Synthesis and Properties of NaSICON‐type LATP and LAGP Solid Electrolytes

Inorganic solid electrolytes play a critical role in solid‐state lithium batteries achieving high safety levels and high energy densities. The synthetic approaches to solid electrolytes are important for both fundamental research and practical applications. Li1+xAlxTi2−x(PO4)3 (LATP) and Li1+xAlxGe2...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:ChemSusChem Ročník 12; číslo 16; s. 3713 - 3725
Hlavní autori: DeWees, Rachel, Wang, Hui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany Wiley Subscription Services, Inc 22.08.2019
Predmet:
ISSN:1864-5631, 1864-564X, 1864-564X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Inorganic solid electrolytes play a critical role in solid‐state lithium batteries achieving high safety levels and high energy densities. The synthetic approaches to solid electrolytes are important for both fundamental research and practical applications. Li1+xAlxTi2−x(PO4)3 (LATP) and Li1+xAlxGe2−x(PO4)3 (LAGP) are two representative solid electrolytes with a sodium superionic conductor (NaSICON) structure. Herein, LATP and LAGP solid electrolytes are reviewed from the synthesis perspective, and correlated with their structure and conductive properties, as well as their electrochemical applications in batteries. First, the solid‐ and liquid‐based synthetic methods to LATP and LAGP solid electrolytes and the key influencing factors are described. Second, the crystal structures and phase purities obtained from different synthetic approaches are introduced. Third, the conductive mechanisms, composition effects, and synthetic effects on the conductivities of LATP and LAGP solid electrolytes are compared. Fourth, the electrochemical applications of these two solid electrolytes in full batteries are discussed, including roles as solid electrolytes, composite components in electrodes, and surface coatings on electrodes. In the last section, a brief outlook is provided on the future development of NaSICON‐type solid electrolytes for all‐solid‐state batteries. How was it made? Li1+xAlxTi2−x(PO4)3 (LATP) and Li1+xAlxGe2−x(PO4)3 (LAGP), which are popular sodium superionic conductor (NaSICON)‐type solid electrolytes, are reviewed from the perspective of their synthesis. The synthetic methods have been correlated with the structures and conductive properties. Electrochemical applications of these electrolytes in batteries are also presented.
AbstractList Inorganic solid electrolytes play a critical role in solid-state lithium batteries achieving high safety levels and high energy densities. The synthetic approaches to solid electrolytes are important for both fundamental research and practical applications. Li1+x Alx Ti2-x (PO4 )3 (LATP) and Li1+x Alx Ge2-x (PO4 )3 (LAGP) are two representative solid electrolytes with a sodium superionic conductor (NaSICON) structure. Herein, LATP and LAGP solid electrolytes are reviewed from the synthesis perspective, and correlated with their structure and conductive properties, as well as their electrochemical applications in batteries. First, the solid- and liquid-based synthetic methods to LATP and LAGP solid electrolytes and the key influencing factors are described. Second, the crystal structures and phase purities obtained from different synthetic approaches are introduced. Third, the conductive mechanisms, composition effects, and synthetic effects on the conductivities of LATP and LAGP solid electrolytes are compared. Fourth, the electrochemical applications of these two solid electrolytes in full batteries are discussed, including roles as solid electrolytes, composite components in electrodes, and surface coatings on electrodes. In the last section, a brief outlook is provided on the future development of NaSICON-type solid electrolytes for all-solid-state batteries.Inorganic solid electrolytes play a critical role in solid-state lithium batteries achieving high safety levels and high energy densities. The synthetic approaches to solid electrolytes are important for both fundamental research and practical applications. Li1+x Alx Ti2-x (PO4 )3 (LATP) and Li1+x Alx Ge2-x (PO4 )3 (LAGP) are two representative solid electrolytes with a sodium superionic conductor (NaSICON) structure. Herein, LATP and LAGP solid electrolytes are reviewed from the synthesis perspective, and correlated with their structure and conductive properties, as well as their electrochemical applications in batteries. First, the solid- and liquid-based synthetic methods to LATP and LAGP solid electrolytes and the key influencing factors are described. Second, the crystal structures and phase purities obtained from different synthetic approaches are introduced. Third, the conductive mechanisms, composition effects, and synthetic effects on the conductivities of LATP and LAGP solid electrolytes are compared. Fourth, the electrochemical applications of these two solid electrolytes in full batteries are discussed, including roles as solid electrolytes, composite components in electrodes, and surface coatings on electrodes. In the last section, a brief outlook is provided on the future development of NaSICON-type solid electrolytes for all-solid-state batteries.
Inorganic solid electrolytes play a critical role in solid‐state lithium batteries achieving high safety levels and high energy densities. The synthetic approaches to solid electrolytes are important for both fundamental research and practical applications. Li1+xAlxTi2−x(PO4)3 (LATP) and Li1+xAlxGe2−x(PO4)3 (LAGP) are two representative solid electrolytes with a sodium superionic conductor (NaSICON) structure. Herein, LATP and LAGP solid electrolytes are reviewed from the synthesis perspective, and correlated with their structure and conductive properties, as well as their electrochemical applications in batteries. First, the solid‐ and liquid‐based synthetic methods to LATP and LAGP solid electrolytes and the key influencing factors are described. Second, the crystal structures and phase purities obtained from different synthetic approaches are introduced. Third, the conductive mechanisms, composition effects, and synthetic effects on the conductivities of LATP and LAGP solid electrolytes are compared. Fourth, the electrochemical applications of these two solid electrolytes in full batteries are discussed, including roles as solid electrolytes, composite components in electrodes, and surface coatings on electrodes. In the last section, a brief outlook is provided on the future development of NaSICON‐type solid electrolytes for all‐solid‐state batteries. How was it made? Li1+xAlxTi2−x(PO4)3 (LATP) and Li1+xAlxGe2−x(PO4)3 (LAGP), which are popular sodium superionic conductor (NaSICON)‐type solid electrolytes, are reviewed from the perspective of their synthesis. The synthetic methods have been correlated with the structures and conductive properties. Electrochemical applications of these electrolytes in batteries are also presented.
Inorganic solid electrolytes play a critical role in solid-state lithium batteries achieving high safety levels and high energy densities. The synthetic approaches to solid electrolytes are important for both fundamental research and practical applications. Li Al Ti (PO ) (LATP) and Li Al Ge (PO ) (LAGP) are two representative solid electrolytes with a sodium superionic conductor (NaSICON) structure. Herein, LATP and LAGP solid electrolytes are reviewed from the synthesis perspective, and correlated with their structure and conductive properties, as well as their electrochemical applications in batteries. First, the solid- and liquid-based synthetic methods to LATP and LAGP solid electrolytes and the key influencing factors are described. Second, the crystal structures and phase purities obtained from different synthetic approaches are introduced. Third, the conductive mechanisms, composition effects, and synthetic effects on the conductivities of LATP and LAGP solid electrolytes are compared. Fourth, the electrochemical applications of these two solid electrolytes in full batteries are discussed, including roles as solid electrolytes, composite components in electrodes, and surface coatings on electrodes. In the last section, a brief outlook is provided on the future development of NaSICON-type solid electrolytes for all-solid-state batteries.
Inorganic solid electrolytes play a critical role in solid‐state lithium batteries achieving high safety levels and high energy densities. The synthetic approaches to solid electrolytes are important for both fundamental research and practical applications. Li1+xAlxTi2−x(PO4)3 (LATP) and Li1+xAlxGe2−x(PO4)3 (LAGP) are two representative solid electrolytes with a sodium superionic conductor (NaSICON) structure. Herein, LATP and LAGP solid electrolytes are reviewed from the synthesis perspective, and correlated with their structure and conductive properties, as well as their electrochemical applications in batteries. First, the solid‐ and liquid‐based synthetic methods to LATP and LAGP solid electrolytes and the key influencing factors are described. Second, the crystal structures and phase purities obtained from different synthetic approaches are introduced. Third, the conductive mechanisms, composition effects, and synthetic effects on the conductivities of LATP and LAGP solid electrolytes are compared. Fourth, the electrochemical applications of these two solid electrolytes in full batteries are discussed, including roles as solid electrolytes, composite components in electrodes, and surface coatings on electrodes. In the last section, a brief outlook is provided on the future development of NaSICON‐type solid electrolytes for all‐solid‐state batteries.
Inorganic solid electrolytes play a critical role in solid‐state lithium batteries achieving high safety levels and high energy densities. The synthetic approaches to solid electrolytes are important for both fundamental research and practical applications. Li 1+ x Al x Ti 2− x (PO 4 ) 3 (LATP) and Li 1+ x Al x Ge 2− x (PO 4 ) 3 (LAGP) are two representative solid electrolytes with a sodium superionic conductor (NaSICON) structure. Herein, LATP and LAGP solid electrolytes are reviewed from the synthesis perspective, and correlated with their structure and conductive properties, as well as their electrochemical applications in batteries. First, the solid‐ and liquid‐based synthetic methods to LATP and LAGP solid electrolytes and the key influencing factors are described. Second, the crystal structures and phase purities obtained from different synthetic approaches are introduced. Third, the conductive mechanisms, composition effects, and synthetic effects on the conductivities of LATP and LAGP solid electrolytes are compared. Fourth, the electrochemical applications of these two solid electrolytes in full batteries are discussed, including roles as solid electrolytes, composite components in electrodes, and surface coatings on electrodes. In the last section, a brief outlook is provided on the future development of NaSICON‐type solid electrolytes for all‐solid‐state batteries.
Author Wang, Hui
DeWees, Rachel
Author_xml – sequence: 1
  givenname: Rachel
  surname: DeWees
  fullname: DeWees, Rachel
  organization: University of Louisville
– sequence: 2
  givenname: Hui
  orcidid: 0000-0003-0936-6781
  surname: Wang
  fullname: Wang, Hui
  email: hui.wang.1@louisvill.edu
  organization: University of Louisville
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31132230$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9q3DAQh0VJaP601x6LoZdedjMjy7J9XEyahi7JglPoTajyiCp4ra2kJfjWR-gz5knidJMUAiGXmTl83zDS74jtDX4gxj4gzBGAn5gYzZwD1gAlL96wQ6ykmBVS_Nh7mnM8YEcxXgNIqKV8yw5yxJzzHA7Zt3Yc0i-KLmZ66LJV8BsKyVHMvM0udHveXF7c_vmbxg1ly8XV6h-1XJytstb3rstOezIp-H5MFN-xfav7SO8f-jH7_uX0qvk6W16enTeL5cyIUhYzXnUkioprQAG14YZ0h1MpjTZFkZMpray0AdQoCITlZUVWgM7J5gjW5sfs827vJvjfW4pJrV001Pd6IL-NanoZRyxqiRP66Rl67bdhmK6bqAqlkAjFRH18oLY_19SpTXBrHUb1-E0TIHaACT7GQFYZl3RyfkhBu14hqPs01H0a6imNSZs_0x43vyjUO-HG9TS-QqumbZv_7h0IM5vC
CitedBy_id crossref_primary_10_1007_s10853_021_05940_z
crossref_primary_10_3390_su14159090
crossref_primary_10_3390_ma14195729
crossref_primary_10_1002_batt_202400667
crossref_primary_10_1016_j_pnucene_2022_104372
crossref_primary_10_1002_ente_202201323
crossref_primary_10_1016_j_ceramint_2024_10_372
crossref_primary_10_1016_j_ensm_2025_104419
crossref_primary_10_1002_aesr_202200017
crossref_primary_10_1007_s44373_025_00040_y
crossref_primary_10_1016_j_memsci_2022_120907
crossref_primary_10_1016_j_ceramint_2024_05_450
crossref_primary_10_1021_acsaem_5c01922
crossref_primary_10_1016_j_jnoncrysol_2024_123042
crossref_primary_10_1002_tcr_202300044
crossref_primary_10_1016_j_ssi_2023_116317
crossref_primary_10_3390_membranes13020201
crossref_primary_10_1007_s11244_025_02154_4
crossref_primary_10_1016_j_jcis_2024_12_224
crossref_primary_10_1002_inf2_12222
crossref_primary_10_3390_nano12111912
crossref_primary_10_1016_j_ceramint_2024_05_322
crossref_primary_10_1039_D5YA00079C
crossref_primary_10_1007_s11837_024_07068_2
crossref_primary_10_1016_j_jallcom_2023_168702
crossref_primary_10_1016_j_coelec_2022_101108
crossref_primary_10_4150_KPMI_2023_30_5_394
crossref_primary_10_1002_batt_202400520
crossref_primary_10_1002_eem2_70088
crossref_primary_10_1515_zpch_2021_3109
crossref_primary_10_3390_en14113145
crossref_primary_10_1002_adfm_202000077
crossref_primary_10_1016_j_jpowsour_2024_235169
crossref_primary_10_1016_j_ssi_2022_115990
crossref_primary_10_1016_j_ssi_2024_116482
crossref_primary_10_1016_j_jpowsour_2022_232257
crossref_primary_10_1016_j_jallcom_2025_178636
crossref_primary_10_1007_s10008_022_05206_x
crossref_primary_10_1039_D5NJ00172B
crossref_primary_10_54392_irjmt2417
crossref_primary_10_1016_j_jpowsour_2023_233867
crossref_primary_10_1002_aenm_202301886
crossref_primary_10_1021_acsaem_5c01901
crossref_primary_10_5796_electrochemistry_24_00116
crossref_primary_10_1002_aesr_202100203
crossref_primary_10_1002_smll_202307342
crossref_primary_10_1016_j_desal_2024_118010
crossref_primary_10_1007_s10008_023_05729_x
crossref_primary_10_1016_j_fub_2025_100045
crossref_primary_10_1016_j_molliq_2023_123763
crossref_primary_10_1002_adsu_202401028
crossref_primary_10_1002_cssc_202301406
crossref_primary_10_1016_j_ssi_2025_116896
crossref_primary_10_1016_j_gee_2025_07_009
crossref_primary_10_1016_j_ensm_2024_103932
crossref_primary_10_1016_j_jpowsour_2022_231954
crossref_primary_10_1016_j_cclet_2024_110145
crossref_primary_10_1016_j_jpowsour_2025_238266
crossref_primary_10_1016_j_ceramint_2022_08_072
crossref_primary_10_1016_j_ceramint_2021_04_216
crossref_primary_10_1016_j_jcis_2024_02_151
crossref_primary_10_1016_j_matlet_2022_132736
crossref_primary_10_1002_smsc_202300017
crossref_primary_10_1016_j_electacta_2022_141549
crossref_primary_10_1149_1945_7111_adf66d
crossref_primary_10_1002_aesr_202300074
crossref_primary_10_1016_j_jnoncrysol_2023_122154
crossref_primary_10_1002_adfm_202314994
crossref_primary_10_1016_j_jpowsour_2025_237608
crossref_primary_10_1016_j_mtchem_2025_102821
crossref_primary_10_1016_j_electacta_2024_145299
crossref_primary_10_1016_j_jcis_2025_137994
crossref_primary_10_1016_j_nanoen_2024_110424
crossref_primary_10_1016_j_mtsust_2023_100614
crossref_primary_10_1016_j_jpowsour_2024_234299
crossref_primary_10_1016_j_apsusc_2024_160622
crossref_primary_10_1016_j_jeurceramsoc_2023_06_057
crossref_primary_10_1016_j_ssi_2024_116458
crossref_primary_10_1002_marc_202200648
crossref_primary_10_1016_j_jpowsour_2023_232689
crossref_primary_10_1142_S1793604725300014
crossref_primary_10_1063_5_0151559
crossref_primary_10_1016_j_ceramint_2023_11_134
crossref_primary_10_3390_batteries9080407
crossref_primary_10_1016_j_jpowsour_2024_234847
crossref_primary_10_1016_j_actamat_2022_118593
crossref_primary_10_1016_j_cej_2025_165760
crossref_primary_10_1016_j_nanoen_2025_111106
crossref_primary_10_1039_D0SC06553F
crossref_primary_10_3390_coatings12121964
crossref_primary_10_3390_polym15040803
crossref_primary_10_3390_batteries9100506
crossref_primary_10_1007_s11581_023_05222_5
crossref_primary_10_1016_j_cej_2022_137740
crossref_primary_10_1002_smll_202107064
crossref_primary_10_3390_batteries10010024
crossref_primary_10_1021_acsaem_5c00907
crossref_primary_10_1016_j_jeurceramsoc_2024_03_050
crossref_primary_10_1016_j_mtener_2023_101248
crossref_primary_10_1142_S1793604723500017
crossref_primary_10_1016_j_ceramint_2024_11_221
crossref_primary_10_1016_j_mtener_2025_101829
crossref_primary_10_1002_cssc_202200038
crossref_primary_10_1002_cssc_202202216
crossref_primary_10_1007_s11837_023_06291_7
crossref_primary_10_1016_j_est_2025_116990
crossref_primary_10_1016_j_jallcom_2023_168857
crossref_primary_10_31857_S2218117224040047
crossref_primary_10_35848_1347_4065_ad531d
crossref_primary_10_1016_j_jeurceramsoc_2024_02_028
crossref_primary_10_1016_j_jelechem_2022_116750
crossref_primary_10_1016_j_surfcoat_2021_127389
crossref_primary_10_1016_j_nanoen_2025_110938
crossref_primary_10_1016_j_jelechem_2022_116631
crossref_primary_10_1016_j_egyr_2024_06_007
crossref_primary_10_1007_s11426_023_1827_0
crossref_primary_10_4150_KPMI_2024_31_1_23
crossref_primary_10_3390_nano13172436
crossref_primary_10_1016_j_est_2025_116487
crossref_primary_10_1088_2515_7655_acb5e6
crossref_primary_10_1016_j_nxmate_2025_100768
crossref_primary_10_1002_ente_202201288
crossref_primary_10_1002_aenm_202400766
crossref_primary_10_1016_j_jpowsour_2021_229631
crossref_primary_10_1002_cssc_202301284
crossref_primary_10_1016_j_matchemphys_2024_129583
crossref_primary_10_1002_smll_202505366
crossref_primary_10_1016_j_matt_2020_05_003
crossref_primary_10_1016_j_nanoen_2020_105562
crossref_primary_10_3390_min12030310
crossref_primary_10_1088_2752_5724_acfb28
crossref_primary_10_1016_j_jeurceramsoc_2022_04_009
crossref_primary_10_1063_5_0248457
crossref_primary_10_1002_cphc_202500302
crossref_primary_10_1016_j_jallcom_2023_170736
crossref_primary_10_3390_batteries8110232
crossref_primary_10_1007_s10973_022_11760_3
crossref_primary_10_1002_smll_202406298
crossref_primary_10_1002_ente_202201153
crossref_primary_10_3390_nano14151278
crossref_primary_10_1002_celc_202001527
crossref_primary_10_1016_j_jcis_2025_01_276
crossref_primary_10_1016_j_electacta_2022_140408
crossref_primary_10_1039_D4RA02216E
crossref_primary_10_3390_nano12122082
crossref_primary_10_3390_app15137120
crossref_primary_10_1016_j_jelechem_2024_118915
crossref_primary_10_1016_j_electacta_2020_137128
crossref_primary_10_1002_batt_202400121
crossref_primary_10_1021_acsaem_5c00660
crossref_primary_10_1002_elt2_13
crossref_primary_10_1002_adma_202502653
crossref_primary_10_1002_aenm_202101339
crossref_primary_10_1002_adem_202301515
crossref_primary_10_1002_cssc_202301268
crossref_primary_10_1016_j_jpowsour_2022_231323
crossref_primary_10_1016_j_jeurceramsoc_2021_11_014
crossref_primary_10_1063_5_0147635
crossref_primary_10_1016_j_est_2023_109048
crossref_primary_10_1016_j_est_2024_114592
crossref_primary_10_1016_j_cej_2022_134955
crossref_primary_10_1002_adfm_202201136
crossref_primary_10_1016_j_cej_2025_167671
crossref_primary_10_1002_adfm_202421775
crossref_primary_10_1016_j_ceramint_2024_08_281
crossref_primary_10_1016_j_ceramint_2025_02_020
crossref_primary_10_1016_j_jallcom_2024_174945
crossref_primary_10_1007_s00339_022_05992_1
crossref_primary_10_3390_met10111523
crossref_primary_10_1111_jace_19322
crossref_primary_10_1002_pol_20250372
crossref_primary_10_1134_S2517751624600924
crossref_primary_10_1007_s10008_024_06015_0
crossref_primary_10_1016_j_jpowsour_2022_231798
crossref_primary_10_1134_S1070363223100110
crossref_primary_10_1016_j_jcis_2022_11_048
crossref_primary_10_1002_chem_202303884
crossref_primary_10_1016_j_jallcom_2022_167639
crossref_primary_10_1134_S0036023623602313
crossref_primary_10_1002_chem_202500820
crossref_primary_10_1016_j_est_2025_117098
crossref_primary_10_1002_batt_202200327
crossref_primary_10_1016_j_cej_2024_148977
crossref_primary_10_1007_s43207_024_00419_4
crossref_primary_10_59761_RCR5126
crossref_primary_10_1002_pssa_202400823
crossref_primary_10_1016_j_ceramint_2021_04_295
crossref_primary_10_1016_j_electacta_2023_142872
crossref_primary_10_1002_adem_202300566
crossref_primary_10_1007_s10854_022_07937_z
crossref_primary_10_1039_D3QM00729D
crossref_primary_10_1016_j_jallcom_2021_158641
crossref_primary_10_1007_s10854_025_14400_2
crossref_primary_10_3390_nano15010042
crossref_primary_10_1016_j_ensm_2025_104510
crossref_primary_10_1063_5_0098362
crossref_primary_10_1016_j_matchemphys_2022_126492
crossref_primary_10_1088_2752_5724_accdf3
crossref_primary_10_1016_j_ssi_2020_115486
crossref_primary_10_1016_j_partic_2021_04_002
crossref_primary_10_1016_j_jpowsour_2023_233137
crossref_primary_10_1557_s43577_023_00649_7
crossref_primary_10_1016_j_ssi_2023_116191
crossref_primary_10_1002_eem2_12886
crossref_primary_10_3390_nano12122063
crossref_primary_10_1002_adfm_202300973
crossref_primary_10_3390_membranes13020155
crossref_primary_10_3390_nano10081606
crossref_primary_10_1007_s11367_022_02023_2
crossref_primary_10_1021_acs_analchem_4c06470
crossref_primary_10_3390_polym16223176
crossref_primary_10_1002_smtd_201900751
crossref_primary_10_1002_aenm_202302255
crossref_primary_10_1002_adma_202301152
crossref_primary_10_1002_cey2_70031
crossref_primary_10_1016_j_jallcom_2020_155281
crossref_primary_10_1016_j_jallcom_2024_174062
crossref_primary_10_1002_smll_202200266
crossref_primary_10_1007_s43939_024_00089_3
crossref_primary_10_1016_j_mseb_2022_116049
crossref_primary_10_1016_j_jiec_2025_02_007
crossref_primary_10_1016_j_electacta_2022_141395
crossref_primary_10_1016_j_jcis_2023_08_180
crossref_primary_10_1016_j_ssi_2022_116111
crossref_primary_10_1021_acsaem_4c02927
crossref_primary_10_1016_j_jcis_2023_07_027
crossref_primary_10_1007_s10717_024_00665_2
Cites_doi 10.1149/2.0121609jes
10.1016/0167-2738(92)90442-R
10.1016/0167-2738(86)90179-7
10.1039/C6TA02294D
10.1016/j.ensm.2018.10.012
10.1016/j.jpowsour.2009.06.020
10.1016/j.ssi.2018.06.016
10.1016/j.ssi.2015.05.020
10.1016/j.ssi.2009.03.022
10.1016/j.jpowsour.2018.05.050
10.1126/sciadv.1601659
10.1016/j.ensm.2017.08.015
10.1016/j.physb.2011.07.033
10.1016/j.jascer.2013.03.005
10.1016/j.ssi.2016.07.006
10.1016/j.ceramint.2012.10.206
10.1039/C8TA08095J
10.1149/2.1571707jes
10.1016/j.electacta.2010.05.074
10.1021/acs.chemrev.5b00563
10.1016/j.jallcom.2010.04.084
10.1016/j.electacta.2015.07.170
10.1016/j.ensm.2018.02.020
10.1016/j.cej.2018.03.151
10.1007/s11581-014-1287-9
10.1002/anie.200703900
10.1021/jacs.5b11851
10.1021/cm202773d
10.3389/fenrg.2016.00028
10.1149/2.080207jes
10.1021/acsami.8b19181
10.1111/jace.13638
10.1021/acsami.8b01003
10.1039/C5TA06379E
10.1016/j.jallcom.2015.04.019
10.1016/j.ssi.2016.07.010
10.1002/advs.201500359
10.1016/j.jpowsour.2017.12.021
10.1021/acsami.6b16233
10.1016/j.jeurceramsoc.2014.11.023
10.1002/aenm.201702374
10.1016/j.jallcom.2013.12.100
10.1039/C8EE01053F
10.1016/j.jpowsour.2010.11.140
10.1016/S0025-5408(02)00793-6
10.1021/ja3110895
10.1111/j.1551-2916.2005.00246.x
10.1016/j.ssi.2016.03.007
10.1039/c4cs00020j
10.1016/j.jpowsour.2014.09.105
10.1021/acsami.6b00833
10.1016/j.jpowsour.2015.07.017
10.1016/j.ssi.2014.07.013
10.1016/j.jpowsour.2007.06.227
10.1149/2.0041801jes
10.1016/j.actamat.2016.06.027
10.1016/j.jeurceramsoc.2018.09.025
10.1039/C7RA09335G
10.1021/acsaem.8b01449
10.1002/ange.200703900
10.1021/acs.chemmater.7b02301
10.1039/C5CP05337D
10.1111/jace.15294
10.1016/j.jpowsour.2016.11.076
10.1016/j.jpowsour.2015.12.055
10.1149/2.0711507jes
10.1016/j.jpowsour.2009.11.037
10.1016/S0921-5093(00)00773-5
10.1111/jace.13997
10.1016/j.ceramint.2015.05.062
10.1016/j.ssi.2014.12.013
10.1016/j.jpowsour.2013.05.039
10.1038/nmat4369
10.1021/acsenergylett.6b00481
10.1002/adma.19960080205
10.1149/2.0021514jes
10.1016/j.jpowsour.2007.06.234
10.3389/fenrg.2016.00012
10.1111/jace.14727
10.1002/anie.201604554
10.1134/S1070427216060100
10.1007/s12598-009-0024-4
10.1016/j.jpowsour.2011.03.065
10.1021/acsami.7b12092
10.1002/aenm.201870096
10.1021/acs.chemmater.7b04842
10.1039/C8CP03586E
10.1007/s10853-006-6555-2
10.1016/j.jallcom.2016.04.173
10.1021/acsami.6b15305
10.1016/j.ssi.2015.06.012
10.1111/jace.14451
10.1039/C7TA05031C
10.1002/ange.201604554
10.1016/j.ssi.2017.09.018
10.1016/j.ssi.2018.08.010
10.1038/nenergy.2016.30
10.1016/0167-2738(81)90341-6
10.1021/acsami.8b01631
10.1016/j.apt.2015.10.013
10.1038/ncomms1843
10.1021/acs.nanolett.7b00715
10.1016/j.jeurceramsoc.2016.02.042
10.1002/adma.200401286
10.1021/acsami.8b06366
10.1016/j.jmat.2015.03.002
10.1016/j.jpowsour.2018.03.071
10.1021/acsami.8b00842
10.3389/fenrg.2016.00025
10.1016/S0378-7753(03)00609-8
10.1021/cm0300516
10.1016/j.jpowsour.2017.11.063
10.1016/j.jeurceramsoc.2017.12.017
10.1016/j.jpowsour.2008.08.015
10.1016/j.jpowsour.2016.06.068
10.1016/j.jpowsour.2015.09.117
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.201900725
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 3725
ExternalDocumentID 31132230
10_1002_cssc_201900725
CSSC201900725
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: NASA Kentucky
  funderid: NNX15AR69H
– fundername: NASA
  grantid: NNX15AR69H
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAMMB
AAYXX
AEFGJ
AEYWJ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4765-28de4582a01409c2cead1cea7cac553ec7f68ac01a14e04f278ef40a3ef310ff3
IEDL.DBID DRFUL
ISICitedReferencesCount 315
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000477219700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1864-5631
1864-564X
IngestDate Fri Jul 11 16:20:01 EDT 2025
Sat Nov 29 14:29:23 EST 2025
Wed Feb 19 02:31:31 EST 2025
Tue Nov 18 21:46:38 EST 2025
Sat Nov 29 07:12:17 EST 2025
Wed Jan 22 16:38:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords lithium
aluminum
electrochemistry
solid-state reactions
synthesis design
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4765-28de4582a01409c2cead1cea7cac553ec7f68ac01a14e04f278ef40a3ef310ff3
Notes )
Al
NaSICON=sodium superionic conductor, LATP=Li
LAGP=Li
.
2
3
4
Ti
x
1+
1+x
Ge
PO
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0936-6781
PMID 31132230
PQID 2281646105
PQPubID 986333
PageCount 13
ParticipantIDs proquest_miscellaneous_2232115961
proquest_journals_2281646105
pubmed_primary_31132230
crossref_citationtrail_10_1002_cssc_201900725
crossref_primary_10_1002_cssc_201900725
wiley_primary_10_1002_cssc_201900725_CSSC201900725
PublicationCentury 2000
PublicationDate August 22, 2019
PublicationDateYYYYMMDD 2019-08-22
PublicationDate_xml – month: 08
  year: 2019
  text: August 22, 2019
  day: 22
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 165
2013; 1
2018; 325
2016; 307
2019; 11
2010; 501
2018; 324
2019; 19
2013; 240
2009; 194
2008 2008; 47 120
2016; 301
2011; 196
2016; 36
2018; 6
2018; 8
2011; 406
2018; 1
2007; 174
2018; 30
2010; 195
2017; 164
2012; 24
2018; 38
2009; 180
2015; 643
2018; 101
1981; 5
2018; 345
2016; 289
2019; 39
2016; 325
2018; 20
2005; 88
2016; 680
2016; 163
2014; 43
2016; 99
2016; 4
2006; 41
2016; 1
2016; 3
1992; 53–56
1986; 18–19
2009; 189
2018; 11
2018; 10
2005; 17
2016; 27
2016; 8
2016; 295
2018; 14
2014; 266
2017; 5
2015; 35
2010; 55
2017; 7
2017; 3
2003; 15
2017; 9
2013; 14
2018; 377
2015; 41
2018; 378
2015; 296
2015; 176
2016; 116
2000; 287
2003; 124
1996; 8
2016; 89
2015; 162
2015; 1
2015; 14
2002; 37
2015; 17
2015; 3
2015; 98
2018; 389
2014; 590
2017; 29
2009; 28
2015; 273
2018; 397
2015; 270
2012; 3
2016 2016; 55 128
2013; 39
2017; 17
2015; 278
2015; 21
2018
2013; 135
2016; 138
2018; 318
2017; 340
2017; 100
2012; 159
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_29_2
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_21_2
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
Yoon Y. (e_1_2_8_70_1) 2013; 14
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
Sun Y. (e_1_2_8_18_1) 2018
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 1
  start-page: 7028
  year: 2018
  end-page: 7034
  publication-title: ACS Appl. Energy Mater.
– volume: 174
  start-page: 832
  year: 2007
  end-page: 837
  publication-title: J. Power Sources
– volume: 39
  start-page: 4645
  year: 2013
  end-page: 4649
  publication-title: Ceram. Int.
– volume: 287
  start-page: 183
  year: 2000
  end-page: 188
  publication-title: Mater. Sci. Eng. C
– volume: 88
  start-page: 1803
  year: 2005
  end-page: 1807
  publication-title: J. Am. Ceram. Soc.
– volume: 20
  start-page: 22134
  year: 2018
  publication-title: Phys. Chem. Chem. Phys.
– volume: 189
  start-page: 365
  year: 2009
  end-page: 370
  publication-title: J. Power Sources
– volume: 180
  start-page: 911
  year: 2009
  end-page: 916
  publication-title: Solid State Ionics
– volume: 325
  start-page: 584
  year: 2016
  end-page: 590
  publication-title: J. Power Sources
– volume: 165
  start-page: 6008
  year: 2018
  end-page: 6016
  publication-title: J. Electrochem. Soc.
– volume: 340
  start-page: 294
  year: 2017
  end-page: 301
  publication-title: J. Power Sources
– volume: 163
  start-page: 1822
  year: 2016
  end-page: 1828
  publication-title: J. Electrochem. Soc.
– volume: 273
  start-page: 389
  year: 2015
  end-page: 395
  publication-title: J. Power Sources
– volume: 11
  start-page: 6015
  year: 2019
  end-page: 6021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 162
  start-page: 2387
  year: 2015
  end-page: 2392
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 139
  year: 2018
  end-page: 159
  publication-title: Energy Storage Mater.
– volume: 162
  start-page: 1265
  year: 2015
  end-page: 1271
  publication-title: J. Electrochem. Soc.
– volume: 324
  start-page: 114
  year: 2018
  end-page: 127
  publication-title: Solid State Ionics
– volume: 41
  start-page: 11136
  year: 2015
  end-page: 11142
  publication-title: Ceram. Int.
– volume: 98
  start-page: 2422
  year: 2015
  end-page: 2427
  publication-title: J. Am. Ceram. Soc.
– volume: 35
  start-page: 1477
  year: 2015
  end-page: 1484
  publication-title: J. Eur. Ceram. Soc.
– volume: 325
  start-page: 112
  year: 2018
  end-page: 119
  publication-title: Solid State Ionics
– volume: 266
  start-page: 44
  year: 2014
  end-page: 50
  publication-title: Solid State Ionics
– volume: 270
  start-page: 61
  year: 2015
  end-page: 65
  publication-title: Solid State Ionics
– volume: 21
  start-page: 1253
  year: 2015
  end-page: 1259
  publication-title: Ionics
– volume: 590
  start-page: 147
  year: 2014
  end-page: 152
  publication-title: J. Alloys Compd.
– volume: 680
  start-page: 646
  year: 2016
  end-page: 653
  publication-title: J. Alloys Compd.
– volume: 9
  start-page: 41837
  year: 2017
  end-page: 41844
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 22
  year: 2015
  end-page: 32
  publication-title: J. Materiomics
– volume: 195
  start-page: 2870
  year: 2010
  end-page: 2876
  publication-title: J. Power Sources
– volume: 9
  start-page: 11696
  year: 2017
  end-page: 11703
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 21248
  year: 2018
  end-page: 21254
  publication-title: J. Mater. Chem. A
– volume: 100
  start-page: 141
  year: 2017
  end-page: 149
  publication-title: J. Am. Ceram. Soc.
– volume: 47 120
  start-page: 755 767
  year: 2008 2008
  end-page: 758 770
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 38
  start-page: 1679
  year: 2018
  end-page: 1687
  publication-title: J. Eur. Ceram. Soc.
– volume: 3
  start-page: 1500359
  year: 2016
  publication-title: Adv. Sci.
– volume: 194
  start-page: 1113
  year: 2009
  publication-title: J. Power Sources
– volume: 164
  start-page: 1731
  year: 2017
  end-page: 1744
  publication-title: J. Electrochem. Soc.
– volume: 27
  start-page: 825
  year: 2016
  end-page: 829
  publication-title: Adv. Powder Technol.
– volume: 1
  start-page: 17
  year: 2013
  end-page: 25
  publication-title: J. Asian Ceram. Soc.
– volume: 301
  start-page: 194
  year: 2016
  end-page: 198
  publication-title: J. Power Sources
– volume: 10
  start-page: 18610
  year: 2018
  end-page: 18618
  publication-title: ACS Appl. Mater. Interfaces
– volume: 278
  start-page: 217
  year: 2015
  end-page: 221
  publication-title: Solid State Ionics
– volume: 196
  start-page: 6943
  year: 2011
  end-page: 6946
  publication-title: J. Power Sources
– volume: 55 128
  start-page: 9965 10119
  year: 2016 2016
  end-page: 9968 10122
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 307
  start-page: 63
  year: 2016
  end-page: 68
  publication-title: J. Power Sources
– volume: 24
  start-page: 287
  year: 2012
  end-page: 293
  publication-title: Chem. Mater.
– volume: 289
  start-page: 125
  year: 2016
  end-page: 132
  publication-title: Solid State Ionics
– volume: 389
  start-page: 240
  year: 2018
  end-page: 248
  publication-title: J. Power Sources
– volume: 17
  start-page: 32115
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 53–56
  start-page: 647
  year: 1992
  end-page: 654
  publication-title: Solid State Ionics
– year: 2018
  publication-title: Crit. Rev. Solid State
– volume: 116
  start-page: 140
  year: 2016
  end-page: 162
  publication-title: Chem. Rev.
– volume: 3
  start-page: 21343
  year: 2015
  end-page: 21350
  publication-title: J. Mater. Chem. A
– volume: 19
  start-page: 379
  year: 2019
  end-page: 400
  publication-title: Energy Storage Mater.
– volume: 28
  start-page: 122
  year: 2009
  end-page: 126
  publication-title: Rare Met.
– volume: 240
  start-page: 636
  year: 2013
  end-page: 643
  publication-title: J. Power Sources
– volume: 9
  start-page: 16063
  year: 2017
  end-page: 16070
  publication-title: ACS Appl. Mater. Interfaces
– volume: 196
  start-page: 6456
  year: 2011
  end-page: 6464
  publication-title: J. Power Sources
– volume: 295
  start-page: 7
  year: 2016
  end-page: 12
  publication-title: Solid State Ionics
– volume: 501
  start-page: 255
  year: 2010
  end-page: 258
  publication-title: J. Alloys Compd.
– volume: 36
  start-page: 1995
  year: 2016
  end-page: 2001
  publication-title: J. Eur. Ceram. Soc.
– volume: 378
  start-page: 48
  year: 2018
  end-page: 52
  publication-title: J. Power Sources
– volume: 37
  start-page: 1419
  year: 2002
  end-page: 1430
  publication-title: Mater. Res. Bull.
– volume: 10
  start-page: 10935
  year: 2018
  end-page: 10944
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 8611
  year: 2017
  end-page: 8619
  publication-title: Chem. Mater.
– volume: 11
  start-page: 1945
  year: 2018
  end-page: 1976
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 21178
  year: 2017
  end-page: 21188
  publication-title: J. Mater. Chem. A
– volume: 295
  start-page: 32
  year: 2016
  end-page: 40
  publication-title: Solid State Ionics
– volume: 135
  start-page: 975
  year: 2013
  end-page: 978
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 1768
  year: 2016
  end-page: 1771
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 3182
  year: 2017
  end-page: 3187
  publication-title: Nano Lett.
– volume: 3
  start-page: 1601659
  year: 2017
  publication-title: Sci. Adv.
– volume: 8
  start-page: 1870096
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 100
  start-page: 2123
  year: 2017
  end-page: 2135
  publication-title: J. Am. Ceram. Soc.
– volume: 345
  start-page: 483
  year: 2018
  end-page: 491
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 7843
  year: 2016
  end-page: 7853
  publication-title: ACS Appl. Mater. Interfaces
– volume: 406
  start-page: 3947
  year: 2011
  end-page: 3950
  publication-title: Physica B
– volume: 116
  start-page: 53
  year: 2016
  end-page: 62
  publication-title: Acta Mater.
– volume: 318
  start-page: 45
  year: 2018
  end-page: 53
  publication-title: Solid State Ionics
– volume: 18–19
  start-page: 562
  year: 1986
  end-page: 569
  publication-title: Solid State Ionics
– volume: 1
  start-page: 1080
  year: 2016
  end-page: 1085
  publication-title: ACS Energy Lett.
– volume: 30
  start-page: 990
  year: 2018
  end-page: 997
  publication-title: Chem. Mater.
– volume: 14
  start-page: 563
  year: 2013
  end-page: 566
  publication-title: J. Ceram. Process Res.
– volume: 17
  start-page: 918
  year: 2005
  end-page: 921
  publication-title: Adv. Mater.
– volume: 101
  start-page: 1087
  year: 2018
  end-page: 1094
  publication-title: J. Am. Ceram. Soc.
– volume: 8
  start-page: 1702374
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 15691
  year: 2018
  end-page: 15696
  publication-title: ACS Appl. Mater. Interfaces
– volume: 124
  start-page: 231
  year: 2003
  end-page: 236
  publication-title: J. Power Sources
– volume: 7
  start-page: 46545
  year: 2017
  end-page: 46552
  publication-title: RSC Adv.
– volume: 8
  start-page: 127
  year: 1996
  end-page: 135
  publication-title: Adv. Mater.
– volume: 377
  start-page: 36
  year: 2018
  end-page: 43
  publication-title: J. Power Sources
– volume: 41
  start-page: 763
  year: 2006
  end-page: 777
  publication-title: J. Mater. Sci.
– volume: 99
  start-page: 410
  year: 2016
  end-page: 414
  publication-title: J. Am. Ceram. Soc.
– volume: 397
  start-page: 95
  year: 2018
  end-page: 101
  publication-title: J. Power Sources
– volume: 5
  start-page: 663
  year: 1981
  end-page: 666
  publication-title: Solid State Ionics
– volume: 39
  start-page: 402
  year: 2019
  end-page: 408
  publication-title: J. Eur. Ceram. Soc.
– volume: 14
  start-page: 1026
  year: 2015
  end-page: 1031
  publication-title: Nat. Mater.
– volume: 278
  start-page: 65
  year: 2015
  end-page: 68
  publication-title: Solid State Ionics
– volume: 159
  start-page: 1114
  year: 2012
  end-page: 1119
  publication-title: J. Electrochem. Soc.
– volume: 1
  start-page: 16030
  year: 2016
  publication-title: Nat. Energy
– volume: 55
  start-page: 6892
  year: 2010
  end-page: 6896
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 856
  year: 2012
  publication-title: Nat. Commun.
– volume: 89
  start-page: 909
  year: 2016
  end-page: 915
  publication-title: Russ. J. Appl. Chem.
– volume: 174
  start-page: 741
  year: 2007
  end-page: 744
  publication-title: J. Power Sources
– volume: 14
  start-page: 58
  year: 2018
  end-page: 74
  publication-title: Energy Storage Mater.
– volume: 4
  start-page: 8091
  year: 2016
  end-page: 8096
  publication-title: J. Mater. Chem. A
– volume: 176
  start-page: 1364
  year: 2015
  end-page: 1373
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 31240
  year: 2018
  end-page: 31248
  publication-title: ACS Appl. Mater. Interfaces
– volume: 43
  start-page: 4714
  year: 2014
  end-page: 4727
  publication-title: Chem. Soc. Rev.
– volume: 643
  start-page: 181
  year: 2015
  end-page: 185
  publication-title: J. Alloys Compd.
– volume: 296
  start-page: 261
  year: 2015
  end-page: 267
  publication-title: J. Power Sources
– volume: 15
  start-page: 3974
  year: 2003
  end-page: 3990
  publication-title: Chem. Mater.
– ident: e_1_2_8_116_1
  doi: 10.1149/2.0121609jes
– year: 2018
  ident: e_1_2_8_18_1
  publication-title: Crit. Rev. Solid State
– ident: e_1_2_8_33_1
  doi: 10.1016/0167-2738(92)90442-R
– ident: e_1_2_8_35_1
  doi: 10.1016/0167-2738(86)90179-7
– ident: e_1_2_8_25_1
  doi: 10.1039/C6TA02294D
– ident: e_1_2_8_38_1
  doi: 10.1016/j.ensm.2018.10.012
– ident: e_1_2_8_98_1
  doi: 10.1016/j.jpowsour.2009.06.020
– ident: e_1_2_8_110_1
  doi: 10.1016/j.ssi.2018.06.016
– ident: e_1_2_8_57_1
  doi: 10.1016/j.ssi.2015.05.020
– ident: e_1_2_8_6_1
  doi: 10.1016/j.ssi.2009.03.022
– ident: e_1_2_8_106_1
  doi: 10.1016/j.jpowsour.2018.05.050
– ident: e_1_2_8_16_1
  doi: 10.1126/sciadv.1601659
– ident: e_1_2_8_7_1
  doi: 10.1016/j.ensm.2017.08.015
– ident: e_1_2_8_58_1
  doi: 10.1016/j.physb.2011.07.033
– ident: e_1_2_8_8_1
  doi: 10.1016/j.jascer.2013.03.005
– ident: e_1_2_8_90_1
  doi: 10.1016/j.ssi.2016.07.006
– ident: e_1_2_8_72_1
  doi: 10.1016/j.ceramint.2012.10.206
– ident: e_1_2_8_100_1
  doi: 10.1039/C8TA08095J
– ident: e_1_2_8_9_1
  doi: 10.1149/2.1571707jes
– ident: e_1_2_8_108_1
  doi: 10.1016/j.electacta.2010.05.074
– ident: e_1_2_8_2_1
  doi: 10.1021/acs.chemrev.5b00563
– ident: e_1_2_8_42_1
  doi: 10.1016/j.jallcom.2010.04.084
– ident: e_1_2_8_89_1
  doi: 10.1016/j.electacta.2015.07.170
– ident: e_1_2_8_5_1
  doi: 10.1016/j.ensm.2018.02.020
– ident: e_1_2_8_88_1
  doi: 10.1016/j.cej.2018.03.151
– ident: e_1_2_8_50_1
  doi: 10.1007/s11581-014-1287-9
– ident: e_1_2_8_29_1
  doi: 10.1002/anie.200703900
– ident: e_1_2_8_20_1
  doi: 10.1021/jacs.5b11851
– ident: e_1_2_8_51_1
  doi: 10.1021/cm202773d
– ident: e_1_2_8_15_1
  doi: 10.3389/fenrg.2016.00028
– ident: e_1_2_8_102_1
  doi: 10.1149/2.080207jes
– ident: e_1_2_8_31_1
  doi: 10.1021/acsami.8b19181
– ident: e_1_2_8_65_1
  doi: 10.1111/jace.13638
– ident: e_1_2_8_105_1
  doi: 10.1021/acsami.8b01003
– ident: e_1_2_8_84_1
  doi: 10.1039/C5TA06379E
– ident: e_1_2_8_74_1
  doi: 10.1016/j.jallcom.2015.04.019
– ident: e_1_2_8_81_1
  doi: 10.1016/j.ssi.2016.07.010
– ident: e_1_2_8_19_1
  doi: 10.1002/advs.201500359
– ident: e_1_2_8_64_1
  doi: 10.1016/j.jpowsour.2017.12.021
– ident: e_1_2_8_77_1
  doi: 10.1021/acsami.6b16233
– ident: e_1_2_8_47_1
  doi: 10.1016/j.jeurceramsoc.2014.11.023
– ident: e_1_2_8_46_1
  doi: 10.1002/aenm.201702374
– ident: e_1_2_8_78_1
  doi: 10.1016/j.jallcom.2013.12.100
– ident: e_1_2_8_4_1
  doi: 10.1039/C8EE01053F
– ident: e_1_2_8_79_1
  doi: 10.1016/j.jpowsour.2010.11.140
– ident: e_1_2_8_34_1
  doi: 10.1016/S0025-5408(02)00793-6
– ident: e_1_2_8_24_1
  doi: 10.1021/ja3110895
– ident: e_1_2_8_60_1
  doi: 10.1111/j.1551-2916.2005.00246.x
– ident: e_1_2_8_55_1
  doi: 10.1016/j.ssi.2016.03.007
– ident: e_1_2_8_40_1
  doi: 10.1039/c4cs00020j
– ident: e_1_2_8_107_1
  doi: 10.1016/j.jpowsour.2014.09.105
– ident: e_1_2_8_28_1
  doi: 10.1021/acsami.6b00833
– ident: e_1_2_8_76_1
  doi: 10.1016/j.jpowsour.2015.07.017
– ident: e_1_2_8_62_1
  doi: 10.1016/j.ssi.2014.07.013
– ident: e_1_2_8_48_1
  doi: 10.1016/j.jpowsour.2007.06.227
– ident: e_1_2_8_10_1
  doi: 10.1149/2.0041801jes
– ident: e_1_2_8_68_1
  doi: 10.1016/j.actamat.2016.06.027
– ident: e_1_2_8_93_1
  doi: 10.1016/j.jeurceramsoc.2018.09.025
– ident: e_1_2_8_96_1
  doi: 10.1039/C7RA09335G
– ident: e_1_2_8_3_1
  doi: 10.1021/acsaem.8b01449
– ident: e_1_2_8_29_2
  doi: 10.1002/ange.200703900
– ident: e_1_2_8_41_1
  doi: 10.1021/acs.chemmater.7b02301
– ident: e_1_2_8_71_1
  doi: 10.1039/C5CP05337D
– ident: e_1_2_8_111_1
  doi: 10.1111/jace.15294
– ident: e_1_2_8_52_1
  doi: 10.1016/j.jpowsour.2016.11.076
– ident: e_1_2_8_114_1
  doi: 10.1016/j.jpowsour.2015.12.055
– ident: e_1_2_8_80_1
  doi: 10.1149/2.0711507jes
– ident: e_1_2_8_53_1
  doi: 10.1016/j.jpowsour.2009.11.037
– ident: e_1_2_8_67_1
  doi: 10.1016/S0921-5093(00)00773-5
– ident: e_1_2_8_73_1
  doi: 10.1111/jace.13997
– ident: e_1_2_8_49_1
  doi: 10.1016/j.ceramint.2015.05.062
– ident: e_1_2_8_54_1
  doi: 10.1016/j.ssi.2014.12.013
– ident: e_1_2_8_92_1
  doi: 10.1016/j.jpowsour.2013.05.039
– ident: e_1_2_8_11_1
  doi: 10.1038/nmat4369
– ident: e_1_2_8_44_1
  doi: 10.1021/acsenergylett.6b00481
– ident: e_1_2_8_36_1
  doi: 10.1002/adma.19960080205
– ident: e_1_2_8_1_1
  doi: 10.1149/2.0021514jes
– ident: e_1_2_8_101_1
  doi: 10.1016/j.jpowsour.2007.06.234
– ident: e_1_2_8_56_1
  doi: 10.3389/fenrg.2016.00012
– ident: e_1_2_8_59_1
  doi: 10.1111/jace.14727
– ident: e_1_2_8_21_1
  doi: 10.1002/anie.201604554
– ident: e_1_2_8_82_1
  doi: 10.1134/S1070427216060100
– ident: e_1_2_8_112_1
  doi: 10.1007/s12598-009-0024-4
– ident: e_1_2_8_45_1
  doi: 10.1016/j.jpowsour.2011.03.065
– ident: e_1_2_8_83_1
  doi: 10.1021/acsami.7b12092
– ident: e_1_2_8_26_1
  doi: 10.1002/aenm.201870096
– ident: e_1_2_8_27_1
  doi: 10.1021/acs.chemmater.7b04842
– volume: 14
  start-page: 563
  year: 2013
  ident: e_1_2_8_70_1
  publication-title: J. Ceram. Process Res.
– ident: e_1_2_8_85_1
  doi: 10.1039/C8CP03586E
– ident: e_1_2_8_66_1
  doi: 10.1007/s10853-006-6555-2
– ident: e_1_2_8_75_1
  doi: 10.1016/j.jallcom.2016.04.173
– ident: e_1_2_8_95_1
  doi: 10.1021/acsami.6b15305
– ident: e_1_2_8_63_1
  doi: 10.1016/j.ssi.2015.06.012
– ident: e_1_2_8_91_1
  doi: 10.1111/jace.14451
– ident: e_1_2_8_30_1
  doi: 10.1039/C7TA05031C
– ident: e_1_2_8_21_2
  doi: 10.1002/ange.201604554
– ident: e_1_2_8_37_1
  doi: 10.1016/j.ssi.2017.09.018
– ident: e_1_2_8_87_1
  doi: 10.1016/j.ssi.2018.08.010
– ident: e_1_2_8_14_1
  doi: 10.1038/nenergy.2016.30
– ident: e_1_2_8_23_1
  doi: 10.1016/0167-2738(81)90341-6
– ident: e_1_2_8_104_1
  doi: 10.1021/acsami.8b01631
– ident: e_1_2_8_109_1
  doi: 10.1016/j.apt.2015.10.013
– ident: e_1_2_8_13_1
  doi: 10.1038/ncomms1843
– ident: e_1_2_8_103_1
  doi: 10.1021/acs.nanolett.7b00715
– ident: e_1_2_8_61_1
  doi: 10.1016/j.jeurceramsoc.2016.02.042
– ident: e_1_2_8_22_1
  doi: 10.1002/adma.200401286
– ident: e_1_2_8_97_1
  doi: 10.1021/acsami.8b06366
– ident: e_1_2_8_12_1
  doi: 10.1016/j.jmat.2015.03.002
– ident: e_1_2_8_113_1
  doi: 10.1016/j.jpowsour.2018.03.071
– ident: e_1_2_8_86_1
  doi: 10.1021/acsami.8b00842
– ident: e_1_2_8_39_1
  doi: 10.3389/fenrg.2016.00025
– ident: e_1_2_8_32_1
  doi: 10.1016/S0378-7753(03)00609-8
– ident: e_1_2_8_17_1
  doi: 10.1021/cm0300516
– ident: e_1_2_8_43_1
  doi: 10.1016/j.jpowsour.2017.11.063
– ident: e_1_2_8_69_1
  doi: 10.1016/j.jeurceramsoc.2017.12.017
– ident: e_1_2_8_94_1
  doi: 10.1016/j.jpowsour.2008.08.015
– ident: e_1_2_8_115_1
  doi: 10.1016/j.jpowsour.2016.06.068
– ident: e_1_2_8_99_1
  doi: 10.1016/j.jpowsour.2015.09.117
SSID ssj0060966
Score 2.6650603
SecondaryResourceType review_article
Snippet Inorganic solid electrolytes play a critical role in solid‐state lithium batteries achieving high safety levels and high energy densities. The synthetic...
Inorganic solid electrolytes play a critical role in solid-state lithium batteries achieving high safety levels and high energy densities. The synthetic...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3713
SubjectTerms aluminum
Batteries
Coated electrodes
Composition effects
Conductivity
Conductors
Crystal structure
electrochemistry
Electrolytes
Glass & glassware industry
Ions
lithium
Lithium batteries
Molten salt electrolytes
Solid electrolytes
solid-state reactions
Synthesis
synthesis design
Title Synthesis and Properties of NaSICON‐type LATP and LAGP Solid Electrolytes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201900725
https://www.ncbi.nlm.nih.gov/pubmed/31132230
https://www.proquest.com/docview/2281646105
https://www.proquest.com/docview/2232115961
Volume 12
WOSCitedRecordID wos000477219700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1864-564X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060966
  issn: 1864-5631
  databaseCode: DRFUL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6aTaG5tE0fids0KFDoycSS_JCPi5ttS5fNEiewNyPrAQuLt6yTQG75CfmN_SXV-NUupRTai7Hx2BYzI82nkfUNwHtKUxuHJvXLKA79UCrjC2GsH7MgTmnJpeGyKTaRzGZisUjnv-zib_khhoQb9oxmvMYOLsv69CdpqKprpCB0AS1IWLQDu8w5bzSC3Y8Xk6tpPxrHDqI3O4yEa0oUc9oTNwbsdPsN24HpN7S5DV6b6DN59v_tfg5PO-RJxq2r7MMjU72AJ1lf8O0lfM3vKgcH62VNZKXJHNP0G-RbJWtLZjL_kp3Pvt8_YNKWTMeX80ZqOv40J_l6tdTkrK2os7pz6PUVXE3OLrPPfldrwVdhgj-6CW1wCU3ijCtVTDkPo-6QKKmiiBuV2FhIFVBJQxOEliXOomEgubEOIFrLX8OoWlfmEIhGmGG1i4xCh2lphNaltW5MNbZ0cEx74PeKLlRHRI71MFZFS6HMClRRMajIgw-D_LeWguOPkke93YquK9YFYwI51ByO9OBkuO1UiysjsjLrG5ThbiIcpTH14KC19_ApTnHCzgMPWGPWv7ShyPI8G67e_MtDb2EPzzFzzdgRjK43N-YdPFa318t6cww7yUIcd27-A6jz-8A
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEC50V1gvvlejq7YgeAqb7s6jcxzijrtsjIOZhb2FTj9gYMjIZFfYmz_B3-gvsSsvGUQE8RJIUkmaququr6s7XwG8pTS1cWhSv47i0A-lMr4QxvoxC-KU1lwaLrtiE0lRiMvLdDHsJsR_YXp-iCnhhj2jG6-xg2NC-vgXa6hqW-QgdBEtSFh0G_ZD50vOyffff55f5ONwHDuM3v1iJFxbopjTkbkxYMe7b9iNTL_BzV302oWf-f3_0PAHcG_AnmTWO8tDuGWaR3CQjSXfHsN5edM4QNiuWiIbTRaYqN8i4yrZWFLI8iz7VPz49h3TtiSfLRedVD77sCDlZr3S5KSvqbO-cfj1CVzMT5bZqT9UW_BVmOBWN6ENLqJJnHOliinnY9QdEiVVFHGjEhsLqQIqaWiC0LLE2TQMJDfWQURr-SHsNZvGPAOiEWhY7WKj0GFaG6F1ba0bVY2tHSDTHvijpis1UJFjRYx11ZMoswpVVE0q8uDdJP-lJ-H4o-TRaLhq6IxtxZhAFjWHJD14M912qsW1EdmYzTXKcDcVjtKYevC0N_j0KU5xys4DD1hn17-0ocrKMpvOnv_LQ6_h4HT5Ma_ys-L8BdzF65jHZuwI9q621-Yl3FFfr1bt9tXg7T8B1pz-yA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB_0KuqLn1WjVVcQfApNdjfJ5vFIe1p6xGBa6FvY7AccHLlyaYW--Sf4N_qXuJMvOUQE8SWQZJIsM7M7v53d_AbgfRimNuYm9eso5j6XyvhCGOvHNIjTsGbSMNkVm0jyXFxcpMWwmxD_hen5IaaEG_aMbrzGDm4utT38xRqq2hY5CF1ECxIa3YY9jpVkZrB39GVxvhyH49hh9O4XI-HaEsUsHJkbA3q4-4bdyPQb3NxFr134WTz8Dw1_BA8G7EnmvbM8hlumeQL3srHk21M4LW8aBwjbVUtko0mBifotMq6SjSW5LE-yz_mPb98xbUuW87Oik1rOPxak3KxXmhz3NXXWNw6_7sP54vgs--QP1RZ8xRPc6ia0wUU0iXOuVFHlfCx0h0RJFUXMqMTGQqoglCE3Abc0cTblgWTGOohoLXsGs2bTmBdANAINq11sFJqntRFa19a6UdXY2gEy7YE_arpSAxU5VsRYVz2JMq1QRdWkIg8-TPKXPQnHHyUPRsNVQ2dsK0oFsqg5JOnBu-m2Uy2ujcjGbK5RhrmpsHOg0IPnvcGnT7EQp-ws8IB2dv1LG6qsLLPp7OW_PPQW7hZHi2p5kp--gvt4GdPYlB7A7Gp7bV7DHfX1atVu3wzO_hNiP_5D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+Properties+of+NaSICON%E2%80%90type+LATP+and+LAGP+Solid+Electrolytes&rft.jtitle=ChemSusChem&rft.au=DeWees%2C+Rachel&rft.au=Wang%2C+Hui&rft.date=2019-08-22&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=12&rft.issue=16&rft.spage=3713&rft.epage=3725&rft_id=info:doi/10.1002%2Fcssc.201900725&rft.externalDBID=10.1002%252Fcssc.201900725&rft.externalDocID=CSSC201900725
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon