An Introduction to Machine Learning

In the last few years, machine learning (ML) and artificial intelligence have seen a new wave of publicity fueled by the huge and ever‐increasing amount of data and computational power as well as the discovery of improved learning algorithms. However, the idea of a computer learning some concept fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical pharmacology and therapeutics Jg. 107; H. 4; S. 871 - 885
Hauptverfasser: Badillo, Solveig, Banfai, Balazs, Birzele, Fabian, Davydov, Iakov I., Hutchinson, Lucy, Kam‐Thong, Tony, Siebourg‐Polster, Juliane, Steiert, Bernhard, Zhang, Jitao David
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.04.2020
ISSN:0009-9236, 1532-6535, 1532-6535
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the last few years, machine learning (ML) and artificial intelligence have seen a new wave of publicity fueled by the huge and ever‐increasing amount of data and computational power as well as the discovery of improved learning algorithms. However, the idea of a computer learning some concept from data and applying them to yet unseen situations is not new and has been around at least since the 1950s. Many of these basic principles are very familiar to the pharmacometrics and clinical pharmacology community. In this paper, we want to introduce the foundational ideas of ML to this community such that readers obtain the essential tools they need to understand publications on the topic. Although we will not go into the very details and theoretical background, we aim to point readers to relevant literature and put applications of ML in molecular biology as well as the fields of pharmacometrics and clinical pharmacology into perspective.
AbstractList In the last few years, machine learning (ML) and artificial intelligence have seen a new wave of publicity fueled by the huge and ever‐increasing amount of data and computational power as well as the discovery of improved learning algorithms. However, the idea of a computer learning some concept from data and applying them to yet unseen situations is not new and has been around at least since the 1950s. Many of these basic principles are very familiar to the pharmacometrics and clinical pharmacology community. In this paper, we want to introduce the foundational ideas of ML to this community such that readers obtain the essential tools they need to understand publications on the topic. Although we will not go into the very details and theoretical background, we aim to point readers to relevant literature and put applications of ML in molecular biology as well as the fields of pharmacometrics and clinical pharmacology into perspective.
In the last few years, machine learning (ML) and artificial intelligence have seen a new wave of publicity fueled by the huge and ever-increasing amount of data and computational power as well as the discovery of improved learning algorithms. However, the idea of a computer learning some abstract concept from data and applying them to yet unseen situations is not new and has been around at least since the 1950s. Many of these basic principles are very familiar to the pharmacometrics and clinical pharmacology community. In this paper, we want to introduce the foundational ideas of ML to this community such that readers obtain the essential tools they need to understand publications on the topic. Although we will not go into the very details and theoretical background, we aim to point readers to relevant literature and put applications of ML in molecular biology as well as the fields of pharmacometrics and clinical pharmacology into perspective.
In the last few years, machine learning (ML) and artificial intelligence have seen a new wave of publicity fueled by the huge and ever-increasing amount of data and computational power as well as the discovery of improved learning algorithms. However, the idea of a computer learning some abstract concept from data and applying them to yet unseen situations is not new and has been around at least since the 1950s. Many of these basic principles are very familiar to the pharmacometrics and clinical pharmacology community. In this paper, we want to introduce the foundational ideas of ML to this community such that readers obtain the essential tools they need to understand publications on the topic. Although we will not go into the very details and theoretical background, we aim to point readers to relevant literature and put applications of ML in molecular biology as well as the fields of pharmacometrics and clinical pharmacology into perspective.In the last few years, machine learning (ML) and artificial intelligence have seen a new wave of publicity fueled by the huge and ever-increasing amount of data and computational power as well as the discovery of improved learning algorithms. However, the idea of a computer learning some abstract concept from data and applying them to yet unseen situations is not new and has been around at least since the 1950s. Many of these basic principles are very familiar to the pharmacometrics and clinical pharmacology community. In this paper, we want to introduce the foundational ideas of ML to this community such that readers obtain the essential tools they need to understand publications on the topic. Although we will not go into the very details and theoretical background, we aim to point readers to relevant literature and put applications of ML in molecular biology as well as the fields of pharmacometrics and clinical pharmacology into perspective.
Author Banfai, Balazs
Kam‐Thong, Tony
Birzele, Fabian
Siebourg‐Polster, Juliane
Davydov, Iakov I.
Steiert, Bernhard
Badillo, Solveig
Hutchinson, Lucy
Zhang, Jitao David
Author_xml – sequence: 1
  givenname: Solveig
  orcidid: 0000-0002-7563-111X
  surname: Badillo
  fullname: Badillo, Solveig
  email: solveig.badillo@roche.com
  organization: Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel
– sequence: 2
  givenname: Balazs
  orcidid: 0000-0003-0422-7977
  surname: Banfai
  fullname: Banfai, Balazs
  organization: Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel
– sequence: 3
  givenname: Fabian
  orcidid: 0000-0001-8744-9561
  surname: Birzele
  fullname: Birzele, Fabian
  organization: Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel
– sequence: 4
  givenname: Iakov I.
  orcidid: 0000-0003-3510-3926
  surname: Davydov
  fullname: Davydov, Iakov I.
  organization: Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel
– sequence: 5
  givenname: Lucy
  orcidid: 0000-0002-3845-5460
  surname: Hutchinson
  fullname: Hutchinson, Lucy
  organization: Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel
– sequence: 6
  givenname: Tony
  orcidid: 0000-0002-5300-9573
  surname: Kam‐Thong
  fullname: Kam‐Thong, Tony
  organization: Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel
– sequence: 7
  givenname: Juliane
  orcidid: 0000-0002-1759-3223
  surname: Siebourg‐Polster
  fullname: Siebourg‐Polster, Juliane
  organization: Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel
– sequence: 8
  givenname: Bernhard
  orcidid: 0000-0002-1398-1624
  surname: Steiert
  fullname: Steiert, Bernhard
  organization: Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel
– sequence: 9
  givenname: Jitao David
  orcidid: 0000-0002-3085-0909
  surname: Zhang
  fullname: Zhang, Jitao David
  organization: Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32128792$$D View this record in MEDLINE/PubMed
BookMark eNo9kE1Lw0AQhhep2A8Ff4EEvHhJ3Z3ZbLLHUvwoRPRQz8vuZqqRdFPzgfTfm9Lq6WWYh5eZZ8pGoQ7E2LXgc8E53PtdNxepVmdsIhKEWCWYjNiEc65jDajGbNq2X8ModZZdsDGCgCzVMGG3ixCtQtfURe-7sg5RV0cv1n-WgaKcbBPK8HHJzje2aunqlDP2_viwXj7H-evTarnIYy9TpWIEyUlSgV468BvtNKHAIisg9cq6xGUFWS8zJ7gSYKEA8I5Qo7d6uNfhjN0de3dN_d1T25lt2XqqKhuo7lsDmAohAXU6oDcntHdbKsyuKbe22Zu_xwYgPgI_ZUX7_73g5iDMDMLMQZhZvq0Pib-q610C
CitedBy_id crossref_primary_10_1021_acsptsci_4c00308
crossref_primary_10_3390_app15073565
crossref_primary_10_1016_j_jconrel_2022_12_029
crossref_primary_10_1080_14459795_2024_2412051
crossref_primary_10_1016_j_meatsci_2022_108949
crossref_primary_10_3390_brainsci14121211
crossref_primary_10_1186_s12938_023_01148_1
crossref_primary_10_1186_s13071_024_06469_1
crossref_primary_10_1007_s11154_021_09681_x
crossref_primary_10_1007_s12553_024_00883_2
crossref_primary_10_3390_jpm12010114
crossref_primary_10_1371_journal_pclm_0000338
crossref_primary_10_3390_pharmaceutics13122001
crossref_primary_10_1002_adma_202210848
crossref_primary_10_3389_fphar_2021_732266
crossref_primary_10_3390_app151810259
crossref_primary_10_2196_66612
crossref_primary_10_3390_app12147282
crossref_primary_10_1002_cpt_2123
crossref_primary_10_1049_wss2_12100
crossref_primary_10_1080_17512433_2024_2306219
crossref_primary_10_1007_s12020_023_03657_4
crossref_primary_10_1080_19490976_2021_1872323
crossref_primary_10_1177_1475472X231206495
crossref_primary_10_1109_TVCG_2023_3313439
crossref_primary_10_32604_cmc_2024_050223
crossref_primary_10_1080_15623599_2024_2341500
crossref_primary_10_3390_math9202572
crossref_primary_10_1177_15533506241273449
crossref_primary_10_3389_fphar_2022_1016399
crossref_primary_10_1016_j_ijchp_2024_100498
crossref_primary_10_1016_j_scitotenv_2023_165946
crossref_primary_10_1016_j_xphs_2021_02_014
crossref_primary_10_3390_ma16206675
crossref_primary_10_1111_joim_13483
crossref_primary_10_1007_s11030_021_10217_3
crossref_primary_10_1016_j_neurobiolaging_2021_11_002
crossref_primary_10_3390_drones8030107
crossref_primary_10_1016_j_artmed_2025_103186
crossref_primary_10_1016_j_dmpk_2023_100518
crossref_primary_10_1080_0886022X_2025_2529452
crossref_primary_10_1016_j_phymed_2024_155479
crossref_primary_10_1002_cpt_2216
crossref_primary_10_1002_cpt_1803
crossref_primary_10_1186_s12909_025_07293_6
crossref_primary_10_3389_fcvm_2022_949454
crossref_primary_10_1007_s12055_025_01941_8
crossref_primary_10_1080_15481603_2024_2393489
crossref_primary_10_1016_j_talanta_2025_128749
crossref_primary_10_1093_function_zqaf015
crossref_primary_10_3389_fnagi_2023_1238065
crossref_primary_10_1080_00450618_2022_2159065
crossref_primary_10_1093_toxsci_kfac046
crossref_primary_10_3390_pr13092929
crossref_primary_10_1109_ACCESS_2021_3102740
crossref_primary_10_1088_1742_6596_1933_1_012038
crossref_primary_10_2196_28918
crossref_primary_10_1016_j_ijmecsci_2022_107185
crossref_primary_10_1088_1742_6596_1933_1_012031
crossref_primary_10_1109_JRFID_2023_3284670
crossref_primary_10_1021_cbe_5c00048
crossref_primary_10_1002_cjce_25397
crossref_primary_10_1557_s43579_023_00464_w
crossref_primary_10_1016_j_addr_2021_113920
crossref_primary_10_1055_s_0043_1766120
crossref_primary_10_1038_s41598_025_00769_x
crossref_primary_10_1093_jac_dkae292
crossref_primary_10_3390_app14052210
crossref_primary_10_1007_s00340_024_08323_9
crossref_primary_10_2196_57940
crossref_primary_10_1016_j_jtcvs_2021_12_039
crossref_primary_10_1016_j_ijpharm_2023_122643
crossref_primary_10_1016_j_chemosphere_2023_138976
crossref_primary_10_4103_digm_digm_10_21
crossref_primary_10_1038_s41598_024_65132_y
crossref_primary_10_1016_j_tibtech_2022_08_007
crossref_primary_10_1016_j_jpsychires_2021_10_023
crossref_primary_10_51537_chaos_1560943
crossref_primary_10_1007_s11095_022_03252_8
crossref_primary_10_3390_agriculture14020227
crossref_primary_10_1007_s12008_024_02173_7
crossref_primary_10_1088_1757_899X_1088_1_012062
crossref_primary_10_1007_s11119_024_10121_4
crossref_primary_10_1007_s13369_023_08132_w
crossref_primary_10_1002_psp4_12810
crossref_primary_10_3390_pharmaceutics14091814
crossref_primary_10_1093_bib_bbaf361
crossref_primary_10_3390_ijms25094934
crossref_primary_10_1016_j_procs_2024_05_001
crossref_primary_10_1016_j_psychres_2021_114258
crossref_primary_10_1016_j_apenergy_2024_123541
crossref_primary_10_1007_s00784_024_05586_6
crossref_primary_10_1016_j_compbiomed_2023_107530
crossref_primary_10_3390_met11081287
crossref_primary_10_1007_s10661_024_13251_4
crossref_primary_10_1302_0301_620X_106B11_BJJ_2024_0453_R1
crossref_primary_10_3389_fonc_2021_629321
crossref_primary_10_3390_brainsci12111449
crossref_primary_10_1002_psp4_12704
crossref_primary_10_1186_s12917_022_03486_z
crossref_primary_10_32628_IJSRST2310157
crossref_primary_10_32604_cmes_2024_056022
crossref_primary_10_3390_batteries10020060
crossref_primary_10_1038_s41746_021_00459_8
crossref_primary_10_1016_j_psep_2025_107217
crossref_primary_10_3847_1538_4357_adb4f6
crossref_primary_10_1016_j_jfutfo_2024_12_008
crossref_primary_10_1080_10408398_2022_2131725
crossref_primary_10_3389_fpubh_2022_1042218
crossref_primary_10_3389_fninf_2022_901428
crossref_primary_10_3390_software4030014
crossref_primary_10_1016_j_enconman_2024_118243
crossref_primary_10_3390_pharmaceutics14051023
crossref_primary_10_32628_IJSRST2310161
crossref_primary_10_1021_acsomega_5c05944
crossref_primary_10_1007_s11883_023_01154_7
crossref_primary_10_1016_j_heliyon_2023_e23610
crossref_primary_10_1080_17474124_2021_1857238
crossref_primary_10_1002_pst_2376
crossref_primary_10_1016_j_addr_2021_114098
crossref_primary_10_1109_ACCESS_2024_3492389
crossref_primary_10_3389_fonc_2021_788819
crossref_primary_10_1093_bib_bbad514
crossref_primary_10_3390_cancers17040700
crossref_primary_10_3389_fpubh_2025_1635020
crossref_primary_10_1007_s12325_024_03060_z
crossref_primary_10_3390_applmech4020034
crossref_primary_10_1093_jamia_ocae278
crossref_primary_10_1002_csc2_21454
crossref_primary_10_1111_sms_70009
crossref_primary_10_3390_plants11111430
crossref_primary_10_2147_IJGM_S338389
crossref_primary_10_1002_psp4_12848
crossref_primary_10_1016_j_annemergmed_2022_05_011
crossref_primary_10_1016_j_cscm_2024_e03186
crossref_primary_10_1039_D5NJ01660F
crossref_primary_10_1016_j_uncres_2025_100145
crossref_primary_10_1007_s12282_024_01582_6
crossref_primary_10_1111_bcp_15953
crossref_primary_10_1002_aenm_202405300
crossref_primary_10_3390_biomedicines11041138
crossref_primary_10_1109_ACCESS_2021_3096962
crossref_primary_10_2147_DDDT_S495050
crossref_primary_10_1021_cbmi_5c00057
crossref_primary_10_1021_prechem_4c00048
crossref_primary_10_1016_j_tifs_2024_104337
crossref_primary_10_1080_17576180_2024_2437283
crossref_primary_10_1002_cpt_3053
crossref_primary_10_2208_jscejj_24_25045
crossref_primary_10_1007_s11831_024_10077_8
crossref_primary_10_1016_j_jksuci_2024_102197
crossref_primary_10_1016_j_heliyon_2024_e26645
crossref_primary_10_3390_ai5020034
crossref_primary_10_1016_j_knosys_2025_112954
crossref_primary_10_3390_app12157943
crossref_primary_10_1016_j_asr_2023_07_039
crossref_primary_10_1177_02666669241305379
crossref_primary_10_1007_s40664_024_00569_6
crossref_primary_10_1080_17460441_2024_2348157
crossref_primary_10_1186_s40001_025_02553_z
crossref_primary_10_1016_j_apsb_2024_11_006
crossref_primary_10_1016_j_nxmate_2024_100145
crossref_primary_10_1109_ACCESS_2023_3308143
crossref_primary_10_1111_bcp_15930
crossref_primary_10_14814_phy2_70146
crossref_primary_10_1016_j_matpr_2020_12_095
crossref_primary_10_1007_s00395_023_00982_7
crossref_primary_10_3390_cancers15174344
crossref_primary_10_3390_smartcities7060132
crossref_primary_10_1002_cpt_2061
crossref_primary_10_1177_10944281251323248
crossref_primary_10_1016_j_triboint_2023_108528
crossref_primary_10_1177_25152459251343582
crossref_primary_10_1007_s40262_020_00927_6
crossref_primary_10_3748_wjg_v31_i35_109776
crossref_primary_10_1016_j_bbe_2024_01_002
crossref_primary_10_1038_s41597_025_05267_3
crossref_primary_10_1088_1361_6501_ad8947
crossref_primary_10_1016_j_gerr_2025_100130
crossref_primary_10_1016_j_talanta_2022_123762
crossref_primary_10_1016_j_cpb_2025_100535
crossref_primary_10_1097_AOG_0000000000005776
crossref_primary_10_3389_fnins_2022_1035153
crossref_primary_10_1080_1068316X_2024_2318373
crossref_primary_10_1089_mdr_2024_0241
crossref_primary_10_1007_s11947_024_03369_1
crossref_primary_10_1016_j_clon_2021_12_003
crossref_primary_10_3389_fmed_2021_694733
crossref_primary_10_1007_s43657_023_00137_7
crossref_primary_10_1016_j_ces_2023_119358
crossref_primary_10_1080_17476348_2024_2302940
crossref_primary_10_3390_info13030108
crossref_primary_10_1038_s41598_024_78558_1
crossref_primary_10_1136_bmjopen_2021_054862
crossref_primary_10_3390_math13060958
crossref_primary_10_1002_adem_202401432
crossref_primary_10_1016_j_drudis_2021_01_013
crossref_primary_10_1016_j_compchemeng_2024_108648
crossref_primary_10_3390_chemosensors11120579
crossref_primary_10_1007_s12145_024_01452_x
crossref_primary_10_1016_j_desal_2024_118524
crossref_primary_10_7759_cureus_74161
crossref_primary_10_1016_j_ejps_2024_106876
crossref_primary_10_1515_bmt_2023_0017
crossref_primary_10_1111_jep_14155
crossref_primary_10_1016_j_lfs_2022_121118
crossref_primary_10_1016_j_rineng_2024_103873
crossref_primary_10_26599_BDMA_2023_9020030
crossref_primary_10_1097_TA_0000000000004385
crossref_primary_10_1002_cpt_1907
crossref_primary_10_1227_neu_0000000000002660
crossref_primary_10_1016_j_cej_2024_155954
crossref_primary_10_1002_advs_202306583
crossref_primary_10_1371_journal_pone_0316860
crossref_primary_10_1002_agt2_70018
crossref_primary_10_1080_05704928_2025_2500368
crossref_primary_10_3389_fcvm_2024_1439069
crossref_primary_10_1097_FTD_0000000000001078
crossref_primary_10_1016_j_vrih_2025_01_002
crossref_primary_10_1080_09670874_2025_2518442
crossref_primary_10_1007_s10928_021_09790_9
crossref_primary_10_1038_s41598_023_34999_8
crossref_primary_10_3390_pharmaceutics16020260
crossref_primary_10_1186_s12929_023_00926_2
crossref_primary_10_1111_ans_18610
crossref_primary_10_1002_hfm_21053
crossref_primary_10_1016_j_envres_2023_117601
crossref_primary_10_18686_fnc333
crossref_primary_10_3390_pharmaceutics14102034
crossref_primary_10_1007_s13721_025_00559_5
crossref_primary_10_1016_j_biotechadv_2021_107739
crossref_primary_10_1186_s12984_021_00959_4
crossref_primary_10_1016_j_compchemeng_2020_107071
crossref_primary_10_1080_09546634_2025_2480743
crossref_primary_10_1016_j_apgeog_2022_102748
crossref_primary_10_25259_IJN_496_2024
crossref_primary_10_5306_wjco_v16_i8_107306
crossref_primary_10_1007_s11119_022_09904_4
crossref_primary_10_1016_j_nucengdes_2024_113506
crossref_primary_10_1002_brb3_70157
crossref_primary_10_1016_j_brainresbull_2025_111398
crossref_primary_10_3390_jcm13051505
crossref_primary_10_3390_rs15143492
crossref_primary_10_1002_advs_202401401
crossref_primary_10_1002_adhm_202401576
crossref_primary_10_1186_s40001_022_00843_4
crossref_primary_10_3390_catal13060961
crossref_primary_10_1109_SR_2025_3584750
crossref_primary_10_1016_j_engappai_2023_106715
crossref_primary_10_1016_j_jallcom_2025_180484
crossref_primary_10_2174_1381612829666230412084137
crossref_primary_10_3390_w16192766
crossref_primary_10_1016_j_jvs_2023_05_024
crossref_primary_10_1016_j_toxrep_2024_101877
crossref_primary_10_59717_j_xinn_med_2025_100154
crossref_primary_10_3390_medicina61020358
crossref_primary_10_1007_s12020_025_04378_6
crossref_primary_10_1016_j_rdc_2022_07_004
crossref_primary_10_3390_buildings14113515
crossref_primary_10_1007_s00167_022_07082_4
crossref_primary_10_1016_j_foodcont_2025_111619
crossref_primary_10_1016_j_ijhydene_2023_12_149
crossref_primary_10_1371_journal_pwat_0000361
crossref_primary_10_1177_09544062231195406
crossref_primary_10_3390_pharmaceutics13071026
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
2020 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
Copyright_xml – notice: 2020 The Authors. published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
– notice: 2020 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
DBID 24P
NPM
7X8
DOI 10.1002/cpt.1796
DatabaseName Wiley Online Library Open Access
PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1532-6535
EndPage 885
ExternalDocumentID 32128792
CPT1796
Genre article
Journal Article
GroupedDBID ---
--K
-Q-
.55
.GJ
0R~
1B1
1CY
1OB
1OC
24P
29B
33P
354
36B
39C
3O-
4.4
52O
53G
5GY
5RE
6J9
70F
8F7
AAESR
AAHHS
AAHQN
AAIPD
AAKAS
AAMNL
AANHP
AANLZ
AAONW
AAQOH
AAQQT
AAWTL
AAYCA
AAYOK
AAZKR
ABCUV
ABJNI
ABLJU
ABQWH
ACBNA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACRPL
ACXQS
ACYXJ
ADBBV
ADBTR
ADKYN
ADNMO
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFFPM
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
C45
CAG
COF
CS3
DCZOG
DPXWK
DU5
EBS
EE.
EJD
EMOBN
F5P
GODZA
GWYGA
HGLYW
IH2
IHE
J5H
L7B
LATKE
LEEKS
LITHE
LOXES
LSO
LUTES
LYRES
M41
MEWTI
N4W
N9A
NQ-
O9-
OPC
OVD
P2P
P2W
PALCI
RIG
RIWAO
RJQFR
RNTTT
ROL
RPZ
SAMSI
SEW
SJN
SUPJJ
TEORI
TWZ
UHS
VH1
WBKPD
WH7
WOHZO
WXSBR
WYJ
X7M
Y6R
YCJ
YFH
YOC
YXB
ZGI
ZXP
ZZTAW
NPM
PKN
7X8
AAMMB
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
LH4
ID FETCH-LOGICAL-c4766-3240e4ed3c4b2cf9b9e313d8d27c6ab5b8deac48b10612a2d22cbe393ca9535b3
IEDL.DBID 24P
ISICitedReferencesCount 305
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000517788300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0009-9236
1532-6535
IngestDate Fri Sep 05 13:03:38 EDT 2025
Wed Feb 19 02:30:17 EST 2025
Wed Jan 22 16:36:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution-NonCommercial-NoDerivs
2020 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4766-3240e4ed3c4b2cf9b9e313d8d27c6ab5b8deac48b10612a2d22cbe393ca9535b3
Notes [Correction added on 6th March, 2020, after first online publication: Author contribution text was added].
Authors in alphabetical order. All authors contributed equally.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3085-0909
0000-0002-5300-9573
0000-0001-8744-9561
0000-0002-7563-111X
0000-0003-3510-3926
0000-0002-1759-3223
0000-0002-1398-1624
0000-0003-0422-7977
0000-0002-3845-5460
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpt.1796
PMID 32128792
PQID 2371142397
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2371142397
pubmed_primary_32128792
wiley_primary_10_1002_cpt_1796_CPT1796
PublicationCentury 2000
PublicationDate April 2020
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Clinical pharmacology and therapeutics
PublicationTitleAlternate Clin Pharmacol Ther
PublicationYear 2020
References 2010; 11
2015; 31
2019; 15
2013; 20
1909; 415–446
2008; 9
2019; 16
2016; 100
2015; 348
2008; 4
2001; 45
2014; 67
1959; 8
1997; 9
1986; 1
1982; 28
1979; 67
2018; 173
2014; 2
2006; 62
2010; 29
2013; 53
2018; 137
2014; 14
2001; 16
2012; 25
2018; 34
2017; 129
1980; 28
1963; 24
2019; 8
2015; 12
2017; 61
2011; 1
2012
2019; 1
1985; 8
2019; 37
2006; 14
2015; 54
2008
1997
1996
2006; 6
1989; 140
1901; 2
2003
2002
2014; 41
2019; 380
2012; 34
2016; 5
2009; 33
2010; 88
2002; 29
2019; 86
1984; 37
2004; 14
2018; 115
2018
2005; 10
2017; 19
2016
2014
2013
2012; 5
2005; 18
2018; 16
2010; 50
References_xml – volume: 348
  start-page: 648
  year: 2015
  end-page: 660
  article-title: The genotype‐tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans
  publication-title: Science
– volume: 415–446
  year: 1909
  article-title: Functions of positive and negative type and their connection with the theory of integral equations
  publication-title: Philos. Trans. R. Soc. Lond. B Bio. Sci.
– volume: 67
  start-page: 1207
  year: 1979
  end-page: 1224
  article-title: Knowledge engineering for medical decision making: A review of computer‐based clinical decision aids
  publication-title: Proc. IEEE
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  article-title: Visualizing data using t‐SNE
  publication-title: J. Mach. Learning Res.
– start-page: 38
  year: 2008
  end-page: 53
– volume: 33
  start-page: 197
  year: 2009
  end-page: 207
  article-title: Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases
  publication-title: J. Autoimmun.
– volume: 37
  start-page: 237
  year: 1984
  end-page: 251
  article-title: Classification and regression trees
  publication-title: Wadsworth Int. Group
– volume: 28
  start-page: 97
  year: 1980
  end-page: 113
  article-title: An annotated bibliography of decision analytic applications to health care
  publication-title: Oper. Res.
– volume: 34
  start-page: 108
  year: 2012
  end-page: 117
  article-title: Nonlinear dimensionality reduction and mapping of compound libraries for drug discovery
  publication-title: J. Mol. Graph. Model.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  article-title: Long short‐term memory
  publication-title: Neural Comput.
– year: 2018
– volume: 5
  start-page: 1304
  year: 2016
  article-title: The distance function effect on k‐nearest neighbor classification for medical datasets
  publication-title: Springerplus
– volume: 115
  start-page: E4304
  year: 2018
  end-page: E4311
  article-title: Deep learning improves prediction of drugdrug and drugfood interactions
  publication-title: Proc. Natl. Acad. Sci.
– volume: 29
  start-page: 271
  year: 2002
  end-page: 307
  article-title: Bayesian analysis of population PK/PD models: general concepts and software
  publication-title: J. Pharmacokinet. Pharmacodyn.
– year: 2014
– volume: 67
  start-page: 304
  year: 2014
  end-page: 312
  article-title: Breast cancer patient stratification using a molecular regularized consensus clustering method
  publication-title: Methods
– volume: 34
  start-page: 802
  year: 2018
  end-page: 808
  article-title: The M4 competition: results, findings, conclusion and way forward
  publication-title: Int. J. Forecast.
– volume: 18
  start-page: 826
  year: 2005
  end-page: 834
  article-title: Individualization of pharmacological anemia management using reinforcement learning
  publication-title: Neural Networks
– volume: 2
  start-page: 559
  year: 1901
  end-page: 572
  article-title: On lines and planes of closest fit to systems of points in space
  publication-title: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
– volume: 6
  start-page: 174
  year: 2006
  article-title: Anticancer drug clustering in lung cancer based on gene expression profiles and sensitivity database
  publication-title: BMC Cancer
– volume: 41
  start-page: 647
  year: 2014
  end-page: 665
  article-title: Explaining prediction models and individual predictions with feature contributions
  publication-title: Knowl. Inf. Syst.
– volume: 15
  year: 2019
  article-title: Ten quick tips for effective dimensionality reduction
  publication-title: PLoS Comput. Biol.
– start-page: 8624
  year: 2012
  end-page: 8628
– volume: 4
  year: 2008
  article-title: Support vector machines and kernels for computational biology
  publication-title: PLoS Comput. Biol.
– year: 2008
– volume: 100
  start-page: 371
  year: 2016
  end-page: 379
  article-title: Improved prediction of drug‐induced torsades de pointes through simulations of dynamics and machine learning algorithms
  publication-title: Clin. Pharmacol. Ther.
– volume: 62
  start-page: 420
  year: 2006
  end-page: 434
  article-title: A Bayesian approach for population pharmacokinetic modelling of sirolimus
  publication-title: Br. J. Clin. Pharmacol.
– year: 1997
– volume: 53
  start-page: 461
  year: 2013
  end-page: 474
  article-title: Coping with unbalanced class data sets in oral absorption models
  publication-title: J. Chem. Inf. Model.
– volume: 50
  start-page: 105
  year: 2010
  end-page: 115
  article-title: Missing data imputation using statistical and machine learning methods in a real breast cancer problem
  publication-title: Artif. Intell. Med.
– volume: 8
  start-page: 131
  year: 2019
  end-page: 134
  article-title: Models and machines: how deep learning will take clinical pharmacology to the next level
  publication-title: CPT Pharmacomet. Syst. Pharmacol.
– volume: 137
  year: 2018
– volume: 54
  start-page: 409
  year: 2015
  end-page: 421
  article-title: Comparing dosage adjustment methods for once‐daily tobramycin in paediatric and adolescent patients with cystic fibrosis
  publication-title: Clin. Pharmacokinet.
– volume: 16
  start-page: 199
  year: 2001
  end-page: 231
  article-title: Statistical modeling: the two cultures (with comments and a rejoinder by the author)
  publication-title: Stat. Sci.
– volume: 14
  start-page: 831
  year: 2006
  end-page: 836
  article-title: Symptom clustering in advanced cancer
  publication-title: Support. Care Cancer
– volume: 173
  start-page: 1581
  year: 2018
  end-page: 1592
  article-title: Next‐generation machine learning for biological networks
  publication-title: Cell
– volume: 19
  start-page: 221
  year: 2017
  end-page: 248
  article-title: Deep learning in medical image analysis
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 2
  start-page: 3581
  year: 2014
  end-page: 3589
– volume: 16
  start-page: 207
  year: 2019
  end-page: 220
  article-title: Molecular subtypes of pancreatic cancer
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 1
  start-page: e17
  year: 2019
  end-page: e25
  article-title: . Closed‐loop insulin delivery in adults with type 1 diabetes in real‐life conditions: a 12‐week multicentre, open‐label randomised controlled crossover trial
  publication-title: Lancet Dig. Health
– volume: 14
  start-page: 208
  year: 2014
  end-page: 216
  article-title: Data mining reveals a network of early‐response genes as a consensus signature of drug‐induced in vitro and in vivo toxicity
  publication-title: Pharmacogenomics J.
– volume: 20
  start-page: 3187
  year: 2013
  end-page: 3192
  article-title: Predication of plasma concentration of remifentanil based on Elman neural network
  publication-title: J. Cent. South Univ.
– volume: 8
  start-page: 65
  year: 1959
  end-page: 75
  article-title: Matching and prediction on the principle of biological classification
  publication-title: J. R. Stat. Soc. Ser. C Appl. Stat.
– start-page: 1310
  year: 2013
  end-page: 1318
– year: 2003
– volume: 11
  start-page: 2079
  year: 2010
  end-page: 2107
  article-title: On over‐fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: J. Mach. Learn. Res.
– volume: 24
  start-page: 774
  year: 1963
  end-page: 780
  article-title: Pattern recognition using generalized portrait method
  publication-title: Automat. Rem. Contr.
– volume: 10
  start-page: 471
  year: 2005
  end-page: 483
  article-title: Protein structure similarity clustering and natural product structure as guiding principles in drug discovery
  publication-title: Drug Discov. Today
– volume: 28
  start-page: 129
  year: 1982
  end-page: 137
  article-title: Least squares quantization in PCM
  publication-title: IEEE Trans. Inf. Theory
– year: 2016
– volume: 129
  start-page: 81
  year: 2017
  end-page: 88
  article-title: Drug‐target interaction prediction using ensemble learning and dimensionality reduction
  publication-title: Methods
– volume: 16
  start-page: 31
  year: 2018
  end-page: 57
  article-title: The mythos of model interpretability
  publication-title: ACM Queue
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Mach. Learn.
– start-page: 226
  year: 1996
  end-page: 231
– volume: 29
  start-page: 337
  year: 2010
  end-page: 346
  article-title: Improving propensity score weighting using machine learning
  publication-title: Stat. Med.
– volume: 88
  start-page: 52
  year: 2010
  end-page: 59
  article-title: Prediction of adverse drug reactions using decision tree modeling
  publication-title: Clin. Pharmacol. Ther.
– volume: 61
  year: 2017
  article-title: Establishment of an AUC threshold for nephrotoxicity is a step towards individualized vancomycin dosing for methicillin‐resistant staphylococcus aureus bacteremia
  publication-title: Antimicrob. Agents Chemother.
– year: 2002
– volume: 31
  start-page: 1396
  year: 2015
  end-page: 1404
  article-title: Integrating alignment‐based and alignment‐free sequence similarity measures for biological sequence classification
  publication-title: Bioinformatics
– volume: 8
  start-page: 173
  year: 1985
  end-page: 188
  article-title: A decision tree approach for the application of drug metabolism and kinetic studies to in vivo and in vitro toxicological and pharmacological testing
  publication-title: Arch. Toxicol. Suppl.
– volume: 380
  start-page: 1347
  year: 2019
  end-page: 1358
  article-title: Machine learning in medicine
  publication-title: N. Engl. J. Med.
– volume: 37
  start-page: 38
  year: 2019
  end-page: 44
  article-title: Dimensionality reduction for visualizing single‐cell data using UMAP
  publication-title: Nat. Biotechnol.
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  article-title: Induction of decision trees
  publication-title: Mach. Learn.
– volume: 140
  start-page: 1573
  year: 1989
  end-page: 1577
  article-title: Once‐daily versus twice‐daily dosing of theophylline: a decision analysis approach to evaluating theophylline blood levels and compliance
  publication-title: Am. Rev. Respir. Dis.
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 1
  start-page: 231
  year: 2011
  end-page: 240
  article-title: Density‐based clustering
  publication-title: Wiley Interdisc. Rev Data Min. Knowl. Discov.
– volume: 12
  start-page: 453
  year: 2015
  end-page: 457
  article-title: Robust enumeration of cell subsets from tissue expression profiles
  publication-title: Nat. Methods
– volume: 5
  start-page: 363
  year: 2012
  end-page: 387
  article-title: A survey on unsupervised outlier detection in high‐dimensional numerical data
  publication-title: Stat. Anal. Data Min.
– volume: 86
  start-page: 122
  year: 2019
  article-title: Enhanced early prediction of clinically relevant neonatal hyperbilirubinemia with machine learning
  publication-title: Pediatr. Res.
SSID ssj0004988
Score 2.698672
SecondaryResourceType review_article
Snippet In the last few years, machine learning (ML) and artificial intelligence have seen a new wave of publicity fueled by the huge and ever‐increasing amount of...
In the last few years, machine learning (ML) and artificial intelligence have seen a new wave of publicity fueled by the huge and ever-increasing amount of...
SourceID proquest
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 871
Title An Introduction to Machine Learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpt.1796
https://www.ncbi.nlm.nih.gov/pubmed/32128792
https://www.proquest.com/docview/2371142397
Volume 107
WOSCitedRecordID wos000517788300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ05a8MwFMdFm3bo0vtIL1RaMsXUlmQdYwgN7ZDgIYVsRpdLFyfESSHfvpKPmEKHQhd5sAzm8fT0l_3e7wHwZEhmUIZI4OKACgjSLJBaery2shHDyggZls0m2GTCZzOR1FmVvham4kNsP7j5lVHGa7_ApSqeW2ioXviGuoLugr0owsx7NCJJWxMpOG-6qDkRQxvwbIiemyd_E5U_NWq5yYyO_vN6x-CwlpZwUPnCCdix-SnoJRWbetOH07bUqujDHkxaavXmDDwOcvjm09ZNxZOFqzkcl5mWFtYQ1o9z8D56mQ5fg7qDQqAJozTwtD1LrMGaKKQzoYTFETbcIKapVLHixgVewpU_GCKJDEJaWSywliLGscIXoJPPc3sFoIxNSEMjY0kwoTaTikhJsURxZpzEVF3w0BgzdR7qfzvI3M7XRYow8wW7Tvh0wWVl5XRRoTRS7HZOzgTqgl5pzO2NiqaMUmfG1JsxHSZTf73-68QbcID80bhMsrkFndVybe_Avv5afRbL-9JX3Mhm3I2TZPwNcX_D2w
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1La8JAEMcHawvtpe-HfW5p8WQw7m4eS08iFaUqOVjwFvaV0ksUHwW_fXcTYyj0UOgphyQQhtmZ_25mfgPwrGiicIKpY-KAcCiWgcMlt3htoVsBEYpxNxs2EYxG4WTCogq8FL0wOR9ie-BmV0YWr-0CtwfSzZIaKmd2oi7zd2CXmiRjxxdgGpVNkSwMizFqRsX4BXnWxc3izd9U5U-RmmWZ7tG_vu8YDjfiErVzbziBik5PoR7ldOp1A43LZqtFA9VRVHKr12fw1E5R3xauq5woi5ZTNMxqLTXaYFg_zuG9-zru9JzNDAVH0sD3Hcvb01QrIqnAMmGCadIiKlQ4kD4XngiVCb00FHZriDlWGEuhCSOSM494glxANZ2m-goQ95Tru4p7nBLq64QLyrlPOPYSZUSmqMFjYc3Y-Kj98cBTPV0tYkwC27JrpE8NLnMzx7McphETkzvDgOEa1DNrbm_kPGUcGzPG1oxxJxrb6_VfH3yA_d54OIgH_dHbDRxgu1HOSm5uobqcr_Qd7Mmv5edifp85zjfdWsXJ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMeHWkW8-H7U54rSU0PT3c0mi6dSLRa15FCht7CviJe09CH027ubNC2CB8FTDslCGGZn_7s78xuAe01TjVNMPRsHpEexCj2hhMNrS9MKidRc-HmzibDfj4ZDHlfgoayFKfgQqwM3NzPyeO0muBnrtLmmhqqx66jL2QZs0sCGWId1pvG6KJJHUdlGzaoYVpJnfdwsR_6mKn-K1HyV6e796__2YXcpLlG78IYDqJjsEOpxQadeNNBgXWw1baA6itfc6sUR3LUz1HOJ67ogyqLZCL3luZYGLTGsH8fw3n0adJ69ZQ8FT9GQMc_x9gw1migqsUq55Ia0iI40DhUTMpCRtqGXRtJtDbHAGmMlDeFECR6QQJITqGajzJwBEoH2ma9FICihzKRCUiEYEThItRWZsga3pTUT66Pu4kFkZjSfJpiErmTXSp8anBZmTsYFTCMhdu2MQo5rUM-tuXpR8JRxYs2YODMmnXjgnud__fAGtuPHbvLa679cwA52--Q84-YSqrPJ3FzBlvqafU4n17nffAPSXcVN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Introduction+to+Machine+Learning&rft.jtitle=Clinical+pharmacology+and+therapeutics&rft.au=Badillo%2C+Solveig&rft.au=Banfai%2C+Balazs&rft.au=Birzele%2C+Fabian&rft.au=Davydov%2C+Iakov+I.&rft.date=2020-04-01&rft.issn=0009-9236&rft.eissn=1532-6535&rft.volume=107&rft.issue=4&rft.spage=871&rft.epage=885&rft_id=info:doi/10.1002%2Fcpt.1796&rft.externalDBID=10.1002%252Fcpt.1796&rft.externalDocID=CPT1796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-9236&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-9236&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-9236&client=summon