An Introduction to Machine Learning
In the last few years, machine learning (ML) and artificial intelligence have seen a new wave of publicity fueled by the huge and ever‐increasing amount of data and computational power as well as the discovery of improved learning algorithms. However, the idea of a computer learning some concept fro...
Gespeichert in:
| Veröffentlicht in: | Clinical pharmacology and therapeutics Jg. 107; H. 4; S. 871 - 885 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
01.04.2020
|
| ISSN: | 0009-9236, 1532-6535, 1532-6535 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In the last few years, machine learning (ML) and artificial intelligence have seen a new wave of publicity fueled by the huge and ever‐increasing amount of data and computational power as well as the discovery of improved learning algorithms. However, the idea of a computer learning some concept from data and applying them to yet unseen situations is not new and has been around at least since the 1950s. Many of these basic principles are very familiar to the pharmacometrics and clinical pharmacology community. In this paper, we want to introduce the foundational ideas of ML to this community such that readers obtain the essential tools they need to understand publications on the topic. Although we will not go into the very details and theoretical background, we aim to point readers to relevant literature and put applications of ML in molecular biology as well as the fields of pharmacometrics and clinical pharmacology into perspective. |
|---|---|
| AbstractList | In the last few years, machine learning (ML) and artificial intelligence have seen a new wave of publicity fueled by the huge and ever‐increasing amount of data and computational power as well as the discovery of improved learning algorithms. However, the idea of a computer learning some concept from data and applying them to yet unseen situations is not new and has been around at least since the 1950s. Many of these basic principles are very familiar to the pharmacometrics and clinical pharmacology community. In this paper, we want to introduce the foundational ideas of ML to this community such that readers obtain the essential tools they need to understand publications on the topic. Although we will not go into the very details and theoretical background, we aim to point readers to relevant literature and put applications of ML in molecular biology as well as the fields of pharmacometrics and clinical pharmacology into perspective. In the last few years, machine learning (ML) and artificial intelligence have seen a new wave of publicity fueled by the huge and ever-increasing amount of data and computational power as well as the discovery of improved learning algorithms. However, the idea of a computer learning some abstract concept from data and applying them to yet unseen situations is not new and has been around at least since the 1950s. Many of these basic principles are very familiar to the pharmacometrics and clinical pharmacology community. In this paper, we want to introduce the foundational ideas of ML to this community such that readers obtain the essential tools they need to understand publications on the topic. Although we will not go into the very details and theoretical background, we aim to point readers to relevant literature and put applications of ML in molecular biology as well as the fields of pharmacometrics and clinical pharmacology into perspective. In the last few years, machine learning (ML) and artificial intelligence have seen a new wave of publicity fueled by the huge and ever-increasing amount of data and computational power as well as the discovery of improved learning algorithms. However, the idea of a computer learning some abstract concept from data and applying them to yet unseen situations is not new and has been around at least since the 1950s. Many of these basic principles are very familiar to the pharmacometrics and clinical pharmacology community. In this paper, we want to introduce the foundational ideas of ML to this community such that readers obtain the essential tools they need to understand publications on the topic. Although we will not go into the very details and theoretical background, we aim to point readers to relevant literature and put applications of ML in molecular biology as well as the fields of pharmacometrics and clinical pharmacology into perspective.In the last few years, machine learning (ML) and artificial intelligence have seen a new wave of publicity fueled by the huge and ever-increasing amount of data and computational power as well as the discovery of improved learning algorithms. However, the idea of a computer learning some abstract concept from data and applying them to yet unseen situations is not new and has been around at least since the 1950s. Many of these basic principles are very familiar to the pharmacometrics and clinical pharmacology community. In this paper, we want to introduce the foundational ideas of ML to this community such that readers obtain the essential tools they need to understand publications on the topic. Although we will not go into the very details and theoretical background, we aim to point readers to relevant literature and put applications of ML in molecular biology as well as the fields of pharmacometrics and clinical pharmacology into perspective. |
| Author | Banfai, Balazs Kam‐Thong, Tony Birzele, Fabian Siebourg‐Polster, Juliane Davydov, Iakov I. Steiert, Bernhard Badillo, Solveig Hutchinson, Lucy Zhang, Jitao David |
| Author_xml | – sequence: 1 givenname: Solveig orcidid: 0000-0002-7563-111X surname: Badillo fullname: Badillo, Solveig email: solveig.badillo@roche.com organization: Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel – sequence: 2 givenname: Balazs orcidid: 0000-0003-0422-7977 surname: Banfai fullname: Banfai, Balazs organization: Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel – sequence: 3 givenname: Fabian orcidid: 0000-0001-8744-9561 surname: Birzele fullname: Birzele, Fabian organization: Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel – sequence: 4 givenname: Iakov I. orcidid: 0000-0003-3510-3926 surname: Davydov fullname: Davydov, Iakov I. organization: Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel – sequence: 5 givenname: Lucy orcidid: 0000-0002-3845-5460 surname: Hutchinson fullname: Hutchinson, Lucy organization: Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel – sequence: 6 givenname: Tony orcidid: 0000-0002-5300-9573 surname: Kam‐Thong fullname: Kam‐Thong, Tony organization: Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel – sequence: 7 givenname: Juliane orcidid: 0000-0002-1759-3223 surname: Siebourg‐Polster fullname: Siebourg‐Polster, Juliane organization: Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel – sequence: 8 givenname: Bernhard orcidid: 0000-0002-1398-1624 surname: Steiert fullname: Steiert, Bernhard organization: Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel – sequence: 9 givenname: Jitao David orcidid: 0000-0002-3085-0909 surname: Zhang fullname: Zhang, Jitao David organization: Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32128792$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9kE1Lw0AQhhep2A8Ff4EEvHhJ3Z3ZbLLHUvwoRPRQz8vuZqqRdFPzgfTfm9Lq6WWYh5eZZ8pGoQ7E2LXgc8E53PtdNxepVmdsIhKEWCWYjNiEc65jDajGbNq2X8ModZZdsDGCgCzVMGG3ixCtQtfURe-7sg5RV0cv1n-WgaKcbBPK8HHJzje2aunqlDP2_viwXj7H-evTarnIYy9TpWIEyUlSgV468BvtNKHAIisg9cq6xGUFWS8zJ7gSYKEA8I5Qo7d6uNfhjN0de3dN_d1T25lt2XqqKhuo7lsDmAohAXU6oDcntHdbKsyuKbe22Zu_xwYgPgI_ZUX7_73g5iDMDMLMQZhZvq0Pib-q610C |
| CitedBy_id | crossref_primary_10_1021_acsptsci_4c00308 crossref_primary_10_3390_app15073565 crossref_primary_10_1016_j_jconrel_2022_12_029 crossref_primary_10_1080_14459795_2024_2412051 crossref_primary_10_1016_j_meatsci_2022_108949 crossref_primary_10_3390_brainsci14121211 crossref_primary_10_1186_s12938_023_01148_1 crossref_primary_10_1186_s13071_024_06469_1 crossref_primary_10_1007_s11154_021_09681_x crossref_primary_10_1007_s12553_024_00883_2 crossref_primary_10_3390_jpm12010114 crossref_primary_10_1371_journal_pclm_0000338 crossref_primary_10_3390_pharmaceutics13122001 crossref_primary_10_1002_adma_202210848 crossref_primary_10_3389_fphar_2021_732266 crossref_primary_10_3390_app151810259 crossref_primary_10_2196_66612 crossref_primary_10_3390_app12147282 crossref_primary_10_1002_cpt_2123 crossref_primary_10_1049_wss2_12100 crossref_primary_10_1080_17512433_2024_2306219 crossref_primary_10_1007_s12020_023_03657_4 crossref_primary_10_1080_19490976_2021_1872323 crossref_primary_10_1177_1475472X231206495 crossref_primary_10_1109_TVCG_2023_3313439 crossref_primary_10_32604_cmc_2024_050223 crossref_primary_10_1080_15623599_2024_2341500 crossref_primary_10_3390_math9202572 crossref_primary_10_1177_15533506241273449 crossref_primary_10_3389_fphar_2022_1016399 crossref_primary_10_1016_j_ijchp_2024_100498 crossref_primary_10_1016_j_scitotenv_2023_165946 crossref_primary_10_1016_j_xphs_2021_02_014 crossref_primary_10_3390_ma16206675 crossref_primary_10_1111_joim_13483 crossref_primary_10_1007_s11030_021_10217_3 crossref_primary_10_1016_j_neurobiolaging_2021_11_002 crossref_primary_10_3390_drones8030107 crossref_primary_10_1016_j_artmed_2025_103186 crossref_primary_10_1016_j_dmpk_2023_100518 crossref_primary_10_1080_0886022X_2025_2529452 crossref_primary_10_1016_j_phymed_2024_155479 crossref_primary_10_1002_cpt_2216 crossref_primary_10_1002_cpt_1803 crossref_primary_10_1186_s12909_025_07293_6 crossref_primary_10_3389_fcvm_2022_949454 crossref_primary_10_1007_s12055_025_01941_8 crossref_primary_10_1080_15481603_2024_2393489 crossref_primary_10_1016_j_talanta_2025_128749 crossref_primary_10_1093_function_zqaf015 crossref_primary_10_3389_fnagi_2023_1238065 crossref_primary_10_1080_00450618_2022_2159065 crossref_primary_10_1093_toxsci_kfac046 crossref_primary_10_3390_pr13092929 crossref_primary_10_1109_ACCESS_2021_3102740 crossref_primary_10_1088_1742_6596_1933_1_012038 crossref_primary_10_2196_28918 crossref_primary_10_1016_j_ijmecsci_2022_107185 crossref_primary_10_1088_1742_6596_1933_1_012031 crossref_primary_10_1109_JRFID_2023_3284670 crossref_primary_10_1021_cbe_5c00048 crossref_primary_10_1002_cjce_25397 crossref_primary_10_1557_s43579_023_00464_w crossref_primary_10_1016_j_addr_2021_113920 crossref_primary_10_1055_s_0043_1766120 crossref_primary_10_1038_s41598_025_00769_x crossref_primary_10_1093_jac_dkae292 crossref_primary_10_3390_app14052210 crossref_primary_10_1007_s00340_024_08323_9 crossref_primary_10_2196_57940 crossref_primary_10_1016_j_jtcvs_2021_12_039 crossref_primary_10_1016_j_ijpharm_2023_122643 crossref_primary_10_1016_j_chemosphere_2023_138976 crossref_primary_10_4103_digm_digm_10_21 crossref_primary_10_1038_s41598_024_65132_y crossref_primary_10_1016_j_tibtech_2022_08_007 crossref_primary_10_1016_j_jpsychires_2021_10_023 crossref_primary_10_51537_chaos_1560943 crossref_primary_10_1007_s11095_022_03252_8 crossref_primary_10_3390_agriculture14020227 crossref_primary_10_1007_s12008_024_02173_7 crossref_primary_10_1088_1757_899X_1088_1_012062 crossref_primary_10_1007_s11119_024_10121_4 crossref_primary_10_1007_s13369_023_08132_w crossref_primary_10_1002_psp4_12810 crossref_primary_10_3390_pharmaceutics14091814 crossref_primary_10_1093_bib_bbaf361 crossref_primary_10_3390_ijms25094934 crossref_primary_10_1016_j_procs_2024_05_001 crossref_primary_10_1016_j_psychres_2021_114258 crossref_primary_10_1016_j_apenergy_2024_123541 crossref_primary_10_1007_s00784_024_05586_6 crossref_primary_10_1016_j_compbiomed_2023_107530 crossref_primary_10_3390_met11081287 crossref_primary_10_1007_s10661_024_13251_4 crossref_primary_10_1302_0301_620X_106B11_BJJ_2024_0453_R1 crossref_primary_10_3389_fonc_2021_629321 crossref_primary_10_3390_brainsci12111449 crossref_primary_10_1002_psp4_12704 crossref_primary_10_1186_s12917_022_03486_z crossref_primary_10_32628_IJSRST2310157 crossref_primary_10_32604_cmes_2024_056022 crossref_primary_10_3390_batteries10020060 crossref_primary_10_1038_s41746_021_00459_8 crossref_primary_10_1016_j_psep_2025_107217 crossref_primary_10_3847_1538_4357_adb4f6 crossref_primary_10_1016_j_jfutfo_2024_12_008 crossref_primary_10_1080_10408398_2022_2131725 crossref_primary_10_3389_fpubh_2022_1042218 crossref_primary_10_3389_fninf_2022_901428 crossref_primary_10_3390_software4030014 crossref_primary_10_1016_j_enconman_2024_118243 crossref_primary_10_3390_pharmaceutics14051023 crossref_primary_10_32628_IJSRST2310161 crossref_primary_10_1021_acsomega_5c05944 crossref_primary_10_1007_s11883_023_01154_7 crossref_primary_10_1016_j_heliyon_2023_e23610 crossref_primary_10_1080_17474124_2021_1857238 crossref_primary_10_1002_pst_2376 crossref_primary_10_1016_j_addr_2021_114098 crossref_primary_10_1109_ACCESS_2024_3492389 crossref_primary_10_3389_fonc_2021_788819 crossref_primary_10_1093_bib_bbad514 crossref_primary_10_3390_cancers17040700 crossref_primary_10_3389_fpubh_2025_1635020 crossref_primary_10_1007_s12325_024_03060_z crossref_primary_10_3390_applmech4020034 crossref_primary_10_1093_jamia_ocae278 crossref_primary_10_1002_csc2_21454 crossref_primary_10_1111_sms_70009 crossref_primary_10_3390_plants11111430 crossref_primary_10_2147_IJGM_S338389 crossref_primary_10_1002_psp4_12848 crossref_primary_10_1016_j_annemergmed_2022_05_011 crossref_primary_10_1016_j_cscm_2024_e03186 crossref_primary_10_1039_D5NJ01660F crossref_primary_10_1016_j_uncres_2025_100145 crossref_primary_10_1007_s12282_024_01582_6 crossref_primary_10_1111_bcp_15953 crossref_primary_10_1002_aenm_202405300 crossref_primary_10_3390_biomedicines11041138 crossref_primary_10_1109_ACCESS_2021_3096962 crossref_primary_10_2147_DDDT_S495050 crossref_primary_10_1021_cbmi_5c00057 crossref_primary_10_1021_prechem_4c00048 crossref_primary_10_1016_j_tifs_2024_104337 crossref_primary_10_1080_17576180_2024_2437283 crossref_primary_10_1002_cpt_3053 crossref_primary_10_2208_jscejj_24_25045 crossref_primary_10_1007_s11831_024_10077_8 crossref_primary_10_1016_j_jksuci_2024_102197 crossref_primary_10_1016_j_heliyon_2024_e26645 crossref_primary_10_3390_ai5020034 crossref_primary_10_1016_j_knosys_2025_112954 crossref_primary_10_3390_app12157943 crossref_primary_10_1016_j_asr_2023_07_039 crossref_primary_10_1177_02666669241305379 crossref_primary_10_1007_s40664_024_00569_6 crossref_primary_10_1080_17460441_2024_2348157 crossref_primary_10_1186_s40001_025_02553_z crossref_primary_10_1016_j_apsb_2024_11_006 crossref_primary_10_1016_j_nxmate_2024_100145 crossref_primary_10_1109_ACCESS_2023_3308143 crossref_primary_10_1111_bcp_15930 crossref_primary_10_14814_phy2_70146 crossref_primary_10_1016_j_matpr_2020_12_095 crossref_primary_10_1007_s00395_023_00982_7 crossref_primary_10_3390_cancers15174344 crossref_primary_10_3390_smartcities7060132 crossref_primary_10_1002_cpt_2061 crossref_primary_10_1177_10944281251323248 crossref_primary_10_1016_j_triboint_2023_108528 crossref_primary_10_1177_25152459251343582 crossref_primary_10_1007_s40262_020_00927_6 crossref_primary_10_3748_wjg_v31_i35_109776 crossref_primary_10_1016_j_bbe_2024_01_002 crossref_primary_10_1038_s41597_025_05267_3 crossref_primary_10_1088_1361_6501_ad8947 crossref_primary_10_1016_j_gerr_2025_100130 crossref_primary_10_1016_j_talanta_2022_123762 crossref_primary_10_1016_j_cpb_2025_100535 crossref_primary_10_1097_AOG_0000000000005776 crossref_primary_10_3389_fnins_2022_1035153 crossref_primary_10_1080_1068316X_2024_2318373 crossref_primary_10_1089_mdr_2024_0241 crossref_primary_10_1007_s11947_024_03369_1 crossref_primary_10_1016_j_clon_2021_12_003 crossref_primary_10_3389_fmed_2021_694733 crossref_primary_10_1007_s43657_023_00137_7 crossref_primary_10_1016_j_ces_2023_119358 crossref_primary_10_1080_17476348_2024_2302940 crossref_primary_10_3390_info13030108 crossref_primary_10_1038_s41598_024_78558_1 crossref_primary_10_1136_bmjopen_2021_054862 crossref_primary_10_3390_math13060958 crossref_primary_10_1002_adem_202401432 crossref_primary_10_1016_j_drudis_2021_01_013 crossref_primary_10_1016_j_compchemeng_2024_108648 crossref_primary_10_3390_chemosensors11120579 crossref_primary_10_1007_s12145_024_01452_x crossref_primary_10_1016_j_desal_2024_118524 crossref_primary_10_7759_cureus_74161 crossref_primary_10_1016_j_ejps_2024_106876 crossref_primary_10_1515_bmt_2023_0017 crossref_primary_10_1111_jep_14155 crossref_primary_10_1016_j_lfs_2022_121118 crossref_primary_10_1016_j_rineng_2024_103873 crossref_primary_10_26599_BDMA_2023_9020030 crossref_primary_10_1097_TA_0000000000004385 crossref_primary_10_1002_cpt_1907 crossref_primary_10_1227_neu_0000000000002660 crossref_primary_10_1016_j_cej_2024_155954 crossref_primary_10_1002_advs_202306583 crossref_primary_10_1371_journal_pone_0316860 crossref_primary_10_1002_agt2_70018 crossref_primary_10_1080_05704928_2025_2500368 crossref_primary_10_3389_fcvm_2024_1439069 crossref_primary_10_1097_FTD_0000000000001078 crossref_primary_10_1016_j_vrih_2025_01_002 crossref_primary_10_1080_09670874_2025_2518442 crossref_primary_10_1007_s10928_021_09790_9 crossref_primary_10_1038_s41598_023_34999_8 crossref_primary_10_3390_pharmaceutics16020260 crossref_primary_10_1186_s12929_023_00926_2 crossref_primary_10_1111_ans_18610 crossref_primary_10_1002_hfm_21053 crossref_primary_10_1016_j_envres_2023_117601 crossref_primary_10_18686_fnc333 crossref_primary_10_3390_pharmaceutics14102034 crossref_primary_10_1007_s13721_025_00559_5 crossref_primary_10_1016_j_biotechadv_2021_107739 crossref_primary_10_1186_s12984_021_00959_4 crossref_primary_10_1016_j_compchemeng_2020_107071 crossref_primary_10_1080_09546634_2025_2480743 crossref_primary_10_1016_j_apgeog_2022_102748 crossref_primary_10_25259_IJN_496_2024 crossref_primary_10_5306_wjco_v16_i8_107306 crossref_primary_10_1007_s11119_022_09904_4 crossref_primary_10_1016_j_nucengdes_2024_113506 crossref_primary_10_1002_brb3_70157 crossref_primary_10_1016_j_brainresbull_2025_111398 crossref_primary_10_3390_jcm13051505 crossref_primary_10_3390_rs15143492 crossref_primary_10_1002_advs_202401401 crossref_primary_10_1002_adhm_202401576 crossref_primary_10_1186_s40001_022_00843_4 crossref_primary_10_3390_catal13060961 crossref_primary_10_1109_SR_2025_3584750 crossref_primary_10_1016_j_engappai_2023_106715 crossref_primary_10_1016_j_jallcom_2025_180484 crossref_primary_10_2174_1381612829666230412084137 crossref_primary_10_3390_w16192766 crossref_primary_10_1016_j_jvs_2023_05_024 crossref_primary_10_1016_j_toxrep_2024_101877 crossref_primary_10_59717_j_xinn_med_2025_100154 crossref_primary_10_3390_medicina61020358 crossref_primary_10_1007_s12020_025_04378_6 crossref_primary_10_1016_j_rdc_2022_07_004 crossref_primary_10_3390_buildings14113515 crossref_primary_10_1007_s00167_022_07082_4 crossref_primary_10_1016_j_foodcont_2025_111619 crossref_primary_10_1016_j_ijhydene_2023_12_149 crossref_primary_10_1371_journal_pwat_0000361 crossref_primary_10_1177_09544062231195406 crossref_primary_10_3390_pharmaceutics13071026 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors. published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics. 2020 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics. |
| Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics. – notice: 2020 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics. |
| DBID | 24P NPM 7X8 |
| DOI | 10.1002/cpt.1796 |
| DatabaseName | Wiley Online Library Open Access PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1532-6535 |
| EndPage | 885 |
| ExternalDocumentID | 32128792 CPT1796 |
| Genre | article Journal Article |
| GroupedDBID | --- --K -Q- .55 .GJ 0R~ 1B1 1CY 1OB 1OC 24P 29B 33P 354 36B 39C 3O- 4.4 52O 53G 5GY 5RE 6J9 70F 8F7 AAESR AAHHS AAHQN AAIPD AAKAS AAMNL AANHP AANLZ AAONW AAQOH AAQQT AAWTL AAYCA AAYOK AAZKR ABCUV ABJNI ABLJU ABQWH ACBNA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACRPL ACXQS ACYXJ ADBBV ADBTR ADKYN ADNMO ADXAS ADZCM ADZMN ADZOD AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFFPM AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BRXPI C45 CAG COF CS3 DCZOG DPXWK DU5 EBS EE. EJD EMOBN F5P GODZA GWYGA HGLYW IH2 IHE J5H L7B LATKE LEEKS LITHE LOXES LSO LUTES LYRES M41 MEWTI N4W N9A NQ- O9- OPC OVD P2P P2W PALCI RIG RIWAO RJQFR RNTTT ROL RPZ SAMSI SEW SJN SUPJJ TEORI TWZ UHS VH1 WBKPD WH7 WOHZO WXSBR WYJ X7M Y6R YCJ YFH YOC YXB ZGI ZXP ZZTAW NPM PKN 7X8 AAMMB AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY LH4 |
| ID | FETCH-LOGICAL-c4766-3240e4ed3c4b2cf9b9e313d8d27c6ab5b8deac48b10612a2d22cbe393ca9535b3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 305 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000517788300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0009-9236 1532-6535 |
| IngestDate | Fri Sep 05 13:03:38 EDT 2025 Wed Feb 19 02:30:17 EST 2025 Wed Jan 22 16:36:19 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs 2020 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4766-3240e4ed3c4b2cf9b9e313d8d27c6ab5b8deac48b10612a2d22cbe393ca9535b3 |
| Notes | [Correction added on 6th March, 2020, after first online publication: Author contribution text was added]. Authors in alphabetical order. All authors contributed equally. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-3085-0909 0000-0002-5300-9573 0000-0001-8744-9561 0000-0002-7563-111X 0000-0003-3510-3926 0000-0002-1759-3223 0000-0002-1398-1624 0000-0003-0422-7977 0000-0002-3845-5460 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpt.1796 |
| PMID | 32128792 |
| PQID | 2371142397 |
| PQPubID | 23479 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_2371142397 pubmed_primary_32128792 wiley_primary_10_1002_cpt_1796_CPT1796 |
| PublicationCentury | 2000 |
| PublicationDate | April 2020 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Clinical pharmacology and therapeutics |
| PublicationTitleAlternate | Clin Pharmacol Ther |
| PublicationYear | 2020 |
| References | 2010; 11 2015; 31 2019; 15 2013; 20 1909; 415–446 2008; 9 2019; 16 2016; 100 2015; 348 2008; 4 2001; 45 2014; 67 1959; 8 1997; 9 1986; 1 1982; 28 1979; 67 2018; 173 2014; 2 2006; 62 2010; 29 2013; 53 2018; 137 2014; 14 2001; 16 2012; 25 2018; 34 2017; 129 1980; 28 1963; 24 2019; 8 2015; 12 2017; 61 2011; 1 2012 2019; 1 1985; 8 2019; 37 2006; 14 2015; 54 2008 1997 1996 2006; 6 1989; 140 1901; 2 2003 2002 2014; 41 2019; 380 2012; 34 2016; 5 2009; 33 2010; 88 2002; 29 2019; 86 1984; 37 2004; 14 2018; 115 2018 2005; 10 2017; 19 2016 2014 2013 2012; 5 2005; 18 2018; 16 2010; 50 |
| References_xml | – volume: 348 start-page: 648 year: 2015 end-page: 660 article-title: The genotype‐tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans publication-title: Science – volume: 415–446 year: 1909 article-title: Functions of positive and negative type and their connection with the theory of integral equations publication-title: Philos. Trans. R. Soc. Lond. B Bio. Sci. – volume: 67 start-page: 1207 year: 1979 end-page: 1224 article-title: Knowledge engineering for medical decision making: A review of computer‐based clinical decision aids publication-title: Proc. IEEE – volume: 9 start-page: 2579 year: 2008 end-page: 2605 article-title: Visualizing data using t‐SNE publication-title: J. Mach. Learning Res. – start-page: 38 year: 2008 end-page: 53 – volume: 33 start-page: 197 year: 2009 end-page: 207 article-title: Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases publication-title: J. Autoimmun. – volume: 37 start-page: 237 year: 1984 end-page: 251 article-title: Classification and regression trees publication-title: Wadsworth Int. Group – volume: 28 start-page: 97 year: 1980 end-page: 113 article-title: An annotated bibliography of decision analytic applications to health care publication-title: Oper. Res. – volume: 34 start-page: 108 year: 2012 end-page: 117 article-title: Nonlinear dimensionality reduction and mapping of compound libraries for drug discovery publication-title: J. Mol. Graph. Model. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 article-title: Long short‐term memory publication-title: Neural Comput. – year: 2018 – volume: 5 start-page: 1304 year: 2016 article-title: The distance function effect on k‐nearest neighbor classification for medical datasets publication-title: Springerplus – volume: 115 start-page: E4304 year: 2018 end-page: E4311 article-title: Deep learning improves prediction of drugdrug and drugfood interactions publication-title: Proc. Natl. Acad. Sci. – volume: 29 start-page: 271 year: 2002 end-page: 307 article-title: Bayesian analysis of population PK/PD models: general concepts and software publication-title: J. Pharmacokinet. Pharmacodyn. – year: 2014 – volume: 67 start-page: 304 year: 2014 end-page: 312 article-title: Breast cancer patient stratification using a molecular regularized consensus clustering method publication-title: Methods – volume: 34 start-page: 802 year: 2018 end-page: 808 article-title: The M4 competition: results, findings, conclusion and way forward publication-title: Int. J. Forecast. – volume: 18 start-page: 826 year: 2005 end-page: 834 article-title: Individualization of pharmacological anemia management using reinforcement learning publication-title: Neural Networks – volume: 2 start-page: 559 year: 1901 end-page: 572 article-title: On lines and planes of closest fit to systems of points in space publication-title: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science – volume: 6 start-page: 174 year: 2006 article-title: Anticancer drug clustering in lung cancer based on gene expression profiles and sensitivity database publication-title: BMC Cancer – volume: 41 start-page: 647 year: 2014 end-page: 665 article-title: Explaining prediction models and individual predictions with feature contributions publication-title: Knowl. Inf. Syst. – volume: 15 year: 2019 article-title: Ten quick tips for effective dimensionality reduction publication-title: PLoS Comput. Biol. – start-page: 8624 year: 2012 end-page: 8628 – volume: 4 year: 2008 article-title: Support vector machines and kernels for computational biology publication-title: PLoS Comput. Biol. – year: 2008 – volume: 100 start-page: 371 year: 2016 end-page: 379 article-title: Improved prediction of drug‐induced torsades de pointes through simulations of dynamics and machine learning algorithms publication-title: Clin. Pharmacol. Ther. – volume: 62 start-page: 420 year: 2006 end-page: 434 article-title: A Bayesian approach for population pharmacokinetic modelling of sirolimus publication-title: Br. J. Clin. Pharmacol. – year: 1997 – volume: 53 start-page: 461 year: 2013 end-page: 474 article-title: Coping with unbalanced class data sets in oral absorption models publication-title: J. Chem. Inf. Model. – volume: 50 start-page: 105 year: 2010 end-page: 115 article-title: Missing data imputation using statistical and machine learning methods in a real breast cancer problem publication-title: Artif. Intell. Med. – volume: 8 start-page: 131 year: 2019 end-page: 134 article-title: Models and machines: how deep learning will take clinical pharmacology to the next level publication-title: CPT Pharmacomet. Syst. Pharmacol. – volume: 137 year: 2018 – volume: 54 start-page: 409 year: 2015 end-page: 421 article-title: Comparing dosage adjustment methods for once‐daily tobramycin in paediatric and adolescent patients with cystic fibrosis publication-title: Clin. Pharmacokinet. – volume: 16 start-page: 199 year: 2001 end-page: 231 article-title: Statistical modeling: the two cultures (with comments and a rejoinder by the author) publication-title: Stat. Sci. – volume: 14 start-page: 831 year: 2006 end-page: 836 article-title: Symptom clustering in advanced cancer publication-title: Support. Care Cancer – volume: 173 start-page: 1581 year: 2018 end-page: 1592 article-title: Next‐generation machine learning for biological networks publication-title: Cell – volume: 19 start-page: 221 year: 2017 end-page: 248 article-title: Deep learning in medical image analysis publication-title: Annu. Rev. Biomed. Eng. – volume: 2 start-page: 3581 year: 2014 end-page: 3589 – volume: 16 start-page: 207 year: 2019 end-page: 220 article-title: Molecular subtypes of pancreatic cancer publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 1 start-page: e17 year: 2019 end-page: e25 article-title: . Closed‐loop insulin delivery in adults with type 1 diabetes in real‐life conditions: a 12‐week multicentre, open‐label randomised controlled crossover trial publication-title: Lancet Dig. Health – volume: 14 start-page: 208 year: 2014 end-page: 216 article-title: Data mining reveals a network of early‐response genes as a consensus signature of drug‐induced in vitro and in vivo toxicity publication-title: Pharmacogenomics J. – volume: 20 start-page: 3187 year: 2013 end-page: 3192 article-title: Predication of plasma concentration of remifentanil based on Elman neural network publication-title: J. Cent. South Univ. – volume: 8 start-page: 65 year: 1959 end-page: 75 article-title: Matching and prediction on the principle of biological classification publication-title: J. R. Stat. Soc. Ser. C Appl. Stat. – start-page: 1310 year: 2013 end-page: 1318 – year: 2003 – volume: 11 start-page: 2079 year: 2010 end-page: 2107 article-title: On over‐fitting in model selection and subsequent selection bias in performance evaluation publication-title: J. Mach. Learn. Res. – volume: 24 start-page: 774 year: 1963 end-page: 780 article-title: Pattern recognition using generalized portrait method publication-title: Automat. Rem. Contr. – volume: 10 start-page: 471 year: 2005 end-page: 483 article-title: Protein structure similarity clustering and natural product structure as guiding principles in drug discovery publication-title: Drug Discov. Today – volume: 28 start-page: 129 year: 1982 end-page: 137 article-title: Least squares quantization in PCM publication-title: IEEE Trans. Inf. Theory – year: 2016 – volume: 129 start-page: 81 year: 2017 end-page: 88 article-title: Drug‐target interaction prediction using ensemble learning and dimensionality reduction publication-title: Methods – volume: 16 start-page: 31 year: 2018 end-page: 57 article-title: The mythos of model interpretability publication-title: ACM Queue – volume: 14 start-page: 199 year: 2004 end-page: 222 article-title: A tutorial on support vector regression publication-title: Stat. Comput. – volume: 45 start-page: 5 year: 2001 end-page: 32 article-title: Random forests publication-title: Mach. Learn. – start-page: 226 year: 1996 end-page: 231 – volume: 29 start-page: 337 year: 2010 end-page: 346 article-title: Improving propensity score weighting using machine learning publication-title: Stat. Med. – volume: 88 start-page: 52 year: 2010 end-page: 59 article-title: Prediction of adverse drug reactions using decision tree modeling publication-title: Clin. Pharmacol. Ther. – volume: 61 year: 2017 article-title: Establishment of an AUC threshold for nephrotoxicity is a step towards individualized vancomycin dosing for methicillin‐resistant staphylococcus aureus bacteremia publication-title: Antimicrob. Agents Chemother. – year: 2002 – volume: 31 start-page: 1396 year: 2015 end-page: 1404 article-title: Integrating alignment‐based and alignment‐free sequence similarity measures for biological sequence classification publication-title: Bioinformatics – volume: 8 start-page: 173 year: 1985 end-page: 188 article-title: A decision tree approach for the application of drug metabolism and kinetic studies to in vivo and in vitro toxicological and pharmacological testing publication-title: Arch. Toxicol. Suppl. – volume: 380 start-page: 1347 year: 2019 end-page: 1358 article-title: Machine learning in medicine publication-title: N. Engl. J. Med. – volume: 37 start-page: 38 year: 2019 end-page: 44 article-title: Dimensionality reduction for visualizing single‐cell data using UMAP publication-title: Nat. Biotechnol. – volume: 1 start-page: 81 year: 1986 end-page: 106 article-title: Induction of decision trees publication-title: Mach. Learn. – volume: 140 start-page: 1573 year: 1989 end-page: 1577 article-title: Once‐daily versus twice‐daily dosing of theophylline: a decision analysis approach to evaluating theophylline blood levels and compliance publication-title: Am. Rev. Respir. Dis. – volume: 25 start-page: 1097 year: 2012 end-page: 1105 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 1 start-page: 231 year: 2011 end-page: 240 article-title: Density‐based clustering publication-title: Wiley Interdisc. Rev Data Min. Knowl. Discov. – volume: 12 start-page: 453 year: 2015 end-page: 457 article-title: Robust enumeration of cell subsets from tissue expression profiles publication-title: Nat. Methods – volume: 5 start-page: 363 year: 2012 end-page: 387 article-title: A survey on unsupervised outlier detection in high‐dimensional numerical data publication-title: Stat. Anal. Data Min. – volume: 86 start-page: 122 year: 2019 article-title: Enhanced early prediction of clinically relevant neonatal hyperbilirubinemia with machine learning publication-title: Pediatr. Res. |
| SSID | ssj0004988 |
| Score | 2.698672 |
| SecondaryResourceType | review_article |
| Snippet | In the last few years, machine learning (ML) and artificial intelligence have seen a new wave of publicity fueled by the huge and ever‐increasing amount of... In the last few years, machine learning (ML) and artificial intelligence have seen a new wave of publicity fueled by the huge and ever-increasing amount of... |
| SourceID | proquest pubmed wiley |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 871 |
| Title | An Introduction to Machine Learning |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpt.1796 https://www.ncbi.nlm.nih.gov/pubmed/32128792 https://www.proquest.com/docview/2371142397 |
| Volume | 107 |
| WOSCitedRecordID | wos000517788300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ05a8MwFMdFm3bo0vtIL1RaMsXUlmQdYwgN7ZDgIYVsRpdLFyfESSHfvpKPmEKHQhd5sAzm8fT0l_3e7wHwZEhmUIZI4OKACgjSLJBaery2shHDyggZls0m2GTCZzOR1FmVvham4kNsP7j5lVHGa7_ApSqeW2ioXviGuoLugr0owsx7NCJJWxMpOG-6qDkRQxvwbIiemyd_E5U_NWq5yYyO_vN6x-CwlpZwUPnCCdix-SnoJRWbetOH07bUqujDHkxaavXmDDwOcvjm09ZNxZOFqzkcl5mWFtYQ1o9z8D56mQ5fg7qDQqAJozTwtD1LrMGaKKQzoYTFETbcIKapVLHixgVewpU_GCKJDEJaWSywliLGscIXoJPPc3sFoIxNSEMjY0kwoTaTikhJsURxZpzEVF3w0BgzdR7qfzvI3M7XRYow8wW7Tvh0wWVl5XRRoTRS7HZOzgTqgl5pzO2NiqaMUmfG1JsxHSZTf73-68QbcID80bhMsrkFndVybe_Avv5afRbL-9JX3Mhm3I2TZPwNcX_D2w |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1La8JAEMcHawvtpe-HfW5p8WQw7m4eS08iFaUqOVjwFvaV0ksUHwW_fXcTYyj0UOgphyQQhtmZ_25mfgPwrGiicIKpY-KAcCiWgcMlt3htoVsBEYpxNxs2EYxG4WTCogq8FL0wOR9ie-BmV0YWr-0CtwfSzZIaKmd2oi7zd2CXmiRjxxdgGpVNkSwMizFqRsX4BXnWxc3izd9U5U-RmmWZ7tG_vu8YDjfiErVzbziBik5PoR7ldOp1A43LZqtFA9VRVHKr12fw1E5R3xauq5woi5ZTNMxqLTXaYFg_zuG9-zru9JzNDAVH0sD3Hcvb01QrIqnAMmGCadIiKlQ4kD4XngiVCb00FHZriDlWGEuhCSOSM494glxANZ2m-goQ95Tru4p7nBLq64QLyrlPOPYSZUSmqMFjYc3Y-Kj98cBTPV0tYkwC27JrpE8NLnMzx7McphETkzvDgOEa1DNrbm_kPGUcGzPG1oxxJxrb6_VfH3yA_d54OIgH_dHbDRxgu1HOSm5uobqcr_Qd7Mmv5edifp85zjfdWsXJ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMeHWkW8-H7U54rSU0PT3c0mi6dSLRa15FCht7CviJe09CH027ubNC2CB8FTDslCGGZn_7s78xuAe01TjVNMPRsHpEexCj2hhMNrS9MKidRc-HmzibDfj4ZDHlfgoayFKfgQqwM3NzPyeO0muBnrtLmmhqqx66jL2QZs0sCGWId1pvG6KJJHUdlGzaoYVpJnfdwsR_6mKn-K1HyV6e796__2YXcpLlG78IYDqJjsEOpxQadeNNBgXWw1baA6itfc6sUR3LUz1HOJ67ogyqLZCL3luZYGLTGsH8fw3n0adJ69ZQ8FT9GQMc_x9gw1migqsUq55Ia0iI40DhUTMpCRtqGXRtJtDbHAGmMlDeFECR6QQJITqGajzJwBEoH2ma9FICihzKRCUiEYEThItRWZsga3pTUT66Pu4kFkZjSfJpiErmTXSp8anBZmTsYFTCMhdu2MQo5rUM-tuXpR8JRxYs2YODMmnXjgnud__fAGtuPHbvLa679cwA52--Q84-YSqrPJ3FzBlvqafU4n17nffAPSXcVN |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Introduction+to+Machine+Learning&rft.jtitle=Clinical+pharmacology+and+therapeutics&rft.au=Badillo%2C+Solveig&rft.au=Banfai%2C+Balazs&rft.au=Birzele%2C+Fabian&rft.au=Davydov%2C+Iakov+I.&rft.date=2020-04-01&rft.issn=0009-9236&rft.eissn=1532-6535&rft.volume=107&rft.issue=4&rft.spage=871&rft.epage=885&rft_id=info:doi/10.1002%2Fcpt.1796&rft.externalDBID=10.1002%252Fcpt.1796&rft.externalDocID=CPT1796 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-9236&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-9236&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-9236&client=summon |