Graphene Nanoarchitectonics: Recent Advances in Graphene‐Based Electrocatalysts for Hydrogen Evolution Reaction
Under the double pressures of both the energy crisis and environmental pollution, the exploitation and utilization of hydrogen, a clean and renewable power resource, has become an important trend in the development of sustainable energy‐production and energy‐consumption systems. In this regard, the...
Uloženo v:
| Vydáno v: | Advanced materials (Weinheim) Ročník 31; číslo 48; s. e1903415 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Wiley Subscription Services, Inc
01.11.2019
|
| Témata: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Under the double pressures of both the energy crisis and environmental pollution, the exploitation and utilization of hydrogen, a clean and renewable power resource, has become an important trend in the development of sustainable energy‐production and energy‐consumption systems. In this regard, the electrocatalytic hydrogen evolution reaction (HER) provides an efficient and clean pathway for the mass production of hydrogen fuel and has motivated the design and construction of highly active HER electrocatalysts of an acceptable cost. In particular, graphene‐based electrocatalysts commonly exhibit an enhanced HER performance owing to their distinctive structural merits, including a large surface area, high electrical conductivity, and good chemical stability. Considering the rapidly growing research enthusiasm for this topic over the last several years, herein, a panoramic review of recent advances in graphene‐based electrocatalysts is presented, covering various advanced synthetic strategies, microstructural characterizations, and the applications of such materials in HER electrocatalysis. Lastly, future perspectives on the challenges and opportunities awaiting this emerging field are proposed and discussed.
Electrode catalysts for the hydrogen evolution reaction are at the heart of electrochemical water splitting technology. Recent advances in the controllable synthesis, microstructural analysis, and electrocatalytic properties of graphene‐based hydrogen evolution electrocatalysts are presented, together with a discussion of the major challenges and opportunities in this emerging field. |
|---|---|
| AbstractList | Under the double pressures of both the energy crisis and environmental pollution, the exploitation and utilization of hydrogen, a clean and renewable power resource, has become an important trend in the development of sustainable energy-production and energy-consumption systems. In this regard, the electrocatalytic hydrogen evolution reaction (HER) provides an efficient and clean pathway for the mass production of hydrogen fuel and has motivated the design and construction of highly active HER electrocatalysts of an acceptable cost. In particular, graphene-based electrocatalysts commonly exhibit an enhanced HER performance owing to their distinctive structural merits, including a large surface area, high electrical conductivity, and good chemical stability. Considering the rapidly growing research enthusiasm for this topic over the last several years, herein, a panoramic review of recent advances in graphene-based electrocatalysts is presented, covering various advanced synthetic strategies, microstructural characterizations, and the applications of such materials in HER electrocatalysis. Lastly, future perspectives on the challenges and opportunities awaiting this emerging field are proposed and discussed. Under the double pressures of both the energy crisis and environmental pollution, the exploitation and utilization of hydrogen, a clean and renewable power resource, has become an important trend in the development of sustainable energy‐production and energy‐consumption systems. In this regard, the electrocatalytic hydrogen evolution reaction (HER) provides an efficient and clean pathway for the mass production of hydrogen fuel and has motivated the design and construction of highly active HER electrocatalysts of an acceptable cost. In particular, graphene‐based electrocatalysts commonly exhibit an enhanced HER performance owing to their distinctive structural merits, including a large surface area, high electrical conductivity, and good chemical stability. Considering the rapidly growing research enthusiasm for this topic over the last several years, herein, a panoramic review of recent advances in graphene‐based electrocatalysts is presented, covering various advanced synthetic strategies, microstructural characterizations, and the applications of such materials in HER electrocatalysis. Lastly, future perspectives on the challenges and opportunities awaiting this emerging field are proposed and discussed. Electrode catalysts for the hydrogen evolution reaction are at the heart of electrochemical water splitting technology. Recent advances in the controllable synthesis, microstructural analysis, and electrocatalytic properties of graphene‐based hydrogen evolution electrocatalysts are presented, together with a discussion of the major challenges and opportunities in this emerging field. Under the double pressures of both the energy crisis and environmental pollution, the exploitation and utilization of hydrogen, a clean and renewable power resource, has become an important trend in the development of sustainable energy-production and energy-consumption systems. In this regard, the electrocatalytic hydrogen evolution reaction (HER) provides an efficient and clean pathway for the mass production of hydrogen fuel and has motivated the design and construction of highly active HER electrocatalysts of an acceptable cost. In particular, graphene-based electrocatalysts commonly exhibit an enhanced HER performance owing to their distinctive structural merits, including a large surface area, high electrical conductivity, and good chemical stability. Considering the rapidly growing research enthusiasm for this topic over the last several years, herein, a panoramic review of recent advances in graphene-based electrocatalysts is presented, covering various advanced synthetic strategies, microstructural characterizations, and the applications of such materials in HER electrocatalysis. Lastly, future perspectives on the challenges and opportunities awaiting this emerging field are proposed and discussed.Under the double pressures of both the energy crisis and environmental pollution, the exploitation and utilization of hydrogen, a clean and renewable power resource, has become an important trend in the development of sustainable energy-production and energy-consumption systems. In this regard, the electrocatalytic hydrogen evolution reaction (HER) provides an efficient and clean pathway for the mass production of hydrogen fuel and has motivated the design and construction of highly active HER electrocatalysts of an acceptable cost. In particular, graphene-based electrocatalysts commonly exhibit an enhanced HER performance owing to their distinctive structural merits, including a large surface area, high electrical conductivity, and good chemical stability. Considering the rapidly growing research enthusiasm for this topic over the last several years, herein, a panoramic review of recent advances in graphene-based electrocatalysts is presented, covering various advanced synthetic strategies, microstructural characterizations, and the applications of such materials in HER electrocatalysis. Lastly, future perspectives on the challenges and opportunities awaiting this emerging field are proposed and discussed. |
| Author | Xu, Xingtao Yan, Minmin Yang, Lu Yang, Cuizhen Lu, Zhiyong Bando, Yoshio Huang, Huajie Jiang, Quanguo Sun, Ziqi He, Haiyan Yamauchi, Yusuke |
| Author_xml | – sequence: 1 givenname: Huajie surname: Huang fullname: Huang, Huajie email: huanghuajie@hhu.edu.cn organization: Hohai University – sequence: 2 givenname: Minmin surname: Yan fullname: Yan, Minmin organization: Hohai University – sequence: 3 givenname: Cuizhen surname: Yang fullname: Yang, Cuizhen organization: Hohai University – sequence: 4 givenname: Haiyan surname: He fullname: He, Haiyan organization: Hohai University – sequence: 5 givenname: Quanguo surname: Jiang fullname: Jiang, Quanguo organization: Hohai University – sequence: 6 givenname: Lu surname: Yang fullname: Yang, Lu organization: Hohai University – sequence: 7 givenname: Zhiyong surname: Lu fullname: Lu, Zhiyong organization: Hohai University – sequence: 8 givenname: Ziqi surname: Sun fullname: Sun, Ziqi organization: Queensland University of Technology (QUT) – sequence: 9 givenname: Xingtao surname: Xu fullname: Xu, Xingtao email: xingtao.xu@hhu.eduv organization: Hohai University – sequence: 10 givenname: Yoshio surname: Bando fullname: Bando, Yoshio organization: National Institute for Materials Science – sequence: 11 givenname: Yusuke orcidid: 0000-0001-7854-927X surname: Yamauchi fullname: Yamauchi, Yusuke email: y.yamauchi@uq.edu.au organization: Kyung Hee University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31496036$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc9uEzEQhy1URNPClSNaiQuXDf6_Xm6hhBapgITgbE28s9TVxk5tb1FufYQ-I0_CRmmLVAlxmjl838xofkfkIMSAhLxkdM4o5W-hW8OcU9ZSIZl6QmZMcVZL2qoDMqOtUHWrpTkkRzlfUkpbTfUzciiYnDqhZ-TqNMHmAgNWXyBESO7CF3QlBu_yu-obOgylWnTXEBzmyofqnv99c_seMnbVcpj4FB0UGLa55KqPqTrbdin-xFAtr-MwFh_DNAvcrnlOnvYwZHxxV4_Jj4_L7ydn9fnX008ni_PayUarGlFzR1H0vKdq1ZsVdEpQbUTnTA9aK-SsQaEBhHSq40YY2jfozKprGs2pOCZv9nM3KV6NmItd--xwGCBgHLPl3DRKCC7khL5-hF7GMYXpOssFa1QjVWsm6tUdNa7W2NlN8mtIW3v_zAmY7wGXYs4J-weEUbtLy-7Ssg9pTYJ8JDhfYPekksAP_9bavfbLD7j9zxK7-PB58df9AwmLqwU |
| CitedBy_id | crossref_primary_10_1021_jacs_0c13002 crossref_primary_10_1016_j_mtchem_2023_101531 crossref_primary_10_3390_catal12020207 crossref_primary_10_1007_s12274_024_6712_4 crossref_primary_10_1002_sstr_202100006 crossref_primary_10_1039_D3NR05259A crossref_primary_10_1016_j_jhazmat_2020_123407 crossref_primary_10_1007_s12598_021_01882_2 crossref_primary_10_1016_j_ceramint_2024_02_129 crossref_primary_10_1016_j_jcis_2021_07_056 crossref_primary_10_1007_s11581_021_04328_y crossref_primary_10_1002_ente_202201201 crossref_primary_10_1080_15567036_2022_2069884 crossref_primary_10_1021_acs_inorgchem_5c02889 crossref_primary_10_1016_j_jpcs_2022_111106 crossref_primary_10_1002_smsc_202000032 crossref_primary_10_1016_j_diamond_2024_111147 crossref_primary_10_1007_s40843_024_3036_y crossref_primary_10_3762_bjnano_13_67 crossref_primary_10_1002_aenm_202200928 crossref_primary_10_1039_D3NR04014C crossref_primary_10_1016_j_carbon_2021_04_038 crossref_primary_10_1016_j_ccr_2021_213806 crossref_primary_10_1016_j_seppur_2025_131834 crossref_primary_10_1246_bcsj_20200055 crossref_primary_10_1002_smll_202408869 crossref_primary_10_1002_wcms_70014 crossref_primary_10_1002_chem_202000789 crossref_primary_10_3390_nano13132028 crossref_primary_10_1016_j_cej_2022_137932 crossref_primary_10_1016_j_ijhydene_2025_06_135 crossref_primary_10_1021_acs_chemmater_4c02659 crossref_primary_10_1016_j_desal_2020_114665 crossref_primary_10_1016_j_ijbiomac_2023_127993 crossref_primary_10_1039_D0NR06396G crossref_primary_10_3390_ma15144927 crossref_primary_10_1016_j_apsusc_2020_148428 crossref_primary_10_1016_j_apsusc_2024_162257 crossref_primary_10_1039_D2SE00658H crossref_primary_10_1016_j_asems_2022_100029 crossref_primary_10_1016_j_susmat_2024_e01160 crossref_primary_10_3390_nano12111806 crossref_primary_10_1039_D1QI01528A crossref_primary_10_1016_j_ces_2023_118551 crossref_primary_10_1007_s43153_025_00552_5 crossref_primary_10_1016_j_micromeso_2020_110257 crossref_primary_10_1016_j_mtener_2021_100814 crossref_primary_10_1088_1361_6528_ac21f0 crossref_primary_10_1016_j_diamond_2022_109080 crossref_primary_10_1016_j_jallcom_2021_160179 crossref_primary_10_1016_j_apsusc_2024_159555 crossref_primary_10_1016_j_electacta_2024_145230 crossref_primary_10_1016_j_jechem_2020_10_020 crossref_primary_10_1002_ange_202000802 crossref_primary_10_1021_jacs_5c02696 crossref_primary_10_1002_smtd_202100334 crossref_primary_10_1016_j_electacta_2025_146741 crossref_primary_10_1039_D2SE00047D crossref_primary_10_1016_j_jallcom_2022_166450 crossref_primary_10_1002_cnma_202200176 crossref_primary_10_1039_D4NH00586D crossref_primary_10_3390_nano11082146 crossref_primary_10_1039_D1NR00807B crossref_primary_10_1002_ange_202002665 crossref_primary_10_1016_j_ijhydene_2023_01_214 crossref_primary_10_1039_D5RA02422F crossref_primary_10_1002_cctc_202001239 crossref_primary_10_1016_j_ijhydene_2021_06_157 crossref_primary_10_3390_nano15151163 crossref_primary_10_1002_smtd_202100720 crossref_primary_10_1039_D3RA01929B crossref_primary_10_1002_slct_202501775 crossref_primary_10_1016_j_cej_2021_132312 crossref_primary_10_1016_j_jallcom_2024_178137 crossref_primary_10_1002_smsc_202300010 crossref_primary_10_1002_smll_202309359 crossref_primary_10_1016_j_cej_2022_138939 crossref_primary_10_3390_nano10122376 crossref_primary_10_1007_s10854_021_05432_5 crossref_primary_10_3390_coatings13030555 crossref_primary_10_1016_j_jhazmat_2020_122121 crossref_primary_10_1007_s40843_023_2678_5 crossref_primary_10_1002_smll_202000924 crossref_primary_10_1016_j_apsusc_2020_145842 crossref_primary_10_1039_D1RA03424C crossref_primary_10_1016_j_enchem_2020_100043 crossref_primary_10_1039_C9QI01448A crossref_primary_10_1016_j_ijhydene_2024_12_387 crossref_primary_10_1016_j_ijhydene_2025_150710 crossref_primary_10_1016_j_jcis_2025_01_073 crossref_primary_10_1016_j_ijhydene_2025_151127 crossref_primary_10_3390_catal11060689 crossref_primary_10_1016_j_jelechem_2023_117489 crossref_primary_10_1016_j_nanoen_2024_109315 crossref_primary_10_1021_acs_energyfuels_4c06084 crossref_primary_10_1002_advs_202301045 crossref_primary_10_1007_s12598_023_02418_6 crossref_primary_10_1016_j_cej_2021_130946 crossref_primary_10_1016_j_cej_2024_153909 crossref_primary_10_1007_s10311_021_01269_w crossref_primary_10_1016_j_nxener_2023_100076 crossref_primary_10_1016_j_jcis_2020_12_098 crossref_primary_10_1007_s40820_020_00571_6 crossref_primary_10_1016_j_ijhydene_2021_04_008 crossref_primary_10_1016_j_ijhydene_2022_06_136 crossref_primary_10_1002_smll_202407120 crossref_primary_10_1016_j_microc_2025_115218 crossref_primary_10_3389_fchem_2020_575350 crossref_primary_10_1039_D4IM00106K crossref_primary_10_1016_j_carbon_2021_11_026 crossref_primary_10_1007_s12274_021_3545_2 crossref_primary_10_1002_smll_202300402 crossref_primary_10_1016_j_ijhydene_2020_04_293 crossref_primary_10_1016_j_carbon_2021_11_018 crossref_primary_10_1016_j_electacta_2022_139913 crossref_primary_10_3390_molecules30112401 crossref_primary_10_1016_j_seppur_2024_129535 crossref_primary_10_1016_j_jcis_2022_09_080 crossref_primary_10_1002_cnma_202400045 crossref_primary_10_1016_j_jece_2020_104413 crossref_primary_10_1016_j_jphotochemrev_2021_100404 crossref_primary_10_1016_j_apsusc_2021_149280 crossref_primary_10_1039_D5NJ02177D crossref_primary_10_1016_j_carbon_2024_119238 crossref_primary_10_1007_s11224_020_01702_w crossref_primary_10_1016_j_jechem_2020_06_069 crossref_primary_10_1007_s11581_021_04084_z crossref_primary_10_1016_j_fuel_2022_125234 crossref_primary_10_1039_D3QM01062G crossref_primary_10_1002_smll_202408569 crossref_primary_10_1039_D4TA09223F crossref_primary_10_1016_j_apsusc_2021_150033 crossref_primary_10_1016_j_microc_2023_108556 crossref_primary_10_1002_sstr_202300279 crossref_primary_10_1007_s11581_022_04800_3 crossref_primary_10_1016_j_seppur_2020_117771 crossref_primary_10_1016_j_jhazmat_2020_122157 crossref_primary_10_1016_j_jpcs_2025_113087 crossref_primary_10_3390_catal13020255 crossref_primary_10_3390_molecules29132973 crossref_primary_10_1016_j_ijhydene_2023_09_291 crossref_primary_10_1007_s12274_021_3755_7 crossref_primary_10_1002_adsu_202400224 crossref_primary_10_1016_j_electacta_2022_141069 crossref_primary_10_1002_anie_202000802 crossref_primary_10_1039_D2CY01234K crossref_primary_10_1002_anie_202002665 crossref_primary_10_1016_j_jcis_2021_04_124 crossref_primary_10_1016_j_jcis_2022_02_111 crossref_primary_10_12677_japc_2024_132013 crossref_primary_10_1016_j_cej_2021_131945 crossref_primary_10_1002_adma_202004654 crossref_primary_10_1002_aenm_202302436 crossref_primary_10_1016_j_ccr_2022_214440 crossref_primary_10_1016_j_cej_2020_127148 crossref_primary_10_1016_j_cej_2020_126977 crossref_primary_10_1007_s42247_025_01143_3 crossref_primary_10_1016_j_scib_2020_08_037 crossref_primary_10_1002_slct_202201171 crossref_primary_10_1016_j_apcata_2023_119359 crossref_primary_10_1039_D1NR05797A crossref_primary_10_1002_cssc_202000344 crossref_primary_10_3390_coatings12111726 crossref_primary_10_1016_j_surfin_2022_101907 crossref_primary_10_1039_D2SC04461G crossref_primary_10_1007_s40843_022_2207_x crossref_primary_10_1016_j_fuel_2020_118567 crossref_primary_10_1002_smll_202204557 crossref_primary_10_1002_elan_202200137 crossref_primary_10_1016_j_ccr_2024_216418 crossref_primary_10_1039_D3QM00905J crossref_primary_10_1016_j_apcatb_2023_123609 crossref_primary_10_1021_acs_energyfuels_5c02583 crossref_primary_10_1039_D0NR06857H crossref_primary_10_1038_s41598_020_78558_x crossref_primary_10_1016_j_cej_2021_128662 crossref_primary_10_1016_j_mtnano_2022_100202 crossref_primary_10_3762_bjnano_16_77 crossref_primary_10_1002_smll_202507086 crossref_primary_10_1016_j_apsusc_2021_150624 crossref_primary_10_1016_j_cej_2025_161570 crossref_primary_10_1063_1_5134530 crossref_primary_10_1016_j_cej_2020_128137 crossref_primary_10_1016_j_electacta_2025_147319 crossref_primary_10_1016_j_jelechem_2022_116705 crossref_primary_10_1002_admi_202000142 crossref_primary_10_1016_j_jece_2024_114483 crossref_primary_10_1016_j_rser_2023_113227 crossref_primary_10_1039_D0EE03635H crossref_primary_10_1039_D5NJ01735A crossref_primary_10_1016_j_electacta_2024_144425 crossref_primary_10_1002_adfm_202003198 crossref_primary_10_1016_j_jcis_2022_07_168 crossref_primary_10_1016_j_cej_2024_153665 crossref_primary_10_1016_j_jelechem_2024_118814 crossref_primary_10_1002_slct_202200654 crossref_primary_10_1016_j_jhazmat_2021_125591 crossref_primary_10_1016_j_jallcom_2020_158086 crossref_primary_10_1016_j_electacta_2025_145748 crossref_primary_10_1016_j_jallcom_2021_162349 crossref_primary_10_1002_smll_202402846 crossref_primary_10_3390_designs7010026 crossref_primary_10_1021_acsami_5c04070 crossref_primary_10_1016_j_jechem_2020_08_063 crossref_primary_10_1002_ange_202313695 crossref_primary_10_25159_3005_2602_16430 crossref_primary_10_1016_j_ijhydene_2022_10_026 crossref_primary_10_1016_j_jpowsour_2024_234219 crossref_primary_10_1016_j_ijhydene_2020_09_243 crossref_primary_10_1016_j_jcat_2024_115310 crossref_primary_10_1016_j_cej_2024_149261 crossref_primary_10_1016_j_jallcom_2023_170411 crossref_primary_10_1016_j_apsusc_2022_155655 crossref_primary_10_3390_catal12010043 crossref_primary_10_1016_j_desal_2021_115420 crossref_primary_10_1002_smll_202304863 crossref_primary_10_1016_j_carbon_2024_119171 crossref_primary_10_3762_bjnano_13_26 crossref_primary_10_1016_j_jelechem_2021_115555 crossref_primary_10_1016_j_nxsust_2025_100185 crossref_primary_10_1016_j_jtice_2022_104591 crossref_primary_10_1002_chem_202003613 crossref_primary_10_1039_D5EY00147A crossref_primary_10_1002_smll_202101163 crossref_primary_10_1039_D3SC03735E crossref_primary_10_1016_j_scib_2022_11_010 crossref_primary_10_1016_j_apsusc_2022_152934 crossref_primary_10_3389_fchem_2022_872117 crossref_primary_10_1016_j_ijhydene_2023_06_296 crossref_primary_10_1002_smtd_202200855 crossref_primary_10_1002_adfm_202308229 crossref_primary_10_3389_fenrg_2020_00060 crossref_primary_10_1016_j_matdes_2021_110171 crossref_primary_10_1016_j_seppur_2019_116124 crossref_primary_10_1002_ese3_833 crossref_primary_10_3762_bjnano_16_104 crossref_primary_10_1016_j_jallcom_2023_172286 crossref_primary_10_1002_adfm_202504272 crossref_primary_10_1016_j_ijhydene_2023_07_181 crossref_primary_10_1016_j_apsusc_2024_161529 crossref_primary_10_1063_5_0268691 crossref_primary_10_1002_adfm_202401472 crossref_primary_10_1002_smll_202503008 crossref_primary_10_1002_sstr_202000017 crossref_primary_10_1002_adma_202302007 crossref_primary_10_1007_s12274_022_4424_1 crossref_primary_10_1016_j_wri_2023_100230 crossref_primary_10_1016_j_jechem_2021_10_019 crossref_primary_10_1002_cssc_202301859 crossref_primary_10_1016_j_ijhydene_2023_07_066 crossref_primary_10_1002_adfm_202308345 crossref_primary_10_1007_s12274_024_6924_7 crossref_primary_10_1016_j_jece_2021_105182 crossref_primary_10_1111_jace_19517 crossref_primary_10_1016_j_jpowsour_2024_234438 crossref_primary_10_1002_adfm_202003261 crossref_primary_10_1002_sstr_202200235 crossref_primary_10_1016_j_ceramint_2022_02_066 crossref_primary_10_1016_j_matchemphys_2020_123167 crossref_primary_10_1002_adma_202106436 crossref_primary_10_1016_j_cej_2025_167074 crossref_primary_10_1039_D5DT01610J crossref_primary_10_1016_j_carbon_2023_118141 crossref_primary_10_1016_j_mtcomm_2024_109763 crossref_primary_10_1016_j_electacta_2021_139119 crossref_primary_10_1016_j_ijhydene_2024_03_138 crossref_primary_10_1016_j_nanoen_2024_109820 crossref_primary_10_3390_nano11123273 crossref_primary_10_1002_adma_202005922 crossref_primary_10_1016_j_est_2022_106105 crossref_primary_10_1016_j_ijhydene_2022_11_298 crossref_primary_10_1016_j_cej_2021_131526 crossref_primary_10_1186_s11671_021_03590_3 crossref_primary_10_3390_catal13050914 crossref_primary_10_1016_j_mtsust_2023_100434 crossref_primary_10_1007_s12598_021_01873_3 crossref_primary_10_1002_anie_202313695 crossref_primary_10_1002_smll_202312216 crossref_primary_10_3390_molecules26061621 crossref_primary_10_1016_j_ijhydene_2022_09_036 crossref_primary_10_1002_cnma_202300104 crossref_primary_10_1039_D0QM00946F crossref_primary_10_1246_bcsj_20210029 crossref_primary_10_1016_j_cej_2020_124493 crossref_primary_10_1016_j_jece_2021_105515 |
| Cites_doi | 10.1021/cs500070x 10.1002/anie.201504376 10.1002/aenm.201700193 10.1002/adfm.201600076 10.1002/adma.201401877 10.1016/j.electacta.2016.10.015 10.1039/C5EE03440J 10.1002/cphc.201500174 10.1039/C6TA10548C 10.1002/smll.201401598 10.1021/ef0500538 10.1002/anie.201410050 10.1038/nnano.2008.215 10.1016/j.nanoen.2018.05.033 10.1039/C4EE00370E 10.1021/acsami.7b13918 10.1002/anie.201506727 10.1021/acsami.6b03849 10.1021/nn501434a 10.1021/nn506701x 10.1002/adfm.201803291 10.1039/C5TA09322H 10.1002/adfm.201300844 10.1002/adma.201503342 10.1021/acs.nanolett.6b02203 10.1002/ange.201709901 10.1002/celc.201500239 10.1002/anie.201607405 10.1016/j.nanoen.2015.05.017 10.1021/cr300367d 10.1039/C4CC05285D 10.1016/j.electacta.2016.09.158 10.1021/acscatal.8b01164 10.1016/j.ijhydene.2017.11.048 10.1039/C6TA08363C 10.1039/C6TA01900E 10.1021/acs.nanolett.5b02205 10.1016/j.jpowsour.2018.08.027 10.1039/C6NR01867J 10.1039/c3nr04975b 10.1039/C6QM00269B 10.1021/jacs.5b07924 10.1021/acs.jpclett.5b00306 10.1002/adma.201505875 10.1039/C5TA06840A 10.1016/j.electacta.2017.09.177 10.1021/ja201269b 10.1002/aenm.201600423 10.1039/C4MH00040D 10.1021/acsami.8b07133 10.1039/B809990C 10.1002/adfm.201300510 10.1002/anie.201602627 10.1038/35104634 10.1002/smll.201801717 10.1021/acsami.8b08239 10.1039/C6TA08955K 10.1021/cm970412f 10.1038/nmat1752 10.1021/acs.chemmater.7b01897 10.1038/nmat1849 10.1016/j.mtphys.2018.11.007 10.1016/j.jcis.2017.11.026 10.1002/adma.201202920 10.1002/cssc.201402454 10.1016/j.nanoen.2015.07.008 10.1039/C5CP04238K 10.1021/acsami.5b00652 10.1038/nnano.2009.67 10.1039/C5EE03503A 10.1002/celc.201600325 10.1021/acsami.6b06031 10.1016/j.carbon.2016.01.019 10.1016/j.electacta.2015.09.147 10.1016/j.carbon.2018.07.006 10.1002/advs.201600208 10.1002/anie.201311111 10.1039/C3CS60468C 10.1038/s41570-016-0003 10.1002/cssc.201701880 10.1039/C4EE03240C 10.1016/j.ijhydene.2017.01.186 10.1039/C6TA05165K 10.1016/j.electacta.2017.08.151 10.1021/acsami.6b01903 10.1039/C5QI00216H 10.1016/j.electacta.2016.06.019 10.1039/C6TA05485D 10.1016/j.nanoen.2016.04.018 10.1002/adfm.201502217 10.1016/j.jpowsour.2015.07.077 10.1039/C6TA07009D 10.1002/anie.201501419 10.1021/cs5005294 10.1039/C5TA01805F 10.1039/C4CC08491H 10.1002/adma.201600484 10.1039/C5CC01240F 10.1039/C6TA07214C 10.1021/ja5127165 10.1039/C6TA04365H 10.1021/acsnano.5b00087 10.1088/1361-6528/aac9ae 10.1002/cphc.201600392 10.1021/acssuschemeng.8b01614 10.1002/anie.201809315 10.1002/anie.201505691 10.1016/j.carbon.2018.06.028 10.1016/j.jpowsour.2018.06.099 10.1038/ncomms14969 10.1021/acscatal.6b01951 10.1021/acs.jpcc.5b03870 10.1039/C6CC04220A 10.1039/C5TA00622H 10.1002/cssc.201600904 10.1021/acssuschemeng.7b00153 10.1021/acsenergylett.8b00110 10.1021/jacs.5b01330 10.1002/advs.201700603 10.1038/am.2016.44 10.1002/adma.201602912 10.1016/j.electacta.2018.06.168 10.1021/acsnano.5b02420 10.1002/adma.201700017 10.1038/nmat3001 10.1039/C6CC03876J 10.1021/acsenergylett.8b00522 10.1016/j.chempr.2017.12.005 10.1038/ncomms5695 10.1016/j.electacta.2016.02.081 10.1039/C4CS00448E 10.1039/C7TA07340B 10.1002/cctc.201500701 10.1021/acs.chemmater.5b04654 10.1002/anie.201404161 10.1016/j.nanoen.2015.10.014 10.1039/C5TA09507G 10.1016/j.jpowsour.2017.07.107 10.1021/cm500347r 10.1021/ja109793s 10.1016/j.apcatb.2016.02.003 10.1039/C5EE03801D 10.1021/acsenergylett.8b00739 10.1002/adfm.201300318 10.1021/jacs.6b08491 10.1002/smtd.201700353 10.1039/c2jm33727d 10.1002/admi.201600332 10.1002/admi.201601029 10.1002/adma.201501692 10.1016/j.electacta.2016.11.104 10.1016/j.electacta.2017.02.146 10.1039/C7EE03031B 10.1002/anie.201406468 10.1039/c0ee00683a 10.1039/C5TA02656C 10.1016/j.carbon.2018.06.008 10.1039/C4CY00075G 10.1126/science.1258307 10.1039/C5EE03316K 10.1039/C6NR05564H 10.1016/j.jpowsour.2017.02.017 10.1038/nnano.2007.451 10.1021/acsnano.7b02060 10.1016/j.ijhydene.2017.01.089 10.1002/anie.201409524 10.1039/C4TA06458E 10.1016/j.carbon.2016.12.004 10.1039/C5SC04425A 10.1016/j.nanoen.2018.02.023 10.1002/anie.201507381 10.1021/jp990957s 10.1021/ja3030565 10.1021/acssuschemeng.8b00425 10.1002/asia.201701616 10.1021/acsami.5b08620 10.1039/C5NR01896J 10.1038/s41467-018-04746-z 10.1126/science.1246501 10.1039/C7CS00904F 10.1039/C5NR03704B 10.1021/acscatal.7b04091 10.1016/j.nanoen.2016.09.040 10.1021/acscatal.6b02479 10.1002/adfm.201600636 10.1021/acsnano.6b04725 10.1021/acssuschemeng.5b00700 10.1002/adma.201200498 10.1021/am506545g 10.1021/la501052m 10.1002/aenm.201600116 10.1039/C8NR01090K 10.1016/j.ijhydene.2007.05.027 10.1002/adma.201802011 10.1038/ncomms4783 10.1021/ja4081056 10.1021/acsami.7b09108 10.1039/C6TA05196K 10.1002/cssc.201501599 10.1039/C4CS00141A 10.1002/adfm.201801332 10.1002/anie.201200699 10.1039/C7TA07672J 10.1038/s41467-019-09596-x 10.1021/acssuschemeng.6b00859 10.1039/C6QI00101G 10.1038/ncomms9668 10.1021/acsenergylett.6b00247 10.1039/C4CC02364A 10.1038/nchem.1634 10.1002/adma.201104502 10.1016/j.electacta.2018.07.046 10.1039/C5CC05644F 10.1002/advs.201500120 10.1021/acscatal.7b02079 10.1002/anie.201307475 10.1021/acsenergylett.7b00349 10.1016/j.pmatsci.2018.03.007 10.1016/j.mattod.2017.03.019 10.1002/chem.201703493 10.1039/C5TA02792F 10.1016/j.nanoen.2015.01.027 10.1016/j.cej.2017.01.032 10.1039/C3TA13584E 10.1002/chem.201504875 10.1039/C5TA05372B 10.1039/C8CC09368G 10.1021/jacs.5b01072 10.1002/adfm.201500194 10.1016/j.electacta.2018.01.203 10.1016/j.mtchem.2016.10.003 10.1039/C4CC05698A 10.1016/j.jcis.2017.03.087 10.1039/C5TA03905C 10.1002/anie.201510495 10.1039/C6SC03356C 10.1002/ange.201408876 10.1021/acsami.8b09941 10.1002/celc.201701210 10.1016/j.jcis.2016.10.038 10.1039/C5TA02974K 10.1038/srep17542 10.1021/ja511572q 10.1002/adma.201401427 10.1039/C4TA03962A 10.1038/s41929-018-0195-1 10.1038/ncomms8992 10.1039/C8TA02835D 10.1039/C6CC06180J 10.1002/advs.201500286 10.1002/advs.201600380 10.1039/C5CS00434A 10.1039/c2cc33397j 10.1016/j.electacta.2016.10.055 10.1039/C4TA06071G 10.1039/C5TA01103E 10.1002/chem.201602616 10.1021/acs.nanolett.5b04331 10.1039/c2ee22238h 10.1039/C6TA05086G 10.1039/C6TA01601D 10.1002/smll.201603013 10.1038/s41467-018-03896-4 10.1016/j.electacta.2015.05.017 10.1038/srep31202 10.1039/c3cc44076a 10.1002/anie.201409080 10.1002/anie.201208086 10.1039/C6TA02876D 10.1016/j.catcom.2016.07.010 10.1002/aenm.201801193 10.1002/adma.201505597 10.1002/adfm.201401814 10.1039/C8TA05124K 10.1016/j.carbon.2017.05.092 10.1002/chem.201501964 10.1002/adma.201605957 10.1002/adma.201803621 10.1002/celc.201600001 10.1021/acs.chemmater.7b00114 10.1016/j.nanoen.2014.09.022 10.1002/chem.201501120 10.1002/adfm.201401328 10.1002/advs.201700733 10.1021/ja403440e 10.1016/j.ijhydene.2017.06.083 10.1039/C4NR04866K 10.1002/celc.201700479 10.1039/C5TA02077H 10.1021/acsami.6b13578 10.1016/j.energy.2014.07.062 10.1016/j.rser.2012.01.029 10.1021/acs.chemmater.6b01980 10.1021/acs.chemmater.5b03997 10.1021/acsami.6b01580 10.1021/acs.chemmater.5b00331 10.1002/adma.201803762 10.1002/adma.201702211 10.1038/ncomms6714 10.1016/j.colsurfa.2016.09.011 10.1039/C6TA09052D 10.1039/C4TA02254H 10.1021/acsami.7b06727 10.1002/adma.201704156 10.1016/j.electacta.2018.07.105 10.1021/cs200652y 10.1039/C7TA08621K 10.1038/nenergy.2016.130 10.1126/science.1171245 10.1039/C5TA10428A 10.1016/j.carbon.2016.06.080 10.1039/C5EE02460A 10.1016/j.pmatsci.2018.01.003 10.1038/ncomms11204 10.1016/j.carbon.2016.06.074 10.1016/j.electacta.2018.07.193 10.1016/j.jpowsour.2012.01.023 10.1002/adma.201502696 10.1038/nature11475 10.1016/j.jpowsour.2015.11.013 10.1002/adfm.201601420 10.1016/j.nanoen.2016.08.027 10.1021/acsami.7b12038 10.1021/ja408329q 10.1016/j.jpowsour.2015.03.131 10.1039/C5TA05589J 10.1016/j.jpowsour.2015.05.080 |
| ContentType | Journal Article |
| Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.201903415 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 31496036 10_1002_adma_201903415 ADMA201903415 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: Australian Research Council funderid: FT150100479 – fundername: Jiangsu Planned Projects for Postdoctoral Research Funds funderid: 1601026A – fundername: Fundamental Research Funds for the Central Universities funderid: 2019B16214 – fundername: China Postdoctoral Science Foundation funderid: 2015M580387; 2016T90414 – fundername: Australian National Fabrication Facility – fundername: National Natural Science Foundation of China funderid: 51802077 – fundername: China Postdoctoral Science Foundation grantid: 2015M580387 – fundername: Jiangsu Planned Projects for Postdoctoral Research Funds grantid: 1601026A – fundername: Fundamental Research Funds for the Central Universities grantid: 2019B16214 – fundername: China Postdoctoral Science Foundation grantid: 2016T90414 – fundername: Australian Research Council grantid: FT150100479 – fundername: National Natural Science Foundation of China grantid: 51802077 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYOK ABTAH NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c4765-ee62c0e3f2f05bf8bad530683dc8fa665e217e36aa34c5d28380f7ec8bd776203 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 380 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000485505900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Sun Nov 09 09:27:38 EST 2025 Sun Nov 30 03:50:21 EST 2025 Thu Apr 03 07:09:12 EDT 2025 Sat Nov 29 07:23:17 EST 2025 Tue Nov 18 22:20:40 EST 2025 Wed Jan 22 16:40:06 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 48 |
| Keywords | electrocatalysts hybrid structures nanoparticles graphene hydrogen evolution reaction |
| Language | English |
| License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4765-ee62c0e3f2f05bf8bad530683dc8fa665e217e36aa34c5d28380f7ec8bd776203 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-7854-927X |
| PMID | 31496036 |
| PQID | 2317574598 |
| PQPubID | 2045203 |
| PageCount | 34 |
| ParticipantIDs | proquest_miscellaneous_2287533234 proquest_journals_2317574598 pubmed_primary_31496036 crossref_primary_10_1002_adma_201903415 crossref_citationtrail_10_1002_adma_201903415 wiley_primary_10_1002_adma_201903415_ADMA201903415 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-01 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2016 2015; 55 27 2015 2017; 18 5 2012 2016; 24 6 2015 2015; 3 15 2016 2018; 1 1 2014; 26 2016 2018; 4 10 2014 2014 2015 2014; 53 53 137 7 2012; 488 2017 2016; 29 4 2014 2015 2015; 7 137 3 2014 2015; 5 15 2015 2016; 6 6 2018; 6 2018; 8 2018; 3 2016 2017 2015 2018 2014; 188 347 17 43 30 2013 2017 2018; 23 42 283 2018; 5 2018; 4 2015; 137 2015 2016 2015 2017 2016 2016; 27 28 11 2 28 26 2013; 52 2016 2016; 16 8 2013 2018; 113 96 2015 2018 2016; 8 2 9 2007 2018; 32 8 2019 2015; 10 3 2018; 30 2006 2016 2015 2016; 5 28 3 28 1998; 10 2016 2014; 28 4 2014; 126 2001; 414 2016; 45 2018; 28 2015; 51 2016 2016 2016 2018 2015; 211 4 304 5 2 2015; 54 2016; 10 2016 2015 2016; 3 51 193 1999; 103 2017; 251 2009 2017; 4 13 2016 2016; 3 1–2 2011; 133 2016; 4 2016 2017; 4 1 2016; 6 2016; 7 2005; 19 2016; 1 2016; 3 2016; 219 2013 2014; 5 345 2016 2016 2017 2017 2015 2016 2016 2016 2018; 30 4 363 5 7 22 28 8 6 2014 2016 2012 2014; 8 4 51 26 2018 2015; 3 9 2016; 28 2018; 10 2015 2018; 8 130 2015 2018; 347 94 2016; 26 2016; 8 2016; 9 2018; 14 2014 2016 2014 2018 2016 2018; 2 52 50 283 17 11 2016 2017; 22 20 2014 2016 2014 2015 2015; 2 4 6 182 5 2017; 7 2017; 8 2016 2016 2014; 9 9 6 2013; 25 2017; 4 2012 2013; 51 135 2017 2017; 29 5 2019; 55 2019 2018; 31 9 2018; 400 2011; 10 2017 2017; 4 114 2012 2014; 2 43 2014 2015 2016 2017; 24 54 4 42 2018 2014 2014; 47 26 24 2017; 9 2017 2012; 1 16 2014 2015 2018; 43 44 7 2015; 171 2011 2014; 133 1 2014; 5 2014; 4 2018; 139 2018; 138 2015; 297 2016 2017 2018 2014; 6 4 29 5 2015 2012; 6 48 2014; 50 2017; 487 2012 2012; 134 24 2009; 324 2014 2018 2018 2015 2016 2017; 74 284 43 16 219 499 2014; 53 2013 2018 2018 2017 2015 2017 2018 2015 2015; 23 3 283 315 3 5 13 9 9 2015; 2 2015; 12 2018 2017; 11 5 2015; 16 2017 2016 2016 2016; 5 4 4 8 2015; 3 2012 2011; 5 4 2017 2015; 121 3 2015; 11 2016; 52 2015 2017 2017 2015; 6 8 7 137 2015 2018; 7 265 2008 2018 2012 2012; 3 6 204 22 2017 2018 2017 2017 2016 2018 2015; 29 10 232 9 100 6 285 2015; 7 2013 2016; 49 3 2016; 55 2007 2008; 6 3 2013 2016; 135 16 2015; 25 2015; 27 2018 2017 2016 2016 2017 2017; 47 255 4 4 5 29 2015 2016; 3 4 2016 2016 2016 2015 2015 2014 2014 2016 2015 2016 2015 2015; 8 107 222 3 7 6 2 22 119 8 51 293 2017; 11 2016 2016; 219 107 2016 2015 2015; 52 3 7 2015; 21 2016 2018 2017 2017 2019; 4 397 29 9 31 2016 2017 2018 2016 2018 2016 2017; 29 9 513 85 24 509 9 2013 2016 2018; 135 28 9 2016; 138 2018; 50 2009; 2 2018; 57 e_1_2_7_3_2 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_19_4 e_1_2_7_104_2 e_1_2_7_19_3 e_1_2_7_19_2 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_83_2 e_1_2_7_11_4 e_1_2_7_11_3 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_68_3 e_1_2_7_68_2 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_68_4 e_1_2_7_165_3 e_1_2_7_165_2 e_1_2_7_165_4 e_1_2_7_116_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_23_2 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_79_2 e_1_2_7_56_1 e_1_2_7_79_3 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_79_4 e_1_2_7_79_5 e_1_2_7_139_1 e_1_2_7_105_4 e_1_2_7_105_5 e_1_2_7_4_1 e_1_2_7_105_2 e_1_2_7_105_3 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_82_2 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_12_3 e_1_2_7_12_2 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_67_2 e_1_2_7_67_1 e_1_2_7_143_1 e_1_2_7_29_1 e_1_2_7_143_2 e_1_2_7_29_2 e_1_2_7_166_1 e_1_2_7_105_8 e_1_2_7_105_9 e_1_2_7_105_6 e_1_2_7_105_7 e_1_2_7_117_2 e_1_2_7_117_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_2 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_78_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_170_1 e_1_2_7_43_2 e_1_2_7_89_1 e_1_2_7_89_2 e_1_2_7_28_1 e_1_2_7_28_2 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_144_2 e_1_2_7_118_2 e_1_2_7_118_1 e_1_2_7_92_4 e_1_2_7_92_3 e_1_2_7_92_2 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_25_2 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_92_7 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_92_6 e_1_2_7_31_3 e_1_2_7_54_1 e_1_2_7_92_5 e_1_2_7_54_3 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_156_2 e_1_2_7_2_2 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_122_1 e_1_2_7_14_3 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_160_2 e_1_2_7_160_1 e_1_2_7_88_2 e_1_2_7_160_4 e_1_2_7_160_3 e_1_2_7_27_1 e_1_2_7_160_6 e_1_2_7_160_5 e_1_2_7_145_1 e_1_2_7_145_2 e_1_2_7_145_3 e_1_2_7_168_1 e_1_2_7_145_4 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_91_5 e_1_2_7_111_2 e_1_2_7_91_4 e_1_2_7_111_1 e_1_2_7_91_3 e_1_2_7_91_2 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_30_2 e_1_2_7_53_2 e_1_2_7_91_6 e_1_2_7_38_1 e_1_2_7_134_1 e_1_2_7_157_1 e_1_2_7_108_1 e_1_2_7_100_3 e_1_2_7_7_1 e_1_2_7_123_2 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_100_2 e_1_2_7_15_2 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_161_1 e_1_2_7_26_1 e_1_2_7_26_2 e_1_2_7_49_1 e_1_2_7_49_2 e_1_2_7_49_3 e_1_2_7_49_4 e_1_2_7_49_5 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_49_6 e_1_2_7_49_7 e_1_2_7_49_8 e_1_2_7_49_9 e_1_2_7_90_2 e_1_2_7_90_1 e_1_2_7_112_2 e_1_2_7_90_6 e_1_2_7_112_1 e_1_2_7_90_5 e_1_2_7_90_4 e_1_2_7_90_3 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_75_1 e_1_2_7_90_7 e_1_2_7_150_1 e_1_2_7_37_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_109_1 e_1_2_7_8_2 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_2 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_86_2 e_1_2_7_63_1 e_1_2_7_86_1 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_147_1 e_1_2_7_136_8 e_1_2_7_136_9 e_1_2_7_113_2 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_74_3 e_1_2_7_51_2 e_1_2_7_74_4 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_4 e_1_2_7_74_2 e_1_2_7_20_3 e_1_2_7_20_2 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_74_5 e_1_2_7_151_1 e_1_2_7_136_1 e_1_2_7_136_2 e_1_2_7_159_2 e_1_2_7_136_3 e_1_2_7_159_1 e_1_2_7_136_4 e_1_2_7_136_5 e_1_2_7_159_3 e_1_2_7_136_6 e_1_2_7_136_7 e_1_2_7_49_11 e_1_2_7_5_1 e_1_2_7_49_10 e_1_2_7_49_12 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_2 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_85_3 e_1_2_7_85_4 e_1_2_7_85_1 e_1_2_7_85_2 e_1_2_7_47_1 e_1_2_7_85_5 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_148_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_96_4 e_1_2_7_96_3 e_1_2_7_73_2 e_1_2_7_96_2 e_1_2_7_96_1 e_1_2_7_21_2 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_35_2 e_1_2_7_96_6 e_1_2_7_35_3 e_1_2_7_58_1 e_1_2_7_96_5 e_1_2_7_152_1 e_1_2_7_152_2 e_1_2_7_152_3 e_1_2_7_152_4 e_1_2_7_137_1 e_1_2_7_137_2 e_1_2_7_137_3 e_1_2_7_137_4 e_1_2_7_6_1 e_1_2_7_103_2 e_1_2_7_103_3 e_1_2_7_126_1 e_1_2_7_18_3 e_1_2_7_103_1 e_1_2_7_18_2 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_84_2 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_164_1 e_1_2_7_149_1 e_1_2_7_115_2 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_72_2 e_1_2_7_72_5 e_1_2_7_72_6 e_1_2_7_72_3 e_1_2_7_22_2 e_1_2_7_72_4 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_57_3 e_1_2_7_57_2 e_1_2_7_130_1 e_1_2_7_57_5 e_1_2_7_153_1 e_1_2_7_57_4 e_1_2_7_153_2 e_1_2_7_138_1 |
| References_xml | – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 22 20 start-page: 3588 425 year: 2016 2017 publication-title: Chem. ‐ Eur. J. Mater. Today – volume: 55 start-page: 1635 year: 2019 publication-title: Chem. Commun. – volume: 488 start-page: 294 year: 2012 publication-title: Nature – volume: 5 345 start-page: 362 1593 year: 2013 2014 publication-title: Nat. Chem. Science – volume: 103 start-page: 6484 year: 1999 publication-title: J. Phys. Chem. B – volume: 43 44 7 start-page: 6555 5148 121 year: 2014 2015 2018 publication-title: Chem. Soc. Rev. Chem. Soc. Rev. Mater. Today Phys. – volume: 26 start-page: 4397 year: 2016 publication-title: Adv. Funct. Mater. – volume: 14 year: 2018 publication-title: Small – volume: 297 start-page: 45 year: 2015 publication-title: J. Power Sources – volume: 51 year: 2015 publication-title: Chem. Commun. – volume: 47 26 24 start-page: 2165 5160 125 year: 2018 2014 2014 publication-title: Chem. Soc. Rev. Adv. Mater. Adv. Funct. Mater. – volume: 133 start-page: 2816 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 8 year: 2016 publication-title: NPG Asia Mater. – volume: 28 4 start-page: 6197 1693 year: 2016 2014 publication-title: Adv. Mater. ACS Catal. – volume: 3 1–2 start-page: 969 32 year: 2016 2016 publication-title: Inorg. Chem. Front. Mater. Today Chem. – volume: 8 start-page: 3579 year: 2018 publication-title: ACS Catal. – volume: 6 3 start-page: 183 101 year: 2007 2008 publication-title: Nat. Mater. Nat. Nanotechnol. – volume: 219 107 start-page: 781 739 year: 2016 2016 publication-title: Electrochim. Acta Carbon – volume: 10 3 start-page: 1657 year: 2019 2015 publication-title: Nat. Commun. J. Mater. Chem. A – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 54 start-page: 2100 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 138 start-page: 169 year: 2018 publication-title: Carbon – volume: 7 137 3 start-page: 2414 2688 year: 2014 2015 2015 publication-title: ChemSusChem J. Am. Chem. Soc. J. Mater. Chem. A – volume: 49 3 start-page: 8896 year: 2013 2016 publication-title: Chem. Commun. Adv. Sci. – volume: 29 10 232 9 100 6 285 start-page: 5782 254 8065 236 393 year: 2017 2018 2017 2017 2016 2018 2015 publication-title: Chem. Mater. ACS Appl. Mater. Interfaces Electrochim. Acta ACS Appl. Mater. Interfaces Carbon ACS Sustainable Chem. Eng. J. Power Sources – volume: 251 start-page: 660 year: 2017 publication-title: Electrochim. Acta – volume: 32 8 start-page: 3797 year: 2007 2018 publication-title: Int. J. Hydrogen Energy Adv. Energy Mater. – volume: 2 4 6 182 5 start-page: 652 year: 2014 2016 2014 2015 2015 publication-title: J. Mater. Chem. A J. Mater. Chem. A ACS Appl. Mater. Interfaces Electrochim. Acta Sci. Rep. – volume: 21 year: 2015 publication-title: Chem. ‐ Eur. J. – volume: 9 start-page: 3049 year: 2016 publication-title: ChemSusChem – volume: 400 start-page: 232 year: 2018 publication-title: J. Power Sources – volume: 11 start-page: 11 year: 2015 publication-title: Nano Energy – volume: 55 start-page: 2230 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 135 28 9 start-page: 9267 2951 2551 year: 2013 2016 2018 publication-title: J. Am. Chem. Soc. Adv. Mater. Nat. Commun. – volume: 6 4 29 5 start-page: 7071 2643 3783 year: 2016 2017 2018 2014 publication-title: ACS Catal. ChemElectroChem Nanotechnology Nat. Commun. – volume: 25 start-page: 1814 year: 2015 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 719 year: 2016 publication-title: ChemElectroChem – volume: 51 135 start-page: 6131 year: 2012 2013 publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. – volume: 6 6 start-page: 951 8069 year: 2015 2016 publication-title: J. Phys. Chem. Lett. ACS Catal. – volume: 4 start-page: 285 year: 2018 publication-title: Chem – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 2 52 50 283 17 11 start-page: 7359 1146 2890 130 year: 2014 2016 2014 2018 2016 2018 publication-title: J. Mater. Chem. A Chem. Commun. Chem. Commun. Electrochim. Acta ChemPhysChem ChemSusChem – volume: 8 107 222 3 7 6 2 22 119 8 51 293 start-page: 711 1293 3140 5624 360 5969 1893 178 year: 2016 2016 2016 2015 2015 2014 2014 2016 2015 2016 2015 2015 publication-title: ACS Appl. Mater. Interfaces Carbon Electrochim. Acta ACS Sustainable Chem. Eng. Nanoscale Nanoscale J. Mater. Chem. A Chem. ‐ Eur. J. J. Phys. Chem. C ACS Appl. Mater. Interfaces Chem. Commun. J. Power Sources – volume: 7 265 start-page: 8083 497 year: 2015 2018 publication-title: ACS Appl. Mater. Interfaces Electrochim. Acta – volume: 1 1 start-page: 589 985 year: 2016 2018 publication-title: ACS Energy Lett. Nat. Catal. – volume: 324 start-page: 1312 year: 2009 publication-title: Science – volume: 45 start-page: 1529 year: 2016 publication-title: Chem. Soc. Rev. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 219 start-page: 604 year: 2016 publication-title: Electrochim. Acta – volume: 171 start-page: 72 year: 2015 publication-title: Electrochim. Acta – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 8 year: 2016 publication-title: Nanoscale – volume: 4 start-page: 2023 year: 2014 publication-title: Catal. Sci. Technol. – volume: 19 start-page: 2098 year: 2005 publication-title: Energy Fuels – volume: 25 start-page: 5799 year: 2015 publication-title: Adv. Funct. Mater. – volume: 50 year: 2014 publication-title: Chem. Commun. – volume: 11 5 start-page: 772 4560 year: 2018 2017 publication-title: Energy Environ. Sci. J. Mater. Chem. A – volume: 3 start-page: 1345 year: 2018 publication-title: ACS Energy Lett. – volume: 18 5 start-page: 196 year: 2015 2017 publication-title: Nano Energy J. Mater. Chem. A – volume: 54 start-page: 6325 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 113 96 start-page: 5782 51 year: 2013 2018 publication-title: Chem. Rev. Prog. Mater. Sci. – volume: 7 start-page: 6394 year: 2017 publication-title: ACS Catal. – volume: 4 10 start-page: 6313 year: 2016 2018 publication-title: ACS Sustainable Chem. Eng. ACS Appl. Mater. Interfaces – volume: 5 4 start-page: 8848 1113 year: 2012 2011 publication-title: Energy Environ. Sci. Energy Environ. Sci. – volume: 3 9 start-page: 1539 7407 year: 2018 2015 publication-title: ACS Energy Lett. ACS Nano – volume: 8 130 start-page: 862 198 year: 2015 2018 publication-title: Energy Environ. Sci. Angew. Chem. – volume: 52 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 27 28 11 2 28 26 start-page: 7086 8256 414 1355 549 3621 year: 2015 2016 2015 2017 2016 2016 publication-title: Adv. Mater. Adv. Mater. Small ACS Energy Lett. Chem. Mater. Adv. Funct. Mater. – volume: 3 6 204 22 start-page: 563 46 year: 2008 2018 2012 2012 publication-title: Nat. Nanotechnol. J. Mater. Chem. A J. Power Sources J. Mater. Chem. – volume: 74 284 43 16 219 499 start-page: 871 534 1424 1898 321 128 year: 2014 2018 2018 2015 2016 2017 publication-title: Energy Electrochim. Acta Int. J. Hydrogen Energy ChemPhysChem Electrochim. Acta J. Colloid Interface Sci. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 9 9 6 start-page: 1468 472 year: 2016 2016 2014 publication-title: Energy Environ. Sci. ChemSusChem Nanoscale – volume: 53 53 137 7 start-page: 4372 6710 1587 1919 year: 2014 2014 2015 2014 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. J. Am. Chem. Soc. Energy Environ. Sci. – volume: 26 start-page: 6785 year: 2016 publication-title: Adv. Funct. Mater. – volume: 23 42 283 start-page: 5363 6665 1359 year: 2013 2017 2018 publication-title: Adv. Funct. Mater. Int. J. Hydrogen Energy Electrochim. Acta – volume: 29 9 513 85 24 509 9 start-page: 46 455 26 556 140 year: 2016 2017 2018 2016 2018 2016 2017 publication-title: Nano Energy ACS Appl. Mater. Interfaces J. Colloid Interface Sci. Catal. Commun. Chem. ‐ Eur. J. Colloids Surf. A ACS Appl. Mater. Interfaces – volume: 24 6 start-page: 5045 year: 2012 2016 publication-title: Adv. Mater. Adv. Energy Mater. – volume: 137 start-page: 5480 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 2693 year: 2015 publication-title: Adv. Funct. Mater. – volume: 6 8 7 137 start-page: 7992 968 6983 year: 2015 2017 2017 2015 publication-title: Nat. Commun. Chem. Sci. Adv. Energy Mater. J. Am. Chem. Soc. – volume: 188 347 17 43 30 start-page: 217 220 3369 6990 year: 2016 2017 2015 2018 2014 publication-title: Appl. Catal., B J. Power Sources Phys. Chem. Chem. Phys. Int. J. Hydrogen Energy Langmuir – volume: 23 3 283 315 3 5 13 9 9 start-page: 5326 997 357 355 679 4698 931 year: 2013 2018 2018 2017 2015 2017 2018 2015 2015 publication-title: Adv. Funct. Mater. ACS Energy Lett. Electrochim. Acta Chem. Eng. J. J. Mater. Chem. A J. Mater. Chem. A Chem. ‐ Asian J. ACS Nano ACS Nano – volume: 10 start-page: 8851 year: 2016 publication-title: ACS Nano – volume: 29 4 start-page: 3092 3865 year: 2017 2016 publication-title: Chem. Mater. J. Mater. Chem. A – volume: 27 start-page: 2026 year: 2015 publication-title: Chem. Mater. – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 12 start-page: 666 year: 2015 publication-title: Nano Energy – volume: 1 16 start-page: 0003 2154 year: 2017 2012 publication-title: Nat. Rev. Chem. Renewable Sustainable Energy Rev. – volume: 30 4 363 5 7 22 28 8 6 start-page: 93 260 1014 3873 1737 6644 year: 2016 2016 2017 2017 2015 2016 2016 2016 2018 publication-title: Nano Energy J. Mater. Chem. A J. Power Sources J. Mater. Chem. A ChemCatChem Chem. ‐ Eur. J. Chem. Mater. ACS Appl. Mater. Interfaces ACS Sustainable Chem. Eng. – volume: 133 1 start-page: 7296 379 year: 2011 2014 publication-title: J. Am. Chem. Soc. Mater. Horiz. – volume: 16 8 start-page: 4691 year: 2016 2016 publication-title: Nano Lett. ACS Appl. Mater. Interfaces – volume: 126 year: 2014 publication-title: Angew. Chem. – volume: 135 16 start-page: 1097 year: 2013 2016 publication-title: J. Am. Chem. Soc. Nano Lett. – volume: 134 24 start-page: 9082 5493 year: 2012 2012 publication-title: J. Am. Chem. Soc. Adv. Mater. – volume: 8 2 9 start-page: 3563 123 year: 2015 2018 2016 publication-title: Energy Environ. Sci. Small Methods Energy Environ. Sci. – volume: 487 start-page: 330 year: 2017 publication-title: J. Colloid Interface Sci. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 3 start-page: 1941 year: 2015 publication-title: J. Mater. Chem. A – volume: 5 start-page: 5714 year: 2014 publication-title: Nat. Commun. – volume: 28 start-page: 9532 year: 2016 publication-title: Adv. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 3 51 193 start-page: 2110 8323 268 year: 2016 2015 2016 publication-title: ChemElectroChem Chem. Commun. Electrochim. Acta – volume: 5 15 start-page: 4695 6015 year: 2014 2015 publication-title: Nat. Commun. Nano Lett. – volume: 50 start-page: 212 year: 2018 publication-title: Nano Energy – volume: 52 3 7 start-page: 9530 9587 year: 2016 2015 2015 publication-title: Chem. Commun. J. Mater. Chem. A ACS Appl. Mater. Interfaces – volume: 4 397 29 9 31 start-page: 6824 37 year: 2016 2018 2017 2017 2019 publication-title: J. Mater. Chem. A J. Power Sources Adv. Mater. ACS Appl. Mater. Interfaces Adv. Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 54 start-page: 2131 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 2 year: 2015 publication-title: Adv. Sci. – volume: 10 start-page: 260 year: 1998 publication-title: Chem. Mater. – volume: 47 255 4 4 5 29 start-page: 66 248 4771 year: 2018 2017 2016 2016 2017 2017 publication-title: Nano Energy Electrochim. Acta J. Mater. Chem. A J. Mater. Chem. A ACS Sustainable Chem. Eng. Adv. Mater. – volume: 6 48 start-page: 8668 7687 year: 2015 2012 publication-title: Nat. Commun. Chem. Commun. – volume: 347 94 start-page: 306 year: 2015 2018 publication-title: Science Prog. Mater. Sci. – volume: 5 4 4 8 start-page: 765 3947 6006 year: 2017 2016 2016 2016 publication-title: J. Mater. Chem. A J. Mater. Chem. A J. Mater. Chem. A Nanoscale – volume: 10 start-page: 424 year: 2011 publication-title: Nat. Mater. – volume: 52 start-page: 8810 year: 2016 publication-title: Chem. Commun. – volume: 55 27 start-page: 4234 year: 2016 2015 publication-title: Angew. Chem., Int. Ed. Adv. Mater. – volume: 414 start-page: 353 year: 2001 publication-title: Nature – volume: 24 54 4 42 start-page: 6123 9472 7811 year: 2014 2015 2016 2017 publication-title: Adv. Funct. Mater. Angew. Chem., Int. Ed. J. Mater. Chem. A Int. J. Hydrogen Energy – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 7 start-page: 1690 year: 2016 publication-title: Chem. Sci. – volume: 8 start-page: 8107 year: 2018 publication-title: ACS Catal. – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 29 5 year: 2017 2017 publication-title: Adv. Mater. J. Mater. Chem. A – volume: 16 start-page: 357 year: 2015 publication-title: Nano Energy – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 478 year: 2016 publication-title: Energy Environ. Sci. – volume: 9 start-page: 1012 year: 2016 publication-title: Energy Environ. Sci. – volume: 10 year: 2018 publication-title: Nanoscale – volume: 4 start-page: 2658 year: 2014 publication-title: ACS Catal. – volume: 211 4 304 5 2 start-page: 322 146 273 1665 year: 2016 2016 2016 2018 2015 publication-title: Electrochim. Acta J. Mater. Chem. A J. Power Sources ChemElectroChem ChemElectroChem – volume: 4 13 start-page: 212 year: 2009 2017 publication-title: Nat. Nanotechnol. Small – volume: 139 start-page: 35 year: 2018 publication-title: Carbon – volume: 3 4 start-page: 8055 year: 2015 2016 publication-title: J. Mater. Chem. A J. Mater. Chem. A – volume: 4 1 start-page: 8204 973 year: 2016 2017 publication-title: J. Mater. Chem. A Mater. Chem. Front. – volume: 11 start-page: 5103 year: 2017 publication-title: ACS Nano – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 31 9 start-page: 1460 year: 2019 2018 publication-title: Adv. Mater. Nat. Commun. – volume: 3 start-page: 5337 year: 2015 publication-title: J. Mater. Chem. A – volume: 3 15 start-page: 567 year: 2015 2015 publication-title: J. Mater. Chem. A Nano Energy – volume: 28 start-page: 5733 year: 2016 publication-title: Chem. Mater. – volume: 26 start-page: 2344 year: 2014 publication-title: Chem. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 121 3 start-page: 163 year: 2017 2015 publication-title: Carbon J. Mater. Chem. A – volume: 3 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 55 start-page: 8416 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 8 4 51 26 start-page: 5290 6186 year: 2014 2016 2012 2014 publication-title: ACS Nano J. Mater. Chem. A Angew. Chem., Int. Ed. Adv. Mater. – volume: 25 start-page: 756 year: 2013 publication-title: Adv. Mater. – volume: 3 start-page: 313 year: 2016 publication-title: Inorg. Chem. Front. – volume: 2 43 start-page: 781 7067 year: 2012 2014 publication-title: ACS Catal. Chem. Soc. Rev. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 2 start-page: 148 year: 2009 publication-title: Energy Environ. Sci. – volume: 7 year: 2015 publication-title: Nanoscale – volume: 139 start-page: 369 year: 2018 publication-title: Carbon – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 5 28 3 28 start-page: 909 29 215 year: 2006 2016 2015 2016 publication-title: Nat. Mater. Nano Energy J. Mater. Chem. A Adv. Mater. – volume: 4 114 start-page: 740 year: 2017 2017 publication-title: Adv. Mater. Interfaces Carbon – ident: e_1_2_7_28_2 doi: 10.1021/cs500070x – ident: e_1_2_7_46_1 doi: 10.1002/anie.201504376 – ident: e_1_2_7_19_3 doi: 10.1002/aenm.201700193 – ident: e_1_2_7_72_6 doi: 10.1002/adfm.201600076 – ident: e_1_2_7_103_2 doi: 10.1002/adma.201401877 – ident: e_1_2_7_148_1 doi: 10.1016/j.electacta.2016.10.015 – ident: e_1_2_7_81_1 doi: 10.1039/C5EE03440J – ident: e_1_2_7_91_4 doi: 10.1002/cphc.201500174 – ident: e_1_2_7_104_2 doi: 10.1039/C6TA10548C – ident: e_1_2_7_72_3 doi: 10.1002/smll.201401598 – ident: e_1_2_7_7_1 doi: 10.1021/ef0500538 – ident: e_1_2_7_139_1 doi: 10.1002/anie.201410050 – ident: e_1_2_7_145_1 doi: 10.1038/nnano.2008.215 – ident: e_1_2_7_167_1 doi: 10.1016/j.nanoen.2018.05.033 – ident: e_1_2_7_20_4 doi: 10.1039/C4EE00370E – ident: e_1_2_7_154_1 doi: 10.1021/acsami.7b13918 – ident: e_1_2_7_168_1 doi: 10.1002/anie.201506727 – ident: e_1_2_7_49_1 doi: 10.1021/acsami.6b03849 – ident: e_1_2_7_137_1 doi: 10.1021/nn501434a – ident: e_1_2_7_105_9 doi: 10.1021/nn506701x – ident: e_1_2_7_4_1 doi: 10.1002/adfm.201803291 – ident: e_1_2_7_85_1 doi: 10.1039/C5TA09322H – ident: e_1_2_7_103_3 doi: 10.1002/adfm.201300844 – ident: e_1_2_7_72_1 doi: 10.1002/adma.201503342 – ident: e_1_2_7_83_1 doi: 10.1021/acs.nanolett.6b02203 – ident: e_1_2_7_153_2 doi: 10.1002/ange.201709901 – ident: e_1_2_7_74_5 doi: 10.1002/celc.201500239 – ident: e_1_2_7_143_1 doi: 10.1002/anie.201607405 – ident: e_1_2_7_115_2 doi: 10.1016/j.nanoen.2015.05.017 – ident: e_1_2_7_89_1 doi: 10.1021/cr300367d – ident: e_1_2_7_38_1 doi: 10.1039/C4CC05285D – ident: e_1_2_7_91_5 doi: 10.1016/j.electacta.2016.09.158 – ident: e_1_2_7_97_1 doi: 10.1021/acscatal.8b01164 – ident: e_1_2_7_91_3 doi: 10.1016/j.ijhydene.2017.11.048 – ident: e_1_2_7_137_2 doi: 10.1039/C6TA08363C – ident: e_1_2_7_165_3 doi: 10.1039/C6TA01900E – ident: e_1_2_7_13_2 doi: 10.1021/acs.nanolett.5b02205 – ident: e_1_2_7_125_1 doi: 10.1016/j.jpowsour.2018.08.027 – ident: e_1_2_7_41_1 doi: 10.1039/C6NR01867J – ident: e_1_2_7_49_6 doi: 10.1039/c3nr04975b – ident: e_1_2_7_43_2 doi: 10.1039/C6QM00269B – ident: e_1_2_7_166_1 doi: 10.1021/jacs.5b07924 – ident: e_1_2_7_26_1 doi: 10.1021/acs.jpclett.5b00306 – ident: e_1_2_7_14_2 doi: 10.1002/adma.201505875 – ident: e_1_2_7_106_1 doi: 10.1039/C5TA06840A – ident: e_1_2_7_160_2 doi: 10.1016/j.electacta.2017.09.177 – ident: e_1_2_7_21_1 doi: 10.1021/ja201269b – ident: e_1_2_7_2_2 doi: 10.1002/aenm.201600423 – ident: e_1_2_7_21_2 doi: 10.1039/C4MH00040D – ident: e_1_2_7_90_2 doi: 10.1021/acsami.8b07133 – ident: e_1_2_7_6_1 doi: 10.1039/B809990C – ident: e_1_2_7_100_1 doi: 10.1002/adfm.201300510 – ident: e_1_2_7_163_1 doi: 10.1002/anie.201602627 – ident: e_1_2_7_5_1 doi: 10.1038/35104634 – ident: e_1_2_7_52_1 doi: 10.1002/smll.201801717 – ident: e_1_2_7_134_1 doi: 10.1021/acsami.8b08239 – ident: e_1_2_7_136_4 doi: 10.1039/C6TA08955K – ident: e_1_2_7_61_1 doi: 10.1021/cm970412f – ident: e_1_2_7_11_1 doi: 10.1038/nmat1752 – ident: e_1_2_7_90_1 doi: 10.1021/acs.chemmater.7b01897 – ident: e_1_2_7_23_1 doi: 10.1038/nmat1849 – ident: e_1_2_7_12_3 doi: 10.1016/j.mtphys.2018.11.007 – ident: e_1_2_7_92_3 doi: 10.1016/j.jcis.2017.11.026 – ident: e_1_2_7_69_1 doi: 10.1002/adma.201202920 – ident: e_1_2_7_31_1 doi: 10.1002/cssc.201402454 – ident: e_1_2_7_140_1 doi: 10.1016/j.nanoen.2015.07.008 – ident: e_1_2_7_79_3 doi: 10.1039/C5CP04238K – ident: e_1_2_7_123_1 doi: 10.1021/acsami.5b00652 – ident: e_1_2_7_67_1 doi: 10.1038/nnano.2009.67 – ident: e_1_2_7_80_1 doi: 10.1039/C5EE03503A – ident: e_1_2_7_35_1 doi: 10.1002/celc.201600325 – ident: e_1_2_7_49_10 doi: 10.1021/acsami.6b06031 – ident: e_1_2_7_90_5 doi: 10.1016/j.carbon.2016.01.019 – ident: e_1_2_7_57_4 doi: 10.1016/j.electacta.2015.09.147 – ident: e_1_2_7_58_1 doi: 10.1016/j.carbon.2018.07.006 – ident: e_1_2_7_78_1 doi: 10.1002/advs.201600208 – ident: e_1_2_7_20_1 doi: 10.1002/anie.201311111 – ident: e_1_2_7_12_1 doi: 10.1039/C3CS60468C – ident: e_1_2_7_3_1 doi: 10.1038/s41570-016-0003 – ident: e_1_2_7_96_6 doi: 10.1002/cssc.201701880 – ident: e_1_2_7_153_1 doi: 10.1039/C4EE03240C – ident: e_1_2_7_100_2 doi: 10.1016/j.ijhydene.2017.01.186 – ident: e_1_2_7_160_4 doi: 10.1039/C6TA05165K – ident: e_1_2_7_128_1 doi: 10.1016/j.electacta.2017.08.151 – ident: e_1_2_7_83_2 doi: 10.1021/acsami.6b01903 – ident: e_1_2_7_36_1 doi: 10.1039/C5QI00216H – ident: e_1_2_7_74_1 doi: 10.1016/j.electacta.2016.06.019 – ident: e_1_2_7_160_3 doi: 10.1039/C6TA05485D – ident: e_1_2_7_92_1 doi: 10.1016/j.nanoen.2016.04.018 – ident: e_1_2_7_120_1 doi: 10.1002/adfm.201502217 – ident: e_1_2_7_129_1 doi: 10.1016/j.jpowsour.2015.07.077 – ident: e_1_2_7_74_2 doi: 10.1039/C6TA07009D – ident: e_1_2_7_135_1 doi: 10.1002/anie.201501419 – ident: e_1_2_7_45_1 doi: 10.1021/cs5005294 – ident: e_1_2_7_99_1 doi: 10.1039/C5TA01805F – ident: e_1_2_7_49_11 doi: 10.1039/C4CC08491H – ident: e_1_2_7_72_2 doi: 10.1002/adma.201600484 – ident: e_1_2_7_35_2 doi: 10.1039/C5CC01240F – ident: e_1_2_7_136_2 doi: 10.1039/C6TA07214C – ident: e_1_2_7_31_2 doi: 10.1021/ja5127165 – ident: e_1_2_7_51_2 doi: 10.1039/C6TA04365H – ident: e_1_2_7_105_8 doi: 10.1021/acsnano.5b00087 – ident: e_1_2_7_152_3 doi: 10.1088/1361-6528/aac9ae – ident: e_1_2_7_96_5 doi: 10.1002/cphc.201600392 – ident: e_1_2_7_90_6 doi: 10.1021/acssuschemeng.8b01614 – ident: e_1_2_7_142_1 doi: 10.1002/anie.201809315 – ident: e_1_2_7_32_1 doi: 10.1002/anie.201505691 – ident: e_1_2_7_131_1 doi: 10.1016/j.carbon.2018.06.028 – ident: e_1_2_7_85_2 doi: 10.1016/j.jpowsour.2018.06.099 – ident: e_1_2_7_162_1 doi: 10.1038/ncomms14969 – ident: e_1_2_7_152_1 doi: 10.1021/acscatal.6b01951 – ident: e_1_2_7_49_9 doi: 10.1021/acs.jpcc.5b03870 – ident: e_1_2_7_54_1 doi: 10.1039/C6CC04220A – ident: e_1_2_7_51_1 doi: 10.1039/C5TA00622H – ident: e_1_2_7_108_1 doi: 10.1002/cssc.201600904 – ident: e_1_2_7_160_5 doi: 10.1021/acssuschemeng.7b00153 – ident: e_1_2_7_105_2 doi: 10.1021/acsenergylett.8b00110 – ident: e_1_2_7_19_4 doi: 10.1021/jacs.5b01330 – ident: e_1_2_7_127_1 doi: 10.1002/advs.201700603 – ident: e_1_2_7_155_1 doi: 10.1038/am.2016.44 – ident: e_1_2_7_48_1 doi: 10.1002/adma.201602912 – ident: e_1_2_7_105_3 doi: 10.1016/j.electacta.2018.06.168 – ident: e_1_2_7_73_2 doi: 10.1021/acsnano.5b02420 – ident: e_1_2_7_113_1 doi: 10.1002/adma.201700017 – ident: e_1_2_7_64_1 doi: 10.1038/nmat3001 – ident: e_1_2_7_37_1 doi: 10.1039/C6CC03876J – ident: e_1_2_7_132_1 doi: 10.1021/acsenergylett.8b00522 – ident: e_1_2_7_114_1 doi: 10.1016/j.chempr.2017.12.005 – ident: e_1_2_7_13_1 doi: 10.1038/ncomms5695 – ident: e_1_2_7_35_3 doi: 10.1016/j.electacta.2016.02.081 – ident: e_1_2_7_12_2 doi: 10.1039/C4CS00448E – ident: e_1_2_7_156_2 doi: 10.1039/C7TA07340B – ident: e_1_2_7_136_5 doi: 10.1002/cctc.201500701 – ident: e_1_2_7_136_7 doi: 10.1021/acs.chemmater.5b04654 – ident: e_1_2_7_20_2 doi: 10.1002/anie.201404161 – ident: e_1_2_7_156_1 doi: 10.1016/j.nanoen.2015.10.014 – ident: e_1_2_7_165_2 doi: 10.1039/C5TA09507G – ident: e_1_2_7_136_3 doi: 10.1016/j.jpowsour.2017.07.107 – ident: e_1_2_7_95_1 doi: 10.1021/cm500347r – ident: e_1_2_7_66_1 doi: 10.1021/ja109793s – ident: e_1_2_7_79_1 doi: 10.1016/j.apcatb.2016.02.003 – ident: e_1_2_7_18_1 doi: 10.1039/C5EE03801D – ident: e_1_2_7_73_1 doi: 10.1021/acsenergylett.8b00739 – ident: e_1_2_7_105_1 doi: 10.1002/adfm.201300318 – ident: e_1_2_7_169_1 doi: 10.1021/jacs.6b08491 – ident: e_1_2_7_159_2 doi: 10.1002/smtd.201700353 – ident: e_1_2_7_145_4 doi: 10.1039/c2jm33727d – ident: e_1_2_7_65_1 doi: 10.1002/admi.201600332 – ident: e_1_2_7_111_1 doi: 10.1002/admi.201601029 – ident: e_1_2_7_143_2 doi: 10.1002/adma.201501692 – ident: e_1_2_7_49_3 doi: 10.1016/j.electacta.2016.11.104 – ident: e_1_2_7_90_3 doi: 10.1016/j.electacta.2017.02.146 – ident: e_1_2_7_104_1 doi: 10.1039/C7EE03031B – ident: e_1_2_7_94_1 doi: 10.1002/anie.201406468 – ident: e_1_2_7_24_2 doi: 10.1039/c0ee00683a – ident: e_1_2_7_112_2 doi: 10.1039/C5TA02656C – ident: e_1_2_7_121_1 doi: 10.1016/j.carbon.2018.06.008 – ident: e_1_2_7_133_1 doi: 10.1039/C4CY00075G – ident: e_1_2_7_9_2 doi: 10.1126/science.1258307 – ident: e_1_2_7_159_3 doi: 10.1039/C5EE03316K – ident: e_1_2_7_165_4 doi: 10.1039/C6NR05564H – ident: e_1_2_7_79_2 doi: 10.1016/j.jpowsour.2017.02.017 – ident: e_1_2_7_23_2 doi: 10.1038/nnano.2007.451 – ident: e_1_2_7_47_1 doi: 10.1021/acsnano.7b02060 – ident: e_1_2_7_68_4 doi: 10.1016/j.ijhydene.2017.01.089 – ident: e_1_2_7_161_1 doi: 10.1002/anie.201409524 – ident: e_1_2_7_93_1 doi: 10.1039/C4TA06458E – ident: e_1_2_7_111_2 doi: 10.1016/j.carbon.2016.12.004 – ident: e_1_2_7_101_1 doi: 10.1039/C5SC04425A – ident: e_1_2_7_160_1 doi: 10.1016/j.nanoen.2018.02.023 – ident: e_1_2_7_68_2 doi: 10.1002/anie.201507381 – ident: e_1_2_7_62_1 doi: 10.1021/jp990957s – ident: e_1_2_7_144_1 doi: 10.1021/ja3030565 – ident: e_1_2_7_136_9 doi: 10.1021/acssuschemeng.8b00425 – ident: e_1_2_7_105_7 doi: 10.1002/asia.201701616 – ident: e_1_2_7_54_3 doi: 10.1021/acsami.5b08620 – ident: e_1_2_7_49_5 doi: 10.1039/C5NR01896J – ident: e_1_2_7_14_3 doi: 10.1038/s41467-018-04746-z – ident: e_1_2_7_88_1 doi: 10.1126/science.1246501 – ident: e_1_2_7_103_1 doi: 10.1039/C7CS00904F – ident: e_1_2_7_158_1 doi: 10.1039/C5NR03704B – ident: e_1_2_7_116_1 doi: 10.1021/acscatal.7b04091 – ident: e_1_2_7_136_1 doi: 10.1016/j.nanoen.2016.09.040 – ident: e_1_2_7_26_2 doi: 10.1021/acscatal.6b02479 – ident: e_1_2_7_164_1 doi: 10.1002/adfm.201600636 – ident: e_1_2_7_170_1 doi: 10.1021/acsnano.6b04725 – ident: e_1_2_7_49_4 doi: 10.1021/acssuschemeng.5b00700 – ident: e_1_2_7_144_2 doi: 10.1002/adma.201200498 – ident: e_1_2_7_57_3 doi: 10.1021/am506545g – ident: e_1_2_7_79_5 doi: 10.1021/la501052m – ident: e_1_2_7_119_1 doi: 10.1002/aenm.201600116 – ident: e_1_2_7_102_1 doi: 10.1039/C8NR01090K – ident: e_1_2_7_8_1 doi: 10.1016/j.ijhydene.2007.05.027 – ident: e_1_2_7_147_1 doi: 10.1002/adma.201802011 – ident: e_1_2_7_152_4 doi: 10.1038/ncomms4783 – ident: e_1_2_7_16_2 doi: 10.1021/ja4081056 – ident: e_1_2_7_92_2 doi: 10.1021/acsami.7b09108 – ident: e_1_2_7_57_2 doi: 10.1039/C6TA05196K – ident: e_1_2_7_18_2 doi: 10.1002/cssc.201501599 – ident: e_1_2_7_117_2 doi: 10.1039/C4CS00141A – ident: e_1_2_7_150_1 doi: 10.1002/adfm.201801332 – ident: e_1_2_7_16_1 doi: 10.1002/anie.201200699 – ident: e_1_2_7_113_2 doi: 10.1039/C7TA07672J – ident: e_1_2_7_118_1 doi: 10.1038/s41467-019-09596-x – ident: e_1_2_7_53_1 doi: 10.1021/acssuschemeng.6b00859 – ident: e_1_2_7_86_1 doi: 10.1039/C6QI00101G – ident: e_1_2_7_25_1 doi: 10.1038/ncomms9668 – ident: e_1_2_7_17_1 doi: 10.1021/acsenergylett.6b00247 – ident: e_1_2_7_96_3 doi: 10.1039/C4CC02364A – ident: e_1_2_7_9_1 doi: 10.1038/nchem.1634 – ident: e_1_2_7_2_1 doi: 10.1002/adma.201104502 – ident: e_1_2_7_96_4 doi: 10.1016/j.electacta.2018.07.046 – ident: e_1_2_7_56_1 doi: 10.1039/C5CC05644F – ident: e_1_2_7_60_1 doi: 10.1002/advs.201500120 – ident: e_1_2_7_109_1 doi: 10.1021/acscatal.7b02079 – ident: e_1_2_7_50_1 doi: 10.1002/anie.201307475 – ident: e_1_2_7_72_4 doi: 10.1021/acsenergylett.7b00349 – ident: e_1_2_7_89_2 doi: 10.1016/j.pmatsci.2018.03.007 – ident: e_1_2_7_30_2 doi: 10.1016/j.mattod.2017.03.019 – ident: e_1_2_7_92_5 doi: 10.1002/chem.201703493 – ident: e_1_2_7_115_1 doi: 10.1039/C5TA02792F – ident: e_1_2_7_130_1 doi: 10.1016/j.nanoen.2015.01.027 – ident: e_1_2_7_105_4 doi: 10.1016/j.cej.2017.01.032 – ident: e_1_2_7_49_7 doi: 10.1039/C3TA13584E – ident: e_1_2_7_49_8 doi: 10.1002/chem.201504875 – ident: e_1_2_7_118_2 doi: 10.1039/C5TA05372B – ident: e_1_2_7_151_1 doi: 10.1039/C8CC09368G – ident: e_1_2_7_157_1 doi: 10.1021/jacs.5b01072 – ident: e_1_2_7_76_1 doi: 10.1002/adfm.201500194 – ident: e_1_2_7_123_2 doi: 10.1016/j.electacta.2018.01.203 – ident: e_1_2_7_86_2 doi: 10.1016/j.mtchem.2016.10.003 – ident: e_1_2_7_55_1 doi: 10.1039/C4CC05698A – ident: e_1_2_7_91_6 doi: 10.1016/j.jcis.2017.03.087 – ident: e_1_2_7_105_5 doi: 10.1039/C5TA03905C – ident: e_1_2_7_138_1 doi: 10.1002/anie.201510495 – ident: e_1_2_7_19_2 doi: 10.1039/C6SC03356C – ident: e_1_2_7_146_1 doi: 10.1002/ange.201408876 – ident: e_1_2_7_53_2 doi: 10.1021/acsami.8b09941 – ident: e_1_2_7_74_4 doi: 10.1002/celc.201701210 – ident: e_1_2_7_122_1 doi: 10.1016/j.jcis.2016.10.038 – ident: e_1_2_7_11_3 doi: 10.1039/C5TA02974K – ident: e_1_2_7_57_5 doi: 10.1038/srep17542 – ident: e_1_2_7_20_3 doi: 10.1021/ja511572q – ident: e_1_2_7_137_4 doi: 10.1002/adma.201401427 – ident: e_1_2_7_96_1 doi: 10.1039/C4TA03962A – ident: e_1_2_7_17_2 doi: 10.1038/s41929-018-0195-1 – ident: e_1_2_7_19_1 doi: 10.1038/ncomms8992 – ident: e_1_2_7_71_1 doi: 10.1039/C8TA02835D – ident: e_1_2_7_96_2 doi: 10.1039/C6CC06180J – ident: e_1_2_7_29_2 doi: 10.1002/advs.201500286 – ident: e_1_2_7_10_1 doi: 10.1002/advs.201600380 – ident: e_1_2_7_27_1 doi: 10.1039/C5CS00434A – ident: e_1_2_7_25_2 doi: 10.1039/c2cc33397j – ident: e_1_2_7_84_1 doi: 10.1016/j.electacta.2016.10.055 – ident: e_1_2_7_70_1 doi: 10.1039/C4TA06071G – ident: e_1_2_7_54_2 doi: 10.1039/C5TA01103E – ident: e_1_2_7_136_6 doi: 10.1002/chem.201602616 – ident: e_1_2_7_15_2 doi: 10.1021/acs.nanolett.5b04331 – ident: e_1_2_7_24_1 doi: 10.1039/c2ee22238h – ident: e_1_2_7_39_1 doi: 10.1039/C6TA05086G – ident: e_1_2_7_43_1 doi: 10.1039/C6TA01601D – ident: e_1_2_7_67_2 doi: 10.1002/smll.201603013 – ident: e_1_2_7_22_2 doi: 10.1038/s41467-018-03896-4 – ident: e_1_2_7_126_1 doi: 10.1016/j.electacta.2015.05.017 – ident: e_1_2_7_124_1 doi: 10.1038/srep31202 – ident: e_1_2_7_29_1 doi: 10.1039/c3cc44076a – ident: e_1_2_7_59_1 doi: 10.1002/anie.201409080 – ident: e_1_2_7_137_3 doi: 10.1002/anie.201208086 – ident: e_1_2_7_68_3 doi: 10.1039/C6TA02876D – ident: e_1_2_7_92_4 doi: 10.1016/j.catcom.2016.07.010 – ident: e_1_2_7_8_2 doi: 10.1002/aenm.201801193 – ident: e_1_2_7_28_1 doi: 10.1002/adma.201505597 – ident: e_1_2_7_75_1 doi: 10.1002/adfm.201401814 – ident: e_1_2_7_145_2 doi: 10.1039/C8TA05124K – ident: e_1_2_7_112_1 doi: 10.1016/j.carbon.2017.05.092 – ident: e_1_2_7_107_1 doi: 10.1002/chem.201501964 – ident: e_1_2_7_160_6 doi: 10.1002/adma.201605957 – ident: e_1_2_7_85_5 doi: 10.1002/adma.201803621 – ident: e_1_2_7_34_1 doi: 10.1002/celc.201600001 – ident: e_1_2_7_82_1 doi: 10.1021/acs.chemmater.7b00114 – ident: e_1_2_7_77_1 doi: 10.1016/j.nanoen.2014.09.022 – ident: e_1_2_7_30_1 doi: 10.1002/chem.201501120 – ident: e_1_2_7_68_1 doi: 10.1002/adfm.201401328 – ident: e_1_2_7_149_1 doi: 10.1002/advs.201700733 – ident: e_1_2_7_14_1 doi: 10.1021/ja403440e – ident: e_1_2_7_79_4 doi: 10.1016/j.ijhydene.2017.06.083 – ident: e_1_2_7_18_3 doi: 10.1039/C4NR04866K – ident: e_1_2_7_152_2 doi: 10.1002/celc.201700479 – ident: e_1_2_7_40_1 doi: 10.1039/C5TA02077H – ident: e_1_2_7_90_4 doi: 10.1021/acsami.6b13578 – ident: e_1_2_7_91_1 doi: 10.1016/j.energy.2014.07.062 – ident: e_1_2_7_3_2 doi: 10.1016/j.rser.2012.01.029 – ident: e_1_2_7_44_1 doi: 10.1021/acs.chemmater.6b01980 – ident: e_1_2_7_72_5 doi: 10.1021/acs.chemmater.5b03997 – ident: e_1_2_7_136_8 doi: 10.1021/acsami.6b01580 – ident: e_1_2_7_42_1 doi: 10.1021/acs.chemmater.5b00331 – ident: e_1_2_7_22_1 doi: 10.1002/adma.201803762 – ident: e_1_2_7_85_3 doi: 10.1002/adma.201702211 – ident: e_1_2_7_87_1 doi: 10.1038/ncomms6714 – ident: e_1_2_7_92_6 doi: 10.1016/j.colsurfa.2016.09.011 – ident: e_1_2_7_165_1 doi: 10.1039/C6TA09052D – ident: e_1_2_7_57_1 doi: 10.1039/C4TA02254H – ident: e_1_2_7_85_4 doi: 10.1021/acsami.7b06727 – ident: e_1_2_7_110_1 doi: 10.1002/adma.201704156 – ident: e_1_2_7_100_3 doi: 10.1016/j.electacta.2018.07.105 – ident: e_1_2_7_117_1 doi: 10.1021/cs200652y – ident: e_1_2_7_105_6 doi: 10.1039/C7TA08621K – ident: e_1_2_7_141_1 doi: 10.1038/nenergy.2016.130 – ident: e_1_2_7_63_1 doi: 10.1126/science.1171245 – ident: e_1_2_7_82_2 doi: 10.1039/C5TA10428A – ident: e_1_2_7_84_2 doi: 10.1016/j.carbon.2016.06.080 – ident: e_1_2_7_159_1 doi: 10.1039/C5EE02460A – ident: e_1_2_7_88_2 doi: 10.1016/j.pmatsci.2018.01.003 – ident: e_1_2_7_33_1 doi: 10.1038/ncomms11204 – ident: e_1_2_7_49_2 doi: 10.1016/j.carbon.2016.06.074 – ident: e_1_2_7_91_2 doi: 10.1016/j.electacta.2018.07.193 – ident: e_1_2_7_145_3 doi: 10.1016/j.jpowsour.2012.01.023 – ident: e_1_2_7_11_4 doi: 10.1002/adma.201502696 – ident: e_1_2_7_1_1 doi: 10.1038/nature11475 – ident: e_1_2_7_74_3 doi: 10.1016/j.jpowsour.2015.11.013 – ident: e_1_2_7_98_1 doi: 10.1002/adfm.201601420 – ident: e_1_2_7_11_2 doi: 10.1016/j.nanoen.2016.08.027 – ident: e_1_2_7_92_7 doi: 10.1021/acsami.7b12038 – ident: e_1_2_7_15_1 doi: 10.1021/ja408329q – ident: e_1_2_7_90_7 doi: 10.1016/j.jpowsour.2015.03.131 – ident: e_1_2_7_31_3 doi: 10.1039/C5TA05589J – ident: e_1_2_7_49_12 doi: 10.1016/j.jpowsour.2015.05.080 |
| SSID | ssj0009606 |
| Score | 2.6953082 |
| SecondaryResourceType | review_article |
| Snippet | Under the double pressures of both the energy crisis and environmental pollution, the exploitation and utilization of hydrogen, a clean and renewable power... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e1903415 |
| SubjectTerms | Electrical resistivity Electrocatalysts Graphene hybrid structures Hydrogen hydrogen evolution reaction Hydrogen evolution reactions Hydrogen fuels Hydrogen production Mass production Materials science nanoparticles Organic chemistry Sustainable development |
| Title | Graphene Nanoarchitectonics: Recent Advances in Graphene‐Based Electrocatalysts for Hydrogen Evolution Reaction |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201903415 https://www.ncbi.nlm.nih.gov/pubmed/31496036 https://www.proquest.com/docview/2317574598 https://www.proquest.com/docview/2287533234 |
| Volume | 31 |
| WOSCitedRecordID | wos000485505900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RpYdyKPRFAxQZqVJPEcF2bIfbArtwoAhVpdpb5PghIVXZdrMgcetP6G_sL-k4zgZWVVWpXKJEcRLLnsc3duYbgPeZKLQzjqf2wLuUa1alFS_wIJVVRmuv2tIJX87lxYWaTIrLB1n8kR-iX3ALmtHa66Dgumr270lDtW15g9ChsTbLfJWi8OYDWD35NL46vyfeFW19zbDflxaCqwVxY0b3l9-w7Jj-QJvL4LX1PuP1x_d7A553yJMMo6i8gBVXv4S1B3yEr-D7aaCvRutH0OhO-z2GwJ7bHBJEmOihyDD-NdCQ65os2v_68fMI3aElo1hVp10UumvmDUFMTM7u7GyKgkpGt52g47tiQsVruBqPPh-fpV1NhtRwKfLUOUFN5pinPssrryptc4w6FLNGeS1E7jDGcUxozbjJLYIXlXnpjKqsRLubsTcwqKe1ewtEayOFrbQ3aBMOvNaITmSujS84wlghEkgXE1KajrA81M34WkaqZVqGoSz7oUzgQ9_-W6Tq-GvLncX8lp3KNiUNSEryvFAJ7PW3UdnCDoqu3fQG29AQ3jHKeAKbUS76TzGMNQXigQRoO_3_6EM5PPk47K-2_uehbXgWzmNm5A4M5rMb9w6emtv5dTPbhSdyonY7dfgNanEMJA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS9xAFD4ULVQftK21plo7hYJPwZiZTCa-rXXXLV2XUlR8C5O5gFCyulkX9s2f4G_0l_RMJhu7FCkUXwJJJpNh5ly-M5fvAHyJeCaNMizUB9aETNIiLFiGl1RooaS0ok6dcDFIh0NxeZn9aHYTurMwnh-inXBzmlHba6fgbkJ6_5E1VOqaOAg9Gq2PmS8zlCUU8uXjn73zwSPzLq8TbLoFvzDjTMyZG6N4f7GGRc_0F9xcRK-1--mtP0PDX8Nagz1JxwvLG3hhyrew-gcj4QbcnDgCa7R_BM3uqF1lcPy51SFBjIk-inT8voGKXJVkXv7h7v4IHaImXZ9Xp54WmlWTiiAqJv2ZHo9QVEl32og61uWPVLyD81737Gs_bLIyhIqlPAmN4bGKDLWxjZLCikLqBOMOQbUSVnKeGIxyDOVSUqYSjfBFRDY1ShQ6Rcsb0U1YKkel2QIipUq5LqRVaBUOrJSIT9JEKpsxBLKcBxDORyRXDWW5y5zxK_dky3HuujJvuzKAvbb8tSfreLLkznyA80Zpqzx2WCplSSYC-Ny-RnVzayiyNKNbLBO7AI_GlAXw3gtG-yuK0SZHRBBAXI__P9qQd45PO-3dh__56BO86p-dDvLBt-H3bVhxz_05yR1YmoxvzUd4qaaTq2q822jFbyUlDyw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS9xAFD6UtZT2QavWGrV1BMGnYDYzmUx823Z3a3FdpKj4FiZzAaFk7WYVfOtP6G_0l3gmk41dihRKXwJJJpNh5ly-M5fvAOxHPJNGGRbqrjUhk7QIC5bhJRVaKCmtqFMnXI7S8VhcXWVnzW5CdxbG80O0E25OM2p77RTc3Gh7-MQaKnVNHIQejdbHzJeYyyTTgaX-t-HF6Il5l9cJNt2CX5hxJubMjVF8uFjDomf6A24uotfa_QxX_kPD38Jygz1JzwvLKrww5Rq8-Y2RcB1-fHEE1mj_CJrdSbvK4PhzqyOCGBN9FOn5fQMVuS7JvPzDz1-f0CFqMvB5deppoftqVhFExeT4Xk8nKKpkcNeIOtblj1S8g4vh4PzzcdhkZQgVS3kSGsNjFRlqYxslhRWF1AnGHYJqJazkPDEY5RjKpaRMJRrhi4hsapQodIqWN6Ib0CknpdkEIqVKuS6kVWgVulZKxCdpIpXNGAJZzgMI5yOSq4ay3GXO-J57suU4d12Zt10ZwEFb_saTdTxbcmc-wHmjtFUeOyyVohSJAPba16hubg1FlmZyi2ViF-DRmLIA3nvBaH9FMdrkiAgCiOvx_0sb8l7_tNfebf3LR7vw6qw_zEdfxyfb8No99sckd6Azm96aD_BS3c2uq-nHRikeAZnzDqc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene+Nanoarchitectonics%3A+Recent+Advances+in+Graphene-Based+Electrocatalysts+for+Hydrogen+Evolution+Reaction&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Huang%2C+Huajie&rft.au=Yan%2C+Minmin&rft.au=Yang%2C+Cuizhen&rft.au=He%2C+Haiyan&rft.date=2019-11-01&rft.eissn=1521-4095&rft.volume=31&rft.issue=48&rft.spage=e1903415&rft_id=info:doi/10.1002%2Fadma.201903415&rft_id=info%3Apmid%2F31496036&rft.externalDocID=31496036 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |