentinel‐2, PlanetScope, and PhenoCam imagery
  publication-title: Remote Sensing of Environment
– volume: 9
  start-page: 1276
  issue: 5
  year: 2018
  end-page: 1285
  article-title: An integrated phenology modelling framework in R
  publication-title: Methods in Ecology and Evolution
– volume: 11
  start-page: 1650
  issue: 14
  year: 2019
  article-title: Sensitivity of seven MODIS vegetation indices to BRDF effects during the Amazonian dry season
  publication-title: Remote Sensing
– volume: 747
  year: 2020
  article-title: Tracking seasonal changes in diversity of pollen allergen exposure: Targeted metabarcoding of a subtropical aerobiome
  publication-title: Science of the Total Environment
– volume: 13
  year: 2022
  article-title: Climate change and phenology
  publication-title: Wiley Interdisciplinary Reviews: Climate Change
– volume: 3
  start-page: 315
  issue: 5
  year: 2010
  end-page: 322
  article-title: Reduction of forest soil respiration in response to nitrogen deposition
  publication-title: Nature Geoscience
– volume: 11
  start-page: 2195
  issue: 19
  year: 2019
  article-title: Investigating the impact of land parcelization on forest composition and structure in Southeastern Ohio using multi‐source remotely sensed data
  publication-title: Remote Sensing
– volume: 104
  start-page: 365
  year: 2019
  end-page: 377
  article-title: Effects of data temporal resolution on phenology extractions from the alpine grasslands of the Tibetan Plateau
  publication-title: Ecological Indicators
– volume: 79
  start-page: 122
  year: 2017
  end-page: 127
  article-title: Water use efficiency in response to interannual variations in flux‐based photosynthetic onset in temperate deciduous broadleaf forests
  publication-title: Ecological Indicators
– volume: 123
  start-page: 400
  year: 2012
  end-page: 417
  article-title: Inter‐comparison of four models for smoothing satellite sensor time‐series data to estimate vegetation phenology
  publication-title: Remote Sensing of Environment
– volume: 9
  start-page: 448
  issue: 1
  year: 2022
  article-title: A high spatial resolution land surface phenology dataset for AmeriFlux and NEON sites
  publication-title: Scientific Data
– volume: 23
  start-page: 1255
  issue: 11
  year: 2014
  end-page: 1263
  article-title: Recent spring phenology shifts in western Central Europe based on multiscale observations
  publication-title: Global Ecology and Biogeography
– volume: 219
  start-page: 145
  year: 2018
  end-page: 161
  article-title: The Harmonized Landsat and Sentinel‐2 surface reflectance product
  publication-title: Remote Sensing of Environment
– volume: 150
  start-page: 1476
  issue: 11
  year: 2010
  end-page: 1484
  article-title: Interannual variation of evapotranspiration from forest and grassland ecosystems in western Canada in relation to drought
  publication-title: Agricultural and Forest Meteorology
– volume: 132
  start-page: 176
  year: 2013
  end-page: 185
  article-title: Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data
  publication-title: Remote Sensing of Environment
– volume: 6
  year: 2016
  article-title: Exogenous N addition enhances the responses of gross primary productivity to individual precipitation events in a temperate grassland
  publication-title: Scientific Reports
– volume: 11
  start-page: 2137
  issue: 18
  year: 2019
  article-title: How does scale effect influence spring vegetation phenology estimated from satellite‐derived vegetation indexes?
  publication-title: Remote Sensing
– volume: 119
  issue: 14
  year: 2022
  article-title: Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 12
  start-page: 300
  issue: 4
  year: 2022
  end-page: 302
  article-title: The great acceleration of plant phenological shifts
  publication-title: Nature Climate Change
– volume: 300
  year: 2021
  article-title: Biophysical drivers of net ecosystem and methane exchange across phenological phases in a tidal salt marsh
  publication-title: Agricultural and Forest Meteorology
– volume: 12
  start-page: 5995
  issue: 20
  year: 2015
  end-page: 6015
  article-title: Interpreting canopy development and physiology using a European phenology camera network at flux sites
  publication-title: Biogeosciences
– volume: 9
  start-page: 664
  issue: 7
  year: 2017
  article-title: Phenology plays an important role in the regulation of terrestrial ecosystem water‐use efficiency in the northern hemisphere
  publication-title: Remote Sensing
– volume: 198
  start-page: 203
  year: 2017
  end-page: 212
  article-title: Disentangling remotely‐sensed plant phenology and snow seasonality at northern Europe using MODIS and the plant phenology index
  publication-title: Remote Sensing of Environment
– volume: 57
  start-page: 249
  year: 2013
  end-page: 258
  article-title: Shifts in spring phenophases, frost events and frost risk for woody plants in temperate China
  publication-title: Climate Research
– volume: 370
  start-page: 1066
  issue: 6520
  year: 2020
  end-page: 1071
  article-title: Increased growing‐season productivity drives earlier autumn leaf senescence in temperate trees
  publication-title: Science
– volume: 14
  start-page: 100
  issue: 1
  year: 2021
  article-title: Comparing time‐lapse PhenoCams with satellite observations across the boreal forest of Quebec, Canada
  publication-title: Remote Sensing
– volume: 222
  start-page: 267
  year: 2019
  end-page: 274
  article-title: Characterizing the relationship between satellite phenology and pollen season: A case study of birch
  publication-title: Remote Sensing of Environment
– volume: 38
  start-page: 26
  year: 2012
  end-page: 35
  article-title: The national ecological observatory network: A large facility observatory poised to expand spatiotemporal scales of inquiry in fisheries science
  publication-title: Fisheries
– volume: 18
  start-page: 566
  issue: 2
  year: 2012
  end-page: 584
  article-title: Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American Carbon Program Site Synthesis
  publication-title: Global Change Biology
– volume: 13
  start-page: 2110
  issue: 10
  year: 2007
  end-page: 2127
  article-title: Photosynthesis drives anomalies in net carbon‐exchange of pine forests at different latitudes
  publication-title: Global Change Biology
– volume: 23
  issue: 2
  year: 2009
  article-title: Temporal and among‐site variability of inherent water use efficiency at the ecosystem level
  publication-title: Global Biogeochemical Cycles
– volume: 689
  start-page: 109
  year: 2019
  end-page: 125
  article-title: Detecting distant sources of airborne pollen for Poland: Integrating back‐trajectory and dispersion modelling with a satellite‐based phenology
  publication-title: Science of the Total Environment
– volume: 534
  start-page: 85
  year: 2015
  end-page: 96
  article-title: Trans‐disciplinary research in synthesis of grass pollen aerobiology and its importance for respiratory health in Australasia
  publication-title: Science of the Total Environment
– volume: 112
  start-page: 1196
  issue: 3
  year: 2008
  end-page: 1211
  article-title: The availability of cloud‐free Landsat ETM+ data over the conterminous United States and globally
  publication-title: Remote Sensing of Environment
– volume: 13
  start-page: 4736
  issue: 23
  year: 2021
  article-title: Characterization of dry‐season phenology in tropical forests by reconstructing cloud‐free Landsat time series
  publication-title: Remote Sensing
– volume: 351
  start-page: 972
  issue: 6276
  year: 2016
  end-page: 976
  article-title: Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests
  publication-title: Science
– volume: 185
  start-page: 129
  year: 2022
  end-page: 145
  article-title: Land surface phenology retrievals for arid and semi‐arid ecosystems
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 319
  start-page: 607
  issue: 5863
  year: 2008
  end-page: 610
  article-title: Prioritizing climate change adaptation needs for food security in 2030
  publication-title: Science
– volume: 143
  start-page: 154
  year: 2014
  end-page: 170
  article-title: Remotely sensed trends in the phenology of northern high latitude terrestrial vegetation, controlling for land cover change and vegetation type
  publication-title: Remote Sensing of Environment
– volume: 21
  start-page: 2634
  issue: 7
  year: 2015
  end-page: 2641
  article-title: The timing of autumn senescence is affected by the timing of spring phenology: Implications for predictive models
  publication-title: Global Change Biology
– volume: 154–155
  start-page: 113
  year: 2012
  end-page: 126
  article-title: An alternative method using digital cameras for continuous monitoring of crop status
  publication-title: Agricultural and Forest Meteorology
– volume: 12
  start-page: 1339
  issue: 8
  year: 2020
  article-title: Sun‐angle effects on remote‐sensing phenology observed and modelled using Himawari‐8
  publication-title: Remote Sensing
– volume: 14
  start-page: 3018
  issue: 13
  year: 2022
  article-title: Comparison of vegetation phenology derived from solar‐induced chlorophyll fluorescence and Enhanced Vegetation Index, and their relationship with climate limitations
  publication-title: Remote Sensing
– ident: e_1_2_12_10_1
  doi: 10.1175/BAMS‐D‐20‐0031.1
– ident: e_1_2_12_48_1
  doi: 10.1111/gcb.12863
– ident: e_1_2_12_77_1
  doi: 10.1038/s41467‐021‐26876‐7
– ident: e_1_2_12_30_1
  doi: 10.1016/j.compag.2022.106866
– ident: e_1_2_12_138_1
  doi: 10.1038/s41586‐018‐0399‐1
– ident: e_1_2_12_149_1
  doi: 10.5194/bg‐10‐541‐2013
– ident: e_1_2_12_57_1
  doi: 10.1007/s00267‐013‐0097‐6
– ident: e_1_2_12_72_1
  doi: 10.1038/nclimate2253
– ident: e_1_2_12_187_1
  doi: 10.1016/j.agrformet.2010.08.003
– ident: e_1_2_12_111_1
  doi: 10.1038/s41597‐022‐01570‐5
– ident: e_1_2_12_197_1
  doi: 10.3390/rs13234736
– ident: e_1_2_12_89_1
  doi: 10.1016/j.jag.2020.102291
– ident: e_1_2_12_150_1
  doi: 10.1016/j.agrformet.2010.05.002
– ident: e_1_2_12_101_1
  doi: 10.3390/rs12081339
– ident: e_1_2_12_33_1
  doi: 10.1080/17474230701786109
– ident: e_1_2_12_2_1
  doi: 10.1111/j.1469‐8137.2004.01224.x
– ident: e_1_2_12_135_1
  doi: 10.1111/j.1365‐2486.2011.02562.x
– ident: e_1_2_12_98_1
  doi: 10.3390/rs10081293
– ident: e_1_2_12_46_1
  doi: 10.1093/treephys/tpz041
– ident: e_1_2_12_169_1
  doi: 10.1016/j.agrformet.2020.108309
– ident: e_1_2_12_196_1
  doi: 10.1016/j.isprsjprs.2017.05.003
– ident: e_1_2_12_38_1
  doi: 10.1029/2020JG006005
– ident: e_1_2_12_119_1
  doi: 10.1126/science.abg1438
– ident: e_1_2_12_42_1
  doi: 10.1038/nclimate1573
– ident: e_1_2_12_192_1
  doi: 10.1016/j.isprsjprs.2020.01.012
– ident: e_1_2_12_121_1
  doi: 10.1016/j.envsoft.2016.06.025
– ident: e_1_2_12_174_1
  doi: 10.1111/geb.13583
– ident: e_1_2_12_7_1
  doi: 10.1016/j.foreco.2020.118663
– ident: e_1_2_12_11_1
  doi: 10.1002/fee.2142
– ident: e_1_2_12_104_1
  doi: 10.1016/j.agrformet.2018.02.030
– ident: e_1_2_12_112_1
  doi: 10.5194/bg‐13‐5085‐2016
– ident: e_1_2_12_41_1
  doi: 10.5194/gmd‐12‐2195‐2019
– ident: e_1_2_12_68_1
  doi: 10.1007/s00484‐019‐01690‐5
– ident: e_1_2_12_69_1
  doi: 10.3390/rs9070664
– ident: e_1_2_12_186_1
  doi: 10.1016/j.rse.2019.111511
– ident: e_1_2_12_145_1
  doi: 10.1016/j.agrformet.2014.01.003
– ident: e_1_2_12_148_1
  doi: 10.1016/j.scitotenv.2020.137351
– ident: e_1_2_12_159_1
  doi: 10.1038/srep07483
– ident: e_1_2_12_23_1
  doi: 10.1098/rstb.2010.0142
– ident: e_1_2_12_175_1
  doi: 10.1088/1748‐9326/aba57f
– ident: e_1_2_12_52_1
  doi: 10.3390/rs9010099
– ident: e_1_2_12_86_1
  doi: 10.1146/annurev.arplant.57.032905.105316
– ident: e_1_2_12_97_1
  doi: 10.1111/gcb.15138
– ident: e_1_2_12_109_1
  doi: 10.1016/j.agrformet.2011.05.012
– ident: e_1_2_12_85_1
  doi: 10.1016/j.rse.2018.12.036
– ident: e_1_2_12_67_1
  doi: 10.1016/j.rse.2017.06.015
– ident: e_1_2_12_194_1
  doi: 10.3390/rs9121288
– ident: e_1_2_12_19_1
  doi: 10.1111/nph.17416
– volume: 119
  start-page: 424
  issue: 3
  year: 2020
  ident: e_1_2_12_107_1
  article-title: Prospective applications of artificial intelligence/machine learning techniques in earth sciences
  publication-title: Current Science
– ident: e_1_2_12_21_1
  doi: 10.1016/j.rse.2004.03.014
– ident: e_1_2_12_74_1
  doi: 10.1111/gcb.12890
– ident: e_1_2_12_6_1
  doi: 10.1029/2008GB003233
– ident: e_1_2_12_53_1
  doi: 10.1109/JSTARS.2014.2344630
– ident: e_1_2_12_115_1
  doi: 10.3389/ffgc.2021.659910
– ident: e_1_2_12_127_1
  doi: 10.1038/ncomms7911
– ident: e_1_2_12_54_1
  doi: 10.1038/nature13957
– ident: e_1_2_12_66_1
  doi: 10.1016/j.rse.2013.11.020
– ident: e_1_2_12_134_1
  doi: 10.1111/nph.15591
– ident: e_1_2_12_143_1
  doi: 10.1016/S0034‐4257(02)00091‐3
– ident: e_1_2_12_58_1
  doi: 10.1093/treephys/26.7.889
– ident: e_1_2_12_162_1
  doi: 10.1016/j.rse.2021.112456
– ident: e_1_2_12_75_1
  doi: 10.3390/rs14010100
– ident: e_1_2_12_172_1
  doi: 10.3390/rs8070524
– ident: e_1_2_12_95_1
  doi: 10.3390/rs14051296
– ident: e_1_2_12_79_1
  doi: 10.5194/bg‐11‐4305‐2014
– ident: e_1_2_12_70_1
  doi: 10.1016/j.ecolind.2017.04.006
– ident: e_1_2_12_110_1
  doi: 10.1016/j.rse.2021.112716
– ident: e_1_2_12_12_1
  doi: 10.1016/j.agrformet.2017.08.012
– ident: e_1_2_12_34_1
  doi: 10.1016/j.scitotenv.2018.03.191
– ident: e_1_2_12_39_1
  doi: 10.1016/j.agrformet.2018.07.010
– ident: e_1_2_12_36_1
  doi: 10.1002/ecs2.3912
– ident: e_1_2_12_82_1
  doi: 10.1016/j.agrformet.2021.108571
– ident: e_1_2_12_142_1
  doi: 10.1016/j.eswa.2006.02.011
– ident: e_1_2_12_29_1
  doi: 10.1007/s00484‐013‐0679‐2
– ident: e_1_2_12_153_1
  doi: 10.3390/rs13020307
– ident: e_1_2_12_14_1
  doi: 10.1016/j.ecolind.2021.108147
– ident: e_1_2_12_179_1
  doi: 10.13031/2013.27838
– ident: e_1_2_12_167_1
  doi: 10.1890/14‐0005.1
– ident: e_1_2_12_114_1
  doi: 10.1111/nph.14327
– ident: e_1_2_12_158_1
  doi: 10.1002/ecs2.1436
– ident: e_1_2_12_137_1
  doi: 10.1038/sdata.2018.28
– ident: e_1_2_12_9_1
  doi: 10.1016/j.scitotenv.2019.06.348
– ident: e_1_2_12_40_1
  doi: 10.3390/rs8060502
– ident: e_1_2_12_27_1
  doi: 10.1016/j.ecoinf.2017.04.007
– ident: e_1_2_12_63_1
  doi: 10.1002/wcc.764
– ident: e_1_2_12_24_1
  doi: 10.1016/j.rse.2018.09.002
– ident: e_1_2_12_22_1
  doi: 10.1016/j.rse.2018.04.030
– ident: e_1_2_12_157_1
  doi: 10.1016/j.cageo.2022.105034
– ident: e_1_2_12_152_1
  doi: 10.1016/j.isprsjprs.2021.10.023
– ident: e_1_2_12_92_1
  doi: 10.1088/1748‐9326/abb32f
– ident: e_1_2_12_43_1
  doi: 10.1016/J.AGRFORMET.2016.01.006
– ident: e_1_2_12_154_1
  doi: 10.1016/j.agrformet.2011.02.011
– ident: e_1_2_12_35_1
  doi: 10.1016/j.rse.2020.112197
– ident: e_1_2_12_4_1
  doi: 10.1016/j.rse.2012.04.001
– ident: e_1_2_12_8_1
  doi: 10.1111/nph.18047
– ident: e_1_2_12_90_1
  doi: 10.1111/gcb.13311
– ident: e_1_2_12_15_1
  doi: 10.1088/1748‐9326/8/2/024027
– ident: e_1_2_12_181_1
  doi: 10.1111/geb.12044
– ident: e_1_2_12_166_1
  doi: 10.3390/rs12010117
– ident: e_1_2_12_37_1
  doi: 10.1002/hyp.1089
– ident: e_1_2_12_130_1
  doi: 10.1016/j.scitotenv.2021.147806
– ident: e_1_2_12_60_1
  doi: 10.1109/IGARSS.2019.8898796
– ident: e_1_2_12_91_1
  doi: 10.1016/j.agrformet.2017.02.026
– ident: e_1_2_12_198_1
  doi: 10.3390/rs11192195
– ident: e_1_2_12_123_1
  doi: 10.1016/j.isprsjprs.2017.09.002
– ident: e_1_2_12_171_1
  doi: 10.1016/j.atmosenv.2010.09.006
– ident: e_1_2_12_136_1
  doi: 10.1098/rstb.2010.0102
– ident: e_1_2_12_183_1
  doi: 10.1111/nph.14939
– ident: e_1_2_12_144_1
  doi: 10.1038/s41597‐019‐0229‐9
– ident: e_1_2_12_26_1
  doi: 10.1016/j.agrformet.2012.06.009
– ident: e_1_2_12_78_1
  doi: 10.1007/s10021‐007‐9088‐x
– ident: e_1_2_12_126_1
  doi: 10.1111/gcb.14619
– ident: e_1_2_12_16_1
  doi: 10.3390/rs9121271
– ident: e_1_2_12_84_1
  doi: 10.1111/gcb.13562
– ident: e_1_2_12_178_1
– ident: e_1_2_12_99_1
  doi: 10.1016/j.agrformet.2022.109060
– ident: e_1_2_12_177_1
  doi: 10.5194/bg‐12‐5995‐2015
– ident: e_1_2_12_45_1
  doi: 10.1007/s11430‐019‐9622‐2
– ident: e_1_2_12_164_1
  doi: 10.1016/j.agrformet.2020.108153
– ident: e_1_2_12_103_1
  doi: 10.1016/j.biocon.2016.07.027
– ident: e_1_2_12_47_1
  doi: 10.1111/geb.12210
– ident: e_1_2_12_80_1
  doi: 10.1098/rstb.2010.0028
– ident: e_1_2_12_199_1
  doi: 10.1016/j.ecolind.2019.05.004
– ident: e_1_2_12_129_1
  doi: 10.3390/rs9090970
– ident: e_1_2_12_185_1
  doi: 10.1126/science.abd8911
– ident: e_1_2_12_3_1
  doi: 10.3390/rs9090914
– ident: e_1_2_12_51_1
  doi: 10.3354/cr01182
– ident: e_1_2_12_128_1
  doi: 10.3389/fpls.2017.01532
– ident: e_1_2_12_88_1
  doi: 10.1073/pnas.2121998119
– ident: e_1_2_12_182_1
  doi: 10.1126/science.aad5068
– ident: e_1_2_12_56_1
  doi: 10.1038/srep26901
– ident: e_1_2_12_165_1
  doi: 10.1109/JSTARS.2021.3120013
– ident: e_1_2_12_140_1
  doi: 10.1016/j.scitotenv.2015.08.074
– ident: e_1_2_12_76_1
  doi: 10.1016/j.scitotenv.2016.11.004
– ident: e_1_2_12_87_1
  doi: 10.3390/rs11182137
– ident: e_1_2_12_59_1
  doi: 10.1016/j.plantsci.2018.10.022
– ident: e_1_2_12_160_1
  doi: 10.3390/rs13081597
– ident: e_1_2_12_151_1
  doi: 10.1007/s00484‐005‐0010‐y
– ident: e_1_2_12_25_1
  doi: 10.1016/j.tree.2007.04.003
– ident: e_1_2_12_73_1
  doi: 10.1038/nature12291
– ident: e_1_2_12_132_1
  doi: 10.1038/nature13207
– ident: e_1_2_12_20_1
  doi: 10.1146/annurev.es.21.110190.002231
– ident: e_1_2_12_55_1
  doi: 10.1038/nclimate3088
– ident: e_1_2_12_62_1
  doi: 10.1016/j.agrformet.2018.11.002
– ident: e_1_2_12_139_1
  doi: 10.1016/j.agrformet.2012.09.012
– ident: e_1_2_12_168_1
  doi: 10.1080/03632415.2013.748551
– ident: e_1_2_12_102_1
  doi: 10.3390/rs11121398
– ident: e_1_2_12_106_1
  doi: 10.1016/j.scitotenv.2017.04.136
– ident: e_1_2_12_124_1
  doi: 10.3390/rs11141650
– ident: e_1_2_12_18_1
  doi: 10.1016/j.isprsjprs.2020.11.019
– ident: e_1_2_12_195_1
  doi: 10.1007/978-981-19-3816-0_2
– ident: e_1_2_12_105_1
  doi: 10.1002/ece3.7548
– ident: e_1_2_12_161_1
  doi: 10.1016/j.atmosenv.2013.10.057
– ident: e_1_2_12_173_1
  doi: 10.3390/rs14133018
– ident: e_1_2_12_180_1
  doi: 10.1073/pnas.1519620113
– ident: e_1_2_12_113_1
  doi: 10.1038/nature13006
– ident: e_1_2_12_191_1
  doi: 10.1016/j.rse.2017.01.001
– ident: e_1_2_12_96_1
  doi: 10.1111/gcb.16104
– ident: e_1_2_12_108_1
  doi: 10.1016/j.rse.2013.01.011
– ident: e_1_2_12_176_1
  doi: 10.1371/journal.pbio.1002415
– ident: e_1_2_12_50_1
  doi: 10.1016/j.agrformet.2008.08.013
– ident: e_1_2_12_189_1
  doi: 10.1016/S0034‐4257(02)00135‐9
– ident: e_1_2_12_200_1
  doi: 10.1111/gcb.15098
– ident: e_1_2_12_120_1
  doi: 10.1016/j.rse.2020.112013
– ident: e_1_2_12_13_1
  doi: 10.1002/fee.1222
– ident: e_1_2_12_17_1
  doi: 10.1016/j.scitotenv.2020.141189
– ident: e_1_2_12_93_1
  doi: 10.1016/j.rse.2016.01.021
– ident: e_1_2_12_44_1
  doi: 10.1088/1748‐9326/9/5/054006
– ident: e_1_2_12_190_1
  doi: 10.1016/j.agrformet.2018.03.003
– ident: e_1_2_12_146_1
  doi: 10.1016/j.agrformet.2017.04.001
– ident: e_1_2_12_28_1
  doi: 10.1109/ACCESS.2020.2965462
– ident: e_1_2_12_156_1
  doi: 10.1016/j.compag.2018.10.017
– ident: e_1_2_12_125_1
  doi: 10.1029/2006GB002888
– ident: e_1_2_12_131_1
  doi: 10.1016/j.scitotenv.2019.01.394
– ident: e_1_2_12_170_1
  doi: 10.1038/s41558‐022‐01283‐y
– ident: e_1_2_12_81_1
  doi: 10.1093/treephys/25.6.641
– ident: e_1_2_12_147_1
  doi: 10.1016/j.fcr.2022.108491
– ident: e_1_2_12_83_1
  doi: 10.1109/JSTARS.2021.3087814
– ident: e_1_2_12_100_1
  doi: 10.1111/j.1365‐2486.2007.01432.x
– ident: e_1_2_12_122_1
  doi: 10.1016/j.agrformet.2017.04.009
– ident: e_1_2_12_116_1
  doi: 10.5194/bg‐16‐1883‐2019
– ident: e_1_2_12_141_1
  doi: 10.1016/j.agrformet.2011.10.014
– ident: e_1_2_12_118_1
  doi: 10.1016/j.jag.2021.102323
– ident: e_1_2_12_188_1
  doi: 10.1080/01431160802549237
– ident: e_1_2_12_31_1
  doi: 10.1016/j.scitotenv.2015.04.001
– ident: e_1_2_12_49_1
  doi: 10.34133/2021/8379391
– ident: e_1_2_12_163_1
  doi: 10.1016/j.isprsjprs.2021.08.003
– ident: e_1_2_12_117_1
  doi: 10.1007/s11284‐014‐1239‐x
– ident: e_1_2_12_133_1
  doi: 10.1007/s00442‐004‐1524‐4
– ident: e_1_2_12_193_1
  doi: 10.1016/j.agrformet.2022.108828
– ident: e_1_2_12_5_1
  doi: 10.1016/j.jag.2016.09.005
– ident: e_1_2_12_184_1
  doi: 10.1016/j.isprsjprs.2022.01.017
– ident: e_1_2_12_94_1
  doi: 10.1126/science.1152339
– ident: e_1_2_12_71_1
  doi: 10.1016/j.rse.2007.08.011
– ident: e_1_2_12_61_1
  doi: 10.1111/2041‐210X.12970
– ident: e_1_2_12_32_1
  doi: 10.1016/j.iac.2020.09.002
– ident: e_1_2_12_64_1
  doi: 10.1038/s42256‐021‐00374‐3
– ident: e_1_2_12_65_1
  doi: 10.1038/ngeo844
– ident: e_1_2_12_155_1
  doi: 10.1016/j.agrformet.2011.09.009
SSID ssj0003206
Score 2.593796
SecondaryResourceType review_article
Snippet Vegetation phenology has been viewed as the nature's calendar and an integrative indicator of plant‐climate interactions. The correct representation of...
Vegetation phenology has been viewed as the nature's calendar and an integrative indicator of plant-climate interactions. The correct representation of...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7186
SubjectTerms Adaptation
Algorithms
Atmospheric models
big data
bioclimatology
biodiversity
Biological Sciences
Biometeorology
Carbon
carbon cycle
Climate Change
Climate models
Data integration
Dynamics
Ecological adaptation
Ecosystem
Ecosystem dynamics
ecosystems
energy
Environmental impact
global change
Global climate
Interdisciplinary subjects
Monitoring
Multisensor fusion
Phenology
public health
Remote sensing
Review
Reviews
Seasonal variations
Seasons
Vegetation
vegetation dynamics
Water
Title Monitoring nature's calendar from space: Emerging topics in land surface phenology and associated opportunities for science applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16436
https://www.ncbi.nlm.nih.gov/pubmed/36114727
https://www.proquest.com/docview/2735735758
https://www.proquest.com/docview/2715445642
https://www.proquest.com/docview/2811991143
https://pubmed.ncbi.nlm.nih.gov/PMC9827868
Volume 28
WOSCitedRecordID wos000859769500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1365-2486
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003206
  issn: 1354-1013
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ti9NAEB7OOwVBfKn3Ej2PVUTvSyTJJtmNftJ61Q_ncYgn_RY22Y0GjqQ0reA_8Gc7s5vGllMRhFJKMiFbdmb3mdmZZwCe6iQWJohDX-sUHRS0N19JXfq8iLVKRJFxW8f9-VScncnpNDvfglerWhjHDzEE3Mgy7HpNBq6Kbs3Iv5TFC8T6PL0GO2HIJfVtiOLzYRnmkW2sGfIkxrUm5D2tEKXxDI9ubkZXEObVRMl1AGt3oMmd_xr7XbjdA0_22mnKPdgyzQhuuFaU30ewd_Kr4g3FepPvRuB9QFjdzq0Ye8bGlzVi3P6hWy7ox1wt03344VYIChUyxxj6vGOoBIaiFYwqWRguYKV5ySgWRu2R2KKd1WXH6oZRiiXrlvMKBRhlnrlX0lXV65DRrJ2Rw7BsLBEsQ8TN-j2crR_F78LF5OTT-L3ft3rwy1ikqY9ei054WqiAEJsq0wqRjJChyaIgMpVCNy9MdVhUIRdVpI2h41ZOXHIxamGm-B5sN21jDoDRzJdCcRXEGtFWUSjccBHHycBEmS6VB8erOc_Lnged2nFc5it_CGcnt7PjwZNBdObIP34ndLhSnLy3_y7HwSX0SaQHj4fbaLl0HKMa0y5JxjIhoQP4FxkZUm4agloP9p0uDiPhKV5H-OmB2NDSQYCYwzfvNPVXyyCeyUjIFMd2bLX0z38ufzd-Y388-HfRh3AzohoRm_NzCNuL-dI8guvlt0XdzY-skeK3mMoj2Hn7cXJx-hM2tUQH
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9qVRTEj9NqtOoqon2JJNl8ii96tFa8Hn2opW9hs7vRQEmOy53gf-Cf7czuXryjKoKQhyOZkD12Pn4zOx8AL1QSZzqIQ1-pFB0UlDdf5Er6vIqVSLKq4KaO-3SSTaf52VlxvAVvV7Uwtj_EEHAjyTD6mgScAtJrUv5FVq8R7PP0ElyO0coQl0fx8aCHeWQma4Y8iVHZhNz1FaI8nuHVTWt0AWJezJRcR7DGBB3c-r_F34abDnqyd5ZX7sCWbkdw1Q6j_D6Cnf1fNW9I5oS-H4F3hMC6mxsy9pKNzxtEue6lGzbsx2w10134YXUEBQuZ7Rn6qmfIBpriFYxqWRiqMKnfMIqG0YAktuhmjexZ0zJKsmT9cl4jAaPcM_tJuiscF2nFuhm5DMvWtIJliLmZs-Js_TD-Hnw-2D8ZH_pu2IMv4yxNffRbVMLTSgSE2YRMa8QyWR7qIgoiXQt09MJUhVUd8qyOlNZ04Mqpm1yMfFgIvgPbbdfqB8Bo62UmuAhihXirqgSaXERyeaCjQknhwd5q00vpOqHTQI7zcuUR4e6UZnc8eD6Qzmz7j98R7a44p3QaoC9xcQldSe7Bs-Exyi4dyIhWd0uiMb2Q0AX8C00eUnYasrcH9y0zDivhKd5HAOpBtsGmAwH1Dt980jZfTQ_xIo-yPMW17Rk2_fOfKz-M35sfD_-d9ClcOzw5mpSTj9NPj-B6RBUjJgNoF7YX86V-DFfkt0XTz58Yif0Jo6dFag
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ti9NAEB7Onh6C-FLvNHrqKqL3JZJk8yp-0d5VxVoOuZP7Fja7Gw0cSWlawX_gz3ZmN40tpyII-VCSCdmyM7PP7M48A_BURWGivdB3lYoxQEF7c0WqpMuLUIkoKTJu6rg_T5LpND07y4634NWqFsbyQ_QbbmQZxl-TgeuZKtes_IssXiDY5_El2A6picwAtg8_jU8nvSfmgemt6fMoRHfj845ZiDJ5-pc316MLIPNiruQ6hjWL0PjG_w3_JlzvwCd7bbXlFmzpeghXbDvK70PYO_pV9YZindm3Q3A-IrRu5kaMPWOj8wpxbvfSNbvxx2w90234Yb0EbRcyyxr6vGWoCJp2LBhVszB0YlK_ZLQfRi2S2KKZVbJlVc0ozZK1y3mJAoyyz-wn6a7o9Egr1swoaFjWhgyWIepm3TrO1o_jd-F0fHQyeud27R5cGSZx7GLkoiIeF8Ij1CZkXCKaSVJfZ4EX6FJgqOfHyi9KnydloLSmI1dOfHIhamIm-B4M6qbWd4HR1MtEcOGFChFXUQhcdBHLpZ4OMiWFAwerSc9lx4VOLTnO81VMhLOTm9lx4EkvOrMEIL8T2l9pTt75gDbHwUV0RakDj_vHaL10JCNq3SxJxrAhYRD4F5nUp_w0BLYO3LHK2I-Ex3gfIagDyYaa9gLEHr75pK6-GhbxLA2SNMaxHRg1_fOfy9-O3pgf9_5d9BHsHB-O88n76Yf7cDWgkhGTArQPg8V8qR_AZfltUbXzh53J_gSlgEaA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+nature%27s+calendar+from+space%3A+Emerging+topics+in+land+surface+phenology+and+associated+opportunities+for+science+applications&rft.jtitle=Global+change+biology&rft.au=Ma%2C+Xuanlong&rft.au=Zhu%2C+Xiaolin&rft.au=Xie%2C+Qiaoyun&rft.au=Jin%2C+Jiaxin&rft.date=2022-12-01&rft.issn=1354-1013&rft.volume=28&rft.issue=24+p.7186-7204&rft.spage=7186&rft.epage=7204&rft_id=info:doi/10.1111%2Fgcb.16436&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon