Graphene Nanoarchitectonics: Recent Advances in Graphene‐Based Electrocatalysts for Hydrogen Evolution Reaction

Under the double pressures of both the energy crisis and environmental pollution, the exploitation and utilization of hydrogen, a clean and renewable power resource, has become an important trend in the development of sustainable energy‐production and energy‐consumption systems. In this regard, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) Jg. 31; H. 48; S. e1903415 - n/a
Hauptverfasser: Huang, Huajie, Yan, Minmin, Yang, Cuizhen, He, Haiyan, Jiang, Quanguo, Yang, Lu, Lu, Zhiyong, Sun, Ziqi, Xu, Xingtao, Bando, Yoshio, Yamauchi, Yusuke
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 01.11.2019
Schlagworte:
ISSN:0935-9648, 1521-4095, 1521-4095
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Under the double pressures of both the energy crisis and environmental pollution, the exploitation and utilization of hydrogen, a clean and renewable power resource, has become an important trend in the development of sustainable energy‐production and energy‐consumption systems. In this regard, the electrocatalytic hydrogen evolution reaction (HER) provides an efficient and clean pathway for the mass production of hydrogen fuel and has motivated the design and construction of highly active HER electrocatalysts of an acceptable cost. In particular, graphene‐based electrocatalysts commonly exhibit an enhanced HER performance owing to their distinctive structural merits, including a large surface area, high electrical conductivity, and good chemical stability. Considering the rapidly growing research enthusiasm for this topic over the last several years, herein, a panoramic review of recent advances in graphene‐based electrocatalysts is presented, covering various advanced synthetic strategies, microstructural characterizations, and the applications of such materials in HER electrocatalysis. Lastly, future perspectives on the challenges and opportunities awaiting this emerging field are proposed and discussed. Electrode catalysts for the hydrogen evolution reaction are at the heart of electrochemical water splitting technology. Recent advances in the controllable synthesis, microstructural analysis, and electrocatalytic properties of graphene‐based hydrogen evolution electrocatalysts are presented, together with a discussion of the major challenges and opportunities in this emerging field.
AbstractList Under the double pressures of both the energy crisis and environmental pollution, the exploitation and utilization of hydrogen, a clean and renewable power resource, has become an important trend in the development of sustainable energy-production and energy-consumption systems. In this regard, the electrocatalytic hydrogen evolution reaction (HER) provides an efficient and clean pathway for the mass production of hydrogen fuel and has motivated the design and construction of highly active HER electrocatalysts of an acceptable cost. In particular, graphene-based electrocatalysts commonly exhibit an enhanced HER performance owing to their distinctive structural merits, including a large surface area, high electrical conductivity, and good chemical stability. Considering the rapidly growing research enthusiasm for this topic over the last several years, herein, a panoramic review of recent advances in graphene-based electrocatalysts is presented, covering various advanced synthetic strategies, microstructural characterizations, and the applications of such materials in HER electrocatalysis. Lastly, future perspectives on the challenges and opportunities awaiting this emerging field are proposed and discussed.
Under the double pressures of both the energy crisis and environmental pollution, the exploitation and utilization of hydrogen, a clean and renewable power resource, has become an important trend in the development of sustainable energy‐production and energy‐consumption systems. In this regard, the electrocatalytic hydrogen evolution reaction (HER) provides an efficient and clean pathway for the mass production of hydrogen fuel and has motivated the design and construction of highly active HER electrocatalysts of an acceptable cost. In particular, graphene‐based electrocatalysts commonly exhibit an enhanced HER performance owing to their distinctive structural merits, including a large surface area, high electrical conductivity, and good chemical stability. Considering the rapidly growing research enthusiasm for this topic over the last several years, herein, a panoramic review of recent advances in graphene‐based electrocatalysts is presented, covering various advanced synthetic strategies, microstructural characterizations, and the applications of such materials in HER electrocatalysis. Lastly, future perspectives on the challenges and opportunities awaiting this emerging field are proposed and discussed. Electrode catalysts for the hydrogen evolution reaction are at the heart of electrochemical water splitting technology. Recent advances in the controllable synthesis, microstructural analysis, and electrocatalytic properties of graphene‐based hydrogen evolution electrocatalysts are presented, together with a discussion of the major challenges and opportunities in this emerging field.
Under the double pressures of both the energy crisis and environmental pollution, the exploitation and utilization of hydrogen, a clean and renewable power resource, has become an important trend in the development of sustainable energy-production and energy-consumption systems. In this regard, the electrocatalytic hydrogen evolution reaction (HER) provides an efficient and clean pathway for the mass production of hydrogen fuel and has motivated the design and construction of highly active HER electrocatalysts of an acceptable cost. In particular, graphene-based electrocatalysts commonly exhibit an enhanced HER performance owing to their distinctive structural merits, including a large surface area, high electrical conductivity, and good chemical stability. Considering the rapidly growing research enthusiasm for this topic over the last several years, herein, a panoramic review of recent advances in graphene-based electrocatalysts is presented, covering various advanced synthetic strategies, microstructural characterizations, and the applications of such materials in HER electrocatalysis. Lastly, future perspectives on the challenges and opportunities awaiting this emerging field are proposed and discussed.Under the double pressures of both the energy crisis and environmental pollution, the exploitation and utilization of hydrogen, a clean and renewable power resource, has become an important trend in the development of sustainable energy-production and energy-consumption systems. In this regard, the electrocatalytic hydrogen evolution reaction (HER) provides an efficient and clean pathway for the mass production of hydrogen fuel and has motivated the design and construction of highly active HER electrocatalysts of an acceptable cost. In particular, graphene-based electrocatalysts commonly exhibit an enhanced HER performance owing to their distinctive structural merits, including a large surface area, high electrical conductivity, and good chemical stability. Considering the rapidly growing research enthusiasm for this topic over the last several years, herein, a panoramic review of recent advances in graphene-based electrocatalysts is presented, covering various advanced synthetic strategies, microstructural characterizations, and the applications of such materials in HER electrocatalysis. Lastly, future perspectives on the challenges and opportunities awaiting this emerging field are proposed and discussed.
Author Xu, Xingtao
Yan, Minmin
Yang, Lu
Yang, Cuizhen
Lu, Zhiyong
Bando, Yoshio
Huang, Huajie
Jiang, Quanguo
Sun, Ziqi
He, Haiyan
Yamauchi, Yusuke
Author_xml – sequence: 1
  givenname: Huajie
  surname: Huang
  fullname: Huang, Huajie
  email: huanghuajie@hhu.edu.cn
  organization: Hohai University
– sequence: 2
  givenname: Minmin
  surname: Yan
  fullname: Yan, Minmin
  organization: Hohai University
– sequence: 3
  givenname: Cuizhen
  surname: Yang
  fullname: Yang, Cuizhen
  organization: Hohai University
– sequence: 4
  givenname: Haiyan
  surname: He
  fullname: He, Haiyan
  organization: Hohai University
– sequence: 5
  givenname: Quanguo
  surname: Jiang
  fullname: Jiang, Quanguo
  organization: Hohai University
– sequence: 6
  givenname: Lu
  surname: Yang
  fullname: Yang, Lu
  organization: Hohai University
– sequence: 7
  givenname: Zhiyong
  surname: Lu
  fullname: Lu, Zhiyong
  organization: Hohai University
– sequence: 8
  givenname: Ziqi
  surname: Sun
  fullname: Sun, Ziqi
  organization: Queensland University of Technology (QUT)
– sequence: 9
  givenname: Xingtao
  surname: Xu
  fullname: Xu, Xingtao
  email: xingtao.xu@hhu.eduv
  organization: Hohai University
– sequence: 10
  givenname: Yoshio
  surname: Bando
  fullname: Bando, Yoshio
  organization: National Institute for Materials Science
– sequence: 11
  givenname: Yusuke
  orcidid: 0000-0001-7854-927X
  surname: Yamauchi
  fullname: Yamauchi, Yusuke
  email: y.yamauchi@uq.edu.au
  organization: Kyung Hee University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31496036$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9uEzEQhy1URNPClSNaiQuXDf6_Xm6hhBapgITgbE28s9TVxk5tb1FufYQ-I0_CRmmLVAlxmjl838xofkfkIMSAhLxkdM4o5W-hW8OcU9ZSIZl6QmZMcVZL2qoDMqOtUHWrpTkkRzlfUkpbTfUzciiYnDqhZ-TqNMHmAgNWXyBESO7CF3QlBu_yu-obOgylWnTXEBzmyofqnv99c_seMnbVcpj4FB0UGLa55KqPqTrbdin-xFAtr-MwFh_DNAvcrnlOnvYwZHxxV4_Jj4_L7ydn9fnX008ni_PayUarGlFzR1H0vKdq1ZsVdEpQbUTnTA9aK-SsQaEBhHSq40YY2jfozKprGs2pOCZv9nM3KV6NmItd--xwGCBgHLPl3DRKCC7khL5-hF7GMYXpOssFa1QjVWsm6tUdNa7W2NlN8mtIW3v_zAmY7wGXYs4J-weEUbtLy-7Ssg9pTYJ8JDhfYPekksAP_9bavfbLD7j9zxK7-PB58df9AwmLqwU
CitedBy_id crossref_primary_10_1021_jacs_0c13002
crossref_primary_10_1016_j_mtchem_2023_101531
crossref_primary_10_3390_catal12020207
crossref_primary_10_1007_s12274_024_6712_4
crossref_primary_10_1002_sstr_202100006
crossref_primary_10_1039_D3NR05259A
crossref_primary_10_1016_j_jhazmat_2020_123407
crossref_primary_10_1007_s12598_021_01882_2
crossref_primary_10_1016_j_ceramint_2024_02_129
crossref_primary_10_1016_j_jcis_2021_07_056
crossref_primary_10_1007_s11581_021_04328_y
crossref_primary_10_1002_ente_202201201
crossref_primary_10_1080_15567036_2022_2069884
crossref_primary_10_1021_acs_inorgchem_5c02889
crossref_primary_10_1016_j_jpcs_2022_111106
crossref_primary_10_1002_smsc_202000032
crossref_primary_10_1016_j_diamond_2024_111147
crossref_primary_10_1007_s40843_024_3036_y
crossref_primary_10_3762_bjnano_13_67
crossref_primary_10_1002_aenm_202200928
crossref_primary_10_1039_D3NR04014C
crossref_primary_10_1016_j_carbon_2021_04_038
crossref_primary_10_1016_j_ccr_2021_213806
crossref_primary_10_1016_j_seppur_2025_131834
crossref_primary_10_1246_bcsj_20200055
crossref_primary_10_1002_smll_202408869
crossref_primary_10_1002_wcms_70014
crossref_primary_10_1002_chem_202000789
crossref_primary_10_3390_nano13132028
crossref_primary_10_1016_j_cej_2022_137932
crossref_primary_10_1016_j_ijhydene_2025_06_135
crossref_primary_10_1021_acs_chemmater_4c02659
crossref_primary_10_1016_j_desal_2020_114665
crossref_primary_10_1016_j_ijbiomac_2023_127993
crossref_primary_10_1039_D0NR06396G
crossref_primary_10_3390_ma15144927
crossref_primary_10_1016_j_apsusc_2020_148428
crossref_primary_10_1016_j_apsusc_2024_162257
crossref_primary_10_1039_D2SE00658H
crossref_primary_10_1016_j_asems_2022_100029
crossref_primary_10_1016_j_susmat_2024_e01160
crossref_primary_10_3390_nano12111806
crossref_primary_10_1039_D1QI01528A
crossref_primary_10_1016_j_ces_2023_118551
crossref_primary_10_1007_s43153_025_00552_5
crossref_primary_10_1016_j_micromeso_2020_110257
crossref_primary_10_1016_j_mtener_2021_100814
crossref_primary_10_1088_1361_6528_ac21f0
crossref_primary_10_1016_j_diamond_2022_109080
crossref_primary_10_1016_j_jallcom_2021_160179
crossref_primary_10_1016_j_apsusc_2024_159555
crossref_primary_10_1016_j_electacta_2024_145230
crossref_primary_10_1016_j_jechem_2020_10_020
crossref_primary_10_1002_ange_202000802
crossref_primary_10_1021_jacs_5c02696
crossref_primary_10_1002_smtd_202100334
crossref_primary_10_1016_j_electacta_2025_146741
crossref_primary_10_1039_D2SE00047D
crossref_primary_10_1016_j_jallcom_2022_166450
crossref_primary_10_1002_cnma_202200176
crossref_primary_10_1039_D4NH00586D
crossref_primary_10_3390_nano11082146
crossref_primary_10_1039_D1NR00807B
crossref_primary_10_1002_ange_202002665
crossref_primary_10_1016_j_ijhydene_2023_01_214
crossref_primary_10_1039_D5RA02422F
crossref_primary_10_1002_cctc_202001239
crossref_primary_10_1016_j_ijhydene_2021_06_157
crossref_primary_10_3390_nano15151163
crossref_primary_10_1002_smtd_202100720
crossref_primary_10_1039_D3RA01929B
crossref_primary_10_1002_slct_202501775
crossref_primary_10_1016_j_cej_2021_132312
crossref_primary_10_1016_j_jallcom_2024_178137
crossref_primary_10_1002_smsc_202300010
crossref_primary_10_1002_smll_202309359
crossref_primary_10_1016_j_cej_2022_138939
crossref_primary_10_3390_nano10122376
crossref_primary_10_1007_s10854_021_05432_5
crossref_primary_10_3390_coatings13030555
crossref_primary_10_1016_j_jhazmat_2020_122121
crossref_primary_10_1007_s40843_023_2678_5
crossref_primary_10_1002_smll_202000924
crossref_primary_10_1016_j_apsusc_2020_145842
crossref_primary_10_1039_D1RA03424C
crossref_primary_10_1016_j_enchem_2020_100043
crossref_primary_10_1039_C9QI01448A
crossref_primary_10_1016_j_ijhydene_2024_12_387
crossref_primary_10_1016_j_ijhydene_2025_150710
crossref_primary_10_1016_j_jcis_2025_01_073
crossref_primary_10_1016_j_ijhydene_2025_151127
crossref_primary_10_3390_catal11060689
crossref_primary_10_1016_j_jelechem_2023_117489
crossref_primary_10_1016_j_nanoen_2024_109315
crossref_primary_10_1021_acs_energyfuels_4c06084
crossref_primary_10_1002_advs_202301045
crossref_primary_10_1007_s12598_023_02418_6
crossref_primary_10_1016_j_cej_2021_130946
crossref_primary_10_1016_j_cej_2024_153909
crossref_primary_10_1007_s10311_021_01269_w
crossref_primary_10_1016_j_nxener_2023_100076
crossref_primary_10_1016_j_jcis_2020_12_098
crossref_primary_10_1007_s40820_020_00571_6
crossref_primary_10_1016_j_ijhydene_2021_04_008
crossref_primary_10_1016_j_ijhydene_2022_06_136
crossref_primary_10_1002_smll_202407120
crossref_primary_10_1016_j_microc_2025_115218
crossref_primary_10_3389_fchem_2020_575350
crossref_primary_10_1039_D4IM00106K
crossref_primary_10_1016_j_carbon_2021_11_026
crossref_primary_10_1007_s12274_021_3545_2
crossref_primary_10_1002_smll_202300402
crossref_primary_10_1016_j_ijhydene_2020_04_293
crossref_primary_10_1016_j_carbon_2021_11_018
crossref_primary_10_1016_j_electacta_2022_139913
crossref_primary_10_3390_molecules30112401
crossref_primary_10_1016_j_seppur_2024_129535
crossref_primary_10_1016_j_jcis_2022_09_080
crossref_primary_10_1002_cnma_202400045
crossref_primary_10_1016_j_jece_2020_104413
crossref_primary_10_1016_j_jphotochemrev_2021_100404
crossref_primary_10_1016_j_apsusc_2021_149280
crossref_primary_10_1039_D5NJ02177D
crossref_primary_10_1016_j_carbon_2024_119238
crossref_primary_10_1007_s11224_020_01702_w
crossref_primary_10_1016_j_jechem_2020_06_069
crossref_primary_10_1007_s11581_021_04084_z
crossref_primary_10_1016_j_fuel_2022_125234
crossref_primary_10_1039_D3QM01062G
crossref_primary_10_1002_smll_202408569
crossref_primary_10_1039_D4TA09223F
crossref_primary_10_1016_j_apsusc_2021_150033
crossref_primary_10_1016_j_microc_2023_108556
crossref_primary_10_1002_sstr_202300279
crossref_primary_10_1007_s11581_022_04800_3
crossref_primary_10_1016_j_seppur_2020_117771
crossref_primary_10_1016_j_jhazmat_2020_122157
crossref_primary_10_1016_j_jpcs_2025_113087
crossref_primary_10_3390_catal13020255
crossref_primary_10_3390_molecules29132973
crossref_primary_10_1016_j_ijhydene_2023_09_291
crossref_primary_10_1007_s12274_021_3755_7
crossref_primary_10_1002_adsu_202400224
crossref_primary_10_1016_j_electacta_2022_141069
crossref_primary_10_1002_anie_202000802
crossref_primary_10_1039_D2CY01234K
crossref_primary_10_1002_anie_202002665
crossref_primary_10_1016_j_jcis_2021_04_124
crossref_primary_10_1016_j_jcis_2022_02_111
crossref_primary_10_12677_japc_2024_132013
crossref_primary_10_1016_j_cej_2021_131945
crossref_primary_10_1002_adma_202004654
crossref_primary_10_1002_aenm_202302436
crossref_primary_10_1016_j_ccr_2022_214440
crossref_primary_10_1016_j_cej_2020_127148
crossref_primary_10_1016_j_cej_2020_126977
crossref_primary_10_1007_s42247_025_01143_3
crossref_primary_10_1016_j_scib_2020_08_037
crossref_primary_10_1002_slct_202201171
crossref_primary_10_1016_j_apcata_2023_119359
crossref_primary_10_1039_D1NR05797A
crossref_primary_10_1002_cssc_202000344
crossref_primary_10_3390_coatings12111726
crossref_primary_10_1016_j_surfin_2022_101907
crossref_primary_10_1039_D2SC04461G
crossref_primary_10_1007_s40843_022_2207_x
crossref_primary_10_1016_j_fuel_2020_118567
crossref_primary_10_1002_smll_202204557
crossref_primary_10_1002_elan_202200137
crossref_primary_10_1016_j_ccr_2024_216418
crossref_primary_10_1039_D3QM00905J
crossref_primary_10_1016_j_apcatb_2023_123609
crossref_primary_10_1021_acs_energyfuels_5c02583
crossref_primary_10_1039_D0NR06857H
crossref_primary_10_1038_s41598_020_78558_x
crossref_primary_10_1016_j_cej_2021_128662
crossref_primary_10_1016_j_mtnano_2022_100202
crossref_primary_10_3762_bjnano_16_77
crossref_primary_10_1002_smll_202507086
crossref_primary_10_1016_j_apsusc_2021_150624
crossref_primary_10_1016_j_cej_2025_161570
crossref_primary_10_1063_1_5134530
crossref_primary_10_1016_j_cej_2020_128137
crossref_primary_10_1016_j_electacta_2025_147319
crossref_primary_10_1016_j_jelechem_2022_116705
crossref_primary_10_1002_admi_202000142
crossref_primary_10_1016_j_jece_2024_114483
crossref_primary_10_1016_j_rser_2023_113227
crossref_primary_10_1039_D0EE03635H
crossref_primary_10_1039_D5NJ01735A
crossref_primary_10_1016_j_electacta_2024_144425
crossref_primary_10_1002_adfm_202003198
crossref_primary_10_1016_j_jcis_2022_07_168
crossref_primary_10_1016_j_cej_2024_153665
crossref_primary_10_1016_j_jelechem_2024_118814
crossref_primary_10_1002_slct_202200654
crossref_primary_10_1016_j_jhazmat_2021_125591
crossref_primary_10_1016_j_jallcom_2020_158086
crossref_primary_10_1016_j_electacta_2025_145748
crossref_primary_10_1016_j_jallcom_2021_162349
crossref_primary_10_1002_smll_202402846
crossref_primary_10_3390_designs7010026
crossref_primary_10_1021_acsami_5c04070
crossref_primary_10_1016_j_jechem_2020_08_063
crossref_primary_10_1002_ange_202313695
crossref_primary_10_25159_3005_2602_16430
crossref_primary_10_1016_j_ijhydene_2022_10_026
crossref_primary_10_1016_j_jpowsour_2024_234219
crossref_primary_10_1016_j_ijhydene_2020_09_243
crossref_primary_10_1016_j_jcat_2024_115310
crossref_primary_10_1016_j_cej_2024_149261
crossref_primary_10_1016_j_jallcom_2023_170411
crossref_primary_10_1016_j_apsusc_2022_155655
crossref_primary_10_3390_catal12010043
crossref_primary_10_1016_j_desal_2021_115420
crossref_primary_10_1002_smll_202304863
crossref_primary_10_1016_j_carbon_2024_119171
crossref_primary_10_3762_bjnano_13_26
crossref_primary_10_1016_j_jelechem_2021_115555
crossref_primary_10_1016_j_nxsust_2025_100185
crossref_primary_10_1016_j_jtice_2022_104591
crossref_primary_10_1002_chem_202003613
crossref_primary_10_1039_D5EY00147A
crossref_primary_10_1002_smll_202101163
crossref_primary_10_1039_D3SC03735E
crossref_primary_10_1016_j_scib_2022_11_010
crossref_primary_10_1016_j_apsusc_2022_152934
crossref_primary_10_3389_fchem_2022_872117
crossref_primary_10_1016_j_ijhydene_2023_06_296
crossref_primary_10_1002_smtd_202200855
crossref_primary_10_1002_adfm_202308229
crossref_primary_10_3389_fenrg_2020_00060
crossref_primary_10_1016_j_matdes_2021_110171
crossref_primary_10_1016_j_seppur_2019_116124
crossref_primary_10_1002_ese3_833
crossref_primary_10_3762_bjnano_16_104
crossref_primary_10_1016_j_jallcom_2023_172286
crossref_primary_10_1002_adfm_202504272
crossref_primary_10_1016_j_ijhydene_2023_07_181
crossref_primary_10_1016_j_apsusc_2024_161529
crossref_primary_10_1063_5_0268691
crossref_primary_10_1002_adfm_202401472
crossref_primary_10_1002_smll_202503008
crossref_primary_10_1002_sstr_202000017
crossref_primary_10_1002_adma_202302007
crossref_primary_10_1007_s12274_022_4424_1
crossref_primary_10_1016_j_wri_2023_100230
crossref_primary_10_1016_j_jechem_2021_10_019
crossref_primary_10_1002_cssc_202301859
crossref_primary_10_1016_j_ijhydene_2023_07_066
crossref_primary_10_1002_adfm_202308345
crossref_primary_10_1007_s12274_024_6924_7
crossref_primary_10_1016_j_jece_2021_105182
crossref_primary_10_1111_jace_19517
crossref_primary_10_1016_j_jpowsour_2024_234438
crossref_primary_10_1002_adfm_202003261
crossref_primary_10_1002_sstr_202200235
crossref_primary_10_1016_j_ceramint_2022_02_066
crossref_primary_10_1016_j_matchemphys_2020_123167
crossref_primary_10_1002_adma_202106436
crossref_primary_10_1016_j_cej_2025_167074
crossref_primary_10_1039_D5DT01610J
crossref_primary_10_1016_j_carbon_2023_118141
crossref_primary_10_1016_j_mtcomm_2024_109763
crossref_primary_10_1016_j_electacta_2021_139119
crossref_primary_10_1016_j_ijhydene_2024_03_138
crossref_primary_10_1016_j_nanoen_2024_109820
crossref_primary_10_3390_nano11123273
crossref_primary_10_1002_adma_202005922
crossref_primary_10_1016_j_est_2022_106105
crossref_primary_10_1016_j_ijhydene_2022_11_298
crossref_primary_10_1016_j_cej_2021_131526
crossref_primary_10_1186_s11671_021_03590_3
crossref_primary_10_3390_catal13050914
crossref_primary_10_1016_j_mtsust_2023_100434
crossref_primary_10_1007_s12598_021_01873_3
crossref_primary_10_1002_anie_202313695
crossref_primary_10_1002_smll_202312216
crossref_primary_10_3390_molecules26061621
crossref_primary_10_1016_j_ijhydene_2022_09_036
crossref_primary_10_1002_cnma_202300104
crossref_primary_10_1039_D0QM00946F
crossref_primary_10_1246_bcsj_20210029
crossref_primary_10_1016_j_cej_2020_124493
crossref_primary_10_1016_j_jece_2021_105515
Cites_doi 10.1021/cs500070x
10.1002/anie.201504376
10.1002/aenm.201700193
10.1002/adfm.201600076
10.1002/adma.201401877
10.1016/j.electacta.2016.10.015
10.1039/C5EE03440J
10.1002/cphc.201500174
10.1039/C6TA10548C
10.1002/smll.201401598
10.1021/ef0500538
10.1002/anie.201410050
10.1038/nnano.2008.215
10.1016/j.nanoen.2018.05.033
10.1039/C4EE00370E
10.1021/acsami.7b13918
10.1002/anie.201506727
10.1021/acsami.6b03849
10.1021/nn501434a
10.1021/nn506701x
10.1002/adfm.201803291
10.1039/C5TA09322H
10.1002/adfm.201300844
10.1002/adma.201503342
10.1021/acs.nanolett.6b02203
10.1002/ange.201709901
10.1002/celc.201500239
10.1002/anie.201607405
10.1016/j.nanoen.2015.05.017
10.1021/cr300367d
10.1039/C4CC05285D
10.1016/j.electacta.2016.09.158
10.1021/acscatal.8b01164
10.1016/j.ijhydene.2017.11.048
10.1039/C6TA08363C
10.1039/C6TA01900E
10.1021/acs.nanolett.5b02205
10.1016/j.jpowsour.2018.08.027
10.1039/C6NR01867J
10.1039/c3nr04975b
10.1039/C6QM00269B
10.1021/jacs.5b07924
10.1021/acs.jpclett.5b00306
10.1002/adma.201505875
10.1039/C5TA06840A
10.1016/j.electacta.2017.09.177
10.1021/ja201269b
10.1002/aenm.201600423
10.1039/C4MH00040D
10.1021/acsami.8b07133
10.1039/B809990C
10.1002/adfm.201300510
10.1002/anie.201602627
10.1038/35104634
10.1002/smll.201801717
10.1021/acsami.8b08239
10.1039/C6TA08955K
10.1021/cm970412f
10.1038/nmat1752
10.1021/acs.chemmater.7b01897
10.1038/nmat1849
10.1016/j.mtphys.2018.11.007
10.1016/j.jcis.2017.11.026
10.1002/adma.201202920
10.1002/cssc.201402454
10.1016/j.nanoen.2015.07.008
10.1039/C5CP04238K
10.1021/acsami.5b00652
10.1038/nnano.2009.67
10.1039/C5EE03503A
10.1002/celc.201600325
10.1021/acsami.6b06031
10.1016/j.carbon.2016.01.019
10.1016/j.electacta.2015.09.147
10.1016/j.carbon.2018.07.006
10.1002/advs.201600208
10.1002/anie.201311111
10.1039/C3CS60468C
10.1038/s41570-016-0003
10.1002/cssc.201701880
10.1039/C4EE03240C
10.1016/j.ijhydene.2017.01.186
10.1039/C6TA05165K
10.1016/j.electacta.2017.08.151
10.1021/acsami.6b01903
10.1039/C5QI00216H
10.1016/j.electacta.2016.06.019
10.1039/C6TA05485D
10.1016/j.nanoen.2016.04.018
10.1002/adfm.201502217
10.1016/j.jpowsour.2015.07.077
10.1039/C6TA07009D
10.1002/anie.201501419
10.1021/cs5005294
10.1039/C5TA01805F
10.1039/C4CC08491H
10.1002/adma.201600484
10.1039/C5CC01240F
10.1039/C6TA07214C
10.1021/ja5127165
10.1039/C6TA04365H
10.1021/acsnano.5b00087
10.1088/1361-6528/aac9ae
10.1002/cphc.201600392
10.1021/acssuschemeng.8b01614
10.1002/anie.201809315
10.1002/anie.201505691
10.1016/j.carbon.2018.06.028
10.1016/j.jpowsour.2018.06.099
10.1038/ncomms14969
10.1021/acscatal.6b01951
10.1021/acs.jpcc.5b03870
10.1039/C6CC04220A
10.1039/C5TA00622H
10.1002/cssc.201600904
10.1021/acssuschemeng.7b00153
10.1021/acsenergylett.8b00110
10.1021/jacs.5b01330
10.1002/advs.201700603
10.1038/am.2016.44
10.1002/adma.201602912
10.1016/j.electacta.2018.06.168
10.1021/acsnano.5b02420
10.1002/adma.201700017
10.1038/nmat3001
10.1039/C6CC03876J
10.1021/acsenergylett.8b00522
10.1016/j.chempr.2017.12.005
10.1038/ncomms5695
10.1016/j.electacta.2016.02.081
10.1039/C4CS00448E
10.1039/C7TA07340B
10.1002/cctc.201500701
10.1021/acs.chemmater.5b04654
10.1002/anie.201404161
10.1016/j.nanoen.2015.10.014
10.1039/C5TA09507G
10.1016/j.jpowsour.2017.07.107
10.1021/cm500347r
10.1021/ja109793s
10.1016/j.apcatb.2016.02.003
10.1039/C5EE03801D
10.1021/acsenergylett.8b00739
10.1002/adfm.201300318
10.1021/jacs.6b08491
10.1002/smtd.201700353
10.1039/c2jm33727d
10.1002/admi.201600332
10.1002/admi.201601029
10.1002/adma.201501692
10.1016/j.electacta.2016.11.104
10.1016/j.electacta.2017.02.146
10.1039/C7EE03031B
10.1002/anie.201406468
10.1039/c0ee00683a
10.1039/C5TA02656C
10.1016/j.carbon.2018.06.008
10.1039/C4CY00075G
10.1126/science.1258307
10.1039/C5EE03316K
10.1039/C6NR05564H
10.1016/j.jpowsour.2017.02.017
10.1038/nnano.2007.451
10.1021/acsnano.7b02060
10.1016/j.ijhydene.2017.01.089
10.1002/anie.201409524
10.1039/C4TA06458E
10.1016/j.carbon.2016.12.004
10.1039/C5SC04425A
10.1016/j.nanoen.2018.02.023
10.1002/anie.201507381
10.1021/jp990957s
10.1021/ja3030565
10.1021/acssuschemeng.8b00425
10.1002/asia.201701616
10.1021/acsami.5b08620
10.1039/C5NR01896J
10.1038/s41467-018-04746-z
10.1126/science.1246501
10.1039/C7CS00904F
10.1039/C5NR03704B
10.1021/acscatal.7b04091
10.1016/j.nanoen.2016.09.040
10.1021/acscatal.6b02479
10.1002/adfm.201600636
10.1021/acsnano.6b04725
10.1021/acssuschemeng.5b00700
10.1002/adma.201200498
10.1021/am506545g
10.1021/la501052m
10.1002/aenm.201600116
10.1039/C8NR01090K
10.1016/j.ijhydene.2007.05.027
10.1002/adma.201802011
10.1038/ncomms4783
10.1021/ja4081056
10.1021/acsami.7b09108
10.1039/C6TA05196K
10.1002/cssc.201501599
10.1039/C4CS00141A
10.1002/adfm.201801332
10.1002/anie.201200699
10.1039/C7TA07672J
10.1038/s41467-019-09596-x
10.1021/acssuschemeng.6b00859
10.1039/C6QI00101G
10.1038/ncomms9668
10.1021/acsenergylett.6b00247
10.1039/C4CC02364A
10.1038/nchem.1634
10.1002/adma.201104502
10.1016/j.electacta.2018.07.046
10.1039/C5CC05644F
10.1002/advs.201500120
10.1021/acscatal.7b02079
10.1002/anie.201307475
10.1021/acsenergylett.7b00349
10.1016/j.pmatsci.2018.03.007
10.1016/j.mattod.2017.03.019
10.1002/chem.201703493
10.1039/C5TA02792F
10.1016/j.nanoen.2015.01.027
10.1016/j.cej.2017.01.032
10.1039/C3TA13584E
10.1002/chem.201504875
10.1039/C5TA05372B
10.1039/C8CC09368G
10.1021/jacs.5b01072
10.1002/adfm.201500194
10.1016/j.electacta.2018.01.203
10.1016/j.mtchem.2016.10.003
10.1039/C4CC05698A
10.1016/j.jcis.2017.03.087
10.1039/C5TA03905C
10.1002/anie.201510495
10.1039/C6SC03356C
10.1002/ange.201408876
10.1021/acsami.8b09941
10.1002/celc.201701210
10.1016/j.jcis.2016.10.038
10.1039/C5TA02974K
10.1038/srep17542
10.1021/ja511572q
10.1002/adma.201401427
10.1039/C4TA03962A
10.1038/s41929-018-0195-1
10.1038/ncomms8992
10.1039/C8TA02835D
10.1039/C6CC06180J
10.1002/advs.201500286
10.1002/advs.201600380
10.1039/C5CS00434A
10.1039/c2cc33397j
10.1016/j.electacta.2016.10.055
10.1039/C4TA06071G
10.1039/C5TA01103E
10.1002/chem.201602616
10.1021/acs.nanolett.5b04331
10.1039/c2ee22238h
10.1039/C6TA05086G
10.1039/C6TA01601D
10.1002/smll.201603013
10.1038/s41467-018-03896-4
10.1016/j.electacta.2015.05.017
10.1038/srep31202
10.1039/c3cc44076a
10.1002/anie.201409080
10.1002/anie.201208086
10.1039/C6TA02876D
10.1016/j.catcom.2016.07.010
10.1002/aenm.201801193
10.1002/adma.201505597
10.1002/adfm.201401814
10.1039/C8TA05124K
10.1016/j.carbon.2017.05.092
10.1002/chem.201501964
10.1002/adma.201605957
10.1002/adma.201803621
10.1002/celc.201600001
10.1021/acs.chemmater.7b00114
10.1016/j.nanoen.2014.09.022
10.1002/chem.201501120
10.1002/adfm.201401328
10.1002/advs.201700733
10.1021/ja403440e
10.1016/j.ijhydene.2017.06.083
10.1039/C4NR04866K
10.1002/celc.201700479
10.1039/C5TA02077H
10.1021/acsami.6b13578
10.1016/j.energy.2014.07.062
10.1016/j.rser.2012.01.029
10.1021/acs.chemmater.6b01980
10.1021/acs.chemmater.5b03997
10.1021/acsami.6b01580
10.1021/acs.chemmater.5b00331
10.1002/adma.201803762
10.1002/adma.201702211
10.1038/ncomms6714
10.1016/j.colsurfa.2016.09.011
10.1039/C6TA09052D
10.1039/C4TA02254H
10.1021/acsami.7b06727
10.1002/adma.201704156
10.1016/j.electacta.2018.07.105
10.1021/cs200652y
10.1039/C7TA08621K
10.1038/nenergy.2016.130
10.1126/science.1171245
10.1039/C5TA10428A
10.1016/j.carbon.2016.06.080
10.1039/C5EE02460A
10.1016/j.pmatsci.2018.01.003
10.1038/ncomms11204
10.1016/j.carbon.2016.06.074
10.1016/j.electacta.2018.07.193
10.1016/j.jpowsour.2012.01.023
10.1002/adma.201502696
10.1038/nature11475
10.1016/j.jpowsour.2015.11.013
10.1002/adfm.201601420
10.1016/j.nanoen.2016.08.027
10.1021/acsami.7b12038
10.1021/ja408329q
10.1016/j.jpowsour.2015.03.131
10.1039/C5TA05589J
10.1016/j.jpowsour.2015.05.080
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201903415
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 31496036
10_1002_adma_201903415
ADMA201903415
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Australian Research Council
  funderid: FT150100479
– fundername: Jiangsu Planned Projects for Postdoctoral Research Funds
  funderid: 1601026A
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2019B16214
– fundername: China Postdoctoral Science Foundation
  funderid: 2015M580387; 2016T90414
– fundername: Australian National Fabrication Facility
– fundername: National Natural Science Foundation of China
  funderid: 51802077
– fundername: China Postdoctoral Science Foundation
  grantid: 2015M580387
– fundername: Jiangsu Planned Projects for Postdoctoral Research Funds
  grantid: 1601026A
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2019B16214
– fundername: China Postdoctoral Science Foundation
  grantid: 2016T90414
– fundername: Australian Research Council
  grantid: FT150100479
– fundername: National Natural Science Foundation of China
  grantid: 51802077
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYOK
ABTAH
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4765-ee62c0e3f2f05bf8bad530683dc8fa665e217e36aa34c5d28380f7ec8bd776203
IEDL.DBID DRFUL
ISICitedReferencesCount 380
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000485505900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Sun Nov 09 09:27:38 EST 2025
Sun Nov 30 03:50:21 EST 2025
Thu Apr 03 07:09:12 EDT 2025
Sat Nov 29 07:23:17 EST 2025
Tue Nov 18 22:20:40 EST 2025
Wed Jan 22 16:40:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 48
Keywords electrocatalysts
hybrid structures
nanoparticles
graphene
hydrogen evolution reaction
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4765-ee62c0e3f2f05bf8bad530683dc8fa665e217e36aa34c5d28380f7ec8bd776203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7854-927X
PMID 31496036
PQID 2317574598
PQPubID 2045203
PageCount 34
ParticipantIDs proquest_miscellaneous_2287533234
proquest_journals_2317574598
pubmed_primary_31496036
crossref_primary_10_1002_adma_201903415
crossref_citationtrail_10_1002_adma_201903415
wiley_primary_10_1002_adma_201903415_ADMA201903415
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2016 2015; 55 27
2015 2017; 18 5
2012 2016; 24 6
2015 2015; 3 15
2016 2018; 1 1
2014; 26
2016 2018; 4 10
2014 2014 2015 2014; 53 53 137 7
2012; 488
2017 2016; 29 4
2014 2015 2015; 7 137 3
2014 2015; 5 15
2015 2016; 6 6
2018; 6
2018; 8
2018; 3
2016 2017 2015 2018 2014; 188 347 17 43 30
2013 2017 2018; 23 42 283
2018; 5
2018; 4
2015; 137
2015 2016 2015 2017 2016 2016; 27 28 11 2 28 26
2013; 52
2016 2016; 16 8
2013 2018; 113 96
2015 2018 2016; 8 2 9
2007 2018; 32 8
2019 2015; 10 3
2018; 30
2006 2016 2015 2016; 5 28 3 28
1998; 10
2016 2014; 28 4
2014; 126
2001; 414
2016; 45
2018; 28
2015; 51
2016 2016 2016 2018 2015; 211 4 304 5 2
2015; 54
2016; 10
2016 2015 2016; 3 51 193
1999; 103
2017; 251
2009 2017; 4 13
2016 2016; 3 1–2
2011; 133
2016; 4
2016 2017; 4 1
2016; 6
2016; 7
2005; 19
2016; 1
2016; 3
2016; 219
2013 2014; 5 345
2016 2016 2017 2017 2015 2016 2016 2016 2018; 30 4 363 5 7 22 28 8 6
2014 2016 2012 2014; 8 4 51 26
2018 2015; 3 9
2016; 28
2018; 10
2015 2018; 8 130
2015 2018; 347 94
2016; 26
2016; 8
2016; 9
2018; 14
2014 2016 2014 2018 2016 2018; 2 52 50 283 17 11
2016 2017; 22 20
2014 2016 2014 2015 2015; 2 4 6 182 5
2017; 7
2017; 8
2016 2016 2014; 9 9 6
2013; 25
2017; 4
2012 2013; 51 135
2017 2017; 29 5
2019; 55
2019 2018; 31 9
2018; 400
2011; 10
2017 2017; 4 114
2012 2014; 2 43
2014 2015 2016 2017; 24 54 4 42
2018 2014 2014; 47 26 24
2017; 9
2017 2012; 1 16
2014 2015 2018; 43 44 7
2015; 171
2011 2014; 133 1
2014; 5
2014; 4
2018; 139
2018; 138
2015; 297
2016 2017 2018 2014; 6 4 29 5
2015 2012; 6 48
2014; 50
2017; 487
2012 2012; 134 24
2009; 324
2014 2018 2018 2015 2016 2017; 74 284 43 16 219 499
2014; 53
2013 2018 2018 2017 2015 2017 2018 2015 2015; 23 3 283 315 3 5 13 9 9
2015; 2
2015; 12
2018 2017; 11 5
2015; 16
2017 2016 2016 2016; 5 4 4 8
2015; 3
2012 2011; 5 4
2017 2015; 121 3
2015; 11
2016; 52
2015 2017 2017 2015; 6 8 7 137
2015 2018; 7 265
2008 2018 2012 2012; 3 6 204 22
2017 2018 2017 2017 2016 2018 2015; 29 10 232 9 100 6 285
2015; 7
2013 2016; 49 3
2016; 55
2007 2008; 6 3
2013 2016; 135 16
2015; 25
2015; 27
2018 2017 2016 2016 2017 2017; 47 255 4 4 5 29
2015 2016; 3 4
2016 2016 2016 2015 2015 2014 2014 2016 2015 2016 2015 2015; 8 107 222 3 7 6 2 22 119 8 51 293
2017; 11
2016 2016; 219 107
2016 2015 2015; 52 3 7
2015; 21
2016 2018 2017 2017 2019; 4 397 29 9 31
2016 2017 2018 2016 2018 2016 2017; 29 9 513 85 24 509 9
2013 2016 2018; 135 28 9
2016; 138
2018; 50
2009; 2
2018; 57
e_1_2_7_3_2
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_19_4
e_1_2_7_104_2
e_1_2_7_19_3
e_1_2_7_19_2
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_83_2
e_1_2_7_11_4
e_1_2_7_11_3
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_68_3
e_1_2_7_68_2
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_68_4
e_1_2_7_165_3
e_1_2_7_165_2
e_1_2_7_165_4
e_1_2_7_116_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_23_2
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_79_2
e_1_2_7_56_1
e_1_2_7_79_3
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_79_4
e_1_2_7_79_5
e_1_2_7_139_1
e_1_2_7_105_4
e_1_2_7_105_5
e_1_2_7_4_1
e_1_2_7_105_2
e_1_2_7_105_3
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_82_2
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_12_3
e_1_2_7_12_2
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_67_2
e_1_2_7_67_1
e_1_2_7_143_1
e_1_2_7_29_1
e_1_2_7_143_2
e_1_2_7_29_2
e_1_2_7_166_1
e_1_2_7_105_8
e_1_2_7_105_9
e_1_2_7_105_6
e_1_2_7_105_7
e_1_2_7_117_2
e_1_2_7_117_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_2
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_78_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_170_1
e_1_2_7_43_2
e_1_2_7_89_1
e_1_2_7_89_2
e_1_2_7_28_1
e_1_2_7_28_2
e_1_2_7_144_1
e_1_2_7_167_1
e_1_2_7_144_2
e_1_2_7_118_2
e_1_2_7_118_1
e_1_2_7_92_4
e_1_2_7_92_3
e_1_2_7_92_2
e_1_2_7_110_1
e_1_2_7_92_1
e_1_2_7_25_2
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_92_7
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_92_6
e_1_2_7_31_3
e_1_2_7_54_1
e_1_2_7_92_5
e_1_2_7_54_3
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_156_2
e_1_2_7_2_2
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_122_1
e_1_2_7_14_3
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_160_2
e_1_2_7_160_1
e_1_2_7_88_2
e_1_2_7_160_4
e_1_2_7_160_3
e_1_2_7_27_1
e_1_2_7_160_6
e_1_2_7_160_5
e_1_2_7_145_1
e_1_2_7_145_2
e_1_2_7_145_3
e_1_2_7_168_1
e_1_2_7_145_4
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_91_5
e_1_2_7_111_2
e_1_2_7_91_4
e_1_2_7_111_1
e_1_2_7_91_3
e_1_2_7_91_2
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_30_2
e_1_2_7_53_2
e_1_2_7_91_6
e_1_2_7_38_1
e_1_2_7_134_1
e_1_2_7_157_1
e_1_2_7_108_1
e_1_2_7_100_3
e_1_2_7_7_1
e_1_2_7_123_2
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_100_2
e_1_2_7_15_2
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_161_1
e_1_2_7_26_1
e_1_2_7_26_2
e_1_2_7_49_1
e_1_2_7_49_2
e_1_2_7_49_3
e_1_2_7_49_4
e_1_2_7_49_5
e_1_2_7_146_1
e_1_2_7_169_1
e_1_2_7_49_6
e_1_2_7_49_7
e_1_2_7_49_8
e_1_2_7_49_9
e_1_2_7_90_2
e_1_2_7_90_1
e_1_2_7_112_2
e_1_2_7_90_6
e_1_2_7_112_1
e_1_2_7_90_5
e_1_2_7_90_4
e_1_2_7_90_3
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_75_1
e_1_2_7_90_7
e_1_2_7_150_1
e_1_2_7_37_1
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_109_1
e_1_2_7_8_2
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_2
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_86_2
e_1_2_7_63_1
e_1_2_7_86_1
e_1_2_7_48_1
e_1_2_7_162_1
e_1_2_7_147_1
e_1_2_7_136_8
e_1_2_7_136_9
e_1_2_7_113_2
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_74_3
e_1_2_7_51_2
e_1_2_7_74_4
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_4
e_1_2_7_74_2
e_1_2_7_20_3
e_1_2_7_20_2
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_74_5
e_1_2_7_151_1
e_1_2_7_136_1
e_1_2_7_136_2
e_1_2_7_159_2
e_1_2_7_136_3
e_1_2_7_159_1
e_1_2_7_136_4
e_1_2_7_136_5
e_1_2_7_159_3
e_1_2_7_136_6
e_1_2_7_136_7
e_1_2_7_49_11
e_1_2_7_5_1
e_1_2_7_49_10
e_1_2_7_49_12
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_2
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_85_3
e_1_2_7_85_4
e_1_2_7_85_1
e_1_2_7_85_2
e_1_2_7_47_1
e_1_2_7_85_5
e_1_2_7_140_1
e_1_2_7_163_1
e_1_2_7_148_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_96_4
e_1_2_7_96_3
e_1_2_7_73_2
e_1_2_7_96_2
e_1_2_7_96_1
e_1_2_7_21_2
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_35_2
e_1_2_7_96_6
e_1_2_7_35_3
e_1_2_7_58_1
e_1_2_7_96_5
e_1_2_7_152_1
e_1_2_7_152_2
e_1_2_7_152_3
e_1_2_7_152_4
e_1_2_7_137_1
e_1_2_7_137_2
e_1_2_7_137_3
e_1_2_7_137_4
e_1_2_7_6_1
e_1_2_7_103_2
e_1_2_7_103_3
e_1_2_7_126_1
e_1_2_7_18_3
e_1_2_7_103_1
e_1_2_7_18_2
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_84_2
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_164_1
e_1_2_7_149_1
e_1_2_7_115_2
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_72_2
e_1_2_7_72_5
e_1_2_7_72_6
e_1_2_7_72_3
e_1_2_7_22_2
e_1_2_7_72_4
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_57_3
e_1_2_7_57_2
e_1_2_7_130_1
e_1_2_7_57_5
e_1_2_7_153_1
e_1_2_7_57_4
e_1_2_7_153_2
e_1_2_7_138_1
References_xml – volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 22 20
  start-page: 3588 425
  year: 2016 2017
  publication-title: Chem. ‐ Eur. J. Mater. Today
– volume: 55
  start-page: 1635
  year: 2019
  publication-title: Chem. Commun.
– volume: 488
  start-page: 294
  year: 2012
  publication-title: Nature
– volume: 5 345
  start-page: 362 1593
  year: 2013 2014
  publication-title: Nat. Chem. Science
– volume: 103
  start-page: 6484
  year: 1999
  publication-title: J. Phys. Chem. B
– volume: 43 44 7
  start-page: 6555 5148 121
  year: 2014 2015 2018
  publication-title: Chem. Soc. Rev. Chem. Soc. Rev. Mater. Today Phys.
– volume: 26
  start-page: 4397
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 297
  start-page: 45
  year: 2015
  publication-title: J. Power Sources
– volume: 51
  year: 2015
  publication-title: Chem. Commun.
– volume: 47 26 24
  start-page: 2165 5160 125
  year: 2018 2014 2014
  publication-title: Chem. Soc. Rev. Adv. Mater. Adv. Funct. Mater.
– volume: 133
  start-page: 2816
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2016
  publication-title: NPG Asia Mater.
– volume: 28 4
  start-page: 6197 1693
  year: 2016 2014
  publication-title: Adv. Mater. ACS Catal.
– volume: 3 1–2
  start-page: 969 32
  year: 2016 2016
  publication-title: Inorg. Chem. Front. Mater. Today Chem.
– volume: 8
  start-page: 3579
  year: 2018
  publication-title: ACS Catal.
– volume: 6 3
  start-page: 183 101
  year: 2007 2008
  publication-title: Nat. Mater. Nat. Nanotechnol.
– volume: 219 107
  start-page: 781 739
  year: 2016 2016
  publication-title: Electrochim. Acta Carbon
– volume: 10 3
  start-page: 1657
  year: 2019 2015
  publication-title: Nat. Commun. J. Mater. Chem. A
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 54
  start-page: 2100
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 138
  start-page: 169
  year: 2018
  publication-title: Carbon
– volume: 7 137 3
  start-page: 2414 2688
  year: 2014 2015 2015
  publication-title: ChemSusChem J. Am. Chem. Soc. J. Mater. Chem. A
– volume: 49 3
  start-page: 8896
  year: 2013 2016
  publication-title: Chem. Commun. Adv. Sci.
– volume: 29 10 232 9 100 6 285
  start-page: 5782 254 8065 236 393
  year: 2017 2018 2017 2017 2016 2018 2015
  publication-title: Chem. Mater. ACS Appl. Mater. Interfaces Electrochim. Acta ACS Appl. Mater. Interfaces Carbon ACS Sustainable Chem. Eng. J. Power Sources
– volume: 251
  start-page: 660
  year: 2017
  publication-title: Electrochim. Acta
– volume: 32 8
  start-page: 3797
  year: 2007 2018
  publication-title: Int. J. Hydrogen Energy Adv. Energy Mater.
– volume: 2 4 6 182 5
  start-page: 652
  year: 2014 2016 2014 2015 2015
  publication-title: J. Mater. Chem. A J. Mater. Chem. A ACS Appl. Mater. Interfaces Electrochim. Acta Sci. Rep.
– volume: 21
  year: 2015
  publication-title: Chem. ‐ Eur. J.
– volume: 9
  start-page: 3049
  year: 2016
  publication-title: ChemSusChem
– volume: 400
  start-page: 232
  year: 2018
  publication-title: J. Power Sources
– volume: 11
  start-page: 11
  year: 2015
  publication-title: Nano Energy
– volume: 55
  start-page: 2230
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 135 28 9
  start-page: 9267 2951 2551
  year: 2013 2016 2018
  publication-title: J. Am. Chem. Soc. Adv. Mater. Nat. Commun.
– volume: 6 4 29 5
  start-page: 7071 2643 3783
  year: 2016 2017 2018 2014
  publication-title: ACS Catal. ChemElectroChem Nanotechnology Nat. Commun.
– volume: 25
  start-page: 1814
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 719
  year: 2016
  publication-title: ChemElectroChem
– volume: 51 135
  start-page: 6131
  year: 2012 2013
  publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc.
– volume: 6 6
  start-page: 951 8069
  year: 2015 2016
  publication-title: J. Phys. Chem. Lett. ACS Catal.
– volume: 4
  start-page: 285
  year: 2018
  publication-title: Chem
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 2 52 50 283 17 11
  start-page: 7359 1146 2890 130
  year: 2014 2016 2014 2018 2016 2018
  publication-title: J. Mater. Chem. A Chem. Commun. Chem. Commun. Electrochim. Acta ChemPhysChem ChemSusChem
– volume: 8 107 222 3 7 6 2 22 119 8 51 293
  start-page: 711 1293 3140 5624 360 5969 1893 178
  year: 2016 2016 2016 2015 2015 2014 2014 2016 2015 2016 2015 2015
  publication-title: ACS Appl. Mater. Interfaces Carbon Electrochim. Acta ACS Sustainable Chem. Eng. Nanoscale Nanoscale J. Mater. Chem. A Chem. ‐ Eur. J. J. Phys. Chem. C ACS Appl. Mater. Interfaces Chem. Commun. J. Power Sources
– volume: 7 265
  start-page: 8083 497
  year: 2015 2018
  publication-title: ACS Appl. Mater. Interfaces Electrochim. Acta
– volume: 1 1
  start-page: 589 985
  year: 2016 2018
  publication-title: ACS Energy Lett. Nat. Catal.
– volume: 324
  start-page: 1312
  year: 2009
  publication-title: Science
– volume: 45
  start-page: 1529
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 219
  start-page: 604
  year: 2016
  publication-title: Electrochim. Acta
– volume: 171
  start-page: 72
  year: 2015
  publication-title: Electrochim. Acta
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 8
  year: 2016
  publication-title: Nanoscale
– volume: 4
  start-page: 2023
  year: 2014
  publication-title: Catal. Sci. Technol.
– volume: 19
  start-page: 2098
  year: 2005
  publication-title: Energy Fuels
– volume: 25
  start-page: 5799
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 50
  year: 2014
  publication-title: Chem. Commun.
– volume: 11 5
  start-page: 772 4560
  year: 2018 2017
  publication-title: Energy Environ. Sci. J. Mater. Chem. A
– volume: 3
  start-page: 1345
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 18 5
  start-page: 196
  year: 2015 2017
  publication-title: Nano Energy J. Mater. Chem. A
– volume: 54
  start-page: 6325
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 113 96
  start-page: 5782 51
  year: 2013 2018
  publication-title: Chem. Rev. Prog. Mater. Sci.
– volume: 7
  start-page: 6394
  year: 2017
  publication-title: ACS Catal.
– volume: 4 10
  start-page: 6313
  year: 2016 2018
  publication-title: ACS Sustainable Chem. Eng. ACS Appl. Mater. Interfaces
– volume: 5 4
  start-page: 8848 1113
  year: 2012 2011
  publication-title: Energy Environ. Sci. Energy Environ. Sci.
– volume: 3 9
  start-page: 1539 7407
  year: 2018 2015
  publication-title: ACS Energy Lett. ACS Nano
– volume: 8 130
  start-page: 862 198
  year: 2015 2018
  publication-title: Energy Environ. Sci. Angew. Chem.
– volume: 52
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 27 28 11 2 28 26
  start-page: 7086 8256 414 1355 549 3621
  year: 2015 2016 2015 2017 2016 2016
  publication-title: Adv. Mater. Adv. Mater. Small ACS Energy Lett. Chem. Mater. Adv. Funct. Mater.
– volume: 3 6 204 22
  start-page: 563 46
  year: 2008 2018 2012 2012
  publication-title: Nat. Nanotechnol. J. Mater. Chem. A J. Power Sources J. Mater. Chem.
– volume: 74 284 43 16 219 499
  start-page: 871 534 1424 1898 321 128
  year: 2014 2018 2018 2015 2016 2017
  publication-title: Energy Electrochim. Acta Int. J. Hydrogen Energy ChemPhysChem Electrochim. Acta J. Colloid Interface Sci.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 9 9 6
  start-page: 1468 472
  year: 2016 2016 2014
  publication-title: Energy Environ. Sci. ChemSusChem Nanoscale
– volume: 53 53 137 7
  start-page: 4372 6710 1587 1919
  year: 2014 2014 2015 2014
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. J. Am. Chem. Soc. Energy Environ. Sci.
– volume: 26
  start-page: 6785
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 23 42 283
  start-page: 5363 6665 1359
  year: 2013 2017 2018
  publication-title: Adv. Funct. Mater. Int. J. Hydrogen Energy Electrochim. Acta
– volume: 29 9 513 85 24 509 9
  start-page: 46 455 26 556 140
  year: 2016 2017 2018 2016 2018 2016 2017
  publication-title: Nano Energy ACS Appl. Mater. Interfaces J. Colloid Interface Sci. Catal. Commun. Chem. ‐ Eur. J. Colloids Surf. A ACS Appl. Mater. Interfaces
– volume: 24 6
  start-page: 5045
  year: 2012 2016
  publication-title: Adv. Mater. Adv. Energy Mater.
– volume: 137
  start-page: 5480
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 2693
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 6 8 7 137
  start-page: 7992 968 6983
  year: 2015 2017 2017 2015
  publication-title: Nat. Commun. Chem. Sci. Adv. Energy Mater. J. Am. Chem. Soc.
– volume: 188 347 17 43 30
  start-page: 217 220 3369 6990
  year: 2016 2017 2015 2018 2014
  publication-title: Appl. Catal., B J. Power Sources Phys. Chem. Chem. Phys. Int. J. Hydrogen Energy Langmuir
– volume: 23 3 283 315 3 5 13 9 9
  start-page: 5326 997 357 355 679 4698 931
  year: 2013 2018 2018 2017 2015 2017 2018 2015 2015
  publication-title: Adv. Funct. Mater. ACS Energy Lett. Electrochim. Acta Chem. Eng. J. J. Mater. Chem. A J. Mater. Chem. A Chem. ‐ Asian J. ACS Nano ACS Nano
– volume: 10
  start-page: 8851
  year: 2016
  publication-title: ACS Nano
– volume: 29 4
  start-page: 3092 3865
  year: 2017 2016
  publication-title: Chem. Mater. J. Mater. Chem. A
– volume: 27
  start-page: 2026
  year: 2015
  publication-title: Chem. Mater.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 12
  start-page: 666
  year: 2015
  publication-title: Nano Energy
– volume: 1 16
  start-page: 0003 2154
  year: 2017 2012
  publication-title: Nat. Rev. Chem. Renewable Sustainable Energy Rev.
– volume: 30 4 363 5 7 22 28 8 6
  start-page: 93 260 1014 3873 1737 6644
  year: 2016 2016 2017 2017 2015 2016 2016 2016 2018
  publication-title: Nano Energy J. Mater. Chem. A J. Power Sources J. Mater. Chem. A ChemCatChem Chem. ‐ Eur. J. Chem. Mater. ACS Appl. Mater. Interfaces ACS Sustainable Chem. Eng.
– volume: 133 1
  start-page: 7296 379
  year: 2011 2014
  publication-title: J. Am. Chem. Soc. Mater. Horiz.
– volume: 16 8
  start-page: 4691
  year: 2016 2016
  publication-title: Nano Lett. ACS Appl. Mater. Interfaces
– volume: 126
  year: 2014
  publication-title: Angew. Chem.
– volume: 135 16
  start-page: 1097
  year: 2013 2016
  publication-title: J. Am. Chem. Soc. Nano Lett.
– volume: 134 24
  start-page: 9082 5493
  year: 2012 2012
  publication-title: J. Am. Chem. Soc. Adv. Mater.
– volume: 8 2 9
  start-page: 3563 123
  year: 2015 2018 2016
  publication-title: Energy Environ. Sci. Small Methods Energy Environ. Sci.
– volume: 487
  start-page: 330
  year: 2017
  publication-title: J. Colloid Interface Sci.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 3
  start-page: 1941
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 5714
  year: 2014
  publication-title: Nat. Commun.
– volume: 28
  start-page: 9532
  year: 2016
  publication-title: Adv. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 3 51 193
  start-page: 2110 8323 268
  year: 2016 2015 2016
  publication-title: ChemElectroChem Chem. Commun. Electrochim. Acta
– volume: 5 15
  start-page: 4695 6015
  year: 2014 2015
  publication-title: Nat. Commun. Nano Lett.
– volume: 50
  start-page: 212
  year: 2018
  publication-title: Nano Energy
– volume: 52 3 7
  start-page: 9530 9587
  year: 2016 2015 2015
  publication-title: Chem. Commun. J. Mater. Chem. A ACS Appl. Mater. Interfaces
– volume: 4 397 29 9 31
  start-page: 6824 37
  year: 2016 2018 2017 2017 2019
  publication-title: J. Mater. Chem. A J. Power Sources Adv. Mater. ACS Appl. Mater. Interfaces Adv. Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 54
  start-page: 2131
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  year: 2015
  publication-title: Adv. Sci.
– volume: 10
  start-page: 260
  year: 1998
  publication-title: Chem. Mater.
– volume: 47 255 4 4 5 29
  start-page: 66 248 4771
  year: 2018 2017 2016 2016 2017 2017
  publication-title: Nano Energy Electrochim. Acta J. Mater. Chem. A J. Mater. Chem. A ACS Sustainable Chem. Eng. Adv. Mater.
– volume: 6 48
  start-page: 8668 7687
  year: 2015 2012
  publication-title: Nat. Commun. Chem. Commun.
– volume: 347 94
  start-page: 306
  year: 2015 2018
  publication-title: Science Prog. Mater. Sci.
– volume: 5 4 4 8
  start-page: 765 3947 6006
  year: 2017 2016 2016 2016
  publication-title: J. Mater. Chem. A J. Mater. Chem. A J. Mater. Chem. A Nanoscale
– volume: 10
  start-page: 424
  year: 2011
  publication-title: Nat. Mater.
– volume: 52
  start-page: 8810
  year: 2016
  publication-title: Chem. Commun.
– volume: 55 27
  start-page: 4234
  year: 2016 2015
  publication-title: Angew. Chem., Int. Ed. Adv. Mater.
– volume: 414
  start-page: 353
  year: 2001
  publication-title: Nature
– volume: 24 54 4 42
  start-page: 6123 9472 7811
  year: 2014 2015 2016 2017
  publication-title: Adv. Funct. Mater. Angew. Chem., Int. Ed. J. Mater. Chem. A Int. J. Hydrogen Energy
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 1690
  year: 2016
  publication-title: Chem. Sci.
– volume: 8
  start-page: 8107
  year: 2018
  publication-title: ACS Catal.
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 29 5
  year: 2017 2017
  publication-title: Adv. Mater. J. Mater. Chem. A
– volume: 16
  start-page: 357
  year: 2015
  publication-title: Nano Energy
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 478
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 1012
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 4
  start-page: 2658
  year: 2014
  publication-title: ACS Catal.
– volume: 211 4 304 5 2
  start-page: 322 146 273 1665
  year: 2016 2016 2016 2018 2015
  publication-title: Electrochim. Acta J. Mater. Chem. A J. Power Sources ChemElectroChem ChemElectroChem
– volume: 4 13
  start-page: 212
  year: 2009 2017
  publication-title: Nat. Nanotechnol. Small
– volume: 139
  start-page: 35
  year: 2018
  publication-title: Carbon
– volume: 3 4
  start-page: 8055
  year: 2015 2016
  publication-title: J. Mater. Chem. A J. Mater. Chem. A
– volume: 4 1
  start-page: 8204 973
  year: 2016 2017
  publication-title: J. Mater. Chem. A Mater. Chem. Front.
– volume: 11
  start-page: 5103
  year: 2017
  publication-title: ACS Nano
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 31 9
  start-page: 1460
  year: 2019 2018
  publication-title: Adv. Mater. Nat. Commun.
– volume: 3
  start-page: 5337
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 3 15
  start-page: 567
  year: 2015 2015
  publication-title: J. Mater. Chem. A Nano Energy
– volume: 28
  start-page: 5733
  year: 2016
  publication-title: Chem. Mater.
– volume: 26
  start-page: 2344
  year: 2014
  publication-title: Chem. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 121 3
  start-page: 163
  year: 2017 2015
  publication-title: Carbon J. Mater. Chem. A
– volume: 3
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 55
  start-page: 8416
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 8 4 51 26
  start-page: 5290 6186
  year: 2014 2016 2012 2014
  publication-title: ACS Nano J. Mater. Chem. A Angew. Chem., Int. Ed. Adv. Mater.
– volume: 25
  start-page: 756
  year: 2013
  publication-title: Adv. Mater.
– volume: 3
  start-page: 313
  year: 2016
  publication-title: Inorg. Chem. Front.
– volume: 2 43
  start-page: 781 7067
  year: 2012 2014
  publication-title: ACS Catal. Chem. Soc. Rev.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 2
  start-page: 148
  year: 2009
  publication-title: Energy Environ. Sci.
– volume: 7
  year: 2015
  publication-title: Nanoscale
– volume: 139
  start-page: 369
  year: 2018
  publication-title: Carbon
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5 28 3 28
  start-page: 909 29 215
  year: 2006 2016 2015 2016
  publication-title: Nat. Mater. Nano Energy J. Mater. Chem. A Adv. Mater.
– volume: 4 114
  start-page: 740
  year: 2017 2017
  publication-title: Adv. Mater. Interfaces Carbon
– ident: e_1_2_7_28_2
  doi: 10.1021/cs500070x
– ident: e_1_2_7_46_1
  doi: 10.1002/anie.201504376
– ident: e_1_2_7_19_3
  doi: 10.1002/aenm.201700193
– ident: e_1_2_7_72_6
  doi: 10.1002/adfm.201600076
– ident: e_1_2_7_103_2
  doi: 10.1002/adma.201401877
– ident: e_1_2_7_148_1
  doi: 10.1016/j.electacta.2016.10.015
– ident: e_1_2_7_81_1
  doi: 10.1039/C5EE03440J
– ident: e_1_2_7_91_4
  doi: 10.1002/cphc.201500174
– ident: e_1_2_7_104_2
  doi: 10.1039/C6TA10548C
– ident: e_1_2_7_72_3
  doi: 10.1002/smll.201401598
– ident: e_1_2_7_7_1
  doi: 10.1021/ef0500538
– ident: e_1_2_7_139_1
  doi: 10.1002/anie.201410050
– ident: e_1_2_7_145_1
  doi: 10.1038/nnano.2008.215
– ident: e_1_2_7_167_1
  doi: 10.1016/j.nanoen.2018.05.033
– ident: e_1_2_7_20_4
  doi: 10.1039/C4EE00370E
– ident: e_1_2_7_154_1
  doi: 10.1021/acsami.7b13918
– ident: e_1_2_7_168_1
  doi: 10.1002/anie.201506727
– ident: e_1_2_7_49_1
  doi: 10.1021/acsami.6b03849
– ident: e_1_2_7_137_1
  doi: 10.1021/nn501434a
– ident: e_1_2_7_105_9
  doi: 10.1021/nn506701x
– ident: e_1_2_7_4_1
  doi: 10.1002/adfm.201803291
– ident: e_1_2_7_85_1
  doi: 10.1039/C5TA09322H
– ident: e_1_2_7_103_3
  doi: 10.1002/adfm.201300844
– ident: e_1_2_7_72_1
  doi: 10.1002/adma.201503342
– ident: e_1_2_7_83_1
  doi: 10.1021/acs.nanolett.6b02203
– ident: e_1_2_7_153_2
  doi: 10.1002/ange.201709901
– ident: e_1_2_7_74_5
  doi: 10.1002/celc.201500239
– ident: e_1_2_7_143_1
  doi: 10.1002/anie.201607405
– ident: e_1_2_7_115_2
  doi: 10.1016/j.nanoen.2015.05.017
– ident: e_1_2_7_89_1
  doi: 10.1021/cr300367d
– ident: e_1_2_7_38_1
  doi: 10.1039/C4CC05285D
– ident: e_1_2_7_91_5
  doi: 10.1016/j.electacta.2016.09.158
– ident: e_1_2_7_97_1
  doi: 10.1021/acscatal.8b01164
– ident: e_1_2_7_91_3
  doi: 10.1016/j.ijhydene.2017.11.048
– ident: e_1_2_7_137_2
  doi: 10.1039/C6TA08363C
– ident: e_1_2_7_165_3
  doi: 10.1039/C6TA01900E
– ident: e_1_2_7_13_2
  doi: 10.1021/acs.nanolett.5b02205
– ident: e_1_2_7_125_1
  doi: 10.1016/j.jpowsour.2018.08.027
– ident: e_1_2_7_41_1
  doi: 10.1039/C6NR01867J
– ident: e_1_2_7_49_6
  doi: 10.1039/c3nr04975b
– ident: e_1_2_7_43_2
  doi: 10.1039/C6QM00269B
– ident: e_1_2_7_166_1
  doi: 10.1021/jacs.5b07924
– ident: e_1_2_7_26_1
  doi: 10.1021/acs.jpclett.5b00306
– ident: e_1_2_7_14_2
  doi: 10.1002/adma.201505875
– ident: e_1_2_7_106_1
  doi: 10.1039/C5TA06840A
– ident: e_1_2_7_160_2
  doi: 10.1016/j.electacta.2017.09.177
– ident: e_1_2_7_21_1
  doi: 10.1021/ja201269b
– ident: e_1_2_7_2_2
  doi: 10.1002/aenm.201600423
– ident: e_1_2_7_21_2
  doi: 10.1039/C4MH00040D
– ident: e_1_2_7_90_2
  doi: 10.1021/acsami.8b07133
– ident: e_1_2_7_6_1
  doi: 10.1039/B809990C
– ident: e_1_2_7_100_1
  doi: 10.1002/adfm.201300510
– ident: e_1_2_7_163_1
  doi: 10.1002/anie.201602627
– ident: e_1_2_7_5_1
  doi: 10.1038/35104634
– ident: e_1_2_7_52_1
  doi: 10.1002/smll.201801717
– ident: e_1_2_7_134_1
  doi: 10.1021/acsami.8b08239
– ident: e_1_2_7_136_4
  doi: 10.1039/C6TA08955K
– ident: e_1_2_7_61_1
  doi: 10.1021/cm970412f
– ident: e_1_2_7_11_1
  doi: 10.1038/nmat1752
– ident: e_1_2_7_90_1
  doi: 10.1021/acs.chemmater.7b01897
– ident: e_1_2_7_23_1
  doi: 10.1038/nmat1849
– ident: e_1_2_7_12_3
  doi: 10.1016/j.mtphys.2018.11.007
– ident: e_1_2_7_92_3
  doi: 10.1016/j.jcis.2017.11.026
– ident: e_1_2_7_69_1
  doi: 10.1002/adma.201202920
– ident: e_1_2_7_31_1
  doi: 10.1002/cssc.201402454
– ident: e_1_2_7_140_1
  doi: 10.1016/j.nanoen.2015.07.008
– ident: e_1_2_7_79_3
  doi: 10.1039/C5CP04238K
– ident: e_1_2_7_123_1
  doi: 10.1021/acsami.5b00652
– ident: e_1_2_7_67_1
  doi: 10.1038/nnano.2009.67
– ident: e_1_2_7_80_1
  doi: 10.1039/C5EE03503A
– ident: e_1_2_7_35_1
  doi: 10.1002/celc.201600325
– ident: e_1_2_7_49_10
  doi: 10.1021/acsami.6b06031
– ident: e_1_2_7_90_5
  doi: 10.1016/j.carbon.2016.01.019
– ident: e_1_2_7_57_4
  doi: 10.1016/j.electacta.2015.09.147
– ident: e_1_2_7_58_1
  doi: 10.1016/j.carbon.2018.07.006
– ident: e_1_2_7_78_1
  doi: 10.1002/advs.201600208
– ident: e_1_2_7_20_1
  doi: 10.1002/anie.201311111
– ident: e_1_2_7_12_1
  doi: 10.1039/C3CS60468C
– ident: e_1_2_7_3_1
  doi: 10.1038/s41570-016-0003
– ident: e_1_2_7_96_6
  doi: 10.1002/cssc.201701880
– ident: e_1_2_7_153_1
  doi: 10.1039/C4EE03240C
– ident: e_1_2_7_100_2
  doi: 10.1016/j.ijhydene.2017.01.186
– ident: e_1_2_7_160_4
  doi: 10.1039/C6TA05165K
– ident: e_1_2_7_128_1
  doi: 10.1016/j.electacta.2017.08.151
– ident: e_1_2_7_83_2
  doi: 10.1021/acsami.6b01903
– ident: e_1_2_7_36_1
  doi: 10.1039/C5QI00216H
– ident: e_1_2_7_74_1
  doi: 10.1016/j.electacta.2016.06.019
– ident: e_1_2_7_160_3
  doi: 10.1039/C6TA05485D
– ident: e_1_2_7_92_1
  doi: 10.1016/j.nanoen.2016.04.018
– ident: e_1_2_7_120_1
  doi: 10.1002/adfm.201502217
– ident: e_1_2_7_129_1
  doi: 10.1016/j.jpowsour.2015.07.077
– ident: e_1_2_7_74_2
  doi: 10.1039/C6TA07009D
– ident: e_1_2_7_135_1
  doi: 10.1002/anie.201501419
– ident: e_1_2_7_45_1
  doi: 10.1021/cs5005294
– ident: e_1_2_7_99_1
  doi: 10.1039/C5TA01805F
– ident: e_1_2_7_49_11
  doi: 10.1039/C4CC08491H
– ident: e_1_2_7_72_2
  doi: 10.1002/adma.201600484
– ident: e_1_2_7_35_2
  doi: 10.1039/C5CC01240F
– ident: e_1_2_7_136_2
  doi: 10.1039/C6TA07214C
– ident: e_1_2_7_31_2
  doi: 10.1021/ja5127165
– ident: e_1_2_7_51_2
  doi: 10.1039/C6TA04365H
– ident: e_1_2_7_105_8
  doi: 10.1021/acsnano.5b00087
– ident: e_1_2_7_152_3
  doi: 10.1088/1361-6528/aac9ae
– ident: e_1_2_7_96_5
  doi: 10.1002/cphc.201600392
– ident: e_1_2_7_90_6
  doi: 10.1021/acssuschemeng.8b01614
– ident: e_1_2_7_142_1
  doi: 10.1002/anie.201809315
– ident: e_1_2_7_32_1
  doi: 10.1002/anie.201505691
– ident: e_1_2_7_131_1
  doi: 10.1016/j.carbon.2018.06.028
– ident: e_1_2_7_85_2
  doi: 10.1016/j.jpowsour.2018.06.099
– ident: e_1_2_7_162_1
  doi: 10.1038/ncomms14969
– ident: e_1_2_7_152_1
  doi: 10.1021/acscatal.6b01951
– ident: e_1_2_7_49_9
  doi: 10.1021/acs.jpcc.5b03870
– ident: e_1_2_7_54_1
  doi: 10.1039/C6CC04220A
– ident: e_1_2_7_51_1
  doi: 10.1039/C5TA00622H
– ident: e_1_2_7_108_1
  doi: 10.1002/cssc.201600904
– ident: e_1_2_7_160_5
  doi: 10.1021/acssuschemeng.7b00153
– ident: e_1_2_7_105_2
  doi: 10.1021/acsenergylett.8b00110
– ident: e_1_2_7_19_4
  doi: 10.1021/jacs.5b01330
– ident: e_1_2_7_127_1
  doi: 10.1002/advs.201700603
– ident: e_1_2_7_155_1
  doi: 10.1038/am.2016.44
– ident: e_1_2_7_48_1
  doi: 10.1002/adma.201602912
– ident: e_1_2_7_105_3
  doi: 10.1016/j.electacta.2018.06.168
– ident: e_1_2_7_73_2
  doi: 10.1021/acsnano.5b02420
– ident: e_1_2_7_113_1
  doi: 10.1002/adma.201700017
– ident: e_1_2_7_64_1
  doi: 10.1038/nmat3001
– ident: e_1_2_7_37_1
  doi: 10.1039/C6CC03876J
– ident: e_1_2_7_132_1
  doi: 10.1021/acsenergylett.8b00522
– ident: e_1_2_7_114_1
  doi: 10.1016/j.chempr.2017.12.005
– ident: e_1_2_7_13_1
  doi: 10.1038/ncomms5695
– ident: e_1_2_7_35_3
  doi: 10.1016/j.electacta.2016.02.081
– ident: e_1_2_7_12_2
  doi: 10.1039/C4CS00448E
– ident: e_1_2_7_156_2
  doi: 10.1039/C7TA07340B
– ident: e_1_2_7_136_5
  doi: 10.1002/cctc.201500701
– ident: e_1_2_7_136_7
  doi: 10.1021/acs.chemmater.5b04654
– ident: e_1_2_7_20_2
  doi: 10.1002/anie.201404161
– ident: e_1_2_7_156_1
  doi: 10.1016/j.nanoen.2015.10.014
– ident: e_1_2_7_165_2
  doi: 10.1039/C5TA09507G
– ident: e_1_2_7_136_3
  doi: 10.1016/j.jpowsour.2017.07.107
– ident: e_1_2_7_95_1
  doi: 10.1021/cm500347r
– ident: e_1_2_7_66_1
  doi: 10.1021/ja109793s
– ident: e_1_2_7_79_1
  doi: 10.1016/j.apcatb.2016.02.003
– ident: e_1_2_7_18_1
  doi: 10.1039/C5EE03801D
– ident: e_1_2_7_73_1
  doi: 10.1021/acsenergylett.8b00739
– ident: e_1_2_7_105_1
  doi: 10.1002/adfm.201300318
– ident: e_1_2_7_169_1
  doi: 10.1021/jacs.6b08491
– ident: e_1_2_7_159_2
  doi: 10.1002/smtd.201700353
– ident: e_1_2_7_145_4
  doi: 10.1039/c2jm33727d
– ident: e_1_2_7_65_1
  doi: 10.1002/admi.201600332
– ident: e_1_2_7_111_1
  doi: 10.1002/admi.201601029
– ident: e_1_2_7_143_2
  doi: 10.1002/adma.201501692
– ident: e_1_2_7_49_3
  doi: 10.1016/j.electacta.2016.11.104
– ident: e_1_2_7_90_3
  doi: 10.1016/j.electacta.2017.02.146
– ident: e_1_2_7_104_1
  doi: 10.1039/C7EE03031B
– ident: e_1_2_7_94_1
  doi: 10.1002/anie.201406468
– ident: e_1_2_7_24_2
  doi: 10.1039/c0ee00683a
– ident: e_1_2_7_112_2
  doi: 10.1039/C5TA02656C
– ident: e_1_2_7_121_1
  doi: 10.1016/j.carbon.2018.06.008
– ident: e_1_2_7_133_1
  doi: 10.1039/C4CY00075G
– ident: e_1_2_7_9_2
  doi: 10.1126/science.1258307
– ident: e_1_2_7_159_3
  doi: 10.1039/C5EE03316K
– ident: e_1_2_7_165_4
  doi: 10.1039/C6NR05564H
– ident: e_1_2_7_79_2
  doi: 10.1016/j.jpowsour.2017.02.017
– ident: e_1_2_7_23_2
  doi: 10.1038/nnano.2007.451
– ident: e_1_2_7_47_1
  doi: 10.1021/acsnano.7b02060
– ident: e_1_2_7_68_4
  doi: 10.1016/j.ijhydene.2017.01.089
– ident: e_1_2_7_161_1
  doi: 10.1002/anie.201409524
– ident: e_1_2_7_93_1
  doi: 10.1039/C4TA06458E
– ident: e_1_2_7_111_2
  doi: 10.1016/j.carbon.2016.12.004
– ident: e_1_2_7_101_1
  doi: 10.1039/C5SC04425A
– ident: e_1_2_7_160_1
  doi: 10.1016/j.nanoen.2018.02.023
– ident: e_1_2_7_68_2
  doi: 10.1002/anie.201507381
– ident: e_1_2_7_62_1
  doi: 10.1021/jp990957s
– ident: e_1_2_7_144_1
  doi: 10.1021/ja3030565
– ident: e_1_2_7_136_9
  doi: 10.1021/acssuschemeng.8b00425
– ident: e_1_2_7_105_7
  doi: 10.1002/asia.201701616
– ident: e_1_2_7_54_3
  doi: 10.1021/acsami.5b08620
– ident: e_1_2_7_49_5
  doi: 10.1039/C5NR01896J
– ident: e_1_2_7_14_3
  doi: 10.1038/s41467-018-04746-z
– ident: e_1_2_7_88_1
  doi: 10.1126/science.1246501
– ident: e_1_2_7_103_1
  doi: 10.1039/C7CS00904F
– ident: e_1_2_7_158_1
  doi: 10.1039/C5NR03704B
– ident: e_1_2_7_116_1
  doi: 10.1021/acscatal.7b04091
– ident: e_1_2_7_136_1
  doi: 10.1016/j.nanoen.2016.09.040
– ident: e_1_2_7_26_2
  doi: 10.1021/acscatal.6b02479
– ident: e_1_2_7_164_1
  doi: 10.1002/adfm.201600636
– ident: e_1_2_7_170_1
  doi: 10.1021/acsnano.6b04725
– ident: e_1_2_7_49_4
  doi: 10.1021/acssuschemeng.5b00700
– ident: e_1_2_7_144_2
  doi: 10.1002/adma.201200498
– ident: e_1_2_7_57_3
  doi: 10.1021/am506545g
– ident: e_1_2_7_79_5
  doi: 10.1021/la501052m
– ident: e_1_2_7_119_1
  doi: 10.1002/aenm.201600116
– ident: e_1_2_7_102_1
  doi: 10.1039/C8NR01090K
– ident: e_1_2_7_8_1
  doi: 10.1016/j.ijhydene.2007.05.027
– ident: e_1_2_7_147_1
  doi: 10.1002/adma.201802011
– ident: e_1_2_7_152_4
  doi: 10.1038/ncomms4783
– ident: e_1_2_7_16_2
  doi: 10.1021/ja4081056
– ident: e_1_2_7_92_2
  doi: 10.1021/acsami.7b09108
– ident: e_1_2_7_57_2
  doi: 10.1039/C6TA05196K
– ident: e_1_2_7_18_2
  doi: 10.1002/cssc.201501599
– ident: e_1_2_7_117_2
  doi: 10.1039/C4CS00141A
– ident: e_1_2_7_150_1
  doi: 10.1002/adfm.201801332
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.201200699
– ident: e_1_2_7_113_2
  doi: 10.1039/C7TA07672J
– ident: e_1_2_7_118_1
  doi: 10.1038/s41467-019-09596-x
– ident: e_1_2_7_53_1
  doi: 10.1021/acssuschemeng.6b00859
– ident: e_1_2_7_86_1
  doi: 10.1039/C6QI00101G
– ident: e_1_2_7_25_1
  doi: 10.1038/ncomms9668
– ident: e_1_2_7_17_1
  doi: 10.1021/acsenergylett.6b00247
– ident: e_1_2_7_96_3
  doi: 10.1039/C4CC02364A
– ident: e_1_2_7_9_1
  doi: 10.1038/nchem.1634
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.201104502
– ident: e_1_2_7_96_4
  doi: 10.1016/j.electacta.2018.07.046
– ident: e_1_2_7_56_1
  doi: 10.1039/C5CC05644F
– ident: e_1_2_7_60_1
  doi: 10.1002/advs.201500120
– ident: e_1_2_7_109_1
  doi: 10.1021/acscatal.7b02079
– ident: e_1_2_7_50_1
  doi: 10.1002/anie.201307475
– ident: e_1_2_7_72_4
  doi: 10.1021/acsenergylett.7b00349
– ident: e_1_2_7_89_2
  doi: 10.1016/j.pmatsci.2018.03.007
– ident: e_1_2_7_30_2
  doi: 10.1016/j.mattod.2017.03.019
– ident: e_1_2_7_92_5
  doi: 10.1002/chem.201703493
– ident: e_1_2_7_115_1
  doi: 10.1039/C5TA02792F
– ident: e_1_2_7_130_1
  doi: 10.1016/j.nanoen.2015.01.027
– ident: e_1_2_7_105_4
  doi: 10.1016/j.cej.2017.01.032
– ident: e_1_2_7_49_7
  doi: 10.1039/C3TA13584E
– ident: e_1_2_7_49_8
  doi: 10.1002/chem.201504875
– ident: e_1_2_7_118_2
  doi: 10.1039/C5TA05372B
– ident: e_1_2_7_151_1
  doi: 10.1039/C8CC09368G
– ident: e_1_2_7_157_1
  doi: 10.1021/jacs.5b01072
– ident: e_1_2_7_76_1
  doi: 10.1002/adfm.201500194
– ident: e_1_2_7_123_2
  doi: 10.1016/j.electacta.2018.01.203
– ident: e_1_2_7_86_2
  doi: 10.1016/j.mtchem.2016.10.003
– ident: e_1_2_7_55_1
  doi: 10.1039/C4CC05698A
– ident: e_1_2_7_91_6
  doi: 10.1016/j.jcis.2017.03.087
– ident: e_1_2_7_105_5
  doi: 10.1039/C5TA03905C
– ident: e_1_2_7_138_1
  doi: 10.1002/anie.201510495
– ident: e_1_2_7_19_2
  doi: 10.1039/C6SC03356C
– ident: e_1_2_7_146_1
  doi: 10.1002/ange.201408876
– ident: e_1_2_7_53_2
  doi: 10.1021/acsami.8b09941
– ident: e_1_2_7_74_4
  doi: 10.1002/celc.201701210
– ident: e_1_2_7_122_1
  doi: 10.1016/j.jcis.2016.10.038
– ident: e_1_2_7_11_3
  doi: 10.1039/C5TA02974K
– ident: e_1_2_7_57_5
  doi: 10.1038/srep17542
– ident: e_1_2_7_20_3
  doi: 10.1021/ja511572q
– ident: e_1_2_7_137_4
  doi: 10.1002/adma.201401427
– ident: e_1_2_7_96_1
  doi: 10.1039/C4TA03962A
– ident: e_1_2_7_17_2
  doi: 10.1038/s41929-018-0195-1
– ident: e_1_2_7_19_1
  doi: 10.1038/ncomms8992
– ident: e_1_2_7_71_1
  doi: 10.1039/C8TA02835D
– ident: e_1_2_7_96_2
  doi: 10.1039/C6CC06180J
– ident: e_1_2_7_29_2
  doi: 10.1002/advs.201500286
– ident: e_1_2_7_10_1
  doi: 10.1002/advs.201600380
– ident: e_1_2_7_27_1
  doi: 10.1039/C5CS00434A
– ident: e_1_2_7_25_2
  doi: 10.1039/c2cc33397j
– ident: e_1_2_7_84_1
  doi: 10.1016/j.electacta.2016.10.055
– ident: e_1_2_7_70_1
  doi: 10.1039/C4TA06071G
– ident: e_1_2_7_54_2
  doi: 10.1039/C5TA01103E
– ident: e_1_2_7_136_6
  doi: 10.1002/chem.201602616
– ident: e_1_2_7_15_2
  doi: 10.1021/acs.nanolett.5b04331
– ident: e_1_2_7_24_1
  doi: 10.1039/c2ee22238h
– ident: e_1_2_7_39_1
  doi: 10.1039/C6TA05086G
– ident: e_1_2_7_43_1
  doi: 10.1039/C6TA01601D
– ident: e_1_2_7_67_2
  doi: 10.1002/smll.201603013
– ident: e_1_2_7_22_2
  doi: 10.1038/s41467-018-03896-4
– ident: e_1_2_7_126_1
  doi: 10.1016/j.electacta.2015.05.017
– ident: e_1_2_7_124_1
  doi: 10.1038/srep31202
– ident: e_1_2_7_29_1
  doi: 10.1039/c3cc44076a
– ident: e_1_2_7_59_1
  doi: 10.1002/anie.201409080
– ident: e_1_2_7_137_3
  doi: 10.1002/anie.201208086
– ident: e_1_2_7_68_3
  doi: 10.1039/C6TA02876D
– ident: e_1_2_7_92_4
  doi: 10.1016/j.catcom.2016.07.010
– ident: e_1_2_7_8_2
  doi: 10.1002/aenm.201801193
– ident: e_1_2_7_28_1
  doi: 10.1002/adma.201505597
– ident: e_1_2_7_75_1
  doi: 10.1002/adfm.201401814
– ident: e_1_2_7_145_2
  doi: 10.1039/C8TA05124K
– ident: e_1_2_7_112_1
  doi: 10.1016/j.carbon.2017.05.092
– ident: e_1_2_7_107_1
  doi: 10.1002/chem.201501964
– ident: e_1_2_7_160_6
  doi: 10.1002/adma.201605957
– ident: e_1_2_7_85_5
  doi: 10.1002/adma.201803621
– ident: e_1_2_7_34_1
  doi: 10.1002/celc.201600001
– ident: e_1_2_7_82_1
  doi: 10.1021/acs.chemmater.7b00114
– ident: e_1_2_7_77_1
  doi: 10.1016/j.nanoen.2014.09.022
– ident: e_1_2_7_30_1
  doi: 10.1002/chem.201501120
– ident: e_1_2_7_68_1
  doi: 10.1002/adfm.201401328
– ident: e_1_2_7_149_1
  doi: 10.1002/advs.201700733
– ident: e_1_2_7_14_1
  doi: 10.1021/ja403440e
– ident: e_1_2_7_79_4
  doi: 10.1016/j.ijhydene.2017.06.083
– ident: e_1_2_7_18_3
  doi: 10.1039/C4NR04866K
– ident: e_1_2_7_152_2
  doi: 10.1002/celc.201700479
– ident: e_1_2_7_40_1
  doi: 10.1039/C5TA02077H
– ident: e_1_2_7_90_4
  doi: 10.1021/acsami.6b13578
– ident: e_1_2_7_91_1
  doi: 10.1016/j.energy.2014.07.062
– ident: e_1_2_7_3_2
  doi: 10.1016/j.rser.2012.01.029
– ident: e_1_2_7_44_1
  doi: 10.1021/acs.chemmater.6b01980
– ident: e_1_2_7_72_5
  doi: 10.1021/acs.chemmater.5b03997
– ident: e_1_2_7_136_8
  doi: 10.1021/acsami.6b01580
– ident: e_1_2_7_42_1
  doi: 10.1021/acs.chemmater.5b00331
– ident: e_1_2_7_22_1
  doi: 10.1002/adma.201803762
– ident: e_1_2_7_85_3
  doi: 10.1002/adma.201702211
– ident: e_1_2_7_87_1
  doi: 10.1038/ncomms6714
– ident: e_1_2_7_92_6
  doi: 10.1016/j.colsurfa.2016.09.011
– ident: e_1_2_7_165_1
  doi: 10.1039/C6TA09052D
– ident: e_1_2_7_57_1
  doi: 10.1039/C4TA02254H
– ident: e_1_2_7_85_4
  doi: 10.1021/acsami.7b06727
– ident: e_1_2_7_110_1
  doi: 10.1002/adma.201704156
– ident: e_1_2_7_100_3
  doi: 10.1016/j.electacta.2018.07.105
– ident: e_1_2_7_117_1
  doi: 10.1021/cs200652y
– ident: e_1_2_7_105_6
  doi: 10.1039/C7TA08621K
– ident: e_1_2_7_141_1
  doi: 10.1038/nenergy.2016.130
– ident: e_1_2_7_63_1
  doi: 10.1126/science.1171245
– ident: e_1_2_7_82_2
  doi: 10.1039/C5TA10428A
– ident: e_1_2_7_84_2
  doi: 10.1016/j.carbon.2016.06.080
– ident: e_1_2_7_159_1
  doi: 10.1039/C5EE02460A
– ident: e_1_2_7_88_2
  doi: 10.1016/j.pmatsci.2018.01.003
– ident: e_1_2_7_33_1
  doi: 10.1038/ncomms11204
– ident: e_1_2_7_49_2
  doi: 10.1016/j.carbon.2016.06.074
– ident: e_1_2_7_91_2
  doi: 10.1016/j.electacta.2018.07.193
– ident: e_1_2_7_145_3
  doi: 10.1016/j.jpowsour.2012.01.023
– ident: e_1_2_7_11_4
  doi: 10.1002/adma.201502696
– ident: e_1_2_7_1_1
  doi: 10.1038/nature11475
– ident: e_1_2_7_74_3
  doi: 10.1016/j.jpowsour.2015.11.013
– ident: e_1_2_7_98_1
  doi: 10.1002/adfm.201601420
– ident: e_1_2_7_11_2
  doi: 10.1016/j.nanoen.2016.08.027
– ident: e_1_2_7_92_7
  doi: 10.1021/acsami.7b12038
– ident: e_1_2_7_15_1
  doi: 10.1021/ja408329q
– ident: e_1_2_7_90_7
  doi: 10.1016/j.jpowsour.2015.03.131
– ident: e_1_2_7_31_3
  doi: 10.1039/C5TA05589J
– ident: e_1_2_7_49_12
  doi: 10.1016/j.jpowsour.2015.05.080
SSID ssj0009606
Score 2.6953082
SecondaryResourceType review_article
Snippet Under the double pressures of both the energy crisis and environmental pollution, the exploitation and utilization of hydrogen, a clean and renewable power...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1903415
SubjectTerms Electrical resistivity
Electrocatalysts
Graphene
hybrid structures
Hydrogen
hydrogen evolution reaction
Hydrogen evolution reactions
Hydrogen fuels
Hydrogen production
Mass production
Materials science
nanoparticles
Organic chemistry
Sustainable development
Title Graphene Nanoarchitectonics: Recent Advances in Graphene‐Based Electrocatalysts for Hydrogen Evolution Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201903415
https://www.ncbi.nlm.nih.gov/pubmed/31496036
https://www.proquest.com/docview/2317574598
https://www.proquest.com/docview/2287533234
Volume 31
WOSCitedRecordID wos000485505900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NauMwEB66yR52D2333_1DCwt7MnEkW1J6S9ukOaRhWbaQm1EkGQLF2Y2TQm99hD5jn6Qjy3ETylJobzYe2UKa0Xwjeb4B-MHbKhFtpUOB2D6MuaFhRyqXwKy50EYhRi0p84diNJLjcefXWha_54eoN9ycZZTrtTNwNSlaj6ShypS8QejQWJll3qSovEkDmme_-5fDR-JdXtbXdOd9YYfHckXcGNHW5hs2HdMTtLkJXkvv0995fb93YbtCnqTrVeUDbNn8I7xf4yP8BP_OHX01rn4EF91Zfcbg2HOLY4IIEz0U6fq_BgoyzclK_v727gTdoSE9X1Wn3BS6KRYFQUxMBjdmPkNFJb3rStHxXT6h4jNc9nt_TgdhVZMh1LHgSWgtpzqyLKNZlEwyOVEmwahDMqNlpjhPLMY4lnGlWKwTg-BFRpmwWk6MwHU3Yl-gkc9y-w2IlkJzw3XUtlFsIiuxmWWoO1QbqykLIFxNSKorwnJXN-Mq9VTLNHVDmdZDGcDPWv6vp-r4r-TBan7TymSLlDokJeKkIwP4Xj9GY3MnKCq3syXKUBfeMcriAL56vag_xTDW5IgHAqDl9D_Th7R7dtGt7_Ze0mgf3rlrnxl5AI3FfGkP4a2-XkyL-RG8EWN5VJnDA_8FCpc
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bT9swFD5CgLTxsME2WBgXIyHxFJHaie3y1o2WIko1IZB4i1zbkZBQujVtJd74CfxGfgnHcRqoJoSE9pjEdiz7XD5fzncA9nlDJaKhdCgQ24cxNzRsSuUCmDUX2ijEqCVlfk_0-_L6uvm7uk3oYmE8P0S94eY0o7TXTsHdhvThM2uoMiVxEHo0VoaZL8UoSyjkS8cXnaveM_MuLxNsugO_sMljOWNujOjhfAvznukfuDmPXkv30_n8Hzq-Cp8q7ElaXljWYMHmX2DlBSPhV_h74gis0f4RNLvD-pTB8ecWRwQxJvoo0vL3Bgpyk5NZ-cf7h5_oEA1p-7w65bbQXTEuCKJi0r0zoyGKKmlPK1HHtnxIxTe46rQvf3XDKitDqGPBk9BaTnVkWUazKBlkcqBMgusOyYyWmeI8sbjKsYwrxWKdGIQvMsqE1XJgBFreiK3DYj7M7XcgWgrNDddRw0axiazEapah9FBtrKYsgHA2I6muKMtd5ozb1JMt09QNZVoPZQAHdfk_nqzj1ZJbswlOK6UtUuqwlIiTpgxgr_6M6ubOUFRuhxMsQ90Cj1EWB7DhBaP-FcPVJkdEEAAt5_-NPqSt4_NW_bT5nkq78KF7ed5Le6f9sx_w0b33cZJbsDgeTew2LOvp-KYY7VRa8QStYw2f
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fT9swED-hgiZ42GD8C_9mpEk8RaR2Yru8dWsLE6VC05B4i1zbkSqhFJqCxNs-wj7jPgnnOA2rJoSEeExiO5Z95_ud7fsdwFfeVIloKh0KxPZhzA0NW1K5AGbNhTYKMWpJmd8Xg4G8vm5dVrcJXSyM54eoN9ycZpTrtVNwe2uy42fWUGVK4iC0aKwMM1-MXSaZBix2fvau-s_Mu7xMsOkO_MIWj-WMuTGix_MtzFum_-DmPHotzU_v0zt0fBU-VtiTtL2wrMGCzT_Dyj-MhOtwd-oIrHH9I7jsjutTBsefW5wQxJhoo0jb3xsoyCgns_J_f__5hgbRkK7Pq1NuCz0W04IgKiZnj2YyRlEl3YdK1LEtH1KxAVe97q_vZ2GVlSHUseBJaC2nOrIso1mUDDM5VCZBv0Myo2WmOE8sejmWcaVYrBOD8EVGmbBaDo3AlTdim9DIx7ndBqKl0NxwHTVtFJvISqxmGUoP1cZqygIIZzOS6oqy3GXOuEk92TJN3VCm9VAGcFSXv_VkHS-W3JtNcFopbZFSh6UESpEM4LD-jOrmzlBUbsf3WIY6B49RFgew5QWj_hVDb5MjIgiAlvP_Sh_SdueiXT_tvKXSF_hw2eml_R-D811Ydq99mOQeNKaTe7sPS_phOiomB5VSPAEjzQ0a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene+Nanoarchitectonics%3A+Recent+Advances+in+Graphene%E2%80%90Based+Electrocatalysts+for+Hydrogen+Evolution+Reaction&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Huang%2C+Huajie&rft.au=Yan%2C+Minmin&rft.au=Yang%2C+Cuizhen&rft.au=He%2C+Haiyan&rft.date=2019-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=48&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201903415&rft.externalDBID=10.1002%252Fadma.201903415&rft.externalDocID=ADMA201903415
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon