Transition Metal Phosphide‐Based Materials for Efficient Electrochemical Hydrogen Evolution: A Critical Review
As hydrogen has been increasingly considered as promising sustainable energy supply, electrochemical overall water splitting driven by highly efficient non‐noble metal electrocatalysts has aroused extensive attention. Transition metal phosphides (TMPs) have demonstrated remarkable electrocatalytic p...
Gespeichert in:
| Veröffentlicht in: | ChemSusChem Jg. 13; H. 13; S. 3357 - 3375 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
07.07.2020
|
| Schlagworte: | |
| ISSN: | 1864-5631, 1864-564X, 1864-564X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | As hydrogen has been increasingly considered as promising sustainable energy supply, electrochemical overall water splitting driven by highly efficient non‐noble metal electrocatalysts has aroused extensive attention. Transition metal phosphides (TMPs) have demonstrated remarkable electrocatalytic performance, including high activity and robust durability towards hydrogen evolution reaction (HER) in acidic and alkaline as well as neutral electrolytes. In this Review, up‐to‐date progress of TMP‐based HER electrocatalysts is summarized. Various synthesis strategies of TMPs based on selected phosphorus sources are presented, and the reaction mechanisms of HER as well as the contribution of phosphorus in the TMPs to HER activity are briefly discussed. The multiscale approaches for promoting the activity and stability of TMP‐based catalysts are discussed with respect to intrinsic electronic structure, hybrids, microstructure, and working electrode interface. Some crucial issues and future perspectives of TMPs are pointed out. These modulated approaches and challenges are also instructive for constructing other high‐activity energy‐related electrocatalysts.
Transitioning to hydrogen: In this Review, up‐to‐date progress of transition metal phosphide (TMP)‐based hydrogen evolution reaction (HER) electrocatalysts is summarized. Various synthesis strategies and the HER reaction mechanisms of TMP‐based catalysts are briefly discussed. In addition, multiscale approaches with respect to electronic structure, hybrids, microstructure, and working electrode interface are discussed for promoting HER performances. |
|---|---|
| AbstractList | As hydrogen has been increasingly considered as promising sustainable energy supply, electrochemical overall water splitting driven by highly efficient non-noble metal electrocatalysts has aroused extensive attention. Transition metal phosphides (TMPs) have demonstrated remarkable electrocatalytic performance, including high activity and robust durability towards hydrogen evolution reaction (HER) in acidic and alkaline as well as neutral electrolytes. In this Review, up-to-date progress of TMP-based HER electrocatalysts is summarized. Various synthesis strategies of TMPs based on selected phosphorus sources are presented, and the reaction mechanisms of HER as well as the contribution of phosphorus in the TMPs to HER activity are briefly discussed. The multiscale approaches for promoting the activity and stability of TMP-based catalysts are discussed with respect to intrinsic electronic structure, hybrids, microstructure, and working electrode interface. Some crucial issues and future perspectives of TMPs are pointed out. These modulated approaches and challenges are also instructive for constructing other high-activity energy-related electrocatalysts.As hydrogen has been increasingly considered as promising sustainable energy supply, electrochemical overall water splitting driven by highly efficient non-noble metal electrocatalysts has aroused extensive attention. Transition metal phosphides (TMPs) have demonstrated remarkable electrocatalytic performance, including high activity and robust durability towards hydrogen evolution reaction (HER) in acidic and alkaline as well as neutral electrolytes. In this Review, up-to-date progress of TMP-based HER electrocatalysts is summarized. Various synthesis strategies of TMPs based on selected phosphorus sources are presented, and the reaction mechanisms of HER as well as the contribution of phosphorus in the TMPs to HER activity are briefly discussed. The multiscale approaches for promoting the activity and stability of TMP-based catalysts are discussed with respect to intrinsic electronic structure, hybrids, microstructure, and working electrode interface. Some crucial issues and future perspectives of TMPs are pointed out. These modulated approaches and challenges are also instructive for constructing other high-activity energy-related electrocatalysts. As hydrogen has been increasingly considered as promising sustainable energy supply, electrochemical overall water splitting driven by highly efficient non-noble metal electrocatalysts has aroused extensive attention. Transition metal phosphides (TMPs) have demonstrated remarkable electrocatalytic performance, including high activity and robust durability towards hydrogen evolution reaction (HER) in acidic and alkaline as well as neutral electrolytes. In this Review, up-to-date progress of TMP-based HER electrocatalysts is summarized. Various synthesis strategies of TMPs based on selected phosphorus sources are presented, and the reaction mechanisms of HER as well as the contribution of phosphorus in the TMPs to HER activity are briefly discussed. The multiscale approaches for promoting the activity and stability of TMP-based catalysts are discussed with respect to intrinsic electronic structure, hybrids, microstructure, and working electrode interface. Some crucial issues and future perspectives of TMPs are pointed out. These modulated approaches and challenges are also instructive for constructing other high-activity energy-related electrocatalysts. As hydrogen has been increasingly considered as promising sustainable energy supply, electrochemical overall water splitting driven by highly efficient non‐noble metal electrocatalysts has aroused extensive attention. Transition metal phosphides (TMPs) have demonstrated remarkable electrocatalytic performance, including high activity and robust durability towards hydrogen evolution reaction (HER) in acidic and alkaline as well as neutral electrolytes. In this Review, up‐to‐date progress of TMP‐based HER electrocatalysts is summarized. Various synthesis strategies of TMPs based on selected phosphorus sources are presented, and the reaction mechanisms of HER as well as the contribution of phosphorus in the TMPs to HER activity are briefly discussed. The multiscale approaches for promoting the activity and stability of TMP‐based catalysts are discussed with respect to intrinsic electronic structure, hybrids, microstructure, and working electrode interface. Some crucial issues and future perspectives of TMPs are pointed out. These modulated approaches and challenges are also instructive for constructing other high‐activity energy‐related electrocatalysts. Transitioning to hydrogen: In this Review, up‐to‐date progress of transition metal phosphide (TMP)‐based hydrogen evolution reaction (HER) electrocatalysts is summarized. Various synthesis strategies and the HER reaction mechanisms of TMP‐based catalysts are briefly discussed. In addition, multiscale approaches with respect to electronic structure, hybrids, microstructure, and working electrode interface are discussed for promoting HER performances. |
| Author | Weng, Chen‐Chen Yuan, Zhong‐Yong Ren, Jin‐Tao |
| Author_xml | – sequence: 1 givenname: Chen‐Chen surname: Weng fullname: Weng, Chen‐Chen organization: Nankai University – sequence: 2 givenname: Jin‐Tao surname: Ren fullname: Ren, Jin‐Tao organization: Nankai University – sequence: 3 givenname: Zhong‐Yong orcidid: 0000-0002-3790-8181 surname: Yuan fullname: Yuan, Zhong‐Yong email: zyyuan@nankai.edu.cn organization: Nankai University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32196958$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU9LHDEYh4Mo_u3VYwn04mXXN5mZzKQ3O6xaUFqqQm8hZt50I7OTbTKj7M2P4Gf0kzTDqgWh9JIE8jw_Xt7fHtnsfIeEHDKYMgB-bGI0Uw4cAHImNsguq0Q-KUT-c_PtnbEdshfjHYAAKcQ22ck4k0IW1S5ZXgfdRdc739FL7HVLv899XM5dg8-PT190xIZe6h6D022k1gc6s9YZh11PZy2aPngzx4UzyTxfNcH_wo7O7n07jJGf6QmtQ0ofv3_gvcOHA7JlUxR-eLn3yc3p7Lo-n1x8O_tan1xMTF4KMSlZGr6RTOTMSsk5pqMpkYvKCKFLixJkiQVA2XDIjM1lVaAwNoG2gspm--RonbsM_veAsVcLFw22re7QD1HxrGKCSyhFQj-9Q-_8ELo0neI5h4KVXPJEfXyhhtsFNmoZ3EKHlXrdZQLyNWCCjzGgVcb1elxDH7RrFQM1VqbGytRbZUmbvtNek_8pyLXw4Fpc_YdW9dVV_df9A7bEqXM |
| CitedBy_id | crossref_primary_10_1002_smll_202307252 crossref_primary_10_1016_j_jcis_2023_11_031 crossref_primary_10_1039_D5TA04085J crossref_primary_10_1016_j_jelechem_2021_115640 crossref_primary_10_1016_j_cej_2022_136031 crossref_primary_10_1007_s12274_021_3759_3 crossref_primary_10_1002_adfm_202513128 crossref_primary_10_1016_j_jiec_2022_12_030 crossref_primary_10_1002_cssc_202300479 crossref_primary_10_1016_j_molstruc_2024_141132 crossref_primary_10_1002_anie_202214707 crossref_primary_10_1016_j_ijhydene_2024_07_434 crossref_primary_10_1002_EXP_20210077 crossref_primary_10_1007_s10008_021_05077_8 crossref_primary_10_3390_nano12193328 crossref_primary_10_1016_j_ijhydene_2023_05_302 crossref_primary_10_3390_app12010049 crossref_primary_10_1016_j_cej_2021_130454 crossref_primary_10_1016_j_jallcom_2022_166472 crossref_primary_10_1016_j_cej_2022_137132 crossref_primary_10_1021_acsaem_4c02942 crossref_primary_10_1016_j_jcis_2022_07_102 crossref_primary_10_1016_j_renene_2023_119529 crossref_primary_10_1016_j_cclet_2024_110049 crossref_primary_10_1016_j_ijhydene_2022_08_261 crossref_primary_10_1007_s00289_022_04100_w crossref_primary_10_1016_j_inoche_2024_112474 crossref_primary_10_1002_cctc_202101104 crossref_primary_10_1016_j_apcatb_2022_122081 crossref_primary_10_1016_j_ijhydene_2022_09_070 crossref_primary_10_1016_j_colsurfa_2025_137357 crossref_primary_10_1002_adma_202401448 crossref_primary_10_1002_celc_202300426 crossref_primary_10_1016_j_jechem_2025_07_005 crossref_primary_10_1039_D2NR03755F crossref_primary_10_1039_D2CP02089K crossref_primary_10_1016_j_jallcom_2021_160054 crossref_primary_10_1002_chem_202202858 crossref_primary_10_1039_D5RA01184A crossref_primary_10_1016_j_cej_2023_141674 crossref_primary_10_1007_s40820_024_01424_2 crossref_primary_10_1016_j_apsusc_2021_151450 crossref_primary_10_1002_chem_202302825 crossref_primary_10_1016_j_matchemphys_2022_126676 crossref_primary_10_1016_j_ccr_2023_215410 crossref_primary_10_1016_j_ijhydene_2024_11_212 crossref_primary_10_1016_j_jcis_2025_138340 crossref_primary_10_1002_cssc_202002103 crossref_primary_10_1016_j_electacta_2022_139846 crossref_primary_10_1016_j_apsusc_2025_163301 crossref_primary_10_1016_j_molstruc_2024_140852 crossref_primary_10_1039_D4QI01740D crossref_primary_10_3390_nano13182613 crossref_primary_10_1016_j_apcatb_2022_121546 crossref_primary_10_1016_j_jcat_2024_115725 crossref_primary_10_1016_j_cej_2022_137716 crossref_primary_10_1016_j_jelechem_2022_116679 crossref_primary_10_1016_j_ijhydene_2024_08_208 crossref_primary_10_1016_j_jallcom_2024_178252 crossref_primary_10_1016_j_apcatb_2020_119609 crossref_primary_10_1016_j_ccr_2025_217009 crossref_primary_10_1016_j_mtchem_2022_101210 crossref_primary_10_1002_smll_202202033 crossref_primary_10_1016_j_ccr_2022_214811 crossref_primary_10_1016_j_enchem_2025_100161 crossref_primary_10_1016_j_jallcom_2023_168961 crossref_primary_10_1016_j_solidstatesciences_2022_107089 crossref_primary_10_1016_j_jallcom_2024_175549 crossref_primary_10_1002_cssc_202001975 crossref_primary_10_1039_D1NR04513J crossref_primary_10_1016_j_ijhydene_2024_09_009 crossref_primary_10_1016_j_ijhydene_2021_09_127 crossref_primary_10_1016_j_cis_2024_103279 crossref_primary_10_1016_j_colcom_2021_100520 crossref_primary_10_1002_adsu_202300379 crossref_primary_10_1002_smll_202206196 crossref_primary_10_1002_adhm_202201884 crossref_primary_10_1007_s40843_023_2754_8 crossref_primary_10_1016_j_ceramint_2023_06_056 crossref_primary_10_1002_aesr_202300059 crossref_primary_10_1007_s11705_021_2102_6 crossref_primary_10_3390_nano12172935 crossref_primary_10_1016_j_cej_2021_133514 crossref_primary_10_1039_D1RA02849A crossref_primary_10_1016_j_ijhydene_2023_10_135 crossref_primary_10_1016_j_cej_2023_144241 crossref_primary_10_1016_j_ijhydene_2022_08_184 crossref_primary_10_1016_j_colsurfa_2023_132989 crossref_primary_10_1016_j_jssc_2022_123434 crossref_primary_10_1088_1361_6528_ac8060 crossref_primary_10_1016_j_jssc_2021_122184 crossref_primary_10_1002_slct_202200291 crossref_primary_10_1007_s10311_021_01331_7 crossref_primary_10_1016_j_est_2024_111565 crossref_primary_10_1016_j_electacta_2023_142378 crossref_primary_10_1002_er_8344 crossref_primary_10_1016_j_ceja_2025_100837 crossref_primary_10_1016_j_cclet_2021_11_034 crossref_primary_10_1016_j_mtener_2022_100992 crossref_primary_10_3390_coatings15070772 crossref_primary_10_1007_s12274_023_5962_x crossref_primary_10_3390_catal12091055 crossref_primary_10_1007_s41918_022_00159_1 crossref_primary_10_1007_s11708_022_0813_0 crossref_primary_10_1002_smll_202300194 crossref_primary_10_1002_adsu_202400387 crossref_primary_10_1016_j_colsurfa_2020_125313 crossref_primary_10_1002_adfm_202209967 crossref_primary_10_1016_j_ijhydene_2025_02_185 crossref_primary_10_1016_j_gee_2022_12_005 crossref_primary_10_1016_j_ijhydene_2023_09_294 crossref_primary_10_1016_j_gee_2020_12_009 crossref_primary_10_1016_j_matlet_2024_136109 crossref_primary_10_1002_celc_202100384 crossref_primary_10_1002_cssc_202300633 crossref_primary_10_1016_j_jechem_2022_08_019 crossref_primary_10_1039_D2QI02703H crossref_primary_10_1002_adfm_202424141 crossref_primary_10_1016_j_mtener_2022_100975 crossref_primary_10_3390_catal12010002 crossref_primary_10_1016_j_cattod_2022_07_020 crossref_primary_10_1002_ejic_202300014 crossref_primary_10_1007_s10562_024_04714_x crossref_primary_10_1016_j_jechem_2022_01_025 crossref_primary_10_1016_j_jssc_2024_124750 crossref_primary_10_1016_j_inoche_2023_111110 crossref_primary_10_1016_j_cej_2023_146180 crossref_primary_10_1016_j_jcis_2021_10_051 crossref_primary_10_1016_j_jcis_2025_02_189 crossref_primary_10_1002_cssc_202101841 crossref_primary_10_1002_cey2_528 crossref_primary_10_1016_j_nanoen_2023_108566 crossref_primary_10_1016_j_ijhydene_2023_03_205 crossref_primary_10_1016_j_fuel_2025_134898 crossref_primary_10_1007_s40843_021_2017_y crossref_primary_10_1016_j_surfin_2023_103149 crossref_primary_10_1016_j_rser_2024_115153 crossref_primary_10_1016_j_ijhydene_2023_05_290 crossref_primary_10_1016_S1872_2067_21_63855_X crossref_primary_10_1002_smll_202407043 crossref_primary_10_1039_D0SE01679A crossref_primary_10_1002_aenm_202203568 crossref_primary_10_1016_j_fuel_2023_129784 crossref_primary_10_1021_acsami_5c00370 crossref_primary_10_1111_ijac_14262 crossref_primary_10_1016_j_jcis_2024_09_005 crossref_primary_10_1039_D5QM00354G crossref_primary_10_1002_anie_202513970 crossref_primary_10_1016_j_cej_2021_132259 crossref_primary_10_1016_j_jallcom_2023_169070 crossref_primary_10_1002_cssc_202402563 crossref_primary_10_1016_j_cej_2024_152903 crossref_primary_10_1016_j_jallcom_2024_176695 crossref_primary_10_1002_ange_202214707 crossref_primary_10_1002_cssc_202200114 crossref_primary_10_1039_D1SE00485A crossref_primary_10_1016_j_rser_2023_113348 crossref_primary_10_1002_smsc_202100032 crossref_primary_10_1016_j_cej_2022_139175 crossref_primary_10_1002_ange_202513970 crossref_primary_10_1016_j_est_2024_110440 crossref_primary_10_1016_j_jcis_2024_04_059 crossref_primary_10_1016_j_cej_2021_133696 crossref_primary_10_1016_j_cplett_2022_140160 crossref_primary_10_3390_electrochem6030030 crossref_primary_10_1134_S003602442308006X crossref_primary_10_1016_j_ijhydene_2023_12_107 crossref_primary_10_1016_j_ijhydene_2023_04_240 crossref_primary_10_1016_j_seppur_2023_124257 crossref_primary_10_1016_S1872_2067_24_60105_1 crossref_primary_10_1002_eom2_12197 crossref_primary_10_1002_smll_202205940 crossref_primary_10_1002_smll_202101856 crossref_primary_10_1038_s41598_021_89561_1 crossref_primary_10_1002_sus2_267 crossref_primary_10_1016_j_apcatb_2023_123391 crossref_primary_10_1016_j_jechem_2024_06_051 crossref_primary_10_1016_j_cej_2023_141939 crossref_primary_10_1016_j_jcis_2023_02_037 crossref_primary_10_1039_D3QM01263H crossref_primary_10_1039_D4QM00095A crossref_primary_10_1002_smll_202408957 crossref_primary_10_1016_j_ijhydene_2021_07_236 crossref_primary_10_3390_inorganics10060070 crossref_primary_10_1016_j_ijhydene_2021_08_171 crossref_primary_10_1016_j_jpowsour_2021_230657 crossref_primary_10_1016_j_ijhydene_2024_01_224 crossref_primary_10_1002_cssc_202501388 crossref_primary_10_1016_j_heliyon_2025_e42414 crossref_primary_10_1016_j_jcis_2025_137354 crossref_primary_10_1039_D2RA01851A crossref_primary_10_1016_j_ijhydene_2024_10_391 crossref_primary_10_1016_j_cej_2024_151236 crossref_primary_10_1016_j_apsusc_2024_162094 crossref_primary_10_1016_j_ijhydene_2022_09_254 crossref_primary_10_1002_aenm_202203720 crossref_primary_10_1016_j_ijhydene_2025_04_387 crossref_primary_10_1088_1361_6528_ad0985 crossref_primary_10_1016_j_ijhydene_2024_03_123 crossref_primary_10_1016_j_ijhydene_2024_10_031 crossref_primary_10_1063_5_0160301 crossref_primary_10_1088_2053_1591_ac2287 crossref_primary_10_1002_adma_202300980 crossref_primary_10_1002_ange_202404292 crossref_primary_10_1039_D2QM00931E crossref_primary_10_1016_j_jmst_2022_10_044 crossref_primary_10_1016_j_nantod_2021_101245 crossref_primary_10_1002_cctc_202301111 crossref_primary_10_1016_j_jcis_2021_01_083 crossref_primary_10_1016_j_ceramint_2021_03_264 crossref_primary_10_1016_j_cej_2023_146134 crossref_primary_10_1002_cssc_202101771 crossref_primary_10_1002_adfm_202112623 crossref_primary_10_1039_D3QM01156A crossref_primary_10_1002_adma_202107072 crossref_primary_10_1002_anie_202404292 crossref_primary_10_1016_j_ijhydene_2022_09_036 crossref_primary_10_1002_celc_202001306 crossref_primary_10_1016_j_cej_2025_163602 crossref_primary_10_1016_j_jece_2022_108882 crossref_primary_10_1016_j_molstruc_2024_138588 crossref_primary_10_1002_wene_472 crossref_primary_10_1016_j_jallcom_2023_172020 crossref_primary_10_1016_j_colsurfa_2023_131802 |
| Cites_doi | 10.1016/j.electacta.2018.10.136 10.1039/C9TA03146D 10.1021/jacs.6b08491 10.1021/acs.chemmater.7b03627 10.1002/aenm.201700020 10.1021/ja403440e 10.1039/C6TA03732A 10.1021/acs.chemmater.8b03908 10.1021/nn5048553 10.1039/C9TA04163J 10.1002/adma.201505875 10.1016/j.nanoen.2019.06.002 10.1002/aenm.201601555 10.1021/acscatal.7b04286 10.1002/ange.201906683 10.1002/aenm.201601285 10.1007/BFb0119186 10.1002/adfm.201901510 10.1039/C8NR01556B 10.1016/j.nanoen.2017.02.049 10.1016/j.apcatb.2020.118633 10.1002/anie.201502577 10.1039/C9QM00449A 10.1002/adfm.201801332 10.1016/j.apcatb.2019.118352 10.1016/j.jechem.2018.07.006 10.1039/C7TA10218F 10.1002/adma.201500821 10.1039/C6CE00985A 10.1038/nmat4738 10.1016/j.cej.2020.124408 10.1021/acsami.5b04947 10.1002/celc.201700392 10.1021/acsami.9b07415 10.1021/jp5054452 10.1002/anie.201808929 10.1039/C7CC08340H 10.1021/jacs.7b12420 10.1016/j.apcatb.2019.118053 10.1039/C6NR05747K 10.1038/s41467-018-04746-z 10.1039/C5TA01611H 10.1021/acsami.5b09092 10.1021/acsnano.8b06039 10.1039/C3CS60468C 10.1002/anie.201406848 10.1039/C7CC09445K 10.1016/j.apcatb.2019.04.089 10.1039/C8TA09629E 10.1039/C6CS00135A 10.1002/adma.201703322 10.1002/anie.201404161 10.1039/C8SC03877E 10.1002/adma.201401692 10.1021/acscatal.7b01767 10.1002/ejic.201501181 10.1016/j.nanoen.2019.01.017 10.1002/ange.201408222 10.1039/C7NR08472B 10.1021/jacs.7b08521 10.1021/acscatal.6b02849 10.1039/C9TA03944A 10.1021/ja503372r 10.1016/j.jpowsour.2014.12.095 10.1016/j.apsusc.2017.01.059 10.1002/aenm.201801690 10.1002/adfm.201702513 10.1039/C5CS00434A 10.1016/j.jpowsour.2016.08.126 10.1016/j.jcat.2009.02.008 10.1002/adfm.201706008 10.1002/adma.201901174 10.1002/celc.201900709 10.1021/acssuschemeng.7b01419 10.1002/adma.201703711 10.1002/anie.201906683 10.1039/C6SC05687C 10.1021/acs.chemmater.5b01284 10.1016/j.jcat.2010.02.031 10.1039/C9QM00409B 10.1002/anie.201402646 10.1039/C6RA04478F 10.1002/smll.201704227 10.1016/j.electacta.2017.12.158 10.1002/ange.201502577 10.1021/cr400020d 10.1021/acs.chemmater.7b03377 10.1039/C9TA07289F 10.1021/acscatal.5b01657 10.1021/acsami.8b03427 10.1016/j.nanoen.2018.03.034 10.1021/acs.chemmater.6b02148 10.1021/acscatal.5b02193 10.1016/j.ijhydene.2019.02.095 10.1002/cssc.201701565 10.1039/C8NR01032C 10.1016/j.jechem.2017.07.016 10.1002/ange.201808929 10.1002/ange.201406848 10.1007/s12274-016-1112-z 10.1002/adma.201800140 10.1002/smll.201804546 10.1038/nmat4410 10.1021/acsami.7b06075 10.1021/jacs.9b02527 10.1039/C5EE02179K 10.1021/acssuschemeng.9b00357 10.1039/c3cc43107j 10.1021/acsami.8b08068 10.1002/adma.201900178 10.1016/j.nanoen.2018.06.048 10.1021/acssuschemeng.6b01879 10.1002/celc.201900507 10.1021/acs.accounts.7b00616 10.1021/acssuschemeng.9b03217 10.1016/j.nanoen.2018.06.040 10.1039/C7TA03999A 10.1021/acssuschemeng.7b03034 10.1002/aenm.201600087 10.1016/j.apcatb.2018.09.103 10.1021/acssuschemeng.9b01263 10.1021/ja0540019 10.1002/celc.201901417 10.1007/s40820-019-0289-6 10.1039/C5CY02299A 10.1039/C9TA03300A 10.1002/aenm.201601671 10.1021/acssuschemeng.9b01355 10.1039/C8QM00226F 10.1021/jacs.7b12615 10.1016/j.nanoen.2018.08.064 10.1002/adma.201803590 10.1039/C8NR07891B 10.1016/j.nantod.2017.06.006 10.1039/c3ta13243a 10.1038/s41598-017-12332-4 10.1021/acs.nanolett.6b03803 10.1021/acsami.8b12108 10.1002/adfm.201503666 10.1016/j.electacta.2017.06.086 10.1007/s10562-012-0929-7 10.1002/ange.201402646 10.1021/am5060178 10.1039/C4EE00957F 10.1039/C4CS00470A 10.1039/C8QI01026A 10.1039/C6TA01923D 10.1016/j.nanoen.2017.06.002 10.1002/ange.201404161 10.1002/cctc.201500350 10.1039/C7CC07342A 10.1039/C4TA04867A 10.1039/C6CY01719C 10.1021/cs5014943 10.1039/C4TA04758C 10.1021/ja028180v 10.1016/j.nanoen.2019.103995 10.1002/smll.201802755 10.1039/C5RA26748J 10.1002/cctc.201801482 10.1039/C8EE00076J 10.1016/j.apcatb.2018.11.083 10.1021/jacs.7b12968 10.1016/j.jpowsour.2019.04.119 10.1002/adfm.201505509 10.1039/C7SC04849A 10.1002/anie.201408222 |
| ContentType | Journal Article |
| Copyright | 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| Copyright_xml | – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| DOI | 10.1002/cssc.202000416 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1864-564X |
| EndPage | 3375 |
| ExternalDocumentID | 32196958 10_1002_cssc_202000416 CSSC202000416 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: Natural Science Foundation of Tianjin City funderid: 19JCZDJC37700 – fundername: National Natural Science Foundation of China funderid: 21421001, 21573115, 21875118 – fundername: National Natural Science Foundation of China grantid: 21421001, 21573115, 21875118 – fundername: Natural Science Foundation of Tianjin City grantid: 19JCZDJC37700 |
| GroupedDBID | --- 05W 0R~ 1OC 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAMMB AAYXX AEFGJ AEYWJ AGXDD AGYGG AIDQK AIDYY CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| ID | FETCH-LOGICAL-c4766-71186d91641f9922e992d7e268c66a7fe9097e5007d203cf4985e6cf2e9f808f3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 286 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000535089400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1864-5631 1864-564X |
| IngestDate | Sun Nov 09 13:53:51 EST 2025 Sat Nov 29 14:49:07 EST 2025 Wed Feb 19 02:30:00 EST 2025 Tue Nov 18 21:06:48 EST 2025 Sat Nov 29 07:14:24 EST 2025 Wed Jan 22 16:34:51 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | transition metal phosphides electrocatalysis hydrogen evolution reaction multiscale approaches |
| Language | English |
| License | 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4766-71186d91641f9922e992d7e268c66a7fe9097e5007d203cf4985e6cf2e9f808f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-3790-8181 |
| PMID | 32196958 |
| PQID | 2420517292 |
| PQPubID | 986333 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_2381629076 proquest_journals_2420517292 pubmed_primary_32196958 crossref_citationtrail_10_1002_cssc_202000416 crossref_primary_10_1002_cssc_202000416 wiley_primary_10_1002_cssc_202000416_CSSC202000416 |
| PublicationCentury | 2000 |
| PublicationDate | July 7, 2020 |
| PublicationDateYYYYMMDD | 2020-07-07 |
| PublicationDate_xml | – month: 07 year: 2020 text: July 7, 2020 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | ChemSusChem |
| PublicationTitleAlternate | ChemSusChem |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2013; 1 2019; 11 2019; 10 1968; 4 2019; 15 2014; 26 2014; 136 2018; 48 2018; 6 2018; 9 2018; 8 2018; 2 2013; 113 2019; 29 2018; 30 2016; 45 2019; 7 2018; 28 2019; 3 2019; 6 2019; 31 2019; 32 2020; 263 2020; 266 2020; 389 2016; 18 2016; 16 2014; 43 2016; 4 2016; 6 2017; 53 2019; 44 2005; 127 2016; 330 2018; 12 2016; 28 2018; 11 2019; 295 2018; 10 2016; 27 2016; 26 2016; 8 2016; 9 2018; 14 2014 2014; 53 126 2017; 5 2017; 7 2017; 8 2017; 4 2019; 58 2017; 9 2019; 244 2019; 242 2019; 62 2017; 38 2019; 65 2018 2018; 57 130 2015; 44 2017; 34 2015 2015; 54 127 2010; 271 2014; 8 2003; 125 2014; 7 2014; 6 2017; 246 2017; 402 2014; 118 2012; 142 2015; 14 2015; 5 2018; 140 2018; 261 2013; 49 2015; 3 2017; 26 2019; 429 2017; 27 2017; 29 2019; 141 2015; 8 2015; 7 2019 2019; 58 131 2015; 25 2015; 27 2017; 15 2017; 16 2015; 278 2017; 10 2020 2020 2019; 259 2013; 135 2016 2016; 138 2018; 51 2009; 263 2018; 54 2018; 53 2019; 254 e_1_2_8_26_3 e_1_2_8_49_1 e_1_2_8_26_2 e_1_2_8_68_2 e_1_2_8_132_1 e_1_2_8_178_1 e_1_2_8_5_2 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_41_2 e_1_2_8_170_2 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_87_1 e_1_2_8_64_2 e_1_2_8_159_2 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_174_1 e_1_2_8_83_2 e_1_2_8_1_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_155_2 e_1_2_8_38_2 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_57_1 e_1_2_8_15_2 e_1_2_8_120_1 e_1_2_8_166_1 e_1_2_8_91_1 e_1_2_8_143_2 e_1_2_8_95_1 e_1_2_8_162_2 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_34_1 e_1_2_8_76_1 e_1_2_8_11_2 e_1_2_8_53_2 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_2 e_1_2_8_48_2 e_1_2_8_67_2 Duan J. (e_1_2_8_103_1) 2020 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_152_1 e_1_2_8_6_2 e_1_2_8_21_1 e_1_2_8_171_1 e_1_2_8_44_2 e_1_2_8_63_2 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_156_1 e_1_2_8_18_1 e_1_2_8_14_2 e_1_2_8_37_1 e_1_2_8_79_1 Yang L. (e_1_2_8_151_1) 2019; 6 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_163_2 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_10_2 e_1_2_8_52_2 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_2 e_1_2_8_125_2 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_24_2 e_1_2_8_47_2 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_43_2 e_1_2_8_85_2 e_1_2_8_172_2 Yang L. (e_1_2_8_179_1) 2016; 27 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_176_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_160_2 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_126_2 e_1_2_8_107_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_70_2 e_1_2_8_93_1 e_1_2_8_103_2 e_1_2_8_27_2 e_1_2_8_69_2 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_180_1 e_1_2_8_154_2 e_1_2_8_80_1 e_1_2_8_4_2 e_1_2_8_131_1 e_1_2_8_150_1 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_173_2 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_177_1 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_12_2 e_1_2_8_108_2 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_142_2 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_31_2 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_123_2 e_1_2_8_169_2 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_146_1 |
| References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 136 start-page: 7587 year: 2014 end-page: 7590 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 26 year: 2018 end-page: 36 publication-title: Nano Energy – volume: 6 start-page: 1682 year: 2018 end-page: 1691 publication-title: J. Mater. Chem. A – volume: 127 start-page: 14871 year: 2005 end-page: 14878 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 22604 year: 2017 end-page: 226113 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 2624 year: 2014 end-page: 2629 publication-title: Energy Environ. Sci. – volume: 14 year: 2018 publication-title: Small – volume: 7 start-page: 9309 year: 2019 end-page: 9317 publication-title: ACS Sustainable Chem. Eng. – volume: 10 start-page: 5297 year: 2018 end-page: 5305 publication-title: ChemCatChem – volume: 34 start-page: 421 year: 2017 end-page: 427 publication-title: Nano Energy – volume: 38 start-page: 290 year: 2017 end-page: 296 publication-title: Nano Energy – volume: 271 start-page: 413 year: 2010 end-page: 415 publication-title: J. Catal. – volume: 8 start-page: 3688 year: 2018 end-page: 3707 publication-title: ACS Catal. – volume: 389 year: 2020 publication-title: Chem. Eng. J. – volume: 18 start-page: 6083 year: 2016 end-page: 6089 publication-title: CrystEngComm – volume: 7 start-page: 16859 year: 2019 end-page: 16866 publication-title: J. Mater. Chem. A – volume: 29 start-page: 8539 year: 2017 end-page: 8547 publication-title: Chem. Mater. – volume: 5 start-page: 145 year: 2015 end-page: 149 publication-title: ACS Catal. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 259 year: 2019 publication-title: Appl. Catal. B – volume: 45 start-page: 3479 year: 2016 end-page: 3563 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 11241 year: 2018 end-page: 11280 publication-title: Nanoscale – volume: 402 start-page: 120 year: 2017 end-page: 128 publication-title: Appl. Surf. Sci. – volume: 16 start-page: 7718 year: 2016 end-page: 7725 publication-title: Nano Lett. – volume: 6 start-page: 24107 year: 2018 end-page: 24113 publication-title: J. Mater. Chem. A – volume: 6 start-page: 1150b year: 2019 publication-title: Mater. Res. Express – volume: 7 start-page: 11891 year: 2017 publication-title: Sci. Rep. – volume: 27 start-page: 3769 year: 2015 end-page: 3774 publication-title: Chem. Mater. – volume: 261 start-page: 454 year: 2018 end-page: 463 publication-title: Electrochim. Acta – volume: 6 start-page: 3244 year: 2019 end-page: 3253 publication-title: ChemElectroChem – volume: 7 start-page: 28369 year: 2015 end-page: 28376 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 2213 year: 2018 end-page: 2217 publication-title: Nanoscale – volume: 53 start-page: 286 year: 2018 end-page: 295 publication-title: Nano Energy – volume: 6 start-page: 9647 year: 2016 end-page: 9655 publication-title: RSC Adv. – volume: 6 start-page: 5229 year: 2019 end-page: 5236 publication-title: ChemElectroChem – volume: 11 start-page: 25986 year: 2019 end-page: 25995 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 26303 year: 2018 end-page: 26311 publication-title: ACS Appl. Mater. Interfaces – year: 2020 2020 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – start-page: 1916 year: 2016 end-page: 1923 publication-title: Eur. J. Inorg. Chem. – volume: 7 start-page: 330 year: 2017 end-page: 347 publication-title: Catal. Sci. Technol. – volume: 254 start-page: 414 year: 2019 end-page: 423 publication-title: Appl. Catal. B – volume: 7 start-page: 14526 year: 2019 end-page: 14535 publication-title: J. Mater. Chem. A – volume: 4 start-page: 8974 year: 2016 end-page: 8977 publication-title: J. Mater. Chem. A – volume: 7 start-page: 13591 year: 2019 end-page: 13601 publication-title: J. Mater. Chem. A – volume: 140 start-page: 2610 year: 2018 end-page: 2618 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 9369 year: 2017 end-page: 9377 publication-title: Chem. Mater. – volume: 135 start-page: 9267 year: 2013 end-page: 9270 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 1245 year: 2015 end-page: 1251 publication-title: Nat. Mater. – volume: 3 start-page: 11725 year: 2015 end-page: 11729 publication-title: J. Mater. Chem. A – volume: 7 start-page: 98 year: 2017 end-page: 102 publication-title: ACS Catal. – volume: 10 start-page: 29407 year: 2018 end-page: 29416 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 55 year: 2019 publication-title: Nano-Micro Lett. – volume: 3 start-page: 1872 year: 2019 end-page: 1881 publication-title: Mater. Chem. Front. – volume: 51 start-page: 223 year: 2018 end-page: 230 publication-title: Nano Energy – volume: 5 start-page: 6355 year: 2015 end-page: 6361 publication-title: ACS Catal. – volume: 138 start-page: 14686 year: 2016 end-page: 14693 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 10 start-page: 33276 year: 2018 end-page: 33286 publication-title: ACS Appl. Mater. Interfaces – volume: 142 start-page: 1413 year: 2012 end-page: 1436 publication-title: Catal. Lett. – volume: 9 start-page: 2551 year: 2018 publication-title: Nat. Commun. – volume: 57 130 start-page: 15445 15671 year: 2018 2018 end-page: 15449 15675 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 25 start-page: 7337 year: 2015 end-page: 7347 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 3022 year: 2015 end-page: 3029 publication-title: Energy Environ. Sci. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 7 start-page: 13559 year: 2019 end-page: 13568 publication-title: ACS Sustainable Chem. Eng. – volume: 263 year: 2020 publication-title: Appl. Catal. B – volume: 6 start-page: 52761 year: 2016 end-page: 52771 publication-title: RSC Adv. – volume: 4 start-page: 9691 year: 2016 end-page: 9699 publication-title: J. Mater. Chem. A – volume: 54 start-page: 1201 year: 2018 end-page: 1204 publication-title: Chem. Commun. – volume: 12 start-page: 12238 year: 2018 end-page: 12246 publication-title: ACS Nano – volume: 8 start-page: 11101 year: 2014 end-page: 11107 publication-title: ACS Nano – volume: 65 year: 2019 publication-title: Nano Energy – volume: 10 start-page: 464 year: 2019 end-page: 474 publication-title: Chem. Sci. – volume: 5 start-page: 7203 year: 2017 end-page: 7210 publication-title: ACS Sustainable Chem. Eng. – volume: 26 start-page: 5702 year: 2014 end-page: 5707 publication-title: Adv. Mater. – volume: 44 start-page: 2060 year: 2015 end-page: 2086 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 21874 year: 2014 end-page: 21879 publication-title: ACS Appl. Mater. Interfaces – volume: 44 start-page: 8062 year: 2019 end-page: 8069 publication-title: Int. J. Hydrogen Energy – volume: 7 start-page: 16850 year: 2015 end-page: 16856 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 20658 year: 2019 end-page: 20666 publication-title: J. Mater. Chem. A – volume: 140 start-page: 5118 year: 2018 end-page: 5126 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 21617 year: 2018 end-page: 21624 publication-title: Nanoscale – volume: 16 start-page: 57 year: 2017 end-page: 69 publication-title: Nat. Mater. – volume: 242 start-page: 186 year: 2019 end-page: 193 publication-title: Appl. Catal. B – volume: 141 start-page: 7537 year: 2019 end-page: 7543 publication-title: J. Am. Chem. Soc. – volume: 295 start-page: 148 year: 2019 end-page: 156 publication-title: Electrochim. Acta – volume: 26 start-page: 4067 year: 2016 end-page: 4077 publication-title: Adv. Funct. Mater. – volume: 43 start-page: 6555 year: 2014 end-page: 6569 publication-title: Chem. Soc. Rev. – volume: 51 start-page: 881 year: 2018 end-page: 889 publication-title: Acc. Chem. Res. – volume: 9 start-page: 2251 year: 2016 end-page: 2259 publication-title: Nano Res. – volume: 330 start-page: 156 year: 2016 end-page: 166 publication-title: J. Power Sources – volume: 4 start-page: 83 year: 1968 end-page: 229 publication-title: Struct. Bonding – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 62 start-page: 745 year: 2019 end-page: 753 publication-title: Nano Energy – volume: 266 year: 2020 publication-title: Appl. Catal. B – volume: 8 start-page: 2769 year: 2017 end-page: 2775 publication-title: Chem. Sci. – volume: 125 start-page: 4038 year: 2003 end-page: 4039 publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 78 year: 2019 end-page: 84 publication-title: J. Energy Chem. – volume: 113 start-page: 7981 year: 2013 end-page: 8065 publication-title: Chem. Rev. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 53 126 start-page: 6710 6828 year: 2014 2014 end-page: 6714 6832 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 707 year: 2018 end-page: 718 publication-title: ACS Sustainable Chem. Eng. – volume: 11 start-page: 872 year: 2018 end-page: 880 publication-title: Energy Environ. Sci. – volume: 10 start-page: 6844 year: 2018 end-page: 6849 publication-title: Nanoscale – volume: 7 start-page: 2765 year: 2015 end-page: 2787 publication-title: ChemCatChem – volume: 5 start-page: 529 year: 2017 end-page: 536 publication-title: ACS Sustainable Chem. Eng. – volume: 58 131 start-page: 11796 11922 year: 2019 2019 end-page: 11800 11926 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 127 start-page: 8188 8306 year: 2015 2015 end-page: 8192 8310 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 429 start-page: 46 year: 2019 end-page: 54 publication-title: J. Power Sources – volume: 6 start-page: 1611 year: 2016 end-page: 1615 publication-title: Catal. Sci. Technol. – volume: 3 start-page: 499 year: 2015 end-page: 503 publication-title: J. Mater. Chem. A – volume: 27 start-page: 5372 year: 2015 end-page: 5378 publication-title: Adv. Mater. – volume: 7 start-page: 8993 year: 2019 end-page: 9001 publication-title: ACS Sustainable Chem. Eng. – volume: 28 start-page: 6017 year: 2016 end-page: 6044 publication-title: Chem. Mater. – volume: 28 start-page: 2951 year: 2016 end-page: 2955 publication-title: Adv. Mater. – volume: 27 start-page: 23LT year: 2016 publication-title: Nanotechnology – volume: 7 start-page: 14380 year: 2019 end-page: 14390 publication-title: J. Mater. Chem. A – volume: 244 start-page: 620 year: 2019 end-page: 627 publication-title: Appl. Catal. B – volume: 53 126 start-page: 12855 13069 year: 2014 2014 end-page: 12859 13073 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 19779 year: 2016 end-page: 19786 publication-title: Nanoscale – volume: 246 start-page: 536 year: 2017 end-page: 543 publication-title: Electrochim. Acta – volume: 26 start-page: 1196 year: 2017 end-page: 1202 publication-title: J. Energy Chem. – volume: 9 start-page: 1970 year: 2018 end-page: 1975 publication-title: Chem. Sci. – volume: 15 year: 2019 publication-title: Small – volume: 45 start-page: 1529 year: 2016 end-page: 1541 publication-title: Chem. Soc. Rev. – volume: 49 start-page: 6656 year: 2013 end-page: 6658 publication-title: Chem. Commun. – volume: 58 start-page: 244 year: 2019 end-page: 276 publication-title: Nano Energy – volume: 6 start-page: 74 year: 2019 end-page: 81 publication-title: Inorg. Chem. Front. – volume: 48 start-page: 73 year: 2018 end-page: 80 publication-title: Nano Energy – volume: 4 start-page: 1840 year: 2017 end-page: 1845 publication-title: ChemElectroChem – volume: 7 start-page: 12770 year: 2019 end-page: 12778 publication-title: ACS Sustainable Chem. Eng. – volume: 53 126 start-page: 14433 14661 year: 2014 2014 end-page: 14437 14665 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 263 start-page: 1 year: 2009 end-page: 3 publication-title: J. Catal. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 10 start-page: 4544 year: 2017 end-page: 4551 publication-title: ChemSusChem – volume: 140 start-page: 610 year: 2018 end-page: 617 publication-title: J. Am. Chem. Soc. – volume: 118 start-page: 29294 year: 2014 end-page: 29300 publication-title: J. Phys. Chem. C – volume: 53 start-page: 13153 year: 2017 end-page: 13156 publication-title: Chem. Commun. – volume: 3 start-page: 2428 year: 2019 end-page: 2436 publication-title: Mater. Chem. Front. – volume: 1 start-page: 14706 year: 2013 publication-title: J. Mater. Chem. A – volume: 140 start-page: 2731 year: 2018 end-page: 2734 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 8861 year: 2018 end-page: 8870 publication-title: Chem. Mater. – volume: 5 start-page: 17064 year: 2017 end-page: 17072 publication-title: J. Mater. Chem. A – volume: 7 start-page: 7543 year: 2017 end-page: 7557 publication-title: ACS Catal. – volume: 6 start-page: 3708 year: 2019 end-page: 3713 publication-title: ChemElectroChem – volume: 3 start-page: 1656 year: 2015 end-page: 1665 publication-title: J. Mater. Chem. A – volume: 278 start-page: 540 year: 2015 end-page: 545 publication-title: J. Power Sources – volume: 53 126 start-page: 5427 5531 year: 2014 2014 end-page: 5430 5534 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 start-page: 1987 year: 2018 end-page: 1996 publication-title: Mater. Chem. Front. – volume: 54 start-page: 2894 year: 2018 end-page: 2897 publication-title: Chem. Commun. – volume: 6 start-page: 714 year: 2016 end-page: 721 publication-title: ACS Catal. – volume: 15 start-page: 26 year: 2017 end-page: 55 publication-title: Nano Today – ident: e_1_2_8_159_2 doi: 10.1016/j.electacta.2018.10.136 – ident: e_1_2_8_60_1 doi: 10.1039/C9TA03146D – ident: e_1_2_8_37_1 – ident: e_1_2_8_45_1 doi: 10.1021/jacs.6b08491 – ident: e_1_2_8_146_1 doi: 10.1021/acs.chemmater.7b03627 – ident: e_1_2_8_74_1 doi: 10.1002/aenm.201700020 – ident: e_1_2_8_22_1 doi: 10.1021/ja403440e – year: 2020 ident: e_1_2_8_103_1 publication-title: Angew. Chem. Int. Ed. – volume: 27 start-page: 23LT year: 2016 ident: e_1_2_8_179_1 publication-title: Nanotechnology – ident: e_1_2_8_170_2 doi: 10.1039/C6TA03732A – ident: e_1_2_8_87_1 doi: 10.1021/acs.chemmater.8b03908 – ident: e_1_2_8_36_1 doi: 10.1021/nn5048553 – ident: e_1_2_8_7_2 doi: 10.1039/C9TA04163J – ident: e_1_2_8_165_1 doi: 10.1002/adma.201505875 – ident: e_1_2_8_49_1 doi: 10.1016/j.nanoen.2019.06.002 – ident: e_1_2_8_78_1 doi: 10.1002/aenm.201601555 – ident: e_1_2_8_40_1 – ident: e_1_2_8_6_2 doi: 10.1021/acscatal.7b04286 – ident: e_1_2_8_108_2 doi: 10.1002/ange.201906683 – ident: e_1_2_8_121_1 doi: 10.1002/aenm.201601285 – ident: e_1_2_8_18_1 doi: 10.1007/BFb0119186 – ident: e_1_2_8_136_1 doi: 10.1002/adfm.201901510 – ident: e_1_2_8_156_1 doi: 10.1039/C8NR01556B – ident: e_1_2_8_66_1 – ident: e_1_2_8_124_1 – ident: e_1_2_8_72_1 doi: 10.1016/j.nanoen.2017.02.049 – ident: e_1_2_8_71_2 doi: 10.1016/j.apcatb.2020.118633 – ident: e_1_2_8_123_1 doi: 10.1002/anie.201502577 – ident: e_1_2_8_131_1 doi: 10.1039/C9QM00449A – ident: e_1_2_8_140_1 doi: 10.1002/adfm.201801332 – ident: e_1_2_8_154_2 doi: 10.1016/j.apcatb.2019.118352 – ident: e_1_2_8_12_2 doi: 10.1016/j.jechem.2018.07.006 – ident: e_1_2_8_132_1 doi: 10.1039/C7TA10218F – ident: e_1_2_8_2_1 doi: 10.1002/adma.201500821 – ident: e_1_2_8_39_2 doi: 10.1039/C6CE00985A – ident: e_1_2_8_65_1 doi: 10.1038/nmat4738 – ident: e_1_2_8_130_1 doi: 10.1016/j.cej.2020.124408 – ident: e_1_2_8_143_2 doi: 10.1021/acsami.5b04947 – ident: e_1_2_8_178_1 doi: 10.1002/celc.201700392 – ident: e_1_2_8_107_1 doi: 10.1021/acsami.9b07415 – ident: e_1_2_8_56_1 doi: 10.1021/jp5054452 – ident: e_1_2_8_83_1 doi: 10.1002/anie.201808929 – ident: e_1_2_8_120_1 doi: 10.1039/C7CC08340H – ident: e_1_2_8_9_1 – ident: e_1_2_8_23_1 – ident: e_1_2_8_48_2 doi: 10.1021/jacs.7b12420 – ident: e_1_2_8_118_1 doi: 10.1016/j.apcatb.2019.118053 – ident: e_1_2_8_58_1 doi: 10.1039/C6NR05747K – ident: e_1_2_8_69_2 doi: 10.1038/s41467-018-04746-z – ident: e_1_2_8_127_1 doi: 10.1039/C5TA01611H – ident: e_1_2_8_42_2 doi: 10.1021/acsami.5b09092 – ident: e_1_2_8_149_1 doi: 10.1021/acsnano.8b06039 – ident: e_1_2_8_10_2 doi: 10.1039/C3CS60468C – ident: e_1_2_8_26_2 doi: 10.1002/anie.201406848 – ident: e_1_2_8_91_1 doi: 10.1039/C7CC09445K – ident: e_1_2_8_88_1 doi: 10.1016/j.apcatb.2019.04.089 – ident: e_1_2_8_139_1 doi: 10.1039/C8TA09629E – ident: e_1_2_8_142_2 doi: 10.1039/C6CS00135A – ident: e_1_2_8_115_1 doi: 10.1002/adma.201703322 – ident: e_1_2_8_31_1 doi: 10.1002/anie.201404161 – ident: e_1_2_8_150_1 doi: 10.1039/C8SC03877E – ident: e_1_2_8_28_1 doi: 10.1002/adma.201401692 – ident: e_1_2_8_51_1 – ident: e_1_2_8_100_1 doi: 10.1021/acscatal.7b01767 – ident: e_1_2_8_8_2 doi: 10.1002/ejic.201501181 – ident: e_1_2_8_11_2 doi: 10.1016/j.nanoen.2019.01.017 – ident: e_1_2_8_85_2 doi: 10.1002/ange.201408222 – ident: e_1_2_8_117_1 doi: 10.1039/C7NR08472B – ident: e_1_2_8_30_1 doi: 10.1021/jacs.7b08521 – ident: e_1_2_8_161_1 – ident: e_1_2_8_75_1 doi: 10.1021/acscatal.6b02849 – ident: e_1_2_8_80_1 doi: 10.1039/C9TA03944A – ident: e_1_2_8_24_2 doi: 10.1021/ja503372r – ident: e_1_2_8_168_1 – ident: e_1_2_8_152_1 doi: 10.1016/j.jpowsour.2014.12.095 – ident: e_1_2_8_167_1 doi: 10.1016/j.apsusc.2017.01.059 – ident: e_1_2_8_114_1 doi: 10.1002/aenm.201801690 – ident: e_1_2_8_90_1 doi: 10.1002/adfm.201702513 – ident: e_1_2_8_15_2 doi: 10.1039/C5CS00434A – ident: e_1_2_8_158_1 – ident: e_1_2_8_176_1 doi: 10.1016/j.jpowsour.2016.08.126 – ident: e_1_2_8_53_2 doi: 10.1016/j.jcat.2009.02.008 – ident: e_1_2_8_147_1 doi: 10.1002/adfm.201706008 – ident: e_1_2_8_103_2 – ident: e_1_2_8_111_1 doi: 10.1002/adma.201901174 – ident: e_1_2_8_112_1 doi: 10.1002/celc.201900709 – ident: e_1_2_8_162_2 doi: 10.1021/acssuschemeng.7b01419 – ident: e_1_2_8_137_1 doi: 10.1002/adma.201703711 – ident: e_1_2_8_108_1 doi: 10.1002/anie.201906683 – ident: e_1_2_8_157_1 doi: 10.1039/C6SC05687C – ident: e_1_2_8_33_1 doi: 10.1021/acs.chemmater.5b01284 – ident: e_1_2_8_52_2 doi: 10.1016/j.jcat.2010.02.031 – ident: e_1_2_8_43_2 doi: 10.1039/C9QM00409B – ident: e_1_2_8_27_1 doi: 10.1002/anie.201402646 – ident: e_1_2_8_171_1 – ident: e_1_2_8_169_2 doi: 10.1039/C6RA04478F – ident: e_1_2_8_4_2 doi: 10.1002/smll.201704227 – ident: e_1_2_8_41_2 doi: 10.1016/j.electacta.2017.12.158 – ident: e_1_2_8_123_2 doi: 10.1002/ange.201502577 – ident: e_1_2_8_34_1 doi: 10.1021/cr400020d – ident: e_1_2_8_106_1 doi: 10.1021/acs.chemmater.7b03377 – ident: e_1_2_8_94_1 doi: 10.1039/C9TA07289F – ident: e_1_2_8_98_1 doi: 10.1021/acscatal.5b01657 – ident: e_1_2_8_133_1 doi: 10.1021/acsami.8b03427 – ident: e_1_2_8_93_1 doi: 10.1016/j.nanoen.2018.03.034 – ident: e_1_2_8_62_1 – ident: e_1_2_8_19_1 doi: 10.1021/acs.chemmater.6b02148 – ident: e_1_2_8_164_1 doi: 10.1021/acscatal.5b02193 – ident: e_1_2_8_3_1 – ident: e_1_2_8_95_1 doi: 10.1016/j.ijhydene.2019.02.095 – ident: e_1_2_8_102_1 doi: 10.1002/cssc.201701565 – ident: e_1_2_8_32_1 doi: 10.1039/C8NR01032C – ident: e_1_2_8_172_2 doi: 10.1016/j.jechem.2017.07.016 – ident: e_1_2_8_83_2 doi: 10.1002/ange.201808929 – ident: e_1_2_8_26_3 doi: 10.1002/ange.201406848 – ident: e_1_2_8_177_1 doi: 10.1007/s12274-016-1112-z – ident: e_1_2_8_89_1 doi: 10.1002/adma.201800140 – ident: e_1_2_8_13_1 – ident: e_1_2_8_135_1 doi: 10.1002/smll.201804546 – ident: e_1_2_8_97_1 doi: 10.1038/nmat4410 – ident: e_1_2_8_160_2 doi: 10.1021/acsami.7b06075 – ident: e_1_2_8_174_1 doi: 10.1021/jacs.9b02527 – ident: e_1_2_8_68_2 doi: 10.1039/C5EE02179K – ident: e_1_2_8_119_1 doi: 10.1021/acssuschemeng.9b00357 – ident: e_1_2_8_21_1 doi: 10.1039/c3cc43107j – ident: e_1_2_8_99_1 doi: 10.1021/acsami.8b08068 – ident: e_1_2_8_79_1 doi: 10.1002/adma.201900178 – ident: e_1_2_8_109_1 doi: 10.1016/j.nanoen.2018.06.048 – ident: e_1_2_8_104_1 doi: 10.1021/acssuschemeng.6b01879 – ident: e_1_2_8_5_2 doi: 10.1002/celc.201900507 – ident: e_1_2_8_63_2 doi: 10.1021/acs.accounts.7b00616 – ident: e_1_2_8_144_1 doi: 10.1021/acssuschemeng.9b03217 – ident: e_1_2_8_50_1 doi: 10.1016/j.nanoen.2018.06.040 – ident: e_1_2_8_163_2 doi: 10.1039/C7TA03999A – ident: e_1_2_8_173_2 doi: 10.1021/acssuschemeng.7b03034 – ident: e_1_2_8_17_1 doi: 10.1002/aenm.201600087 – ident: e_1_2_8_82_1 doi: 10.1016/j.apcatb.2018.09.103 – ident: e_1_2_8_128_1 doi: 10.1021/acssuschemeng.9b01263 – ident: e_1_2_8_20_1 doi: 10.1021/ja0540019 – ident: e_1_2_8_92_1 doi: 10.1002/celc.201901417 – ident: e_1_2_8_96_1 doi: 10.1007/s40820-019-0289-6 – ident: e_1_2_8_105_1 doi: 10.1039/C5CY02299A – ident: e_1_2_8_155_2 doi: 10.1039/C9TA03300A – ident: e_1_2_8_47_2 doi: 10.1002/aenm.201601671 – ident: e_1_2_8_129_1 doi: 10.1021/acssuschemeng.9b01355 – ident: e_1_2_8_44_2 doi: 10.1039/C8QM00226F – ident: e_1_2_8_84_1 doi: 10.1021/jacs.7b12615 – ident: e_1_2_8_86_1 doi: 10.1016/j.nanoen.2018.08.064 – ident: e_1_2_8_110_1 doi: 10.1002/adma.201803590 – ident: e_1_2_8_16_2 doi: 10.1039/C8NR07891B – ident: e_1_2_8_67_2 doi: 10.1016/j.nantod.2017.06.006 – ident: e_1_2_8_166_1 doi: 10.1039/c3ta13243a – ident: e_1_2_8_122_1 doi: 10.1038/s41598-017-12332-4 – ident: e_1_2_8_61_1 doi: 10.1021/acs.nanolett.6b03803 – ident: e_1_2_8_125_2 doi: 10.1021/acsami.8b12108 – ident: e_1_2_8_55_1 doi: 10.1002/adfm.201503666 – ident: e_1_2_8_126_2 doi: 10.1016/j.electacta.2017.06.086 – ident: e_1_2_8_153_1 – ident: e_1_2_8_35_1 doi: 10.1007/s10562-012-0929-7 – ident: e_1_2_8_27_2 doi: 10.1002/ange.201402646 – ident: e_1_2_8_25_2 doi: 10.1021/am5060178 – ident: e_1_2_8_29_1 doi: 10.1039/C4EE00957F – ident: e_1_2_8_1_1 doi: 10.1039/C4CS00470A – ident: e_1_2_8_73_1 doi: 10.1039/C8QI01026A – ident: e_1_2_8_138_1 doi: 10.1039/C6TA01923D – ident: e_1_2_8_77_1 doi: 10.1016/j.nanoen.2017.06.002 – ident: e_1_2_8_141_1 – ident: e_1_2_8_31_2 doi: 10.1002/ange.201404161 – ident: e_1_2_8_64_2 doi: 10.1002/cctc.201500350 – ident: e_1_2_8_116_1 doi: 10.1039/C7CC07342A – ident: e_1_2_8_38_2 doi: 10.1039/C4TA04867A – ident: e_1_2_8_14_2 doi: 10.1039/C6CY01719C – ident: e_1_2_8_54_1 doi: 10.1021/cs5014943 – ident: e_1_2_8_57_1 doi: 10.1039/C4TA04758C – ident: e_1_2_8_59_1 doi: 10.1021/ja028180v – ident: e_1_2_8_46_1 – volume: 6 start-page: 1150b year: 2019 ident: e_1_2_8_151_1 publication-title: Mater. Res. Express – ident: e_1_2_8_148_1 doi: 10.1016/j.nanoen.2019.103995 – ident: e_1_2_8_113_1 doi: 10.1002/smll.201802755 – ident: e_1_2_8_175_1 doi: 10.1039/C5RA26748J – ident: e_1_2_8_70_2 doi: 10.1002/cctc.201801482 – ident: e_1_2_8_145_1 doi: 10.1039/C8EE00076J – ident: e_1_2_8_81_1 doi: 10.1016/j.apcatb.2018.11.083 – ident: e_1_2_8_134_1 doi: 10.1021/jacs.7b12968 – ident: e_1_2_8_101_1 doi: 10.1016/j.jpowsour.2019.04.119 – ident: e_1_2_8_180_1 doi: 10.1002/adfm.201505509 – ident: e_1_2_8_76_1 doi: 10.1039/C7SC04849A – ident: e_1_2_8_85_1 doi: 10.1002/anie.201408222 |
| SSID | ssj0060966 |
| Score | 2.6727734 |
| SecondaryResourceType | review_article |
| Snippet | As hydrogen has been increasingly considered as promising sustainable energy supply, electrochemical overall water splitting driven by highly efficient... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3357 |
| SubjectTerms | electrocatalysis Electrocatalysts Electrolytes Electronic structure hydrogen evolution reaction Hydrogen evolution reactions Multiscale analysis multiscale approaches Noble metals Phosphides Phosphorus Reaction mechanisms transition metal phosphides Transition metals Water splitting |
| Title | Transition Metal Phosphide‐Based Materials for Efficient Electrochemical Hydrogen Evolution: A Critical Review |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202000416 https://www.ncbi.nlm.nih.gov/pubmed/32196958 https://www.proquest.com/docview/2420517292 https://www.proquest.com/docview/2381629076 |
| Volume | 13 |
| WOSCitedRecordID | wos000535089400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1864-564X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060966 issn: 1864-5631 databaseCode: DRFUL dateStart: 20080101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEB52k0J76Xu3brNBC4WezNqyLcm9pWlCDptlaXYhN2PrwQaWJMRJoLf-hP7G_pKO5EcbSil0L0bCY1lIM5rPHukbgPfoMaRSUegXQhZ-jD4dS8L4XMZxEYoCEXrhkk3wqysxn6fXv53ir_gh2h9u1jLcem0NPC_Ki1-kobIsLQWhPWqCoOIYuhSVN-lA9_OX8e1lsxozhOjuhJFgsZ-wKGyIGwN6cdjCoWP6A20eglfnfcbPHt7v5_C0Rp5kUKnKCzjSy5fweNgkfHsFa-e33BYuMtUIysn13apc3y2U_vHt-yd0d4pM822lsgTBLhk5_gl0W2RUZdORNf0AmXxVmxXqJhnta93-SAakyatAqojEa7gdj26GE79OyODLmDPmc_waYQoBZRway2er8aK4pkxIxnJudBqkXCcIOxQNImniVCSaSYOCRgTCRCfQWa6W-g0QamgqhUEAYfIYoTNWpAm0UWFoqJLMA7-ZjUzWbOU2acZ9VvEs08yOY9aOowcfWvl1xdPxV8leM7lZba9lhkDFkpXRlHpw3t7G8bfhk3ypVzuUsTFWmgYcmzitlKJ9VUQtzVAiPKBu7v_Rh2w4mw3b2tv_eegdPLFlt3OY96Cz3ez0GTyS--2i3PThmM9Fv7aFn5Q8CSQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bSyMxFD64KuiL7k3t6q5ZWNinwZlMmmR809rSxbaIF_Bt6ORCBWlLpwq--RP8jf6SPclcpCwiLL4Mk5kzmZCck_Pl9h2AX-gxlNZxFGRSZQFDn4530gZCMZZFMkOEnvlgE2IwkNfXyVm5m9CdhSn4IeoJN2cZvr92Bu4mpA9eWENVnjsOQnfWBFHFB1hhqEuo5Csn552rXtUdc8To_oiR5Cxo8jiqmBtDerCYw6Jn-gduLqJX7346m-9Q8I-wUWJPclQoyydYMuPPsNaqQr59gan3XH4TF-kbhOXkbDTJp6MbbZ4fn47R4WnSH84LpSUId0nbM1Cg4yLtIp6OKgkISPdBzyaonaR9X2r3ITkiVWQFUqxJfIWrTvuy1Q3KkAyBYoLzQOB4hGuElCyyjtHW4EULQ7lUnA-FNUmYCNNE4KFpGCvLEtk0XFkUtDKUNt6C5fFkbHaAUEsTJS1CCDtkCJ4xoWxorI4iS7XiDQiq5khVyVfuwmbcpgXTMk1dPaZ1PTbgdy0_LZg6XpXcq1o3LS02TxGqOLoymtAG_KxfY_27BZTh2EzuUMatstIkFJjFdqEV9a9i6oiGmrIB1Df-G2VIWxcXrTr17X8-2oe17mW_l_b-DE53Yd099_uIxR4sz2d35jusqvv5TT77UZrEXzfsDCw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS-QwFD6s4-L64u6qq-NljbDgU7FNM0nqm44zKOow6Aq-lWkuKMjMMB0F3_Yn7G_0l3iSXmQQEZZ9KU17mobknJyvTc53AH6hx1Bax1GQSZUFDH06nkkbCMVYFskMEXrmk02IXk_e3CT9cjehi4Up-CHqH27OMvx87QzcjLXdf2UNVXnuOAhdrAmiijmYZy6TTAPmjy-71-fVdMwRo_sQI8lZ0OJxVDE3hnR_toZZz_QGbs6iV-9-ul__Q8O_wVKJPclhoSzf4ZMZLsOXdpXybQXG3nP5TVzkwiAsJ_3bUT6-vdPm-c_fI3R4mlwMpoXSEoS7pOMZKNBxkU6RT0eVBATk5ElPRqidpPNYavcBOSRVZgVSrEmswnW387t9EpQpGQLFBOeBwO8RrhFSssg6RluDBy0M5VJxPhDWJGEiTAuBh6ZhrCxLZMtwZVHQylDa-Ac0hqOhWQdCLU2UtAgh7IAheMaCsqGxOoos1Yo3IaiGI1UlX7lLm3GfFkzLNHX9mNb92IS9Wn5cMHW8K7lVjW5aWmyeIlRxdGU0oU3YrW9j_7sFlMHQjB5Qxq2y0iQUWMVaoRX1q2LqiIZasgnUD_4HbUjbV1fturTxLw_twEL_uJuen_bONmHRXfbbiMUWNKaTB7MNn9Xj9C6f_Cwt4gWwOAun |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transition+Metal+Phosphide-Based+Materials+for+Efficient+Electrochemical+Hydrogen+Evolution%3A+A+Critical+Review&rft.jtitle=ChemSusChem&rft.au=Weng%2C+Chen-Chen&rft.au=Ren%2C+Jin-Tao&rft.au=Yuan%2C+Zhong-Yong&rft.date=2020-07-07&rft.issn=1864-564X&rft.eissn=1864-564X&rft.volume=13&rft.issue=13&rft.spage=3357&rft_id=info:doi/10.1002%2Fcssc.202000416&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |