Transition Metal Phosphide‐Based Materials for Efficient Electrochemical Hydrogen Evolution: A Critical Review

As hydrogen has been increasingly considered as promising sustainable energy supply, electrochemical overall water splitting driven by highly efficient non‐noble metal electrocatalysts has aroused extensive attention. Transition metal phosphides (TMPs) have demonstrated remarkable electrocatalytic p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem Jg. 13; H. 13; S. 3357 - 3375
Hauptverfasser: Weng, Chen‐Chen, Ren, Jin‐Tao, Yuan, Zhong‐Yong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 07.07.2020
Schlagworte:
ISSN:1864-5631, 1864-564X, 1864-564X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract As hydrogen has been increasingly considered as promising sustainable energy supply, electrochemical overall water splitting driven by highly efficient non‐noble metal electrocatalysts has aroused extensive attention. Transition metal phosphides (TMPs) have demonstrated remarkable electrocatalytic performance, including high activity and robust durability towards hydrogen evolution reaction (HER) in acidic and alkaline as well as neutral electrolytes. In this Review, up‐to‐date progress of TMP‐based HER electrocatalysts is summarized. Various synthesis strategies of TMPs based on selected phosphorus sources are presented, and the reaction mechanisms of HER as well as the contribution of phosphorus in the TMPs to HER activity are briefly discussed. The multiscale approaches for promoting the activity and stability of TMP‐based catalysts are discussed with respect to intrinsic electronic structure, hybrids, microstructure, and working electrode interface. Some crucial issues and future perspectives of TMPs are pointed out. These modulated approaches and challenges are also instructive for constructing other high‐activity energy‐related electrocatalysts. Transitioning to hydrogen: In this Review, up‐to‐date progress of transition metal phosphide (TMP)‐based hydrogen evolution reaction (HER) electrocatalysts is summarized. Various synthesis strategies and the HER reaction mechanisms of TMP‐based catalysts are briefly discussed. In addition, multiscale approaches with respect to electronic structure, hybrids, microstructure, and working electrode interface are discussed for promoting HER performances.
AbstractList As hydrogen has been increasingly considered as promising sustainable energy supply, electrochemical overall water splitting driven by highly efficient non-noble metal electrocatalysts has aroused extensive attention. Transition metal phosphides (TMPs) have demonstrated remarkable electrocatalytic performance, including high activity and robust durability towards hydrogen evolution reaction (HER) in acidic and alkaline as well as neutral electrolytes. In this Review, up-to-date progress of TMP-based HER electrocatalysts is summarized. Various synthesis strategies of TMPs based on selected phosphorus sources are presented, and the reaction mechanisms of HER as well as the contribution of phosphorus in the TMPs to HER activity are briefly discussed. The multiscale approaches for promoting the activity and stability of TMP-based catalysts are discussed with respect to intrinsic electronic structure, hybrids, microstructure, and working electrode interface. Some crucial issues and future perspectives of TMPs are pointed out. These modulated approaches and challenges are also instructive for constructing other high-activity energy-related electrocatalysts.As hydrogen has been increasingly considered as promising sustainable energy supply, electrochemical overall water splitting driven by highly efficient non-noble metal electrocatalysts has aroused extensive attention. Transition metal phosphides (TMPs) have demonstrated remarkable electrocatalytic performance, including high activity and robust durability towards hydrogen evolution reaction (HER) in acidic and alkaline as well as neutral electrolytes. In this Review, up-to-date progress of TMP-based HER electrocatalysts is summarized. Various synthesis strategies of TMPs based on selected phosphorus sources are presented, and the reaction mechanisms of HER as well as the contribution of phosphorus in the TMPs to HER activity are briefly discussed. The multiscale approaches for promoting the activity and stability of TMP-based catalysts are discussed with respect to intrinsic electronic structure, hybrids, microstructure, and working electrode interface. Some crucial issues and future perspectives of TMPs are pointed out. These modulated approaches and challenges are also instructive for constructing other high-activity energy-related electrocatalysts.
As hydrogen has been increasingly considered as promising sustainable energy supply, electrochemical overall water splitting driven by highly efficient non-noble metal electrocatalysts has aroused extensive attention. Transition metal phosphides (TMPs) have demonstrated remarkable electrocatalytic performance, including high activity and robust durability towards hydrogen evolution reaction (HER) in acidic and alkaline as well as neutral electrolytes. In this Review, up-to-date progress of TMP-based HER electrocatalysts is summarized. Various synthesis strategies of TMPs based on selected phosphorus sources are presented, and the reaction mechanisms of HER as well as the contribution of phosphorus in the TMPs to HER activity are briefly discussed. The multiscale approaches for promoting the activity and stability of TMP-based catalysts are discussed with respect to intrinsic electronic structure, hybrids, microstructure, and working electrode interface. Some crucial issues and future perspectives of TMPs are pointed out. These modulated approaches and challenges are also instructive for constructing other high-activity energy-related electrocatalysts.
As hydrogen has been increasingly considered as promising sustainable energy supply, electrochemical overall water splitting driven by highly efficient non‐noble metal electrocatalysts has aroused extensive attention. Transition metal phosphides (TMPs) have demonstrated remarkable electrocatalytic performance, including high activity and robust durability towards hydrogen evolution reaction (HER) in acidic and alkaline as well as neutral electrolytes. In this Review, up‐to‐date progress of TMP‐based HER electrocatalysts is summarized. Various synthesis strategies of TMPs based on selected phosphorus sources are presented, and the reaction mechanisms of HER as well as the contribution of phosphorus in the TMPs to HER activity are briefly discussed. The multiscale approaches for promoting the activity and stability of TMP‐based catalysts are discussed with respect to intrinsic electronic structure, hybrids, microstructure, and working electrode interface. Some crucial issues and future perspectives of TMPs are pointed out. These modulated approaches and challenges are also instructive for constructing other high‐activity energy‐related electrocatalysts. Transitioning to hydrogen: In this Review, up‐to‐date progress of transition metal phosphide (TMP)‐based hydrogen evolution reaction (HER) electrocatalysts is summarized. Various synthesis strategies and the HER reaction mechanisms of TMP‐based catalysts are briefly discussed. In addition, multiscale approaches with respect to electronic structure, hybrids, microstructure, and working electrode interface are discussed for promoting HER performances.
Author Weng, Chen‐Chen
Yuan, Zhong‐Yong
Ren, Jin‐Tao
Author_xml – sequence: 1
  givenname: Chen‐Chen
  surname: Weng
  fullname: Weng, Chen‐Chen
  organization: Nankai University
– sequence: 2
  givenname: Jin‐Tao
  surname: Ren
  fullname: Ren, Jin‐Tao
  organization: Nankai University
– sequence: 3
  givenname: Zhong‐Yong
  orcidid: 0000-0002-3790-8181
  surname: Yuan
  fullname: Yuan, Zhong‐Yong
  email: zyyuan@nankai.edu.cn
  organization: Nankai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32196958$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9LHDEYh4Mo_u3VYwn04mXXN5mZzKQ3O6xaUFqqQm8hZt50I7OTbTKj7M2P4Gf0kzTDqgWh9JIE8jw_Xt7fHtnsfIeEHDKYMgB-bGI0Uw4cAHImNsguq0Q-KUT-c_PtnbEdshfjHYAAKcQ22ck4k0IW1S5ZXgfdRdc739FL7HVLv899XM5dg8-PT190xIZe6h6D022k1gc6s9YZh11PZy2aPngzx4UzyTxfNcH_wo7O7n07jJGf6QmtQ0ofv3_gvcOHA7JlUxR-eLn3yc3p7Lo-n1x8O_tan1xMTF4KMSlZGr6RTOTMSsk5pqMpkYvKCKFLixJkiQVA2XDIjM1lVaAwNoG2gspm--RonbsM_veAsVcLFw22re7QD1HxrGKCSyhFQj-9Q-_8ELo0neI5h4KVXPJEfXyhhtsFNmoZ3EKHlXrdZQLyNWCCjzGgVcb1elxDH7RrFQM1VqbGytRbZUmbvtNek_8pyLXw4Fpc_YdW9dVV_df9A7bEqXM
CitedBy_id crossref_primary_10_1002_smll_202307252
crossref_primary_10_1016_j_jcis_2023_11_031
crossref_primary_10_1039_D5TA04085J
crossref_primary_10_1016_j_jelechem_2021_115640
crossref_primary_10_1016_j_cej_2022_136031
crossref_primary_10_1007_s12274_021_3759_3
crossref_primary_10_1002_adfm_202513128
crossref_primary_10_1016_j_jiec_2022_12_030
crossref_primary_10_1002_cssc_202300479
crossref_primary_10_1016_j_molstruc_2024_141132
crossref_primary_10_1002_anie_202214707
crossref_primary_10_1016_j_ijhydene_2024_07_434
crossref_primary_10_1002_EXP_20210077
crossref_primary_10_1007_s10008_021_05077_8
crossref_primary_10_3390_nano12193328
crossref_primary_10_1016_j_ijhydene_2023_05_302
crossref_primary_10_3390_app12010049
crossref_primary_10_1016_j_cej_2021_130454
crossref_primary_10_1016_j_jallcom_2022_166472
crossref_primary_10_1016_j_cej_2022_137132
crossref_primary_10_1021_acsaem_4c02942
crossref_primary_10_1016_j_jcis_2022_07_102
crossref_primary_10_1016_j_renene_2023_119529
crossref_primary_10_1016_j_cclet_2024_110049
crossref_primary_10_1016_j_ijhydene_2022_08_261
crossref_primary_10_1007_s00289_022_04100_w
crossref_primary_10_1016_j_inoche_2024_112474
crossref_primary_10_1002_cctc_202101104
crossref_primary_10_1016_j_apcatb_2022_122081
crossref_primary_10_1016_j_ijhydene_2022_09_070
crossref_primary_10_1016_j_colsurfa_2025_137357
crossref_primary_10_1002_adma_202401448
crossref_primary_10_1002_celc_202300426
crossref_primary_10_1016_j_jechem_2025_07_005
crossref_primary_10_1039_D2NR03755F
crossref_primary_10_1039_D2CP02089K
crossref_primary_10_1016_j_jallcom_2021_160054
crossref_primary_10_1002_chem_202202858
crossref_primary_10_1039_D5RA01184A
crossref_primary_10_1016_j_cej_2023_141674
crossref_primary_10_1007_s40820_024_01424_2
crossref_primary_10_1016_j_apsusc_2021_151450
crossref_primary_10_1002_chem_202302825
crossref_primary_10_1016_j_matchemphys_2022_126676
crossref_primary_10_1016_j_ccr_2023_215410
crossref_primary_10_1016_j_ijhydene_2024_11_212
crossref_primary_10_1016_j_jcis_2025_138340
crossref_primary_10_1002_cssc_202002103
crossref_primary_10_1016_j_electacta_2022_139846
crossref_primary_10_1016_j_apsusc_2025_163301
crossref_primary_10_1016_j_molstruc_2024_140852
crossref_primary_10_1039_D4QI01740D
crossref_primary_10_3390_nano13182613
crossref_primary_10_1016_j_apcatb_2022_121546
crossref_primary_10_1016_j_jcat_2024_115725
crossref_primary_10_1016_j_cej_2022_137716
crossref_primary_10_1016_j_jelechem_2022_116679
crossref_primary_10_1016_j_ijhydene_2024_08_208
crossref_primary_10_1016_j_jallcom_2024_178252
crossref_primary_10_1016_j_apcatb_2020_119609
crossref_primary_10_1016_j_ccr_2025_217009
crossref_primary_10_1016_j_mtchem_2022_101210
crossref_primary_10_1002_smll_202202033
crossref_primary_10_1016_j_ccr_2022_214811
crossref_primary_10_1016_j_enchem_2025_100161
crossref_primary_10_1016_j_jallcom_2023_168961
crossref_primary_10_1016_j_solidstatesciences_2022_107089
crossref_primary_10_1016_j_jallcom_2024_175549
crossref_primary_10_1002_cssc_202001975
crossref_primary_10_1039_D1NR04513J
crossref_primary_10_1016_j_ijhydene_2024_09_009
crossref_primary_10_1016_j_ijhydene_2021_09_127
crossref_primary_10_1016_j_cis_2024_103279
crossref_primary_10_1016_j_colcom_2021_100520
crossref_primary_10_1002_adsu_202300379
crossref_primary_10_1002_smll_202206196
crossref_primary_10_1002_adhm_202201884
crossref_primary_10_1007_s40843_023_2754_8
crossref_primary_10_1016_j_ceramint_2023_06_056
crossref_primary_10_1002_aesr_202300059
crossref_primary_10_1007_s11705_021_2102_6
crossref_primary_10_3390_nano12172935
crossref_primary_10_1016_j_cej_2021_133514
crossref_primary_10_1039_D1RA02849A
crossref_primary_10_1016_j_ijhydene_2023_10_135
crossref_primary_10_1016_j_cej_2023_144241
crossref_primary_10_1016_j_ijhydene_2022_08_184
crossref_primary_10_1016_j_colsurfa_2023_132989
crossref_primary_10_1016_j_jssc_2022_123434
crossref_primary_10_1088_1361_6528_ac8060
crossref_primary_10_1016_j_jssc_2021_122184
crossref_primary_10_1002_slct_202200291
crossref_primary_10_1007_s10311_021_01331_7
crossref_primary_10_1016_j_est_2024_111565
crossref_primary_10_1016_j_electacta_2023_142378
crossref_primary_10_1002_er_8344
crossref_primary_10_1016_j_ceja_2025_100837
crossref_primary_10_1016_j_cclet_2021_11_034
crossref_primary_10_1016_j_mtener_2022_100992
crossref_primary_10_3390_coatings15070772
crossref_primary_10_1007_s12274_023_5962_x
crossref_primary_10_3390_catal12091055
crossref_primary_10_1007_s41918_022_00159_1
crossref_primary_10_1007_s11708_022_0813_0
crossref_primary_10_1002_smll_202300194
crossref_primary_10_1002_adsu_202400387
crossref_primary_10_1016_j_colsurfa_2020_125313
crossref_primary_10_1002_adfm_202209967
crossref_primary_10_1016_j_ijhydene_2025_02_185
crossref_primary_10_1016_j_gee_2022_12_005
crossref_primary_10_1016_j_ijhydene_2023_09_294
crossref_primary_10_1016_j_gee_2020_12_009
crossref_primary_10_1016_j_matlet_2024_136109
crossref_primary_10_1002_celc_202100384
crossref_primary_10_1002_cssc_202300633
crossref_primary_10_1016_j_jechem_2022_08_019
crossref_primary_10_1039_D2QI02703H
crossref_primary_10_1002_adfm_202424141
crossref_primary_10_1016_j_mtener_2022_100975
crossref_primary_10_3390_catal12010002
crossref_primary_10_1016_j_cattod_2022_07_020
crossref_primary_10_1002_ejic_202300014
crossref_primary_10_1007_s10562_024_04714_x
crossref_primary_10_1016_j_jechem_2022_01_025
crossref_primary_10_1016_j_jssc_2024_124750
crossref_primary_10_1016_j_inoche_2023_111110
crossref_primary_10_1016_j_cej_2023_146180
crossref_primary_10_1016_j_jcis_2021_10_051
crossref_primary_10_1016_j_jcis_2025_02_189
crossref_primary_10_1002_cssc_202101841
crossref_primary_10_1002_cey2_528
crossref_primary_10_1016_j_nanoen_2023_108566
crossref_primary_10_1016_j_ijhydene_2023_03_205
crossref_primary_10_1016_j_fuel_2025_134898
crossref_primary_10_1007_s40843_021_2017_y
crossref_primary_10_1016_j_surfin_2023_103149
crossref_primary_10_1016_j_rser_2024_115153
crossref_primary_10_1016_j_ijhydene_2023_05_290
crossref_primary_10_1016_S1872_2067_21_63855_X
crossref_primary_10_1002_smll_202407043
crossref_primary_10_1039_D0SE01679A
crossref_primary_10_1002_aenm_202203568
crossref_primary_10_1016_j_fuel_2023_129784
crossref_primary_10_1021_acsami_5c00370
crossref_primary_10_1111_ijac_14262
crossref_primary_10_1016_j_jcis_2024_09_005
crossref_primary_10_1039_D5QM00354G
crossref_primary_10_1002_anie_202513970
crossref_primary_10_1016_j_cej_2021_132259
crossref_primary_10_1016_j_jallcom_2023_169070
crossref_primary_10_1002_cssc_202402563
crossref_primary_10_1016_j_cej_2024_152903
crossref_primary_10_1016_j_jallcom_2024_176695
crossref_primary_10_1002_ange_202214707
crossref_primary_10_1002_cssc_202200114
crossref_primary_10_1039_D1SE00485A
crossref_primary_10_1016_j_rser_2023_113348
crossref_primary_10_1002_smsc_202100032
crossref_primary_10_1016_j_cej_2022_139175
crossref_primary_10_1002_ange_202513970
crossref_primary_10_1016_j_est_2024_110440
crossref_primary_10_1016_j_jcis_2024_04_059
crossref_primary_10_1016_j_cej_2021_133696
crossref_primary_10_1016_j_cplett_2022_140160
crossref_primary_10_3390_electrochem6030030
crossref_primary_10_1134_S003602442308006X
crossref_primary_10_1016_j_ijhydene_2023_12_107
crossref_primary_10_1016_j_ijhydene_2023_04_240
crossref_primary_10_1016_j_seppur_2023_124257
crossref_primary_10_1016_S1872_2067_24_60105_1
crossref_primary_10_1002_eom2_12197
crossref_primary_10_1002_smll_202205940
crossref_primary_10_1002_smll_202101856
crossref_primary_10_1038_s41598_021_89561_1
crossref_primary_10_1002_sus2_267
crossref_primary_10_1016_j_apcatb_2023_123391
crossref_primary_10_1016_j_jechem_2024_06_051
crossref_primary_10_1016_j_cej_2023_141939
crossref_primary_10_1016_j_jcis_2023_02_037
crossref_primary_10_1039_D3QM01263H
crossref_primary_10_1039_D4QM00095A
crossref_primary_10_1002_smll_202408957
crossref_primary_10_1016_j_ijhydene_2021_07_236
crossref_primary_10_3390_inorganics10060070
crossref_primary_10_1016_j_ijhydene_2021_08_171
crossref_primary_10_1016_j_jpowsour_2021_230657
crossref_primary_10_1016_j_ijhydene_2024_01_224
crossref_primary_10_1002_cssc_202501388
crossref_primary_10_1016_j_heliyon_2025_e42414
crossref_primary_10_1016_j_jcis_2025_137354
crossref_primary_10_1039_D2RA01851A
crossref_primary_10_1016_j_ijhydene_2024_10_391
crossref_primary_10_1016_j_cej_2024_151236
crossref_primary_10_1016_j_apsusc_2024_162094
crossref_primary_10_1016_j_ijhydene_2022_09_254
crossref_primary_10_1002_aenm_202203720
crossref_primary_10_1016_j_ijhydene_2025_04_387
crossref_primary_10_1088_1361_6528_ad0985
crossref_primary_10_1016_j_ijhydene_2024_03_123
crossref_primary_10_1016_j_ijhydene_2024_10_031
crossref_primary_10_1063_5_0160301
crossref_primary_10_1088_2053_1591_ac2287
crossref_primary_10_1002_adma_202300980
crossref_primary_10_1002_ange_202404292
crossref_primary_10_1039_D2QM00931E
crossref_primary_10_1016_j_jmst_2022_10_044
crossref_primary_10_1016_j_nantod_2021_101245
crossref_primary_10_1002_cctc_202301111
crossref_primary_10_1016_j_jcis_2021_01_083
crossref_primary_10_1016_j_ceramint_2021_03_264
crossref_primary_10_1016_j_cej_2023_146134
crossref_primary_10_1002_cssc_202101771
crossref_primary_10_1002_adfm_202112623
crossref_primary_10_1039_D3QM01156A
crossref_primary_10_1002_adma_202107072
crossref_primary_10_1002_anie_202404292
crossref_primary_10_1016_j_ijhydene_2022_09_036
crossref_primary_10_1002_celc_202001306
crossref_primary_10_1016_j_cej_2025_163602
crossref_primary_10_1016_j_jece_2022_108882
crossref_primary_10_1016_j_molstruc_2024_138588
crossref_primary_10_1002_wene_472
crossref_primary_10_1016_j_jallcom_2023_172020
crossref_primary_10_1016_j_colsurfa_2023_131802
Cites_doi 10.1016/j.electacta.2018.10.136
10.1039/C9TA03146D
10.1021/jacs.6b08491
10.1021/acs.chemmater.7b03627
10.1002/aenm.201700020
10.1021/ja403440e
10.1039/C6TA03732A
10.1021/acs.chemmater.8b03908
10.1021/nn5048553
10.1039/C9TA04163J
10.1002/adma.201505875
10.1016/j.nanoen.2019.06.002
10.1002/aenm.201601555
10.1021/acscatal.7b04286
10.1002/ange.201906683
10.1002/aenm.201601285
10.1007/BFb0119186
10.1002/adfm.201901510
10.1039/C8NR01556B
10.1016/j.nanoen.2017.02.049
10.1016/j.apcatb.2020.118633
10.1002/anie.201502577
10.1039/C9QM00449A
10.1002/adfm.201801332
10.1016/j.apcatb.2019.118352
10.1016/j.jechem.2018.07.006
10.1039/C7TA10218F
10.1002/adma.201500821
10.1039/C6CE00985A
10.1038/nmat4738
10.1016/j.cej.2020.124408
10.1021/acsami.5b04947
10.1002/celc.201700392
10.1021/acsami.9b07415
10.1021/jp5054452
10.1002/anie.201808929
10.1039/C7CC08340H
10.1021/jacs.7b12420
10.1016/j.apcatb.2019.118053
10.1039/C6NR05747K
10.1038/s41467-018-04746-z
10.1039/C5TA01611H
10.1021/acsami.5b09092
10.1021/acsnano.8b06039
10.1039/C3CS60468C
10.1002/anie.201406848
10.1039/C7CC09445K
10.1016/j.apcatb.2019.04.089
10.1039/C8TA09629E
10.1039/C6CS00135A
10.1002/adma.201703322
10.1002/anie.201404161
10.1039/C8SC03877E
10.1002/adma.201401692
10.1021/acscatal.7b01767
10.1002/ejic.201501181
10.1016/j.nanoen.2019.01.017
10.1002/ange.201408222
10.1039/C7NR08472B
10.1021/jacs.7b08521
10.1021/acscatal.6b02849
10.1039/C9TA03944A
10.1021/ja503372r
10.1016/j.jpowsour.2014.12.095
10.1016/j.apsusc.2017.01.059
10.1002/aenm.201801690
10.1002/adfm.201702513
10.1039/C5CS00434A
10.1016/j.jpowsour.2016.08.126
10.1016/j.jcat.2009.02.008
10.1002/adfm.201706008
10.1002/adma.201901174
10.1002/celc.201900709
10.1021/acssuschemeng.7b01419
10.1002/adma.201703711
10.1002/anie.201906683
10.1039/C6SC05687C
10.1021/acs.chemmater.5b01284
10.1016/j.jcat.2010.02.031
10.1039/C9QM00409B
10.1002/anie.201402646
10.1039/C6RA04478F
10.1002/smll.201704227
10.1016/j.electacta.2017.12.158
10.1002/ange.201502577
10.1021/cr400020d
10.1021/acs.chemmater.7b03377
10.1039/C9TA07289F
10.1021/acscatal.5b01657
10.1021/acsami.8b03427
10.1016/j.nanoen.2018.03.034
10.1021/acs.chemmater.6b02148
10.1021/acscatal.5b02193
10.1016/j.ijhydene.2019.02.095
10.1002/cssc.201701565
10.1039/C8NR01032C
10.1016/j.jechem.2017.07.016
10.1002/ange.201808929
10.1002/ange.201406848
10.1007/s12274-016-1112-z
10.1002/adma.201800140
10.1002/smll.201804546
10.1038/nmat4410
10.1021/acsami.7b06075
10.1021/jacs.9b02527
10.1039/C5EE02179K
10.1021/acssuschemeng.9b00357
10.1039/c3cc43107j
10.1021/acsami.8b08068
10.1002/adma.201900178
10.1016/j.nanoen.2018.06.048
10.1021/acssuschemeng.6b01879
10.1002/celc.201900507
10.1021/acs.accounts.7b00616
10.1021/acssuschemeng.9b03217
10.1016/j.nanoen.2018.06.040
10.1039/C7TA03999A
10.1021/acssuschemeng.7b03034
10.1002/aenm.201600087
10.1016/j.apcatb.2018.09.103
10.1021/acssuschemeng.9b01263
10.1021/ja0540019
10.1002/celc.201901417
10.1007/s40820-019-0289-6
10.1039/C5CY02299A
10.1039/C9TA03300A
10.1002/aenm.201601671
10.1021/acssuschemeng.9b01355
10.1039/C8QM00226F
10.1021/jacs.7b12615
10.1016/j.nanoen.2018.08.064
10.1002/adma.201803590
10.1039/C8NR07891B
10.1016/j.nantod.2017.06.006
10.1039/c3ta13243a
10.1038/s41598-017-12332-4
10.1021/acs.nanolett.6b03803
10.1021/acsami.8b12108
10.1002/adfm.201503666
10.1016/j.electacta.2017.06.086
10.1007/s10562-012-0929-7
10.1002/ange.201402646
10.1021/am5060178
10.1039/C4EE00957F
10.1039/C4CS00470A
10.1039/C8QI01026A
10.1039/C6TA01923D
10.1016/j.nanoen.2017.06.002
10.1002/ange.201404161
10.1002/cctc.201500350
10.1039/C7CC07342A
10.1039/C4TA04867A
10.1039/C6CY01719C
10.1021/cs5014943
10.1039/C4TA04758C
10.1021/ja028180v
10.1016/j.nanoen.2019.103995
10.1002/smll.201802755
10.1039/C5RA26748J
10.1002/cctc.201801482
10.1039/C8EE00076J
10.1016/j.apcatb.2018.11.083
10.1021/jacs.7b12968
10.1016/j.jpowsour.2019.04.119
10.1002/adfm.201505509
10.1039/C7SC04849A
10.1002/anie.201408222
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.202000416
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 3375
ExternalDocumentID 32196958
10_1002_cssc_202000416
CSSC202000416
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Natural Science Foundation of Tianjin City
  funderid: 19JCZDJC37700
– fundername: National Natural Science Foundation of China
  funderid: 21421001, 21573115, 21875118
– fundername: National Natural Science Foundation of China
  grantid: 21421001, 21573115, 21875118
– fundername: Natural Science Foundation of Tianjin City
  grantid: 19JCZDJC37700
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAMMB
AAYXX
AEFGJ
AEYWJ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4766-71186d91641f9922e992d7e268c66a7fe9097e5007d203cf4985e6cf2e9f808f3
IEDL.DBID DRFUL
ISICitedReferencesCount 286
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000535089400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1864-5631
1864-564X
IngestDate Sun Nov 09 13:53:51 EST 2025
Sat Nov 29 14:49:07 EST 2025
Wed Feb 19 02:30:00 EST 2025
Tue Nov 18 21:06:48 EST 2025
Sat Nov 29 07:14:24 EST 2025
Wed Jan 22 16:34:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords transition metal phosphides
electrocatalysis
hydrogen evolution reaction
multiscale approaches
Language English
License 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4766-71186d91641f9922e992d7e268c66a7fe9097e5007d203cf4985e6cf2e9f808f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3790-8181
PMID 32196958
PQID 2420517292
PQPubID 986333
PageCount 19
ParticipantIDs proquest_miscellaneous_2381629076
proquest_journals_2420517292
pubmed_primary_32196958
crossref_citationtrail_10_1002_cssc_202000416
crossref_primary_10_1002_cssc_202000416
wiley_primary_10_1002_cssc_202000416_CSSC202000416
PublicationCentury 2000
PublicationDate July 7, 2020
PublicationDateYYYYMMDD 2020-07-07
PublicationDate_xml – month: 07
  year: 2020
  text: July 7, 2020
  day: 07
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 1
2019; 11
2019; 10
1968; 4
2019; 15
2014; 26
2014; 136
2018; 48
2018; 6
2018; 9
2018; 8
2018; 2
2013; 113
2019; 29
2018; 30
2016; 45
2019; 7
2018; 28
2019; 3
2019; 6
2019; 31
2019; 32
2020; 263
2020; 266
2020; 389
2016; 18
2016; 16
2014; 43
2016; 4
2016; 6
2017; 53
2019; 44
2005; 127
2016; 330
2018; 12
2016; 28
2018; 11
2019; 295
2018; 10
2016; 27
2016; 26
2016; 8
2016; 9
2018; 14
2014 2014; 53 126
2017; 5
2017; 7
2017; 8
2017; 4
2019; 58
2017; 9
2019; 244
2019; 242
2019; 62
2017; 38
2019; 65
2018 2018; 57 130
2015; 44
2017; 34
2015 2015; 54 127
2010; 271
2014; 8
2003; 125
2014; 7
2014; 6
2017; 246
2017; 402
2014; 118
2012; 142
2015; 14
2015; 5
2018; 140
2018; 261
2013; 49
2015; 3
2017; 26
2019; 429
2017; 27
2017; 29
2019; 141
2015; 8
2015; 7
2019 2019; 58 131
2015; 25
2015; 27
2017; 15
2017; 16
2015; 278
2017; 10
2020 2020
2019; 259
2013; 135
2016
2016; 138
2018; 51
2009; 263
2018; 54
2018; 53
2019; 254
e_1_2_8_26_3
e_1_2_8_49_1
e_1_2_8_26_2
e_1_2_8_68_2
e_1_2_8_132_1
e_1_2_8_178_1
e_1_2_8_5_2
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_41_2
e_1_2_8_170_2
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_87_1
e_1_2_8_64_2
e_1_2_8_159_2
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_174_1
e_1_2_8_83_2
e_1_2_8_1_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_155_2
e_1_2_8_38_2
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_57_1
e_1_2_8_15_2
e_1_2_8_120_1
e_1_2_8_166_1
e_1_2_8_91_1
e_1_2_8_143_2
e_1_2_8_95_1
e_1_2_8_162_2
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_34_1
e_1_2_8_76_1
e_1_2_8_11_2
e_1_2_8_53_2
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_67_2
Duan J. (e_1_2_8_103_1) 2020
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_152_1
e_1_2_8_6_2
e_1_2_8_21_1
e_1_2_8_171_1
e_1_2_8_44_2
e_1_2_8_63_2
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_156_1
e_1_2_8_18_1
e_1_2_8_14_2
e_1_2_8_37_1
e_1_2_8_79_1
Yang L. (e_1_2_8_151_1) 2019; 6
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_163_2
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_10_2
e_1_2_8_52_2
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_71_2
e_1_2_8_125_2
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_24_2
e_1_2_8_47_2
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_43_2
e_1_2_8_85_2
e_1_2_8_172_2
Yang L. (e_1_2_8_179_1) 2016; 27
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_176_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_160_2
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_126_2
e_1_2_8_107_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_70_2
e_1_2_8_93_1
e_1_2_8_103_2
e_1_2_8_27_2
e_1_2_8_69_2
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_180_1
e_1_2_8_154_2
e_1_2_8_80_1
e_1_2_8_4_2
e_1_2_8_131_1
e_1_2_8_150_1
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_173_2
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_177_1
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_12_2
e_1_2_8_108_2
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_142_2
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_31_2
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_123_2
e_1_2_8_169_2
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_146_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 136
  start-page: 7587
  year: 2014
  end-page: 7590
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 26
  year: 2018
  end-page: 36
  publication-title: Nano Energy
– volume: 6
  start-page: 1682
  year: 2018
  end-page: 1691
  publication-title: J. Mater. Chem. A
– volume: 127
  start-page: 14871
  year: 2005
  end-page: 14878
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 22604
  year: 2017
  end-page: 226113
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 2624
  year: 2014
  end-page: 2629
  publication-title: Energy Environ. Sci.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 7
  start-page: 9309
  year: 2019
  end-page: 9317
  publication-title: ACS Sustainable Chem. Eng.
– volume: 10
  start-page: 5297
  year: 2018
  end-page: 5305
  publication-title: ChemCatChem
– volume: 34
  start-page: 421
  year: 2017
  end-page: 427
  publication-title: Nano Energy
– volume: 38
  start-page: 290
  year: 2017
  end-page: 296
  publication-title: Nano Energy
– volume: 271
  start-page: 413
  year: 2010
  end-page: 415
  publication-title: J. Catal.
– volume: 8
  start-page: 3688
  year: 2018
  end-page: 3707
  publication-title: ACS Catal.
– volume: 389
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 18
  start-page: 6083
  year: 2016
  end-page: 6089
  publication-title: CrystEngComm
– volume: 7
  start-page: 16859
  year: 2019
  end-page: 16866
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 8539
  year: 2017
  end-page: 8547
  publication-title: Chem. Mater.
– volume: 5
  start-page: 145
  year: 2015
  end-page: 149
  publication-title: ACS Catal.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 259
  year: 2019
  publication-title: Appl. Catal. B
– volume: 45
  start-page: 3479
  year: 2016
  end-page: 3563
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 11241
  year: 2018
  end-page: 11280
  publication-title: Nanoscale
– volume: 402
  start-page: 120
  year: 2017
  end-page: 128
  publication-title: Appl. Surf. Sci.
– volume: 16
  start-page: 7718
  year: 2016
  end-page: 7725
  publication-title: Nano Lett.
– volume: 6
  start-page: 24107
  year: 2018
  end-page: 24113
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 1150b
  year: 2019
  publication-title: Mater. Res. Express
– volume: 7
  start-page: 11891
  year: 2017
  publication-title: Sci. Rep.
– volume: 27
  start-page: 3769
  year: 2015
  end-page: 3774
  publication-title: Chem. Mater.
– volume: 261
  start-page: 454
  year: 2018
  end-page: 463
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 3244
  year: 2019
  end-page: 3253
  publication-title: ChemElectroChem
– volume: 7
  start-page: 28369
  year: 2015
  end-page: 28376
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 2213
  year: 2018
  end-page: 2217
  publication-title: Nanoscale
– volume: 53
  start-page: 286
  year: 2018
  end-page: 295
  publication-title: Nano Energy
– volume: 6
  start-page: 9647
  year: 2016
  end-page: 9655
  publication-title: RSC Adv.
– volume: 6
  start-page: 5229
  year: 2019
  end-page: 5236
  publication-title: ChemElectroChem
– volume: 11
  start-page: 25986
  year: 2019
  end-page: 25995
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 26303
  year: 2018
  end-page: 26311
  publication-title: ACS Appl. Mater. Interfaces
– year: 2020 2020
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– start-page: 1916
  year: 2016
  end-page: 1923
  publication-title: Eur. J. Inorg. Chem.
– volume: 7
  start-page: 330
  year: 2017
  end-page: 347
  publication-title: Catal. Sci. Technol.
– volume: 254
  start-page: 414
  year: 2019
  end-page: 423
  publication-title: Appl. Catal. B
– volume: 7
  start-page: 14526
  year: 2019
  end-page: 14535
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 8974
  year: 2016
  end-page: 8977
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 13591
  year: 2019
  end-page: 13601
  publication-title: J. Mater. Chem. A
– volume: 140
  start-page: 2610
  year: 2018
  end-page: 2618
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 9369
  year: 2017
  end-page: 9377
  publication-title: Chem. Mater.
– volume: 135
  start-page: 9267
  year: 2013
  end-page: 9270
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 1245
  year: 2015
  end-page: 1251
  publication-title: Nat. Mater.
– volume: 3
  start-page: 11725
  year: 2015
  end-page: 11729
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 98
  year: 2017
  end-page: 102
  publication-title: ACS Catal.
– volume: 10
  start-page: 29407
  year: 2018
  end-page: 29416
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 55
  year: 2019
  publication-title: Nano-Micro Lett.
– volume: 3
  start-page: 1872
  year: 2019
  end-page: 1881
  publication-title: Mater. Chem. Front.
– volume: 51
  start-page: 223
  year: 2018
  end-page: 230
  publication-title: Nano Energy
– volume: 5
  start-page: 6355
  year: 2015
  end-page: 6361
  publication-title: ACS Catal.
– volume: 138
  start-page: 14686
  year: 2016
  end-page: 14693
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 10
  start-page: 33276
  year: 2018
  end-page: 33286
  publication-title: ACS Appl. Mater. Interfaces
– volume: 142
  start-page: 1413
  year: 2012
  end-page: 1436
  publication-title: Catal. Lett.
– volume: 9
  start-page: 2551
  year: 2018
  publication-title: Nat. Commun.
– volume: 57 130
  start-page: 15445 15671
  year: 2018 2018
  end-page: 15449 15675
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 25
  start-page: 7337
  year: 2015
  end-page: 7347
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 3022
  year: 2015
  end-page: 3029
  publication-title: Energy Environ. Sci.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 13559
  year: 2019
  end-page: 13568
  publication-title: ACS Sustainable Chem. Eng.
– volume: 263
  year: 2020
  publication-title: Appl. Catal. B
– volume: 6
  start-page: 52761
  year: 2016
  end-page: 52771
  publication-title: RSC Adv.
– volume: 4
  start-page: 9691
  year: 2016
  end-page: 9699
  publication-title: J. Mater. Chem. A
– volume: 54
  start-page: 1201
  year: 2018
  end-page: 1204
  publication-title: Chem. Commun.
– volume: 12
  start-page: 12238
  year: 2018
  end-page: 12246
  publication-title: ACS Nano
– volume: 8
  start-page: 11101
  year: 2014
  end-page: 11107
  publication-title: ACS Nano
– volume: 65
  year: 2019
  publication-title: Nano Energy
– volume: 10
  start-page: 464
  year: 2019
  end-page: 474
  publication-title: Chem. Sci.
– volume: 5
  start-page: 7203
  year: 2017
  end-page: 7210
  publication-title: ACS Sustainable Chem. Eng.
– volume: 26
  start-page: 5702
  year: 2014
  end-page: 5707
  publication-title: Adv. Mater.
– volume: 44
  start-page: 2060
  year: 2015
  end-page: 2086
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 21874
  year: 2014
  end-page: 21879
  publication-title: ACS Appl. Mater. Interfaces
– volume: 44
  start-page: 8062
  year: 2019
  end-page: 8069
  publication-title: Int. J. Hydrogen Energy
– volume: 7
  start-page: 16850
  year: 2015
  end-page: 16856
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 20658
  year: 2019
  end-page: 20666
  publication-title: J. Mater. Chem. A
– volume: 140
  start-page: 5118
  year: 2018
  end-page: 5126
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 21617
  year: 2018
  end-page: 21624
  publication-title: Nanoscale
– volume: 16
  start-page: 57
  year: 2017
  end-page: 69
  publication-title: Nat. Mater.
– volume: 242
  start-page: 186
  year: 2019
  end-page: 193
  publication-title: Appl. Catal. B
– volume: 141
  start-page: 7537
  year: 2019
  end-page: 7543
  publication-title: J. Am. Chem. Soc.
– volume: 295
  start-page: 148
  year: 2019
  end-page: 156
  publication-title: Electrochim. Acta
– volume: 26
  start-page: 4067
  year: 2016
  end-page: 4077
  publication-title: Adv. Funct. Mater.
– volume: 43
  start-page: 6555
  year: 2014
  end-page: 6569
  publication-title: Chem. Soc. Rev.
– volume: 51
  start-page: 881
  year: 2018
  end-page: 889
  publication-title: Acc. Chem. Res.
– volume: 9
  start-page: 2251
  year: 2016
  end-page: 2259
  publication-title: Nano Res.
– volume: 330
  start-page: 156
  year: 2016
  end-page: 166
  publication-title: J. Power Sources
– volume: 4
  start-page: 83
  year: 1968
  end-page: 229
  publication-title: Struct. Bonding
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 62
  start-page: 745
  year: 2019
  end-page: 753
  publication-title: Nano Energy
– volume: 266
  year: 2020
  publication-title: Appl. Catal. B
– volume: 8
  start-page: 2769
  year: 2017
  end-page: 2775
  publication-title: Chem. Sci.
– volume: 125
  start-page: 4038
  year: 2003
  end-page: 4039
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 78
  year: 2019
  end-page: 84
  publication-title: J. Energy Chem.
– volume: 113
  start-page: 7981
  year: 2013
  end-page: 8065
  publication-title: Chem. Rev.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 53 126
  start-page: 6710 6828
  year: 2014 2014
  end-page: 6714 6832
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 707
  year: 2018
  end-page: 718
  publication-title: ACS Sustainable Chem. Eng.
– volume: 11
  start-page: 872
  year: 2018
  end-page: 880
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 6844
  year: 2018
  end-page: 6849
  publication-title: Nanoscale
– volume: 7
  start-page: 2765
  year: 2015
  end-page: 2787
  publication-title: ChemCatChem
– volume: 5
  start-page: 529
  year: 2017
  end-page: 536
  publication-title: ACS Sustainable Chem. Eng.
– volume: 58 131
  start-page: 11796 11922
  year: 2019 2019
  end-page: 11800 11926
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54 127
  start-page: 8188 8306
  year: 2015 2015
  end-page: 8192 8310
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 429
  start-page: 46
  year: 2019
  end-page: 54
  publication-title: J. Power Sources
– volume: 6
  start-page: 1611
  year: 2016
  end-page: 1615
  publication-title: Catal. Sci. Technol.
– volume: 3
  start-page: 499
  year: 2015
  end-page: 503
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 5372
  year: 2015
  end-page: 5378
  publication-title: Adv. Mater.
– volume: 7
  start-page: 8993
  year: 2019
  end-page: 9001
  publication-title: ACS Sustainable Chem. Eng.
– volume: 28
  start-page: 6017
  year: 2016
  end-page: 6044
  publication-title: Chem. Mater.
– volume: 28
  start-page: 2951
  year: 2016
  end-page: 2955
  publication-title: Adv. Mater.
– volume: 27
  start-page: 23LT
  year: 2016
  publication-title: Nanotechnology
– volume: 7
  start-page: 14380
  year: 2019
  end-page: 14390
  publication-title: J. Mater. Chem. A
– volume: 244
  start-page: 620
  year: 2019
  end-page: 627
  publication-title: Appl. Catal. B
– volume: 53 126
  start-page: 12855 13069
  year: 2014 2014
  end-page: 12859 13073
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 19779
  year: 2016
  end-page: 19786
  publication-title: Nanoscale
– volume: 246
  start-page: 536
  year: 2017
  end-page: 543
  publication-title: Electrochim. Acta
– volume: 26
  start-page: 1196
  year: 2017
  end-page: 1202
  publication-title: J. Energy Chem.
– volume: 9
  start-page: 1970
  year: 2018
  end-page: 1975
  publication-title: Chem. Sci.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 45
  start-page: 1529
  year: 2016
  end-page: 1541
  publication-title: Chem. Soc. Rev.
– volume: 49
  start-page: 6656
  year: 2013
  end-page: 6658
  publication-title: Chem. Commun.
– volume: 58
  start-page: 244
  year: 2019
  end-page: 276
  publication-title: Nano Energy
– volume: 6
  start-page: 74
  year: 2019
  end-page: 81
  publication-title: Inorg. Chem. Front.
– volume: 48
  start-page: 73
  year: 2018
  end-page: 80
  publication-title: Nano Energy
– volume: 4
  start-page: 1840
  year: 2017
  end-page: 1845
  publication-title: ChemElectroChem
– volume: 7
  start-page: 12770
  year: 2019
  end-page: 12778
  publication-title: ACS Sustainable Chem. Eng.
– volume: 53 126
  start-page: 14433 14661
  year: 2014 2014
  end-page: 14437 14665
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 263
  start-page: 1
  year: 2009
  end-page: 3
  publication-title: J. Catal.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 10
  start-page: 4544
  year: 2017
  end-page: 4551
  publication-title: ChemSusChem
– volume: 140
  start-page: 610
  year: 2018
  end-page: 617
  publication-title: J. Am. Chem. Soc.
– volume: 118
  start-page: 29294
  year: 2014
  end-page: 29300
  publication-title: J. Phys. Chem. C
– volume: 53
  start-page: 13153
  year: 2017
  end-page: 13156
  publication-title: Chem. Commun.
– volume: 3
  start-page: 2428
  year: 2019
  end-page: 2436
  publication-title: Mater. Chem. Front.
– volume: 1
  start-page: 14706
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 140
  start-page: 2731
  year: 2018
  end-page: 2734
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 8861
  year: 2018
  end-page: 8870
  publication-title: Chem. Mater.
– volume: 5
  start-page: 17064
  year: 2017
  end-page: 17072
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 7543
  year: 2017
  end-page: 7557
  publication-title: ACS Catal.
– volume: 6
  start-page: 3708
  year: 2019
  end-page: 3713
  publication-title: ChemElectroChem
– volume: 3
  start-page: 1656
  year: 2015
  end-page: 1665
  publication-title: J. Mater. Chem. A
– volume: 278
  start-page: 540
  year: 2015
  end-page: 545
  publication-title: J. Power Sources
– volume: 53 126
  start-page: 5427 5531
  year: 2014 2014
  end-page: 5430 5534
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  start-page: 1987
  year: 2018
  end-page: 1996
  publication-title: Mater. Chem. Front.
– volume: 54
  start-page: 2894
  year: 2018
  end-page: 2897
  publication-title: Chem. Commun.
– volume: 6
  start-page: 714
  year: 2016
  end-page: 721
  publication-title: ACS Catal.
– volume: 15
  start-page: 26
  year: 2017
  end-page: 55
  publication-title: Nano Today
– ident: e_1_2_8_159_2
  doi: 10.1016/j.electacta.2018.10.136
– ident: e_1_2_8_60_1
  doi: 10.1039/C9TA03146D
– ident: e_1_2_8_37_1
– ident: e_1_2_8_45_1
  doi: 10.1021/jacs.6b08491
– ident: e_1_2_8_146_1
  doi: 10.1021/acs.chemmater.7b03627
– ident: e_1_2_8_74_1
  doi: 10.1002/aenm.201700020
– ident: e_1_2_8_22_1
  doi: 10.1021/ja403440e
– year: 2020
  ident: e_1_2_8_103_1
  publication-title: Angew. Chem. Int. Ed.
– volume: 27
  start-page: 23LT
  year: 2016
  ident: e_1_2_8_179_1
  publication-title: Nanotechnology
– ident: e_1_2_8_170_2
  doi: 10.1039/C6TA03732A
– ident: e_1_2_8_87_1
  doi: 10.1021/acs.chemmater.8b03908
– ident: e_1_2_8_36_1
  doi: 10.1021/nn5048553
– ident: e_1_2_8_7_2
  doi: 10.1039/C9TA04163J
– ident: e_1_2_8_165_1
  doi: 10.1002/adma.201505875
– ident: e_1_2_8_49_1
  doi: 10.1016/j.nanoen.2019.06.002
– ident: e_1_2_8_78_1
  doi: 10.1002/aenm.201601555
– ident: e_1_2_8_40_1
– ident: e_1_2_8_6_2
  doi: 10.1021/acscatal.7b04286
– ident: e_1_2_8_108_2
  doi: 10.1002/ange.201906683
– ident: e_1_2_8_121_1
  doi: 10.1002/aenm.201601285
– ident: e_1_2_8_18_1
  doi: 10.1007/BFb0119186
– ident: e_1_2_8_136_1
  doi: 10.1002/adfm.201901510
– ident: e_1_2_8_156_1
  doi: 10.1039/C8NR01556B
– ident: e_1_2_8_66_1
– ident: e_1_2_8_124_1
– ident: e_1_2_8_72_1
  doi: 10.1016/j.nanoen.2017.02.049
– ident: e_1_2_8_71_2
  doi: 10.1016/j.apcatb.2020.118633
– ident: e_1_2_8_123_1
  doi: 10.1002/anie.201502577
– ident: e_1_2_8_131_1
  doi: 10.1039/C9QM00449A
– ident: e_1_2_8_140_1
  doi: 10.1002/adfm.201801332
– ident: e_1_2_8_154_2
  doi: 10.1016/j.apcatb.2019.118352
– ident: e_1_2_8_12_2
  doi: 10.1016/j.jechem.2018.07.006
– ident: e_1_2_8_132_1
  doi: 10.1039/C7TA10218F
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.201500821
– ident: e_1_2_8_39_2
  doi: 10.1039/C6CE00985A
– ident: e_1_2_8_65_1
  doi: 10.1038/nmat4738
– ident: e_1_2_8_130_1
  doi: 10.1016/j.cej.2020.124408
– ident: e_1_2_8_143_2
  doi: 10.1021/acsami.5b04947
– ident: e_1_2_8_178_1
  doi: 10.1002/celc.201700392
– ident: e_1_2_8_107_1
  doi: 10.1021/acsami.9b07415
– ident: e_1_2_8_56_1
  doi: 10.1021/jp5054452
– ident: e_1_2_8_83_1
  doi: 10.1002/anie.201808929
– ident: e_1_2_8_120_1
  doi: 10.1039/C7CC08340H
– ident: e_1_2_8_9_1
– ident: e_1_2_8_23_1
– ident: e_1_2_8_48_2
  doi: 10.1021/jacs.7b12420
– ident: e_1_2_8_118_1
  doi: 10.1016/j.apcatb.2019.118053
– ident: e_1_2_8_58_1
  doi: 10.1039/C6NR05747K
– ident: e_1_2_8_69_2
  doi: 10.1038/s41467-018-04746-z
– ident: e_1_2_8_127_1
  doi: 10.1039/C5TA01611H
– ident: e_1_2_8_42_2
  doi: 10.1021/acsami.5b09092
– ident: e_1_2_8_149_1
  doi: 10.1021/acsnano.8b06039
– ident: e_1_2_8_10_2
  doi: 10.1039/C3CS60468C
– ident: e_1_2_8_26_2
  doi: 10.1002/anie.201406848
– ident: e_1_2_8_91_1
  doi: 10.1039/C7CC09445K
– ident: e_1_2_8_88_1
  doi: 10.1016/j.apcatb.2019.04.089
– ident: e_1_2_8_139_1
  doi: 10.1039/C8TA09629E
– ident: e_1_2_8_142_2
  doi: 10.1039/C6CS00135A
– ident: e_1_2_8_115_1
  doi: 10.1002/adma.201703322
– ident: e_1_2_8_31_1
  doi: 10.1002/anie.201404161
– ident: e_1_2_8_150_1
  doi: 10.1039/C8SC03877E
– ident: e_1_2_8_28_1
  doi: 10.1002/adma.201401692
– ident: e_1_2_8_51_1
– ident: e_1_2_8_100_1
  doi: 10.1021/acscatal.7b01767
– ident: e_1_2_8_8_2
  doi: 10.1002/ejic.201501181
– ident: e_1_2_8_11_2
  doi: 10.1016/j.nanoen.2019.01.017
– ident: e_1_2_8_85_2
  doi: 10.1002/ange.201408222
– ident: e_1_2_8_117_1
  doi: 10.1039/C7NR08472B
– ident: e_1_2_8_30_1
  doi: 10.1021/jacs.7b08521
– ident: e_1_2_8_161_1
– ident: e_1_2_8_75_1
  doi: 10.1021/acscatal.6b02849
– ident: e_1_2_8_80_1
  doi: 10.1039/C9TA03944A
– ident: e_1_2_8_24_2
  doi: 10.1021/ja503372r
– ident: e_1_2_8_168_1
– ident: e_1_2_8_152_1
  doi: 10.1016/j.jpowsour.2014.12.095
– ident: e_1_2_8_167_1
  doi: 10.1016/j.apsusc.2017.01.059
– ident: e_1_2_8_114_1
  doi: 10.1002/aenm.201801690
– ident: e_1_2_8_90_1
  doi: 10.1002/adfm.201702513
– ident: e_1_2_8_15_2
  doi: 10.1039/C5CS00434A
– ident: e_1_2_8_158_1
– ident: e_1_2_8_176_1
  doi: 10.1016/j.jpowsour.2016.08.126
– ident: e_1_2_8_53_2
  doi: 10.1016/j.jcat.2009.02.008
– ident: e_1_2_8_147_1
  doi: 10.1002/adfm.201706008
– ident: e_1_2_8_103_2
– ident: e_1_2_8_111_1
  doi: 10.1002/adma.201901174
– ident: e_1_2_8_112_1
  doi: 10.1002/celc.201900709
– ident: e_1_2_8_162_2
  doi: 10.1021/acssuschemeng.7b01419
– ident: e_1_2_8_137_1
  doi: 10.1002/adma.201703711
– ident: e_1_2_8_108_1
  doi: 10.1002/anie.201906683
– ident: e_1_2_8_157_1
  doi: 10.1039/C6SC05687C
– ident: e_1_2_8_33_1
  doi: 10.1021/acs.chemmater.5b01284
– ident: e_1_2_8_52_2
  doi: 10.1016/j.jcat.2010.02.031
– ident: e_1_2_8_43_2
  doi: 10.1039/C9QM00409B
– ident: e_1_2_8_27_1
  doi: 10.1002/anie.201402646
– ident: e_1_2_8_171_1
– ident: e_1_2_8_169_2
  doi: 10.1039/C6RA04478F
– ident: e_1_2_8_4_2
  doi: 10.1002/smll.201704227
– ident: e_1_2_8_41_2
  doi: 10.1016/j.electacta.2017.12.158
– ident: e_1_2_8_123_2
  doi: 10.1002/ange.201502577
– ident: e_1_2_8_34_1
  doi: 10.1021/cr400020d
– ident: e_1_2_8_106_1
  doi: 10.1021/acs.chemmater.7b03377
– ident: e_1_2_8_94_1
  doi: 10.1039/C9TA07289F
– ident: e_1_2_8_98_1
  doi: 10.1021/acscatal.5b01657
– ident: e_1_2_8_133_1
  doi: 10.1021/acsami.8b03427
– ident: e_1_2_8_93_1
  doi: 10.1016/j.nanoen.2018.03.034
– ident: e_1_2_8_62_1
– ident: e_1_2_8_19_1
  doi: 10.1021/acs.chemmater.6b02148
– ident: e_1_2_8_164_1
  doi: 10.1021/acscatal.5b02193
– ident: e_1_2_8_3_1
– ident: e_1_2_8_95_1
  doi: 10.1016/j.ijhydene.2019.02.095
– ident: e_1_2_8_102_1
  doi: 10.1002/cssc.201701565
– ident: e_1_2_8_32_1
  doi: 10.1039/C8NR01032C
– ident: e_1_2_8_172_2
  doi: 10.1016/j.jechem.2017.07.016
– ident: e_1_2_8_83_2
  doi: 10.1002/ange.201808929
– ident: e_1_2_8_26_3
  doi: 10.1002/ange.201406848
– ident: e_1_2_8_177_1
  doi: 10.1007/s12274-016-1112-z
– ident: e_1_2_8_89_1
  doi: 10.1002/adma.201800140
– ident: e_1_2_8_13_1
– ident: e_1_2_8_135_1
  doi: 10.1002/smll.201804546
– ident: e_1_2_8_97_1
  doi: 10.1038/nmat4410
– ident: e_1_2_8_160_2
  doi: 10.1021/acsami.7b06075
– ident: e_1_2_8_174_1
  doi: 10.1021/jacs.9b02527
– ident: e_1_2_8_68_2
  doi: 10.1039/C5EE02179K
– ident: e_1_2_8_119_1
  doi: 10.1021/acssuschemeng.9b00357
– ident: e_1_2_8_21_1
  doi: 10.1039/c3cc43107j
– ident: e_1_2_8_99_1
  doi: 10.1021/acsami.8b08068
– ident: e_1_2_8_79_1
  doi: 10.1002/adma.201900178
– ident: e_1_2_8_109_1
  doi: 10.1016/j.nanoen.2018.06.048
– ident: e_1_2_8_104_1
  doi: 10.1021/acssuschemeng.6b01879
– ident: e_1_2_8_5_2
  doi: 10.1002/celc.201900507
– ident: e_1_2_8_63_2
  doi: 10.1021/acs.accounts.7b00616
– ident: e_1_2_8_144_1
  doi: 10.1021/acssuschemeng.9b03217
– ident: e_1_2_8_50_1
  doi: 10.1016/j.nanoen.2018.06.040
– ident: e_1_2_8_163_2
  doi: 10.1039/C7TA03999A
– ident: e_1_2_8_173_2
  doi: 10.1021/acssuschemeng.7b03034
– ident: e_1_2_8_17_1
  doi: 10.1002/aenm.201600087
– ident: e_1_2_8_82_1
  doi: 10.1016/j.apcatb.2018.09.103
– ident: e_1_2_8_128_1
  doi: 10.1021/acssuschemeng.9b01263
– ident: e_1_2_8_20_1
  doi: 10.1021/ja0540019
– ident: e_1_2_8_92_1
  doi: 10.1002/celc.201901417
– ident: e_1_2_8_96_1
  doi: 10.1007/s40820-019-0289-6
– ident: e_1_2_8_105_1
  doi: 10.1039/C5CY02299A
– ident: e_1_2_8_155_2
  doi: 10.1039/C9TA03300A
– ident: e_1_2_8_47_2
  doi: 10.1002/aenm.201601671
– ident: e_1_2_8_129_1
  doi: 10.1021/acssuschemeng.9b01355
– ident: e_1_2_8_44_2
  doi: 10.1039/C8QM00226F
– ident: e_1_2_8_84_1
  doi: 10.1021/jacs.7b12615
– ident: e_1_2_8_86_1
  doi: 10.1016/j.nanoen.2018.08.064
– ident: e_1_2_8_110_1
  doi: 10.1002/adma.201803590
– ident: e_1_2_8_16_2
  doi: 10.1039/C8NR07891B
– ident: e_1_2_8_67_2
  doi: 10.1016/j.nantod.2017.06.006
– ident: e_1_2_8_166_1
  doi: 10.1039/c3ta13243a
– ident: e_1_2_8_122_1
  doi: 10.1038/s41598-017-12332-4
– ident: e_1_2_8_61_1
  doi: 10.1021/acs.nanolett.6b03803
– ident: e_1_2_8_125_2
  doi: 10.1021/acsami.8b12108
– ident: e_1_2_8_55_1
  doi: 10.1002/adfm.201503666
– ident: e_1_2_8_126_2
  doi: 10.1016/j.electacta.2017.06.086
– ident: e_1_2_8_153_1
– ident: e_1_2_8_35_1
  doi: 10.1007/s10562-012-0929-7
– ident: e_1_2_8_27_2
  doi: 10.1002/ange.201402646
– ident: e_1_2_8_25_2
  doi: 10.1021/am5060178
– ident: e_1_2_8_29_1
  doi: 10.1039/C4EE00957F
– ident: e_1_2_8_1_1
  doi: 10.1039/C4CS00470A
– ident: e_1_2_8_73_1
  doi: 10.1039/C8QI01026A
– ident: e_1_2_8_138_1
  doi: 10.1039/C6TA01923D
– ident: e_1_2_8_77_1
  doi: 10.1016/j.nanoen.2017.06.002
– ident: e_1_2_8_141_1
– ident: e_1_2_8_31_2
  doi: 10.1002/ange.201404161
– ident: e_1_2_8_64_2
  doi: 10.1002/cctc.201500350
– ident: e_1_2_8_116_1
  doi: 10.1039/C7CC07342A
– ident: e_1_2_8_38_2
  doi: 10.1039/C4TA04867A
– ident: e_1_2_8_14_2
  doi: 10.1039/C6CY01719C
– ident: e_1_2_8_54_1
  doi: 10.1021/cs5014943
– ident: e_1_2_8_57_1
  doi: 10.1039/C4TA04758C
– ident: e_1_2_8_59_1
  doi: 10.1021/ja028180v
– ident: e_1_2_8_46_1
– volume: 6
  start-page: 1150b
  year: 2019
  ident: e_1_2_8_151_1
  publication-title: Mater. Res. Express
– ident: e_1_2_8_148_1
  doi: 10.1016/j.nanoen.2019.103995
– ident: e_1_2_8_113_1
  doi: 10.1002/smll.201802755
– ident: e_1_2_8_175_1
  doi: 10.1039/C5RA26748J
– ident: e_1_2_8_70_2
  doi: 10.1002/cctc.201801482
– ident: e_1_2_8_145_1
  doi: 10.1039/C8EE00076J
– ident: e_1_2_8_81_1
  doi: 10.1016/j.apcatb.2018.11.083
– ident: e_1_2_8_134_1
  doi: 10.1021/jacs.7b12968
– ident: e_1_2_8_101_1
  doi: 10.1016/j.jpowsour.2019.04.119
– ident: e_1_2_8_180_1
  doi: 10.1002/adfm.201505509
– ident: e_1_2_8_76_1
  doi: 10.1039/C7SC04849A
– ident: e_1_2_8_85_1
  doi: 10.1002/anie.201408222
SSID ssj0060966
Score 2.6727734
SecondaryResourceType review_article
Snippet As hydrogen has been increasingly considered as promising sustainable energy supply, electrochemical overall water splitting driven by highly efficient...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3357
SubjectTerms electrocatalysis
Electrocatalysts
Electrolytes
Electronic structure
hydrogen evolution reaction
Hydrogen evolution reactions
Multiscale analysis
multiscale approaches
Noble metals
Phosphides
Phosphorus
Reaction mechanisms
transition metal phosphides
Transition metals
Water splitting
Title Transition Metal Phosphide‐Based Materials for Efficient Electrochemical Hydrogen Evolution: A Critical Review
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202000416
https://www.ncbi.nlm.nih.gov/pubmed/32196958
https://www.proquest.com/docview/2420517292
https://www.proquest.com/docview/2381629076
Volume 13
WOSCitedRecordID wos000535089400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1864-564X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060966
  issn: 1864-5631
  databaseCode: DRFUL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEB52k0J76Xu3brNBC4WezNqyLcm9pWlCDptlaXYhN2PrwQaWJMRJoLf-hP7G_pKO5EcbSil0L0bCY1lIM5rPHukbgPfoMaRSUegXQhZ-jD4dS8L4XMZxEYoCEXrhkk3wqysxn6fXv53ir_gh2h9u1jLcem0NPC_Ki1-kobIsLQWhPWqCoOIYuhSVN-lA9_OX8e1lsxozhOjuhJFgsZ-wKGyIGwN6cdjCoWP6A20eglfnfcbPHt7v5_C0Rp5kUKnKCzjSy5fweNgkfHsFa-e33BYuMtUIysn13apc3y2U_vHt-yd0d4pM822lsgTBLhk5_gl0W2RUZdORNf0AmXxVmxXqJhnta93-SAakyatAqojEa7gdj26GE79OyODLmDPmc_waYQoBZRway2er8aK4pkxIxnJudBqkXCcIOxQNImniVCSaSYOCRgTCRCfQWa6W-g0QamgqhUEAYfIYoTNWpAm0UWFoqJLMA7-ZjUzWbOU2acZ9VvEs08yOY9aOowcfWvl1xdPxV8leM7lZba9lhkDFkpXRlHpw3t7G8bfhk3ypVzuUsTFWmgYcmzitlKJ9VUQtzVAiPKBu7v_Rh2w4mw3b2tv_eegdPLFlt3OY96Cz3ez0GTyS--2i3PThmM9Fv7aFn5Q8CSQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bSyMxFD64KuiL7k3t6q5ZWNinwZlMmmR809rSxbaIF_Bt6ORCBWlLpwq--RP8jf6SPclcpCwiLL4Mk5kzmZCck_Pl9h2AX-gxlNZxFGRSZQFDn4530gZCMZZFMkOEnvlgE2IwkNfXyVm5m9CdhSn4IeoJN2cZvr92Bu4mpA9eWENVnjsOQnfWBFHFB1hhqEuo5Csn552rXtUdc8To_oiR5Cxo8jiqmBtDerCYw6Jn-gduLqJX7346m-9Q8I-wUWJPclQoyydYMuPPsNaqQr59gan3XH4TF-kbhOXkbDTJp6MbbZ4fn47R4WnSH84LpSUId0nbM1Cg4yLtIp6OKgkISPdBzyaonaR9X2r3ITkiVWQFUqxJfIWrTvuy1Q3KkAyBYoLzQOB4hGuElCyyjtHW4EULQ7lUnA-FNUmYCNNE4KFpGCvLEtk0XFkUtDKUNt6C5fFkbHaAUEsTJS1CCDtkCJ4xoWxorI4iS7XiDQiq5khVyVfuwmbcpgXTMk1dPaZ1PTbgdy0_LZg6XpXcq1o3LS02TxGqOLoymtAG_KxfY_27BZTh2EzuUMatstIkFJjFdqEV9a9i6oiGmrIB1Df-G2VIWxcXrTr17X8-2oe17mW_l_b-DE53Yd099_uIxR4sz2d35jusqvv5TT77UZrEXzfsDCw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS-QwFD6s4-L64u6qq-NljbDgU7FNM0nqm44zKOow6Aq-lWkuKMjMMB0F3_Yn7G_0l3iSXmQQEZZ9KU17mobknJyvTc53AH6hx1Bax1GQSZUFDH06nkkbCMVYFskMEXrmk02IXk_e3CT9cjehi4Up-CHqH27OMvx87QzcjLXdf2UNVXnuOAhdrAmiijmYZy6TTAPmjy-71-fVdMwRo_sQI8lZ0OJxVDE3hnR_toZZz_QGbs6iV-9-ul__Q8O_wVKJPclhoSzf4ZMZLsOXdpXybQXG3nP5TVzkwiAsJ_3bUT6-vdPm-c_fI3R4mlwMpoXSEoS7pOMZKNBxkU6RT0eVBATk5ElPRqidpPNYavcBOSRVZgVSrEmswnW387t9EpQpGQLFBOeBwO8RrhFSssg6RluDBy0M5VJxPhDWJGEiTAuBh6ZhrCxLZMtwZVHQylDa-Ac0hqOhWQdCLU2UtAgh7IAheMaCsqGxOoos1Yo3IaiGI1UlX7lLm3GfFkzLNHX9mNb92IS9Wn5cMHW8K7lVjW5aWmyeIlRxdGU0oU3YrW9j_7sFlMHQjB5Qxq2y0iQUWMVaoRX1q2LqiIZasgnUD_4HbUjbV1fturTxLw_twEL_uJuen_bONmHRXfbbiMUWNKaTB7MNn9Xj9C6f_Cwt4gWwOAun
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transition+Metal+Phosphide-Based+Materials+for+Efficient+Electrochemical+Hydrogen+Evolution%3A+A+Critical+Review&rft.jtitle=ChemSusChem&rft.au=Weng%2C+Chen-Chen&rft.au=Ren%2C+Jin-Tao&rft.au=Yuan%2C+Zhong-Yong&rft.date=2020-07-07&rft.issn=1864-564X&rft.eissn=1864-564X&rft.volume=13&rft.issue=13&rft.spage=3357&rft_id=info:doi/10.1002%2Fcssc.202000416&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon