Synthesis and Properties of NaSICON‐type LATP and LAGP Solid Electrolytes
Inorganic solid electrolytes play a critical role in solid‐state lithium batteries achieving high safety levels and high energy densities. The synthetic approaches to solid electrolytes are important for both fundamental research and practical applications. Li1+xAlxTi2−x(PO4)3 (LATP) and Li1+xAlxGe2...
Saved in:
| Published in: | ChemSusChem Vol. 12; no. 16; pp. 3713 - 3725 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Germany
Wiley Subscription Services, Inc
22.08.2019
|
| Subjects: | |
| ISSN: | 1864-5631, 1864-564X, 1864-564X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Inorganic solid electrolytes play a critical role in solid‐state lithium batteries achieving high safety levels and high energy densities. The synthetic approaches to solid electrolytes are important for both fundamental research and practical applications. Li1+xAlxTi2−x(PO4)3 (LATP) and Li1+xAlxGe2−x(PO4)3 (LAGP) are two representative solid electrolytes with a sodium superionic conductor (NaSICON) structure. Herein, LATP and LAGP solid electrolytes are reviewed from the synthesis perspective, and correlated with their structure and conductive properties, as well as their electrochemical applications in batteries. First, the solid‐ and liquid‐based synthetic methods to LATP and LAGP solid electrolytes and the key influencing factors are described. Second, the crystal structures and phase purities obtained from different synthetic approaches are introduced. Third, the conductive mechanisms, composition effects, and synthetic effects on the conductivities of LATP and LAGP solid electrolytes are compared. Fourth, the electrochemical applications of these two solid electrolytes in full batteries are discussed, including roles as solid electrolytes, composite components in electrodes, and surface coatings on electrodes. In the last section, a brief outlook is provided on the future development of NaSICON‐type solid electrolytes for all‐solid‐state batteries.
How was it made? Li1+xAlxTi2−x(PO4)3 (LATP) and Li1+xAlxGe2−x(PO4)3 (LAGP), which are popular sodium superionic conductor (NaSICON)‐type solid electrolytes, are reviewed from the perspective of their synthesis. The synthetic methods have been correlated with the structures and conductive properties. Electrochemical applications of these electrolytes in batteries are also presented. |
|---|---|
| AbstractList | Inorganic solid electrolytes play a critical role in solid-state lithium batteries achieving high safety levels and high energy densities. The synthetic approaches to solid electrolytes are important for both fundamental research and practical applications. Li1+x Alx Ti2-x (PO4 )3 (LATP) and Li1+x Alx Ge2-x (PO4 )3 (LAGP) are two representative solid electrolytes with a sodium superionic conductor (NaSICON) structure. Herein, LATP and LAGP solid electrolytes are reviewed from the synthesis perspective, and correlated with their structure and conductive properties, as well as their electrochemical applications in batteries. First, the solid- and liquid-based synthetic methods to LATP and LAGP solid electrolytes and the key influencing factors are described. Second, the crystal structures and phase purities obtained from different synthetic approaches are introduced. Third, the conductive mechanisms, composition effects, and synthetic effects on the conductivities of LATP and LAGP solid electrolytes are compared. Fourth, the electrochemical applications of these two solid electrolytes in full batteries are discussed, including roles as solid electrolytes, composite components in electrodes, and surface coatings on electrodes. In the last section, a brief outlook is provided on the future development of NaSICON-type solid electrolytes for all-solid-state batteries.Inorganic solid electrolytes play a critical role in solid-state lithium batteries achieving high safety levels and high energy densities. The synthetic approaches to solid electrolytes are important for both fundamental research and practical applications. Li1+x Alx Ti2-x (PO4 )3 (LATP) and Li1+x Alx Ge2-x (PO4 )3 (LAGP) are two representative solid electrolytes with a sodium superionic conductor (NaSICON) structure. Herein, LATP and LAGP solid electrolytes are reviewed from the synthesis perspective, and correlated with their structure and conductive properties, as well as their electrochemical applications in batteries. First, the solid- and liquid-based synthetic methods to LATP and LAGP solid electrolytes and the key influencing factors are described. Second, the crystal structures and phase purities obtained from different synthetic approaches are introduced. Third, the conductive mechanisms, composition effects, and synthetic effects on the conductivities of LATP and LAGP solid electrolytes are compared. Fourth, the electrochemical applications of these two solid electrolytes in full batteries are discussed, including roles as solid electrolytes, composite components in electrodes, and surface coatings on electrodes. In the last section, a brief outlook is provided on the future development of NaSICON-type solid electrolytes for all-solid-state batteries. Inorganic solid electrolytes play a critical role in solid‐state lithium batteries achieving high safety levels and high energy densities. The synthetic approaches to solid electrolytes are important for both fundamental research and practical applications. Li1+xAlxTi2−x(PO4)3 (LATP) and Li1+xAlxGe2−x(PO4)3 (LAGP) are two representative solid electrolytes with a sodium superionic conductor (NaSICON) structure. Herein, LATP and LAGP solid electrolytes are reviewed from the synthesis perspective, and correlated with their structure and conductive properties, as well as their electrochemical applications in batteries. First, the solid‐ and liquid‐based synthetic methods to LATP and LAGP solid electrolytes and the key influencing factors are described. Second, the crystal structures and phase purities obtained from different synthetic approaches are introduced. Third, the conductive mechanisms, composition effects, and synthetic effects on the conductivities of LATP and LAGP solid electrolytes are compared. Fourth, the electrochemical applications of these two solid electrolytes in full batteries are discussed, including roles as solid electrolytes, composite components in electrodes, and surface coatings on electrodes. In the last section, a brief outlook is provided on the future development of NaSICON‐type solid electrolytes for all‐solid‐state batteries. How was it made? Li1+xAlxTi2−x(PO4)3 (LATP) and Li1+xAlxGe2−x(PO4)3 (LAGP), which are popular sodium superionic conductor (NaSICON)‐type solid electrolytes, are reviewed from the perspective of their synthesis. The synthetic methods have been correlated with the structures and conductive properties. Electrochemical applications of these electrolytes in batteries are also presented. Inorganic solid electrolytes play a critical role in solid-state lithium batteries achieving high safety levels and high energy densities. The synthetic approaches to solid electrolytes are important for both fundamental research and practical applications. Li Al Ti (PO ) (LATP) and Li Al Ge (PO ) (LAGP) are two representative solid electrolytes with a sodium superionic conductor (NaSICON) structure. Herein, LATP and LAGP solid electrolytes are reviewed from the synthesis perspective, and correlated with their structure and conductive properties, as well as their electrochemical applications in batteries. First, the solid- and liquid-based synthetic methods to LATP and LAGP solid electrolytes and the key influencing factors are described. Second, the crystal structures and phase purities obtained from different synthetic approaches are introduced. Third, the conductive mechanisms, composition effects, and synthetic effects on the conductivities of LATP and LAGP solid electrolytes are compared. Fourth, the electrochemical applications of these two solid electrolytes in full batteries are discussed, including roles as solid electrolytes, composite components in electrodes, and surface coatings on electrodes. In the last section, a brief outlook is provided on the future development of NaSICON-type solid electrolytes for all-solid-state batteries. Inorganic solid electrolytes play a critical role in solid‐state lithium batteries achieving high safety levels and high energy densities. The synthetic approaches to solid electrolytes are important for both fundamental research and practical applications. Li1+xAlxTi2−x(PO4)3 (LATP) and Li1+xAlxGe2−x(PO4)3 (LAGP) are two representative solid electrolytes with a sodium superionic conductor (NaSICON) structure. Herein, LATP and LAGP solid electrolytes are reviewed from the synthesis perspective, and correlated with their structure and conductive properties, as well as their electrochemical applications in batteries. First, the solid‐ and liquid‐based synthetic methods to LATP and LAGP solid electrolytes and the key influencing factors are described. Second, the crystal structures and phase purities obtained from different synthetic approaches are introduced. Third, the conductive mechanisms, composition effects, and synthetic effects on the conductivities of LATP and LAGP solid electrolytes are compared. Fourth, the electrochemical applications of these two solid electrolytes in full batteries are discussed, including roles as solid electrolytes, composite components in electrodes, and surface coatings on electrodes. In the last section, a brief outlook is provided on the future development of NaSICON‐type solid electrolytes for all‐solid‐state batteries. Inorganic solid electrolytes play a critical role in solid‐state lithium batteries achieving high safety levels and high energy densities. The synthetic approaches to solid electrolytes are important for both fundamental research and practical applications. Li 1+ x Al x Ti 2− x (PO 4 ) 3 (LATP) and Li 1+ x Al x Ge 2− x (PO 4 ) 3 (LAGP) are two representative solid electrolytes with a sodium superionic conductor (NaSICON) structure. Herein, LATP and LAGP solid electrolytes are reviewed from the synthesis perspective, and correlated with their structure and conductive properties, as well as their electrochemical applications in batteries. First, the solid‐ and liquid‐based synthetic methods to LATP and LAGP solid electrolytes and the key influencing factors are described. Second, the crystal structures and phase purities obtained from different synthetic approaches are introduced. Third, the conductive mechanisms, composition effects, and synthetic effects on the conductivities of LATP and LAGP solid electrolytes are compared. Fourth, the electrochemical applications of these two solid electrolytes in full batteries are discussed, including roles as solid electrolytes, composite components in electrodes, and surface coatings on electrodes. In the last section, a brief outlook is provided on the future development of NaSICON‐type solid electrolytes for all‐solid‐state batteries. |
| Author | Wang, Hui DeWees, Rachel |
| Author_xml | – sequence: 1 givenname: Rachel surname: DeWees fullname: DeWees, Rachel organization: University of Louisville – sequence: 2 givenname: Hui orcidid: 0000-0003-0936-6781 surname: Wang fullname: Wang, Hui email: hui.wang.1@louisvill.edu organization: University of Louisville |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31132230$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc9q3DAQh0VJaP601x6LoZdedjMjy7J9XEyahi7JglPoTajyiCp4ra2kJfjWR-gz5knidJMUAiGXmTl83zDS74jtDX4gxj4gzBGAn5gYzZwD1gAlL96wQ6ykmBVS_Nh7mnM8YEcxXgNIqKV8yw5yxJzzHA7Zt3Yc0i-KLmZ66LJV8BsKyVHMvM0udHveXF7c_vmbxg1ly8XV6h-1XJytstb3rstOezIp-H5MFN-xfav7SO8f-jH7_uX0qvk6W16enTeL5cyIUhYzXnUkioprQAG14YZ0h1MpjTZFkZMpray0AdQoCITlZUVWgM7J5gjW5sfs827vJvjfW4pJrV001Pd6IL-NanoZRyxqiRP66Rl67bdhmK6bqAqlkAjFRH18oLY_19SpTXBrHUb1-E0TIHaACT7GQFYZl3RyfkhBu14hqPs01H0a6imNSZs_0x43vyjUO-HG9TS-QqumbZv_7h0IM5vC |
| CitedBy_id | crossref_primary_10_1007_s10853_021_05940_z crossref_primary_10_3390_su14159090 crossref_primary_10_3390_ma14195729 crossref_primary_10_1002_batt_202400667 crossref_primary_10_1016_j_pnucene_2022_104372 crossref_primary_10_1002_ente_202201323 crossref_primary_10_1016_j_ceramint_2024_10_372 crossref_primary_10_1016_j_ensm_2025_104419 crossref_primary_10_1002_aesr_202200017 crossref_primary_10_1007_s44373_025_00040_y crossref_primary_10_1016_j_memsci_2022_120907 crossref_primary_10_1016_j_ceramint_2024_05_450 crossref_primary_10_1021_acsaem_5c01922 crossref_primary_10_1016_j_jnoncrysol_2024_123042 crossref_primary_10_1002_tcr_202300044 crossref_primary_10_1016_j_ssi_2023_116317 crossref_primary_10_3390_membranes13020201 crossref_primary_10_1007_s11244_025_02154_4 crossref_primary_10_1016_j_jcis_2024_12_224 crossref_primary_10_1002_inf2_12222 crossref_primary_10_3390_nano12111912 crossref_primary_10_1016_j_ceramint_2024_05_322 crossref_primary_10_1039_D5YA00079C crossref_primary_10_1007_s11837_024_07068_2 crossref_primary_10_1016_j_jallcom_2023_168702 crossref_primary_10_1016_j_coelec_2022_101108 crossref_primary_10_4150_KPMI_2023_30_5_394 crossref_primary_10_1002_batt_202400520 crossref_primary_10_1002_eem2_70088 crossref_primary_10_1515_zpch_2021_3109 crossref_primary_10_3390_en14113145 crossref_primary_10_1002_adfm_202000077 crossref_primary_10_1016_j_jpowsour_2024_235169 crossref_primary_10_1016_j_ssi_2022_115990 crossref_primary_10_1016_j_ssi_2024_116482 crossref_primary_10_1016_j_jpowsour_2022_232257 crossref_primary_10_1016_j_jallcom_2025_178636 crossref_primary_10_1007_s10008_022_05206_x crossref_primary_10_1039_D5NJ00172B crossref_primary_10_54392_irjmt2417 crossref_primary_10_1016_j_jpowsour_2023_233867 crossref_primary_10_1002_aenm_202301886 crossref_primary_10_1021_acsaem_5c01901 crossref_primary_10_5796_electrochemistry_24_00116 crossref_primary_10_1002_aesr_202100203 crossref_primary_10_1002_smll_202307342 crossref_primary_10_1016_j_desal_2024_118010 crossref_primary_10_1007_s10008_023_05729_x crossref_primary_10_1016_j_fub_2025_100045 crossref_primary_10_1016_j_molliq_2023_123763 crossref_primary_10_1002_adsu_202401028 crossref_primary_10_1002_cssc_202301406 crossref_primary_10_1016_j_ssi_2025_116896 crossref_primary_10_1016_j_gee_2025_07_009 crossref_primary_10_1016_j_ensm_2024_103932 crossref_primary_10_1016_j_jpowsour_2022_231954 crossref_primary_10_1016_j_cclet_2024_110145 crossref_primary_10_1016_j_jpowsour_2025_238266 crossref_primary_10_1016_j_ceramint_2022_08_072 crossref_primary_10_1016_j_ceramint_2021_04_216 crossref_primary_10_1016_j_jcis_2024_02_151 crossref_primary_10_1016_j_matlet_2022_132736 crossref_primary_10_1002_smsc_202300017 crossref_primary_10_1016_j_electacta_2022_141549 crossref_primary_10_1149_1945_7111_adf66d crossref_primary_10_1002_aesr_202300074 crossref_primary_10_1016_j_jnoncrysol_2023_122154 crossref_primary_10_1002_adfm_202314994 crossref_primary_10_1016_j_jpowsour_2025_237608 crossref_primary_10_1016_j_mtchem_2025_102821 crossref_primary_10_1016_j_electacta_2024_145299 crossref_primary_10_1016_j_jcis_2025_137994 crossref_primary_10_1016_j_nanoen_2024_110424 crossref_primary_10_1016_j_mtsust_2023_100614 crossref_primary_10_1016_j_jpowsour_2024_234299 crossref_primary_10_1016_j_apsusc_2024_160622 crossref_primary_10_1016_j_jeurceramsoc_2023_06_057 crossref_primary_10_1016_j_ssi_2024_116458 crossref_primary_10_1002_marc_202200648 crossref_primary_10_1016_j_jpowsour_2023_232689 crossref_primary_10_1142_S1793604725300014 crossref_primary_10_1063_5_0151559 crossref_primary_10_1016_j_ceramint_2023_11_134 crossref_primary_10_3390_batteries9080407 crossref_primary_10_1016_j_jpowsour_2024_234847 crossref_primary_10_1016_j_actamat_2022_118593 crossref_primary_10_1016_j_cej_2025_165760 crossref_primary_10_1016_j_nanoen_2025_111106 crossref_primary_10_1039_D0SC06553F crossref_primary_10_3390_coatings12121964 crossref_primary_10_3390_polym15040803 crossref_primary_10_3390_batteries9100506 crossref_primary_10_1007_s11581_023_05222_5 crossref_primary_10_1016_j_cej_2022_137740 crossref_primary_10_1002_smll_202107064 crossref_primary_10_3390_batteries10010024 crossref_primary_10_1021_acsaem_5c00907 crossref_primary_10_1016_j_jeurceramsoc_2024_03_050 crossref_primary_10_1016_j_mtener_2023_101248 crossref_primary_10_1142_S1793604723500017 crossref_primary_10_1016_j_ceramint_2024_11_221 crossref_primary_10_1016_j_mtener_2025_101829 crossref_primary_10_1002_cssc_202200038 crossref_primary_10_1002_cssc_202202216 crossref_primary_10_1007_s11837_023_06291_7 crossref_primary_10_1016_j_est_2025_116990 crossref_primary_10_1016_j_jallcom_2023_168857 crossref_primary_10_31857_S2218117224040047 crossref_primary_10_35848_1347_4065_ad531d crossref_primary_10_1016_j_jeurceramsoc_2024_02_028 crossref_primary_10_1016_j_jelechem_2022_116750 crossref_primary_10_1016_j_surfcoat_2021_127389 crossref_primary_10_1016_j_nanoen_2025_110938 crossref_primary_10_1016_j_jelechem_2022_116631 crossref_primary_10_1016_j_egyr_2024_06_007 crossref_primary_10_1007_s11426_023_1827_0 crossref_primary_10_4150_KPMI_2024_31_1_23 crossref_primary_10_3390_nano13172436 crossref_primary_10_1016_j_est_2025_116487 crossref_primary_10_1088_2515_7655_acb5e6 crossref_primary_10_1016_j_nxmate_2025_100768 crossref_primary_10_1002_ente_202201288 crossref_primary_10_1002_aenm_202400766 crossref_primary_10_1016_j_jpowsour_2021_229631 crossref_primary_10_1002_cssc_202301284 crossref_primary_10_1016_j_matchemphys_2024_129583 crossref_primary_10_1002_smll_202505366 crossref_primary_10_1016_j_matt_2020_05_003 crossref_primary_10_1016_j_nanoen_2020_105562 crossref_primary_10_3390_min12030310 crossref_primary_10_1088_2752_5724_acfb28 crossref_primary_10_1016_j_jeurceramsoc_2022_04_009 crossref_primary_10_1063_5_0248457 crossref_primary_10_1002_cphc_202500302 crossref_primary_10_1016_j_jallcom_2023_170736 crossref_primary_10_3390_batteries8110232 crossref_primary_10_1007_s10973_022_11760_3 crossref_primary_10_1002_smll_202406298 crossref_primary_10_1002_ente_202201153 crossref_primary_10_3390_nano14151278 crossref_primary_10_1002_celc_202001527 crossref_primary_10_1016_j_jcis_2025_01_276 crossref_primary_10_1016_j_electacta_2022_140408 crossref_primary_10_1039_D4RA02216E crossref_primary_10_3390_nano12122082 crossref_primary_10_3390_app15137120 crossref_primary_10_1016_j_jelechem_2024_118915 crossref_primary_10_1016_j_electacta_2020_137128 crossref_primary_10_1002_batt_202400121 crossref_primary_10_1021_acsaem_5c00660 crossref_primary_10_1002_elt2_13 crossref_primary_10_1002_adma_202502653 crossref_primary_10_1002_aenm_202101339 crossref_primary_10_1002_adem_202301515 crossref_primary_10_1002_cssc_202301268 crossref_primary_10_1016_j_jpowsour_2022_231323 crossref_primary_10_1016_j_jeurceramsoc_2021_11_014 crossref_primary_10_1063_5_0147635 crossref_primary_10_1016_j_est_2023_109048 crossref_primary_10_1016_j_est_2024_114592 crossref_primary_10_1016_j_cej_2022_134955 crossref_primary_10_1002_adfm_202201136 crossref_primary_10_1016_j_cej_2025_167671 crossref_primary_10_1002_adfm_202421775 crossref_primary_10_1016_j_ceramint_2024_08_281 crossref_primary_10_1016_j_ceramint_2025_02_020 crossref_primary_10_1016_j_jallcom_2024_174945 crossref_primary_10_1007_s00339_022_05992_1 crossref_primary_10_3390_met10111523 crossref_primary_10_1111_jace_19322 crossref_primary_10_1002_pol_20250372 crossref_primary_10_1134_S2517751624600924 crossref_primary_10_1007_s10008_024_06015_0 crossref_primary_10_1016_j_jpowsour_2022_231798 crossref_primary_10_1134_S1070363223100110 crossref_primary_10_1016_j_jcis_2022_11_048 crossref_primary_10_1002_chem_202303884 crossref_primary_10_1016_j_jallcom_2022_167639 crossref_primary_10_1134_S0036023623602313 crossref_primary_10_1002_chem_202500820 crossref_primary_10_1016_j_est_2025_117098 crossref_primary_10_1002_batt_202200327 crossref_primary_10_1016_j_cej_2024_148977 crossref_primary_10_1007_s43207_024_00419_4 crossref_primary_10_59761_RCR5126 crossref_primary_10_1002_pssa_202400823 crossref_primary_10_1016_j_ceramint_2021_04_295 crossref_primary_10_1016_j_electacta_2023_142872 crossref_primary_10_1002_adem_202300566 crossref_primary_10_1007_s10854_022_07937_z crossref_primary_10_1039_D3QM00729D crossref_primary_10_1016_j_jallcom_2021_158641 crossref_primary_10_1007_s10854_025_14400_2 crossref_primary_10_3390_nano15010042 crossref_primary_10_1016_j_ensm_2025_104510 crossref_primary_10_1063_5_0098362 crossref_primary_10_1016_j_matchemphys_2022_126492 crossref_primary_10_1088_2752_5724_accdf3 crossref_primary_10_1016_j_ssi_2020_115486 crossref_primary_10_1016_j_partic_2021_04_002 crossref_primary_10_1016_j_jpowsour_2023_233137 crossref_primary_10_1557_s43577_023_00649_7 crossref_primary_10_1016_j_ssi_2023_116191 crossref_primary_10_1002_eem2_12886 crossref_primary_10_3390_nano12122063 crossref_primary_10_1002_adfm_202300973 crossref_primary_10_3390_membranes13020155 crossref_primary_10_3390_nano10081606 crossref_primary_10_1007_s11367_022_02023_2 crossref_primary_10_1021_acs_analchem_4c06470 crossref_primary_10_3390_polym16223176 crossref_primary_10_1002_smtd_201900751 crossref_primary_10_1002_aenm_202302255 crossref_primary_10_1002_adma_202301152 crossref_primary_10_1002_cey2_70031 crossref_primary_10_1016_j_jallcom_2020_155281 crossref_primary_10_1016_j_jallcom_2024_174062 crossref_primary_10_1002_smll_202200266 crossref_primary_10_1007_s43939_024_00089_3 crossref_primary_10_1016_j_mseb_2022_116049 crossref_primary_10_1016_j_jiec_2025_02_007 crossref_primary_10_1016_j_electacta_2022_141395 crossref_primary_10_1016_j_jcis_2023_08_180 crossref_primary_10_1016_j_ssi_2022_116111 crossref_primary_10_1021_acsaem_4c02927 crossref_primary_10_1016_j_jcis_2023_07_027 crossref_primary_10_1007_s10717_024_00665_2 |
| Cites_doi | 10.1149/2.0121609jes 10.1016/0167-2738(92)90442-R 10.1016/0167-2738(86)90179-7 10.1039/C6TA02294D 10.1016/j.ensm.2018.10.012 10.1016/j.jpowsour.2009.06.020 10.1016/j.ssi.2018.06.016 10.1016/j.ssi.2015.05.020 10.1016/j.ssi.2009.03.022 10.1016/j.jpowsour.2018.05.050 10.1126/sciadv.1601659 10.1016/j.ensm.2017.08.015 10.1016/j.physb.2011.07.033 10.1016/j.jascer.2013.03.005 10.1016/j.ssi.2016.07.006 10.1016/j.ceramint.2012.10.206 10.1039/C8TA08095J 10.1149/2.1571707jes 10.1016/j.electacta.2010.05.074 10.1021/acs.chemrev.5b00563 10.1016/j.jallcom.2010.04.084 10.1016/j.electacta.2015.07.170 10.1016/j.ensm.2018.02.020 10.1016/j.cej.2018.03.151 10.1007/s11581-014-1287-9 10.1002/anie.200703900 10.1021/jacs.5b11851 10.1021/cm202773d 10.3389/fenrg.2016.00028 10.1149/2.080207jes 10.1021/acsami.8b19181 10.1111/jace.13638 10.1021/acsami.8b01003 10.1039/C5TA06379E 10.1016/j.jallcom.2015.04.019 10.1016/j.ssi.2016.07.010 10.1002/advs.201500359 10.1016/j.jpowsour.2017.12.021 10.1021/acsami.6b16233 10.1016/j.jeurceramsoc.2014.11.023 10.1002/aenm.201702374 10.1016/j.jallcom.2013.12.100 10.1039/C8EE01053F 10.1016/j.jpowsour.2010.11.140 10.1016/S0025-5408(02)00793-6 10.1021/ja3110895 10.1111/j.1551-2916.2005.00246.x 10.1016/j.ssi.2016.03.007 10.1039/c4cs00020j 10.1016/j.jpowsour.2014.09.105 10.1021/acsami.6b00833 10.1016/j.jpowsour.2015.07.017 10.1016/j.ssi.2014.07.013 10.1016/j.jpowsour.2007.06.227 10.1149/2.0041801jes 10.1016/j.actamat.2016.06.027 10.1016/j.jeurceramsoc.2018.09.025 10.1039/C7RA09335G 10.1021/acsaem.8b01449 10.1002/ange.200703900 10.1021/acs.chemmater.7b02301 10.1039/C5CP05337D 10.1111/jace.15294 10.1016/j.jpowsour.2016.11.076 10.1016/j.jpowsour.2015.12.055 10.1149/2.0711507jes 10.1016/j.jpowsour.2009.11.037 10.1016/S0921-5093(00)00773-5 10.1111/jace.13997 10.1016/j.ceramint.2015.05.062 10.1016/j.ssi.2014.12.013 10.1016/j.jpowsour.2013.05.039 10.1038/nmat4369 10.1021/acsenergylett.6b00481 10.1002/adma.19960080205 10.1149/2.0021514jes 10.1016/j.jpowsour.2007.06.234 10.3389/fenrg.2016.00012 10.1111/jace.14727 10.1002/anie.201604554 10.1134/S1070427216060100 10.1007/s12598-009-0024-4 10.1016/j.jpowsour.2011.03.065 10.1021/acsami.7b12092 10.1002/aenm.201870096 10.1021/acs.chemmater.7b04842 10.1039/C8CP03586E 10.1007/s10853-006-6555-2 10.1016/j.jallcom.2016.04.173 10.1021/acsami.6b15305 10.1016/j.ssi.2015.06.012 10.1111/jace.14451 10.1039/C7TA05031C 10.1002/ange.201604554 10.1016/j.ssi.2017.09.018 10.1016/j.ssi.2018.08.010 10.1038/nenergy.2016.30 10.1016/0167-2738(81)90341-6 10.1021/acsami.8b01631 10.1016/j.apt.2015.10.013 10.1038/ncomms1843 10.1021/acs.nanolett.7b00715 10.1016/j.jeurceramsoc.2016.02.042 10.1002/adma.200401286 10.1021/acsami.8b06366 10.1016/j.jmat.2015.03.002 10.1016/j.jpowsour.2018.03.071 10.1021/acsami.8b00842 10.3389/fenrg.2016.00025 10.1016/S0378-7753(03)00609-8 10.1021/cm0300516 10.1016/j.jpowsour.2017.11.063 10.1016/j.jeurceramsoc.2017.12.017 10.1016/j.jpowsour.2008.08.015 10.1016/j.jpowsour.2016.06.068 10.1016/j.jpowsour.2015.09.117 |
| ContentType | Journal Article |
| Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| DOI | 10.1002/cssc.201900725 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1864-564X |
| EndPage | 3725 |
| ExternalDocumentID | 31132230 10_1002_cssc_201900725 CSSC201900725 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: NASA Kentucky funderid: NNX15AR69H – fundername: NASA grantid: NNX15AR69H |
| GroupedDBID | --- 05W 0R~ 1OC 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAMMB AAYXX AEFGJ AEYWJ AGXDD AGYGG AIDQK AIDYY CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| ID | FETCH-LOGICAL-c4765-28de4582a01409c2cead1cea7cac553ec7f68ac01a14e04f278ef40a3ef310ff3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 315 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000477219700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1864-5631 1864-564X |
| IngestDate | Fri Jul 11 16:20:01 EDT 2025 Sat Nov 29 14:29:23 EST 2025 Wed Feb 19 02:31:31 EST 2025 Tue Nov 18 21:46:38 EST 2025 Sat Nov 29 07:12:17 EST 2025 Wed Jan 22 16:38:56 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Keywords | lithium aluminum electrochemistry solid-state reactions synthesis design |
| Language | English |
| License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4765-28de4582a01409c2cead1cea7cac553ec7f68ac01a14e04f278ef40a3ef310ff3 |
| Notes | ) Al NaSICON=sodium superionic conductor, LATP=Li LAGP=Li . 2 3 4 Ti x 1+ 1+x Ge PO ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-0936-6781 |
| PMID | 31132230 |
| PQID | 2281646105 |
| PQPubID | 986333 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2232115961 proquest_journals_2281646105 pubmed_primary_31132230 crossref_citationtrail_10_1002_cssc_201900725 crossref_primary_10_1002_cssc_201900725 wiley_primary_10_1002_cssc_201900725_CSSC201900725 |
| PublicationCentury | 2000 |
| PublicationDate | August 22, 2019 |
| PublicationDateYYYYMMDD | 2019-08-22 |
| PublicationDate_xml | – month: 08 year: 2019 text: August 22, 2019 day: 22 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | ChemSusChem |
| PublicationTitleAlternate | ChemSusChem |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2018; 165 2013; 1 2018; 325 2016; 307 2019; 11 2010; 501 2018; 324 2019; 19 2013; 240 2009; 194 2008 2008; 47 120 2016; 301 2011; 196 2016; 36 2018; 6 2018; 8 2011; 406 2018; 1 2007; 174 2018; 30 2010; 195 2017; 164 2012; 24 2018; 38 2009; 180 2015; 643 2018; 101 1981; 5 2018; 345 2016; 289 2019; 39 2016; 325 2018; 20 2005; 88 2016; 680 2016; 163 2014; 43 2016; 99 2016; 4 2006; 41 2016; 1 2016; 3 1992; 53–56 1986; 18–19 2009; 189 2018; 11 2018; 10 2005; 17 2016; 27 2016; 8 2016; 295 2018; 14 2014; 266 2017; 5 2015; 35 2010; 55 2017; 7 2017; 3 2003; 15 2017; 9 2013; 14 2018; 377 2015; 41 2018; 378 2015; 296 2015; 176 2016; 116 2000; 287 2003; 124 1996; 8 2016; 89 2015; 162 2015; 1 2015; 14 2002; 37 2015; 17 2015; 3 2015; 98 2018; 389 2014; 590 2017; 29 2009; 28 2015; 273 2018; 397 2015; 270 2012; 3 2016 2016; 55 128 2013; 39 2017; 17 2015; 278 2015; 21 2018 2013; 135 2016; 138 2018; 318 2017; 340 2017; 100 2012; 159 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_29_2 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_21_2 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 Yoon Y. (e_1_2_8_70_1) 2013; 14 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 Sun Y. (e_1_2_8_18_1) 2018 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 |
| References_xml | – volume: 1 start-page: 7028 year: 2018 end-page: 7034 publication-title: ACS Appl. Energy Mater. – volume: 174 start-page: 832 year: 2007 end-page: 837 publication-title: J. Power Sources – volume: 39 start-page: 4645 year: 2013 end-page: 4649 publication-title: Ceram. Int. – volume: 287 start-page: 183 year: 2000 end-page: 188 publication-title: Mater. Sci. Eng. C – volume: 88 start-page: 1803 year: 2005 end-page: 1807 publication-title: J. Am. Ceram. Soc. – volume: 20 start-page: 22134 year: 2018 publication-title: Phys. Chem. Chem. Phys. – volume: 189 start-page: 365 year: 2009 end-page: 370 publication-title: J. Power Sources – volume: 180 start-page: 911 year: 2009 end-page: 916 publication-title: Solid State Ionics – volume: 325 start-page: 584 year: 2016 end-page: 590 publication-title: J. Power Sources – volume: 165 start-page: 6008 year: 2018 end-page: 6016 publication-title: J. Electrochem. Soc. – volume: 340 start-page: 294 year: 2017 end-page: 301 publication-title: J. Power Sources – volume: 163 start-page: 1822 year: 2016 end-page: 1828 publication-title: J. Electrochem. Soc. – volume: 273 start-page: 389 year: 2015 end-page: 395 publication-title: J. Power Sources – volume: 11 start-page: 6015 year: 2019 end-page: 6021 publication-title: ACS Appl. Mater. Interfaces – volume: 162 start-page: 2387 year: 2015 end-page: 2392 publication-title: J. Electrochem. Soc. – volume: 10 start-page: 139 year: 2018 end-page: 159 publication-title: Energy Storage Mater. – volume: 162 start-page: 1265 year: 2015 end-page: 1271 publication-title: J. Electrochem. Soc. – volume: 324 start-page: 114 year: 2018 end-page: 127 publication-title: Solid State Ionics – volume: 41 start-page: 11136 year: 2015 end-page: 11142 publication-title: Ceram. Int. – volume: 98 start-page: 2422 year: 2015 end-page: 2427 publication-title: J. Am. Ceram. Soc. – volume: 35 start-page: 1477 year: 2015 end-page: 1484 publication-title: J. Eur. Ceram. Soc. – volume: 325 start-page: 112 year: 2018 end-page: 119 publication-title: Solid State Ionics – volume: 266 start-page: 44 year: 2014 end-page: 50 publication-title: Solid State Ionics – volume: 270 start-page: 61 year: 2015 end-page: 65 publication-title: Solid State Ionics – volume: 21 start-page: 1253 year: 2015 end-page: 1259 publication-title: Ionics – volume: 590 start-page: 147 year: 2014 end-page: 152 publication-title: J. Alloys Compd. – volume: 680 start-page: 646 year: 2016 end-page: 653 publication-title: J. Alloys Compd. – volume: 9 start-page: 41837 year: 2017 end-page: 41844 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 22 year: 2015 end-page: 32 publication-title: J. Materiomics – volume: 195 start-page: 2870 year: 2010 end-page: 2876 publication-title: J. Power Sources – volume: 9 start-page: 11696 year: 2017 end-page: 11703 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 21248 year: 2018 end-page: 21254 publication-title: J. Mater. Chem. A – volume: 100 start-page: 141 year: 2017 end-page: 149 publication-title: J. Am. Ceram. Soc. – volume: 47 120 start-page: 755 767 year: 2008 2008 end-page: 758 770 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 38 start-page: 1679 year: 2018 end-page: 1687 publication-title: J. Eur. Ceram. Soc. – volume: 3 start-page: 1500359 year: 2016 publication-title: Adv. Sci. – volume: 194 start-page: 1113 year: 2009 publication-title: J. Power Sources – volume: 164 start-page: 1731 year: 2017 end-page: 1744 publication-title: J. Electrochem. Soc. – volume: 27 start-page: 825 year: 2016 end-page: 829 publication-title: Adv. Powder Technol. – volume: 1 start-page: 17 year: 2013 end-page: 25 publication-title: J. Asian Ceram. Soc. – volume: 301 start-page: 194 year: 2016 end-page: 198 publication-title: J. Power Sources – volume: 10 start-page: 18610 year: 2018 end-page: 18618 publication-title: ACS Appl. Mater. Interfaces – volume: 278 start-page: 217 year: 2015 end-page: 221 publication-title: Solid State Ionics – volume: 196 start-page: 6943 year: 2011 end-page: 6946 publication-title: J. Power Sources – volume: 55 128 start-page: 9965 10119 year: 2016 2016 end-page: 9968 10122 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 307 start-page: 63 year: 2016 end-page: 68 publication-title: J. Power Sources – volume: 24 start-page: 287 year: 2012 end-page: 293 publication-title: Chem. Mater. – volume: 289 start-page: 125 year: 2016 end-page: 132 publication-title: Solid State Ionics – volume: 389 start-page: 240 year: 2018 end-page: 248 publication-title: J. Power Sources – volume: 17 start-page: 32115 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 53–56 start-page: 647 year: 1992 end-page: 654 publication-title: Solid State Ionics – year: 2018 publication-title: Crit. Rev. Solid State – volume: 116 start-page: 140 year: 2016 end-page: 162 publication-title: Chem. Rev. – volume: 3 start-page: 21343 year: 2015 end-page: 21350 publication-title: J. Mater. Chem. A – volume: 19 start-page: 379 year: 2019 end-page: 400 publication-title: Energy Storage Mater. – volume: 28 start-page: 122 year: 2009 end-page: 126 publication-title: Rare Met. – volume: 240 start-page: 636 year: 2013 end-page: 643 publication-title: J. Power Sources – volume: 9 start-page: 16063 year: 2017 end-page: 16070 publication-title: ACS Appl. Mater. Interfaces – volume: 196 start-page: 6456 year: 2011 end-page: 6464 publication-title: J. Power Sources – volume: 295 start-page: 7 year: 2016 end-page: 12 publication-title: Solid State Ionics – volume: 501 start-page: 255 year: 2010 end-page: 258 publication-title: J. Alloys Compd. – volume: 36 start-page: 1995 year: 2016 end-page: 2001 publication-title: J. Eur. Ceram. Soc. – volume: 378 start-page: 48 year: 2018 end-page: 52 publication-title: J. Power Sources – volume: 37 start-page: 1419 year: 2002 end-page: 1430 publication-title: Mater. Res. Bull. – volume: 10 start-page: 10935 year: 2018 end-page: 10944 publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 8611 year: 2017 end-page: 8619 publication-title: Chem. Mater. – volume: 11 start-page: 1945 year: 2018 end-page: 1976 publication-title: Energy Environ. Sci. – volume: 5 start-page: 21178 year: 2017 end-page: 21188 publication-title: J. Mater. Chem. A – volume: 295 start-page: 32 year: 2016 end-page: 40 publication-title: Solid State Ionics – volume: 135 start-page: 975 year: 2013 end-page: 978 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 1768 year: 2016 end-page: 1771 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 3182 year: 2017 end-page: 3187 publication-title: Nano Lett. – volume: 3 start-page: 1601659 year: 2017 publication-title: Sci. Adv. – volume: 8 start-page: 1870096 year: 2018 publication-title: Adv. Energy Mater. – volume: 100 start-page: 2123 year: 2017 end-page: 2135 publication-title: J. Am. Ceram. Soc. – volume: 345 start-page: 483 year: 2018 end-page: 491 publication-title: Chem. Eng. J. – volume: 8 start-page: 7843 year: 2016 end-page: 7853 publication-title: ACS Appl. Mater. Interfaces – volume: 406 start-page: 3947 year: 2011 end-page: 3950 publication-title: Physica B – volume: 116 start-page: 53 year: 2016 end-page: 62 publication-title: Acta Mater. – volume: 318 start-page: 45 year: 2018 end-page: 53 publication-title: Solid State Ionics – volume: 18–19 start-page: 562 year: 1986 end-page: 569 publication-title: Solid State Ionics – volume: 1 start-page: 1080 year: 2016 end-page: 1085 publication-title: ACS Energy Lett. – volume: 30 start-page: 990 year: 2018 end-page: 997 publication-title: Chem. Mater. – volume: 14 start-page: 563 year: 2013 end-page: 566 publication-title: J. Ceram. Process Res. – volume: 17 start-page: 918 year: 2005 end-page: 921 publication-title: Adv. Mater. – volume: 101 start-page: 1087 year: 2018 end-page: 1094 publication-title: J. Am. Ceram. Soc. – volume: 8 start-page: 1702374 year: 2018 publication-title: Adv. Energy Mater. – volume: 10 start-page: 15691 year: 2018 end-page: 15696 publication-title: ACS Appl. Mater. Interfaces – volume: 124 start-page: 231 year: 2003 end-page: 236 publication-title: J. Power Sources – volume: 7 start-page: 46545 year: 2017 end-page: 46552 publication-title: RSC Adv. – volume: 8 start-page: 127 year: 1996 end-page: 135 publication-title: Adv. Mater. – volume: 377 start-page: 36 year: 2018 end-page: 43 publication-title: J. Power Sources – volume: 41 start-page: 763 year: 2006 end-page: 777 publication-title: J. Mater. Sci. – volume: 99 start-page: 410 year: 2016 end-page: 414 publication-title: J. Am. Ceram. Soc. – volume: 397 start-page: 95 year: 2018 end-page: 101 publication-title: J. Power Sources – volume: 5 start-page: 663 year: 1981 end-page: 666 publication-title: Solid State Ionics – volume: 39 start-page: 402 year: 2019 end-page: 408 publication-title: J. Eur. Ceram. Soc. – volume: 14 start-page: 1026 year: 2015 end-page: 1031 publication-title: Nat. Mater. – volume: 278 start-page: 65 year: 2015 end-page: 68 publication-title: Solid State Ionics – volume: 159 start-page: 1114 year: 2012 end-page: 1119 publication-title: J. Electrochem. Soc. – volume: 1 start-page: 16030 year: 2016 publication-title: Nat. Energy – volume: 55 start-page: 6892 year: 2010 end-page: 6896 publication-title: Electrochim. Acta – volume: 3 start-page: 856 year: 2012 publication-title: Nat. Commun. – volume: 89 start-page: 909 year: 2016 end-page: 915 publication-title: Russ. J. Appl. Chem. – volume: 174 start-page: 741 year: 2007 end-page: 744 publication-title: J. Power Sources – volume: 14 start-page: 58 year: 2018 end-page: 74 publication-title: Energy Storage Mater. – volume: 4 start-page: 8091 year: 2016 end-page: 8096 publication-title: J. Mater. Chem. A – volume: 176 start-page: 1364 year: 2015 end-page: 1373 publication-title: Electrochim. Acta – volume: 10 start-page: 31240 year: 2018 end-page: 31248 publication-title: ACS Appl. Mater. Interfaces – volume: 43 start-page: 4714 year: 2014 end-page: 4727 publication-title: Chem. Soc. Rev. – volume: 643 start-page: 181 year: 2015 end-page: 185 publication-title: J. Alloys Compd. – volume: 296 start-page: 261 year: 2015 end-page: 267 publication-title: J. Power Sources – volume: 15 start-page: 3974 year: 2003 end-page: 3990 publication-title: Chem. Mater. – ident: e_1_2_8_116_1 doi: 10.1149/2.0121609jes – year: 2018 ident: e_1_2_8_18_1 publication-title: Crit. Rev. Solid State – ident: e_1_2_8_33_1 doi: 10.1016/0167-2738(92)90442-R – ident: e_1_2_8_35_1 doi: 10.1016/0167-2738(86)90179-7 – ident: e_1_2_8_25_1 doi: 10.1039/C6TA02294D – ident: e_1_2_8_38_1 doi: 10.1016/j.ensm.2018.10.012 – ident: e_1_2_8_98_1 doi: 10.1016/j.jpowsour.2009.06.020 – ident: e_1_2_8_110_1 doi: 10.1016/j.ssi.2018.06.016 – ident: e_1_2_8_57_1 doi: 10.1016/j.ssi.2015.05.020 – ident: e_1_2_8_6_1 doi: 10.1016/j.ssi.2009.03.022 – ident: e_1_2_8_106_1 doi: 10.1016/j.jpowsour.2018.05.050 – ident: e_1_2_8_16_1 doi: 10.1126/sciadv.1601659 – ident: e_1_2_8_7_1 doi: 10.1016/j.ensm.2017.08.015 – ident: e_1_2_8_58_1 doi: 10.1016/j.physb.2011.07.033 – ident: e_1_2_8_8_1 doi: 10.1016/j.jascer.2013.03.005 – ident: e_1_2_8_90_1 doi: 10.1016/j.ssi.2016.07.006 – ident: e_1_2_8_72_1 doi: 10.1016/j.ceramint.2012.10.206 – ident: e_1_2_8_100_1 doi: 10.1039/C8TA08095J – ident: e_1_2_8_9_1 doi: 10.1149/2.1571707jes – ident: e_1_2_8_108_1 doi: 10.1016/j.electacta.2010.05.074 – ident: e_1_2_8_2_1 doi: 10.1021/acs.chemrev.5b00563 – ident: e_1_2_8_42_1 doi: 10.1016/j.jallcom.2010.04.084 – ident: e_1_2_8_89_1 doi: 10.1016/j.electacta.2015.07.170 – ident: e_1_2_8_5_1 doi: 10.1016/j.ensm.2018.02.020 – ident: e_1_2_8_88_1 doi: 10.1016/j.cej.2018.03.151 – ident: e_1_2_8_50_1 doi: 10.1007/s11581-014-1287-9 – ident: e_1_2_8_29_1 doi: 10.1002/anie.200703900 – ident: e_1_2_8_20_1 doi: 10.1021/jacs.5b11851 – ident: e_1_2_8_51_1 doi: 10.1021/cm202773d – ident: e_1_2_8_15_1 doi: 10.3389/fenrg.2016.00028 – ident: e_1_2_8_102_1 doi: 10.1149/2.080207jes – ident: e_1_2_8_31_1 doi: 10.1021/acsami.8b19181 – ident: e_1_2_8_65_1 doi: 10.1111/jace.13638 – ident: e_1_2_8_105_1 doi: 10.1021/acsami.8b01003 – ident: e_1_2_8_84_1 doi: 10.1039/C5TA06379E – ident: e_1_2_8_74_1 doi: 10.1016/j.jallcom.2015.04.019 – ident: e_1_2_8_81_1 doi: 10.1016/j.ssi.2016.07.010 – ident: e_1_2_8_19_1 doi: 10.1002/advs.201500359 – ident: e_1_2_8_64_1 doi: 10.1016/j.jpowsour.2017.12.021 – ident: e_1_2_8_77_1 doi: 10.1021/acsami.6b16233 – ident: e_1_2_8_47_1 doi: 10.1016/j.jeurceramsoc.2014.11.023 – ident: e_1_2_8_46_1 doi: 10.1002/aenm.201702374 – ident: e_1_2_8_78_1 doi: 10.1016/j.jallcom.2013.12.100 – ident: e_1_2_8_4_1 doi: 10.1039/C8EE01053F – ident: e_1_2_8_79_1 doi: 10.1016/j.jpowsour.2010.11.140 – ident: e_1_2_8_34_1 doi: 10.1016/S0025-5408(02)00793-6 – ident: e_1_2_8_24_1 doi: 10.1021/ja3110895 – ident: e_1_2_8_60_1 doi: 10.1111/j.1551-2916.2005.00246.x – ident: e_1_2_8_55_1 doi: 10.1016/j.ssi.2016.03.007 – ident: e_1_2_8_40_1 doi: 10.1039/c4cs00020j – ident: e_1_2_8_107_1 doi: 10.1016/j.jpowsour.2014.09.105 – ident: e_1_2_8_28_1 doi: 10.1021/acsami.6b00833 – ident: e_1_2_8_76_1 doi: 10.1016/j.jpowsour.2015.07.017 – ident: e_1_2_8_62_1 doi: 10.1016/j.ssi.2014.07.013 – ident: e_1_2_8_48_1 doi: 10.1016/j.jpowsour.2007.06.227 – ident: e_1_2_8_10_1 doi: 10.1149/2.0041801jes – ident: e_1_2_8_68_1 doi: 10.1016/j.actamat.2016.06.027 – ident: e_1_2_8_93_1 doi: 10.1016/j.jeurceramsoc.2018.09.025 – ident: e_1_2_8_96_1 doi: 10.1039/C7RA09335G – ident: e_1_2_8_3_1 doi: 10.1021/acsaem.8b01449 – ident: e_1_2_8_29_2 doi: 10.1002/ange.200703900 – ident: e_1_2_8_41_1 doi: 10.1021/acs.chemmater.7b02301 – ident: e_1_2_8_71_1 doi: 10.1039/C5CP05337D – ident: e_1_2_8_111_1 doi: 10.1111/jace.15294 – ident: e_1_2_8_52_1 doi: 10.1016/j.jpowsour.2016.11.076 – ident: e_1_2_8_114_1 doi: 10.1016/j.jpowsour.2015.12.055 – ident: e_1_2_8_80_1 doi: 10.1149/2.0711507jes – ident: e_1_2_8_53_1 doi: 10.1016/j.jpowsour.2009.11.037 – ident: e_1_2_8_67_1 doi: 10.1016/S0921-5093(00)00773-5 – ident: e_1_2_8_73_1 doi: 10.1111/jace.13997 – ident: e_1_2_8_49_1 doi: 10.1016/j.ceramint.2015.05.062 – ident: e_1_2_8_54_1 doi: 10.1016/j.ssi.2014.12.013 – ident: e_1_2_8_92_1 doi: 10.1016/j.jpowsour.2013.05.039 – ident: e_1_2_8_11_1 doi: 10.1038/nmat4369 – ident: e_1_2_8_44_1 doi: 10.1021/acsenergylett.6b00481 – ident: e_1_2_8_36_1 doi: 10.1002/adma.19960080205 – ident: e_1_2_8_1_1 doi: 10.1149/2.0021514jes – ident: e_1_2_8_101_1 doi: 10.1016/j.jpowsour.2007.06.234 – ident: e_1_2_8_56_1 doi: 10.3389/fenrg.2016.00012 – ident: e_1_2_8_59_1 doi: 10.1111/jace.14727 – ident: e_1_2_8_21_1 doi: 10.1002/anie.201604554 – ident: e_1_2_8_82_1 doi: 10.1134/S1070427216060100 – ident: e_1_2_8_112_1 doi: 10.1007/s12598-009-0024-4 – ident: e_1_2_8_45_1 doi: 10.1016/j.jpowsour.2011.03.065 – ident: e_1_2_8_83_1 doi: 10.1021/acsami.7b12092 – ident: e_1_2_8_26_1 doi: 10.1002/aenm.201870096 – ident: e_1_2_8_27_1 doi: 10.1021/acs.chemmater.7b04842 – volume: 14 start-page: 563 year: 2013 ident: e_1_2_8_70_1 publication-title: J. Ceram. Process Res. – ident: e_1_2_8_85_1 doi: 10.1039/C8CP03586E – ident: e_1_2_8_66_1 doi: 10.1007/s10853-006-6555-2 – ident: e_1_2_8_75_1 doi: 10.1016/j.jallcom.2016.04.173 – ident: e_1_2_8_95_1 doi: 10.1021/acsami.6b15305 – ident: e_1_2_8_63_1 doi: 10.1016/j.ssi.2015.06.012 – ident: e_1_2_8_91_1 doi: 10.1111/jace.14451 – ident: e_1_2_8_30_1 doi: 10.1039/C7TA05031C – ident: e_1_2_8_21_2 doi: 10.1002/ange.201604554 – ident: e_1_2_8_37_1 doi: 10.1016/j.ssi.2017.09.018 – ident: e_1_2_8_87_1 doi: 10.1016/j.ssi.2018.08.010 – ident: e_1_2_8_14_1 doi: 10.1038/nenergy.2016.30 – ident: e_1_2_8_23_1 doi: 10.1016/0167-2738(81)90341-6 – ident: e_1_2_8_104_1 doi: 10.1021/acsami.8b01631 – ident: e_1_2_8_109_1 doi: 10.1016/j.apt.2015.10.013 – ident: e_1_2_8_13_1 doi: 10.1038/ncomms1843 – ident: e_1_2_8_103_1 doi: 10.1021/acs.nanolett.7b00715 – ident: e_1_2_8_61_1 doi: 10.1016/j.jeurceramsoc.2016.02.042 – ident: e_1_2_8_22_1 doi: 10.1002/adma.200401286 – ident: e_1_2_8_97_1 doi: 10.1021/acsami.8b06366 – ident: e_1_2_8_12_1 doi: 10.1016/j.jmat.2015.03.002 – ident: e_1_2_8_113_1 doi: 10.1016/j.jpowsour.2018.03.071 – ident: e_1_2_8_86_1 doi: 10.1021/acsami.8b00842 – ident: e_1_2_8_39_1 doi: 10.3389/fenrg.2016.00025 – ident: e_1_2_8_32_1 doi: 10.1016/S0378-7753(03)00609-8 – ident: e_1_2_8_17_1 doi: 10.1021/cm0300516 – ident: e_1_2_8_43_1 doi: 10.1016/j.jpowsour.2017.11.063 – ident: e_1_2_8_69_1 doi: 10.1016/j.jeurceramsoc.2017.12.017 – ident: e_1_2_8_94_1 doi: 10.1016/j.jpowsour.2008.08.015 – ident: e_1_2_8_115_1 doi: 10.1016/j.jpowsour.2016.06.068 – ident: e_1_2_8_99_1 doi: 10.1016/j.jpowsour.2015.09.117 |
| SSID | ssj0060966 |
| Score | 2.6650603 |
| SecondaryResourceType | review_article |
| Snippet | Inorganic solid electrolytes play a critical role in solid‐state lithium batteries achieving high safety levels and high energy densities. The synthetic... Inorganic solid electrolytes play a critical role in solid-state lithium batteries achieving high safety levels and high energy densities. The synthetic... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3713 |
| SubjectTerms | aluminum Batteries Coated electrodes Composition effects Conductivity Conductors Crystal structure electrochemistry Electrolytes Glass & glassware industry Ions lithium Lithium batteries Molten salt electrolytes Solid electrolytes solid-state reactions Synthesis synthesis design |
| Title | Synthesis and Properties of NaSICON‐type LATP and LAGP Solid Electrolytes |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201900725 https://www.ncbi.nlm.nih.gov/pubmed/31132230 https://www.proquest.com/docview/2281646105 https://www.proquest.com/docview/2232115961 |
| Volume | 12 |
| WOSCitedRecordID | wos000477219700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1864-564X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060966 issn: 1864-5631 databaseCode: DRFUL dateStart: 20080101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6aTaG9pElfcZoEBQo9mVgP2_JxcbNN6bJZ4gT2ZrSyBAuLt6yTQG79Cf2N-SXR-NUupRSai7Hx2BajkeabkfUNwMfEOK-aWOtTqSNfUM38ZG6478AJNYUJAsObYhPxZCJns2T62y7-hh-iT7jhyKjnaxzgal6d_iIN1VWFFITOoQUxC7dgmznjDQew_flydD3uZuPIQfR6h5GMhB9GnHbEjQE73XzDpmP6A21ugtfa-4xePb3du7DTIk8ybExlD56Z8jW8SLuCb2_gW3ZfOjhYLSqiyoJMMU2_Rr5VsrJkorKv6cXk4cdPTNqS8fBqWkuNh1-mJFstFwU5ayrqLO8den0L16Ozq_Tcb2st-FrE-KObLAwuoSmMuBLNtLMw6g6xVjoMudGxjaTSAVVUmEBYFktjRaC4sQ4gWsvfwaBclWYfiEJWPMnFXLloR9pCmbDgoWBFoqgWUnjgd4rOdUtEjvUwlnlDocxyVFHeq8iDT73894aC46-Sh12_5e1QrHLGJHKoORzpwUl_26kWV0ZUaVa3KMNdIBwmEfXgfdPf_ac4xYCdBx6wulv_0YY8zbK0vzr4n4c-wEs8x8w1Y4cwuFnfmiN4ru9uFtX6GLbimTxuzfwR2jX6vg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7apJBemr7Suk1bFQo9mVgP2_JxcbJNiOsu9QZyM4oswcLiLeskkFt-Qn9jfkk0fpWllELpxWB7bIvRyPPNSPoG4FNinFdNrPWp1JEvqGZ-cmG478AJNZUJAsO7YhNxnsvz82TWrybEvTAdP8SYcMOR0f6vcYBjQvrgF2uobhrkIHQeLYhZ-BC2hbMlZ-Tbh9-nZ9nwO44cRm-3GMlI-GHE6cDcGLCDzTdseqbf4OYmem3dz3T3PzT8KTzpsSeZdMbyDB6Y-jnspEPJtxdwWtzUDhA2i4aouiIzTNSvkXGVrCzJVXGSfsvvbn9i2pZkk_mslcomX2akWC0XFTnqauosbxx-fQln06N5euz31RZ8LWJc6iYrg5NoCmOuRDPtbIy6Q6yVDkNudGwjqXRAFRUmEJbF0lgRKG6sg4jW8j3Yqle1eQ1EIS-e5OJCuXhH2kqZsOKhYFWiqBZSeOAPmi51T0WOFTGWZUeizEpUUTmqyIPPo_yPjoTjj5L7Q8eV_WBsSsYksqg5JOnBx_G2Uy3OjajarK5QhrtQOEwi6sGrrsPHT3GKITsPPGBtv_6lDWVaFOl49uZfHvoAO8fzr1mZneSnb-ExXsc8NmP7sHW5vjLv4JG-vlw06_e9td8DAWn9xg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7aTWl76TNN3aStCoWeTKyHbfm4ONk2ZHFNnUBuRpElWFi8YZ0EcutP6G_ML4nGr7CUUii9GGyPbTEaeb4ZSd8AfE6M86qJtT6VOvIF1cxPzg33HTihpjJBYHhXbCLOMnl2luT9akLcC9PxQ4wJNxwZ7f8aB7i5qOz-PWuobhrkIHQeLYhZ-BC2BFaSmcDWwY_Z6Xz4HUcOo7dbjGQk_DDidGBuDNj-5hs2PdNvcHMTvbbuZ_b8PzT8BTzrsSeZdsbyEh6Y-hU8SYeSb6_huLipHSBsFg1RdUVyTNSvkXGVrCzJVHGUfs9uf_7CtC2ZT0_yVmo-_ZqTYrVcVOSwq6mzvHH4dRtOZ4cn6Te_r7bgaxHjUjdZGZxEUxhzJZppZ2PUHWKtdBhyo2MbSaUDqqgwgbAslsaKQHFjHUS0lr-BSb2qzVsgCnnxJBfnysU70lbKhBUPBasSRbWQwgN_0HSpeypyrIixLDsSZVaiispRRR58GeUvOhKOP0ruDR1X9oOxKRmTyKLmkKQHn8bbTrU4N6Jqs7pCGe5CYWdA1IOdrsPHT3GKITsPPGBtv_6lDWVaFOl49u5fHvoIj_ODWTk_yo534SlexjQ2Y3swuVxfmffwSF9fLpr1h97Y7wCN__1B |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+Properties+of+NaSICON-type+LATP+and+LAGP+Solid+Electrolytes&rft.jtitle=ChemSusChem&rft.au=DeWees%2C+Rachel&rft.au=Wang%2C+Hui&rft.date=2019-08-22&rft.issn=1864-564X&rft.eissn=1864-564X&rft.volume=12&rft.issue=16&rft.spage=3713&rft_id=info:doi/10.1002%2Fcssc.201900725&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |