Meta‐analysis shows both congruence and complementarity of DNA and eDNA metabarcoding to traditional methods for biological community assessment
DNA metabarcoding is increasingly used for the assessment of aquatic communities, and numerous studies have investigated the consistency of this technique with traditional morpho‐taxonomic approaches. These individual studies have used DNA metabarcoding to assess diversity and community structure of...
Gespeichert in:
| Veröffentlicht in: | Molecular ecology Jg. 31; H. 6; S. 1820 - 1835 |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Blackwell Publishing Ltd
01.03.2022
John Wiley and Sons Inc |
| Schlagworte: | |
| ISSN: | 0962-1083, 1365-294X, 1365-294X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | DNA metabarcoding is increasingly used for the assessment of aquatic communities, and numerous studies have investigated the consistency of this technique with traditional morpho‐taxonomic approaches. These individual studies have used DNA metabarcoding to assess diversity and community structure of aquatic organisms both in marine and freshwater systems globally over the last decade. However, a systematic analysis of the comparability and effectiveness of DNA‐based community assessment across all of these studies has hitherto been lacking. Here, we performed the first meta‐analysis of available studies comparing traditional methods and DNA metabarcoding to measure and assess biological diversity of key aquatic groups, including plankton, microphytobentos, macroinvertebrates, and fish. Across 215 data sets, we found that DNA metabarcoding provides richness estimates that are globally consistent to those obtained using traditional methods, both at local and regional scale. DNA metabarcoding also generates species inventories that are highly congruent with traditional methods for fish. Contrastingly, species inventories of plankton, microphytobenthos and macroinvertebrates obtained by DNA metabarcoding showed pronounced differences to traditional methods, missing some taxa but at the same time detecting otherwise overseen diversity. The method is generally sufficiently advanced to study the composition of fish communities and replace more invasive traditional methods. For smaller organisms, like macroinvertebrates, plankton and microphytobenthos, DNA metabarcoding may continue to give complementary rather than identical estimates compared to traditional approaches. Systematic and comparable data collection will increase the understanding of different aspects of this complementarity, and increase the effectiveness of the method and adequate interpretation of the results. |
|---|---|
| AbstractList | DNA metabarcoding is increasingly used for the assessment of aquatic communities, and numerous studies have investigated the consistency of this technique with traditional morpho‐taxonomic approaches. These individual studies have used DNA metabarcoding to assess diversity and community structure of aquatic organisms both in marine and freshwater systems globally over the last decade. However, a systematic analysis of the comparability and effectiveness of DNA‐based community assessment across all of these studies has hitherto been lacking. Here, we performed the first meta‐analysis of available studies comparing traditional methods and DNA metabarcoding to measure and assess biological diversity of key aquatic groups, including plankton, microphytobentos, macroinvertebrates, and fish. Across 215 data sets, we found that DNA metabarcoding provides richness estimates that are globally consistent to those obtained using traditional methods, both at local and regional scale. DNA metabarcoding also generates species inventories that are highly congruent with traditional methods for fish. Contrastingly, species inventories of plankton, microphytobenthos and macroinvertebrates obtained by DNA metabarcoding showed pronounced differences to traditional methods, missing some taxa but at the same time detecting otherwise overseen diversity. The method is generally sufficiently advanced to study the composition of fish communities and replace more invasive traditional methods. For smaller organisms, like macroinvertebrates, plankton and microphytobenthos, DNA metabarcoding may continue to give complementary rather than identical estimates compared to traditional approaches. Systematic and comparable data collection will increase the understanding of different aspects of this complementarity, and increase the effectiveness of the method and adequate interpretation of the results. DNA metabarcoding is increasingly used for the assessment of aquatic communities, and numerous studies have investigated the consistency of this technique with traditional morpho-taxonomic approaches. These individual studies have used DNA metabarcoding to assess diversity and community structure of aquatic organisms both in marine and freshwater systems globally over the last decade. However, a systematic analysis of the comparability and effectiveness of DNA-based community assessment across all of these studies has hitherto been lacking. Here, we performed the first meta-analysis of available studies comparing traditional methods and DNA metabarcoding to measure and assess biological diversity of key aquatic groups, including plankton, microphytobentos, macroinvertebrates, and fish. Across 215 data sets, we found that DNA metabarcoding provides richness estimates that are globally consistent to those obtained using traditional methods, both at local and regional scale. DNA metabarcoding also generates species inventories that are highly congruent with traditional methods for fish. Contrastingly, species inventories of plankton, microphytobenthos and macroinvertebrates obtained by DNA metabarcoding showed pronounced differences to traditional methods, missing some taxa but at the same time detecting otherwise overseen diversity. The method is generally sufficiently advanced to study the composition of fish communities and replace more invasive traditional methods. For smaller organisms, like macroinvertebrates, plankton and microphytobenthos, DNA metabarcoding may continue to give complementary rather than identical estimates compared to traditional approaches. Systematic and comparable data collection will increase the understanding of different aspects of this complementarity, and increase the effectiveness of the method and adequate interpretation of the results.DNA metabarcoding is increasingly used for the assessment of aquatic communities, and numerous studies have investigated the consistency of this technique with traditional morpho-taxonomic approaches. These individual studies have used DNA metabarcoding to assess diversity and community structure of aquatic organisms both in marine and freshwater systems globally over the last decade. However, a systematic analysis of the comparability and effectiveness of DNA-based community assessment across all of these studies has hitherto been lacking. Here, we performed the first meta-analysis of available studies comparing traditional methods and DNA metabarcoding to measure and assess biological diversity of key aquatic groups, including plankton, microphytobentos, macroinvertebrates, and fish. Across 215 data sets, we found that DNA metabarcoding provides richness estimates that are globally consistent to those obtained using traditional methods, both at local and regional scale. DNA metabarcoding also generates species inventories that are highly congruent with traditional methods for fish. Contrastingly, species inventories of plankton, microphytobenthos and macroinvertebrates obtained by DNA metabarcoding showed pronounced differences to traditional methods, missing some taxa but at the same time detecting otherwise overseen diversity. The method is generally sufficiently advanced to study the composition of fish communities and replace more invasive traditional methods. For smaller organisms, like macroinvertebrates, plankton and microphytobenthos, DNA metabarcoding may continue to give complementary rather than identical estimates compared to traditional approaches. Systematic and comparable data collection will increase the understanding of different aspects of this complementarity, and increase the effectiveness of the method and adequate interpretation of the results. |
| Author | Kirschner, Dominik Hürlemann, Samuel Blackman, Rosetta C. Altermatt, Florian Bossart, Raphael Couton, Marjorie Locher, Nadine Keck, François Zhang, Heng Brantschen, Jeanine |
| AuthorAffiliation | 3 27217 Research Priority Programme Global Change and Biodiversity (URPP‐GCB) University of Zurich Zürich Switzerland 4 Landscape Ecology Institute of Terrestrial Ecosystems Department of Environmental System Science ETH Zürich Zürich Switzerland 5 Landscape Ecology, Land Change Science Swiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland 1 Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland 2 27217 Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland |
| AuthorAffiliation_xml | – name: 3 27217 Research Priority Programme Global Change and Biodiversity (URPP‐GCB) University of Zurich Zürich Switzerland – name: 4 Landscape Ecology Institute of Terrestrial Ecosystems Department of Environmental System Science ETH Zürich Zürich Switzerland – name: 1 Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland – name: 2 27217 Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland – name: 5 Landscape Ecology, Land Change Science Swiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland |
| Author_xml | – sequence: 1 givenname: François orcidid: 0000-0002-3323-4167 surname: Keck fullname: Keck, François email: francois.keck@gmail.com organization: Eawag: Swiss Federal Institute of Aquatic Science and Technology – sequence: 2 givenname: Rosetta C. orcidid: 0000-0002-6182-8691 surname: Blackman fullname: Blackman, Rosetta C. organization: University of Zurich – sequence: 3 givenname: Raphael surname: Bossart fullname: Bossart, Raphael organization: Eawag: Swiss Federal Institute of Aquatic Science and Technology – sequence: 4 givenname: Jeanine orcidid: 0000-0002-2945-3607 surname: Brantschen fullname: Brantschen, Jeanine organization: University of Zurich – sequence: 5 givenname: Marjorie orcidid: 0000-0001-9880-8646 surname: Couton fullname: Couton, Marjorie organization: Eawag: Swiss Federal Institute of Aquatic Science and Technology – sequence: 6 givenname: Samuel surname: Hürlemann fullname: Hürlemann, Samuel organization: Eawag: Swiss Federal Institute of Aquatic Science and Technology – sequence: 7 givenname: Dominik orcidid: 0000-0001-5592-0494 surname: Kirschner fullname: Kirschner, Dominik organization: Swiss Federal Institute for Forest, Snow and Landscape Research WSL – sequence: 8 givenname: Nadine surname: Locher fullname: Locher, Nadine organization: Eawag: Swiss Federal Institute of Aquatic Science and Technology – sequence: 9 givenname: Heng orcidid: 0000-0002-3139-9566 surname: Zhang fullname: Zhang, Heng organization: University of Zurich – sequence: 10 givenname: Florian orcidid: 0000-0002-4831-6958 surname: Altermatt fullname: Altermatt, Florian email: florian.altermatt@eawag.ch organization: University of Zurich |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35075700$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks1u1DAQgC1URLeFAy-ALHGBQ1onju34glQt5Udq4QISN8txJruuEnuxHaq98QiIR-RJcLpbBBVI5OD8zDefx5k5QgfOO0DocUlOynydjmBOSk55fQ8tSspZUcn60wFaEMmroiQNPURHMV4RUtKKsQfokDIimCBkgb5fQtI_vn7TTg_baCOOa38dcevTGhvvVmECZwBr1-XXcTPACC7pYNMW-x6_fHd2E4L5YcymVgfjO-tWOHmcgu5ssj6r5-DadxH3PuDW-sGvrMmfs3Oc3GzTMUKMs_0hut_rIcKj_f0YfXx1_mH5prh4__rt8uyiMLXgdWEkCMOkbikhtGNNWzV9VzUSmq6VUEqhoa4EyysA56xuhGaaa5C8BQZS0GP0YufdTO0InclbBz2oTbCjDlvltVV_Rpxdq5X_oiQltBZ1FjzbC4L_PEFMarTRwDBoB36KquKCsbxzLf8DrSrO5jIz-vQOeuWnkP_hTFHW5MbJMlNPfi_-V9W3nc3A6Q4wwccYoFfGJj13I5_FDqokap4dlWdH3cxOznh-J-NW-jd2b7-2A2z_DarL8-Uu4yc66NdG |
| CitedBy_id | crossref_primary_10_1016_j_ecolind_2022_109241 crossref_primary_10_3390_d17060381 crossref_primary_10_1016_j_scitotenv_2024_173621 crossref_primary_10_1002_edn3_467 crossref_primary_10_1093_biosci_biad089 crossref_primary_10_1016_j_biotechadv_2025_108652 crossref_primary_10_1038_s44358_025_00044_x crossref_primary_10_1002_ece3_70627 crossref_primary_10_1016_j_pecon_2024_01_006 crossref_primary_10_3390_fishes10090430 crossref_primary_10_1002_edn3_70130 crossref_primary_10_1016_j_jenvman_2025_124531 crossref_primary_10_1016_j_scitotenv_2022_161365 crossref_primary_10_3897_mbmg_6_79351 crossref_primary_10_1002_edn3_355 crossref_primary_10_1111_mec_16955 crossref_primary_10_1016_j_ecoinf_2025_103056 crossref_primary_10_1002_edn3_335 crossref_primary_10_1371_journal_pbio_3001801 crossref_primary_10_1002_edn3_70149 crossref_primary_10_1002_edn3_70147 crossref_primary_10_1016_j_marpolbul_2024_117316 crossref_primary_10_1016_j_ecolind_2023_109915 crossref_primary_10_1002_ece3_71279 crossref_primary_10_1016_j_watbs_2022_100054 crossref_primary_10_1038_s41598_023_44908_8 crossref_primary_10_1111_1755_0998_14107 crossref_primary_10_1016_j_envres_2025_121097 crossref_primary_10_1002_2688_8319_12273 crossref_primary_10_1002_ece3_70110 crossref_primary_10_1016_j_heliyon_2024_e26120 crossref_primary_10_1016_j_scitotenv_2023_162322 crossref_primary_10_1093_fshmag_vuaf040 crossref_primary_10_1139_gen_2024_0031 crossref_primary_10_1007_s12526_024_01415_x crossref_primary_10_1002_edn3_342 crossref_primary_10_1111_2041_210X_70069 crossref_primary_10_1007_s10750_023_05391_4 crossref_primary_10_1002_edn3_521 crossref_primary_10_1016_j_marpolbul_2022_113860 crossref_primary_10_1016_j_scitotenv_2024_170454 crossref_primary_10_3897_mbmg_9_138172 crossref_primary_10_1016_j_scitotenv_2024_177763 crossref_primary_10_1111_mec_17355 crossref_primary_10_1016_j_biocon_2023_109963 crossref_primary_10_1007_s10750_023_05357_6 crossref_primary_10_1016_j_envint_2025_109489 crossref_primary_10_1016_j_marenvres_2025_107551 crossref_primary_10_7717_peerj_15455 crossref_primary_10_1016_j_marenvres_2025_107395 crossref_primary_10_1111_1755_0998_13746 crossref_primary_10_1111_mec_17073 crossref_primary_10_1111_icad_12620 crossref_primary_10_1007_s00267_025_02267_2 crossref_primary_10_1139_cjfas_2023_0053 crossref_primary_10_1016_j_ecolind_2024_112638 crossref_primary_10_1016_j_marpolbul_2023_114792 crossref_primary_10_1016_j_ecolind_2024_111821 crossref_primary_10_1111_aec_70094 crossref_primary_10_1111_mec_16659 crossref_primary_10_1016_j_jtherbio_2025_104120 crossref_primary_10_3390_jof11050360 crossref_primary_10_3389_fmars_2023_1113322 crossref_primary_10_7717_peerj_14993 crossref_primary_10_1111_1755_0998_13875 crossref_primary_10_2478_aoas_2025_0078 crossref_primary_10_3389_fmars_2024_1444097 crossref_primary_10_1002_rse2_70010 crossref_primary_10_1016_j_ecolind_2024_112807 crossref_primary_10_1080_15627020_2023_2274334 crossref_primary_10_3390_ani15030355 crossref_primary_10_1002_edn3_484 crossref_primary_10_1002_edn3_520 crossref_primary_10_1002_edn3_486 crossref_primary_10_1007_s10750_022_05036_y crossref_primary_10_1002_ecog_07952 crossref_primary_10_1002_edn3_480 crossref_primary_10_3389_fmars_2023_1145883 crossref_primary_10_1080_00288330_2023_2215534 crossref_primary_10_1016_j_ecolind_2025_113669 crossref_primary_10_1002_edn3_423 crossref_primary_10_1016_j_watbs_2025_100427 crossref_primary_10_1016_j_envpol_2023_122157 crossref_primary_10_1002_edn3_70052 crossref_primary_10_1016_j_hal_2024_102735 crossref_primary_10_1111_1755_0998_13723 crossref_primary_10_1016_j_actatropica_2024_107402 crossref_primary_10_1111_fwb_70019 crossref_primary_10_1111_fwb_14040 crossref_primary_10_3390_fishes10040145 crossref_primary_10_1038_s42003_025_08486_x crossref_primary_10_1002_edn3_430 crossref_primary_10_3390_w15112123 crossref_primary_10_1093_plankt_fbae057 crossref_primary_10_3389_fmars_2024_1390489 crossref_primary_10_1007_s10661_024_12535_z crossref_primary_10_1016_j_ecolind_2025_113269 crossref_primary_10_1016_j_jenvman_2024_122136 crossref_primary_10_7717_peerj_17727 crossref_primary_10_1016_j_scitotenv_2024_176541 crossref_primary_10_1038_s41598_023_35614_6 crossref_primary_10_2478_aopf_2025_0007 crossref_primary_10_1002_ece3_70556 crossref_primary_10_1016_j_scitotenv_2025_179021 crossref_primary_10_1007_s11356_024_35025_8 crossref_primary_10_1016_j_ecolind_2025_114186 crossref_primary_10_1111_ecog_07267 crossref_primary_10_1016_j_jenvman_2023_117217 crossref_primary_10_3389_fmars_2024_1351148 crossref_primary_10_1002_edn3_382 crossref_primary_10_3389_famrs_2025_1547830 crossref_primary_10_1002_edn3_448 crossref_primary_10_1016_j_scitotenv_2024_173885 crossref_primary_10_1016_j_scitotenv_2024_173243 crossref_primary_10_1002_ece3_10788 crossref_primary_10_1002_edn3_70079 crossref_primary_10_7717_peerj_14321 crossref_primary_10_1111_ecog_07699 crossref_primary_10_1002_edn3_70081 crossref_primary_10_3390_d14100797 crossref_primary_10_1007_s10452_024_10168_5 crossref_primary_10_1111_2041_210X_70093 crossref_primary_10_1007_s10841_024_00584_1 crossref_primary_10_3390_ani15091283 crossref_primary_10_1002_edn3_453 crossref_primary_10_1002_edn3_570 crossref_primary_10_1007_s00227_023_04364_4 crossref_primary_10_1111_1755_0998_14082 crossref_primary_10_1002_edn3_437 crossref_primary_10_1021_acs_jafc_5c02276 crossref_primary_10_1016_j_ecolind_2023_111454 crossref_primary_10_1016_j_ecss_2022_108207 crossref_primary_10_1111_jfb_70105 crossref_primary_10_3389_fmars_2023_1061530 crossref_primary_10_1002_eap_3017 crossref_primary_10_1002_ece3_10031 crossref_primary_10_1111_mec_17784 crossref_primary_10_1016_j_ecolind_2022_108785 crossref_primary_10_1016_j_scitotenv_2024_173092 crossref_primary_10_1038_s41598_025_95358_3 crossref_primary_10_1002_edn3_70095 crossref_primary_10_3897_mycokeys_106_117540 crossref_primary_10_1002_2688_8319_70125 crossref_primary_10_1007_s10750_025_05993_0 |
| Cites_doi | 10.1002/ece3.5503 10.1371/journal.pone.0106510 10.3389/fmars.2019.00732 10.1093/icesjms/fsaa256 10.1002/lom3.10237 10.1201/EBK1439809365-c2 10.1111/mec.13481 10.3390/w13030331 10.1038/s41598‐019‐51500‐6 10.1111/1755‐0998.12900 10.1111/1755‐0998.12919 10.1111/1755‐0998.12668 10.1111/mec.14350 10.3389/fevo.2019.00260 10.1111/j.1365‐2664.2010.01864.x 10.1371/journal.pone.0236540 10.3390/app9163272 10.1038/s41598‐018‐28424‐8 10.1371/journal.pone.0053516 10.1098/rsbl.2008.0118 10.1002/edn3.129 10.1038/srep13932 10.1111/j.1755‐263X.2010.00158.x 10.1016/j.biocon.2016.03.010 10.1111/mec.14920 10.3897/mbmg.4.51433 10.1016/j.ecolind.2019.105982 10.1016/j.ecolind.2017.06.024 10.1038/s41598‐017‐01808‐y 10.1002/edn3.35 10.1002/edn3.8 10.1111/jfb.14383 10.1086/704827 10.1016/j.ecolind.2018.07.044 10.1016/j.jembe.2016.12.002 10.1093/nar/gks1160 10.1016/j.ecss.2017.03.019 10.1111/j.1365‐294X.2012.05542.x 10.1002/edn3.177 10.1016/j.scitotenv.2020.138445 10.1016/j.jembe.2015.04.011 10.1007/s10933‐020‐00133‐1 10.1080/0266476042000214501 10.1111/2041‐210X.12789 10.1038/nature05202 10.1371/journal.pone.0195770 10.32614/RJ‐2017‐066 10.1890/120103 10.1371/journal.pone.0117562 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 10.1016/j.watres.2018.03.003 10.1002/ece3.4283 10.1016/j.ecolind.2019.105653 10.1002/edn3.40 10.1038/s41598‐020‐63565‐9 10.1111/jeu.12388 10.1080/0269249X.2017.1312548 10.1111/1365‐2664.13352 10.1371/journal.pone.0201741 10.1016/j.ecolind.2020.107070 10.1186/s12302‐020‐00321‐w 10.1111/mec.15643 10.1111/2041‐210X.13276 10.3897/mbmg.4.53455 10.1002/ece3.2186 10.1111/mec.15646 10.1002/edn3.135 10.3389/fmicb.2019.01501 10.1021/es506158m 10.1016/j.ecolind.2019.105453 10.1111/jfb.14053 10.1080/09670262.2017.1283540 10.1016/j.gecco.2019.e00689 10.1038/ismej.2012.106 10.1016/j.scitotenv.2019.04.247 10.1016/j.ecolind.2019.02.008 10.3389/fmars.2016.00096 10.1016/j.marenvres.2020.104946 10.7717/peerj.9176 10.1111/1755‐0998.12336 10.1371/journal.pone.0195403 10.1037/1082‐989X.11.1.54 10.1002/ece3.6279 10.1002/edn3.90 10.3389/fmars.2020.572680 10.1371/journal.pone.0086175 10.1371/journal.pone.0210357 10.1002/edn3.7 10.1038/s41598‐018‐28624‐2 10.1371/journal.pone.0081327 10.1086/675079 10.1002/edn3.111 10.1002/edn3.43 10.1007/s10750‐006‐0075‐6 10.1007/s00227‐016‐2920‐0 10.3389/fevo.2020.00276 10.1016/j.scitotenv.2020.144208 10.1007/s10750‐017‐3381‐2 10.1098/rspb.2019.1409 10.1098/rsos.150088 10.1016/j.scitotenv.2020.140948 10.1111/1755‐0998.13012 10.3897/mbmg.2.30457 10.1371/journal.pone.0023398 10.1038/s41598‐017‐15823‐6 10.1371/journal.pone.0183347 10.1111/mec.15670 10.1002/edn3.132 10.1111/2041‐210X.12758 10.1002/fee.1490 10.1016/j.ecolind.2020.106225 10.3390/d12060233 10.1007/s10201‐020‐00645‐9 10.1111/mec.13428 10.1002/edn3.33 10.1038/s41598‐017‐13157‐x 10.3897/BDJ.5.e12731 10.3897/rio.2.e11321 10.1016/j.ecolind.2019.01.014 10.2989/1814232X.2019.1689169 10.1111/1755‐0998.12940 10.1002/edn3.38 10.1002/ece3.7382 10.3897/BDJ.8.e55172 10.5281/zenodo.5837361 10.3897/ab.e68634 10.1371/journal.pone.0088786 10.1111/1755‐0998.12355 10.1111/1365‐2664.13729 10.1111/mec.15661 10.3389/fmars.2016.00283 10.1111/oik.06806 10.1111/1755‐0998.12740 10.1038/s41598‐020‐70307‐4 10.1038/s42003‐018‐0192‐6 10.1371/journal.pone.0157366 10.1111/mec.15597 10.1002/edn3.140 10.1002/edn3.67 10.1139/cjfas‐2016‐0306 10.1111/mec.13660 10.1002/ece3.2667 10.3897/mbmg.3.34735 10.1016/S0025‐326X(00)00061‐8 10.1038/ncomms12544 10.1038/s41586‐018‐0627‐8 10.1371/journal.pone.0041732 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. published by John Wiley & Sons Ltd. 2022 The Authors. Molecular Ecology published by John Wiley & Sons Ltd. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd. – notice: 2022 The Authors. Molecular Ecology published by John Wiley & Sons Ltd. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 5PM |
| DOI | 10.1111/mec.16364 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA CrossRef Entomology Abstracts |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Ecology |
| DocumentTitleAlternate | KECK et al |
| EISSN | 1365-294X |
| EndPage | 1835 |
| ExternalDocumentID | PMC9303474 35075700 10_1111_mec_16364 MEC16364 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Universität Zürich – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung funderid: 31003A_173074; PP00P3_179089 – fundername: Bundesamt für Umwelt – fundername: ; – fundername: ; grantid: 31003A_173074; PP00P3_179089 – fundername: Lib4RI Library for the Research Institutes within the ETH Domain Eawag Empa PSI and WSL |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 24P 29M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT Y6R ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c4764-c9e7c59ab3003d58b28fd289e8db9e197ae4275ae4ee665487a5a6ae96be5e973 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 156 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000750214900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0962-1083 1365-294X |
| IngestDate | Tue Nov 04 02:00:35 EST 2025 Fri Sep 05 17:18:18 EDT 2025 Thu Sep 04 19:49:18 EDT 2025 Wed Aug 13 06:25:26 EDT 2025 Mon Jul 21 06:08:15 EDT 2025 Tue Nov 18 21:27:24 EST 2025 Sat Nov 29 05:23:52 EST 2025 Wed Jan 22 16:26:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | diversity assessment metabarcoding microorganisms DNA fish meta-analysis invertebrates |
| Language | English |
| License | Attribution 2022 The Authors. Molecular Ecology published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4764-c9e7c59ab3003d58b28fd289e8db9e197ae4275ae4ee665487a5a6ae96be5e973 |
| Notes | François Keck and Rosetta Blackman are joint first authors. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2945-3607 0000-0002-3139-9566 0000-0001-9880-8646 0000-0002-6182-8691 0000-0002-3323-4167 0000-0002-4831-6958 0000-0001-5592-0494 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.16364 |
| PMID | 35075700 |
| PQID | 2635875791 |
| PQPubID | 31465 |
| PageCount | 16 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9303474 proquest_miscellaneous_2675565449 proquest_miscellaneous_2622656654 proquest_journals_2635875791 pubmed_primary_35075700 crossref_citationtrail_10_1111_mec_16364 crossref_primary_10_1111_mec_16364 wiley_primary_10_1111_mec_16364_MEC16364 |
| PublicationCentury | 2000 |
| PublicationDate | March 2022 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
| PublicationTitle | Molecular ecology |
| PublicationTitleAlternate | Mol Ecol |
| PublicationYear | 2022 |
| Publisher | Blackwell Publishing Ltd John Wiley and Sons Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons Inc |
| References | 2019; 95 2017; 82 2019; 10 2018; 563 2020; 160 2019; 14 2019; 19 2020; 15 2020; 12 2020; 10 2013; 7 2013; 8 2020; 727 2019; 286 2018; 8 2017; 74 2004; 31 2018; 2 2021; 78 2020; 97 2018; 1 2019; 28 2019; 678 2006; 566 2019a; 56 2012; 21 2006; 443 2019; 7 2017; 64 2019; 9 2019; 3 2019; 6 2019; 1 2020; mec.15661 2019; 38 2019; 106 2020; 32 2011; 4 2020a; 29 2011; 6 2016; 163 2019; 101 1999 2016; 11 2020; mec.15670 2018; 18 2016; 6 2016; 7 2017; 52 2016; 2 2010; 47 2016; 3 2020; 30 2019; 41 2018; 95 2018; 16 2016; 25 2014; 33 2018; 13 2017; 5 2017; 7 2017; 8 2017; 3 2021; 22 2020; 64 2021; 763 2020; 129 2020; 57 2008; 4 2015; 469 2021; 121 1999; 80 2017; 9 2020; 8 2020; 7 2020; 4 2015; 49 2020; 2 2013; 11 2018; 138 2017; 32 2014; 9 2017; 487 2016; 197 2015; 2 2015; 15 2019b; 107 2015; 5 2021; 3 2017; 26 2010 2006; 11 2015; 10 2013; 41 2020; 745 2021; 1 2021; 13 2021; 11 2017; 15 2017; 17 2021 2018a; 13 2020 2017; 12 2018b; 807 2000; 40 2020; 111 2020; 113 2017; 189 2012; 7 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_145_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 R Core Team (e_1_2_8_123_1) 2020 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_146_1 |
| References_xml | – volume: 6 issue: 8 year: 2011 article-title: Persistence of environmental DNA in freshwater ecosystems publication-title: PLoS One – volume: 3 start-page: 22 issue: 1 year: 2021 end-page: 42 article-title: Comparing environmental metabarcoding and trawling survey of demersal fish communities in the Gulf of St. Lawrence, Canada publication-title: Environmental DNA – volume: 2 start-page: 429 issue: 4 year: 2020 end-page: 445 article-title: Analysis of a coastal North Sea fish community: Comparison of aquatic environmental DNA concentrations to fish catches publication-title: Environmental DNA – volume: 101 start-page: 173 year: 2019 end-page: 184 article-title: Metabarcoding of storage ethanol vs. Conventional morphometric identification in relation to the use of stream macroinvertebrates as ecological indicators in forest management publication-title: Ecological Indicators – volume: 2 start-page: 572 issue: 4 year: 2020 end-page: 586 article-title: Macroinvertebrate community diversity and habitat quality relationships along a large river from targeted eDNA metabarcode assays publication-title: Environmental DNA – volume: 12 issue: 9 year: 2017 article-title: DNA in a bottle—Rapid metabarcoding survey for early alerts of invasive species in ports publication-title: PLoS One – volume: 7 start-page: 572680 year: 2020 article-title: A Marine biodiversity observation network for genetic monitoring of hard‐bottom communities (ARMS‐MBON) publication-title: Frontiers in Marine Science – volume: 8 start-page: 276 year: 2020 article-title: Calibrating environmental DNA metabarcoding to conventional surveys for measuring fish species richness publication-title: Frontiers in Ecology and Evolution – volume: 807 start-page: 37 issue: 1 year: 2018b end-page: 51 article-title: Metabarcoding of lake benthic diatoms: From structure assemblages to ecological assessment publication-title: Hydrobiologia – volume: 97 start-page: 444 issue: 2 year: 2020 end-page: 452 article-title: Monitoring freshwater fish communities in large rivers using environmental DNA metabarcoding and a long‐term electrofishing survey publication-title: Journal of Fish Biology – volume: 22 start-page: 221 issue: 2 year: 2021 end-page: 235 article-title: Determining an effective sampling method for eDNA metabarcoding: A case study for fish biodiversity monitoring in a small, natural river publication-title: Limnology – volume: 18 start-page: 1456 issue: 6 year: 2018 end-page: 1468 article-title: Comparison of environmental DNA and bulk‐sample metabarcoding using highly degenerate cytochrome c oxidase I primers publication-title: Molecular Ecology Resources – volume: 32 start-page: 75 issue: 1 year: 2017 end-page: 107 article-title: Planothidium lanceolatum and Planothidium frequentissimum reinvestigated with molecular methods and morphology: Four new species and the taxonomic importance of the sinus and cavum publication-title: Diatom Research – start-page: 9 year: 2010 end-page: 75 – volume: 11 issue: 6 year: 2016 article-title: Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system publication-title: PLoS One – volume: 13 issue: 8 year: 2018 article-title: Evaluating freshwater macroinvertebrates from eDNA metabarcoding: A river Nalón case study publication-title: PLoS One – volume: 9 start-page: 378 issue: 2 year: 2017 end-page: 400 article-title: GlmmTMB balances speed and flexibility among packages for zero‐inflated generalized linear mixed modeling publication-title: The R Journal – volume: 95 start-page: 679 issue: 2 year: 2019 end-page: 682 article-title: Environmental DNA metabarcoding as an effective and rapid tool for fish monitoring in canals publication-title: Journal of Fish Biology – volume: 64 start-page: 225 issue: 3 year: 2020 end-page: 242 article-title: Genetic and morphologic determination of diatom community composition in surface sediments from glacial and thermokarst lakes in the Siberian Arctic publication-title: Journal of Paleolimnology – volume: 15 issue: 11 year: 2020 article-title: Harnessing the power of eDNA metabarcoding for the detection of deep‐sea fishes publication-title: PLoS One – volume: 1 start-page: 1 issue: 1 year: 2018 end-page: 11 article-title: Persistence of environmental DNA in marine systems publication-title: Communications Biology – volume: 745 start-page: 140948 year: 2020 article-title: Diatom DNA metabarcoding for ecological assessment: Comparison among bioinformatics pipelines used in six European countries reveals the need for standardization publication-title: Science of The Total Environment – volume: 31 start-page: 799 issue: 7 year: 2004 end-page: 815 article-title: Beta regression for modelling rates and proportions publication-title: Journal of Applied Statistics – volume: 163 start-page: 149 issue: 7 year: 2016 article-title: Is metabarcoding suitable for estuarine plankton monitoring? A comparative study with microscopy publication-title: Marine Biology – volume: 111 start-page: 105982 year: 2020 article-title: Stream water quality assessment by metabarcoding of invertebrates publication-title: Ecological Indicators – volume: 8 issue: 1 year: 2013 article-title: Unveiling distribution patterns of freshwater phytoplankton by a next generation sequencing based approach publication-title: PLoS One – volume: 7 start-page: 15618 issue: 1 year: 2017 article-title: DNA metabarcoding for high‐throughput monitoring of estuarine macrobenthic communities publication-title: Scientific Reports – year: 2020 article-title: Assessment of stream macroinvertebrate communities with eDNA is not congruent with tissue‐based metabarcoding publication-title: Molecular Ecology – volume: 2 year: 2018 article-title: Monitoring riverine fish communities through eDNA metabarcoding: Determining optimal sampling strategies along an altitudinal and biodiversity gradient publication-title: Metabarcoding and Metagenomics – volume: 7 start-page: 12777 issue: 1 year: 2017 article-title: DNA metabarcoding and morphological macroinvertebrate metrics reveal the same changes in boreal watersheds across an environmental gradient publication-title: Scientific Reports – volume: 1 start-page: 342 issue: 4 year: 2019 end-page: 358 article-title: Comparing eDNA metabarcoding and species collection for documenting Arctic metazoan biodiversity publication-title: Environmental DNA – volume: 566 start-page: 505 issue: 1 year: 2006 end-page: 521 article-title: Assessing the impact of errors in sorting and identifying macroinvertebrate samples publication-title: Hydrobiologia – volume: 3 start-page: 105 issue: 1 year: 2021 end-page: 120 article-title: Using environmental DNA for biomonitoring of freshwater fish communities: Comparison with established gillnet surveys in a boreal hydroelectric impoundment publication-title: Environmental DNA – volume: 41 start-page: 429 issue: 4 year: 2019 end-page: 442 article-title: A comparison between the morphological and molecular approach to identify the benthic diatom community in the St Lucia Estuary, South Africa publication-title: African Journal of Marine Science – volume: 14 issue: 1 year: 2019 article-title: Environmental DNA metabarcoding for fish community analysis in backwater lakes: A comparison of capture methods publication-title: PLoS One – volume: 3 year: 2019 article-title: Advancing the use of molecular methods for routine freshwater macroinvertebrate biomonitoring – the need for calibration experiments publication-title: Metabarcoding and Metagenomics – volume: 7 start-page: 12544 issue: 1 year: 2016 article-title: Environmental DNA reveals that rivers are conveyer belts of biodiversity information publication-title: Nature Communications – volume: 7 issue: 8 year: 2012 article-title: Detection of a diverse marine fish fauna using environmental DNA from seawater samples publication-title: PLoS One – volume: 10 start-page: 13461 issue: 1 year: 2020 article-title: Monitoring of biofouling communities in a Portuguese port using a combined morphological and metabarcoding approach publication-title: Scientific Reports – volume: 1 start-page: 385 issue: 4 year: 2019 end-page: 401 article-title: How can eDNA contribute in riverine macroinvertebrate assessment? A metabarcoding approach in the Nalón River (Asturias, Northern Spain) publication-title: Environmental DNA – volume: 469 start-page: 36 year: 2015 end-page: 43 article-title: Effects of plankton net characteristics on metagenetic community analysis of metazoan zooplankton in a coastal marine ecosystem publication-title: Journal of Experimental Marine Biology and Ecology – volume: 40 start-page: 1100 issue: 12 year: 2000 end-page: 1114 article-title: A marine biotic index to establish the ecological quality of soft‐bottom benthos within European estuarine and coastal environments publication-title: Marine Pollution Bulletin – volume: 1 start-page: 5 issue: 1 year: 2019 end-page: 13 article-title: Meta‐analysis supports further refinement of eDNA for monitoring aquatic species‐specific abundance in nature publication-title: Environmental DNA – volume: 107 start-page: 105653 year: 2019b article-title: Metabarcoding reveals a more complex cyanobacterial community than morphological identification publication-title: Ecological Indicators – volume: 30 start-page: 2959 issue: 13 year: 2020 end-page: 2968 article-title: Monitoring the ecological status of rivers with diatom eDNA metabarcoding: A comparison of taxonomic markers and analytical approaches for the inference of a molecular diatom index publication-title: Molecular Ecology – volume: 286 start-page: 20191409 issue: 1915 year: 2019 article-title: Predicting the fate of eDNA in the environment and implications for studying biodiversity publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 443 start-page: 989 issue: 7114 year: 2006 end-page: 992 article-title: Effects of biodiversity on the functioning of trophic groups and ecosystems publication-title: Nature – volume: 33 start-page: 349 issue: 1 year: 2014 end-page: 363 article-title: A next‐generation sequencing approach to river biomonitoring using benthic diatoms publication-title: Freshwater Science – volume: 25 start-page: 527 issue: 2 year: 2016 end-page: 541 article-title: Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA publication-title: Molecular Ecology – volume: 9 issue: 2 year: 2014 article-title: Transport distance of invertebrate environmental DNA in a natural river publication-title: PLoS One – volume: 10 issue: 2 year: 2015 article-title: Metabarcoding Is Powerful yet Still Blind: A Comparative Analysis of Morphological and Molecular Surveys of Seagrass Communities publication-title: PLoS One – volume: 11 start-page: 156 issue: 3 year: 2013 end-page: 162 article-title: Big data and the future of ecology publication-title: Frontiers in Ecology and the Environment – volume: 4 start-page: 423 issue: 4 year: 2008 end-page: 425 article-title: Species detection using environmental DNA from water samples publication-title: Biology Letters – volume: 121 start-page: 107070 year: 2021 article-title: Diatom metabarcoding and microscopic analyses from sediment samples at Lake Nam Co, Tibet: The effect of sample‐size and bioinformatics on the identified communities publication-title: Ecological Indicators – volume: 4 year: 2020 article-title: Increasing confidence for discerning species and population compositions from metabarcoding assays of environmental samples: Case studies of fishes in the Laurentian Great Lakes and Wabash River publication-title: Metabarcoding and Metagenomics – volume: 25 start-page: 929 issue: 4 year: 2016 end-page: 942 article-title: Next‐generation monitoring of aquatic biodiversity using environmental DNA metabarcoding publication-title: Molecular Ecology – volume: 2 year: 2016 article-title: DNAqua‐Net: Developing new genetic tools for bioassessment and monitoring of aquatic ecosystems in Europe publication-title: Research Ideas and Outcomes – volume: 138 start-page: 192 year: 2018 end-page: 205 article-title: Implementation options for DNA‐based identification into ecological status assessment under the European Water Framework Directive publication-title: Water Research – volume: 19 start-page: 863 issue: 4 year: 2019 end-page: 876 article-title: Have the cake and eat it: Optimizing nondestructive DNA metabarcoding of macroinvertebrate samples for freshwater biomonitoring publication-title: Molecular Ecology Resources – volume: 8 year: 2020 article-title: Aquatic insect community structure revealed by eDNA metabarcoding derives indices for environmental assessment publication-title: PeerJ – volume: 16 start-page: 209 issue: 4 year: 2018 end-page: 221 article-title: Evaluation of marine zooplankton community structure through environmental DNA metabarcoding: Metabarcoding zooplankton from eDNA publication-title: Limnology and Oceanography: Methods – volume: 6 start-page: 4214 issue: 12 year: 2016 end-page: 4226 article-title: Estimating species richness using environmental DNA publication-title: Ecology and Evolution – volume: 4 year: 2020 article-title: Exploring the potential of metabarcoding to disentangle macroinvertebrate community dynamics in intermittent streams publication-title: Metabarcoding and Metagenomics – volume: 189 start-page: 143 year: 2017 end-page: 155 article-title: The diversity and structure of marine protists in the coastal waters of China revealed by morphological observation and 454 pyrosequencing publication-title: Estuarine, Coastal and Shelf Science – volume: 2 start-page: 647 issue: 4 year: 2020 end-page: 666 article-title: Fine‐scale environmental heterogeneity shapes fluvial fish communities as revealed by eDNA metabarcoding publication-title: Environmental DNA – volume: 19 start-page: 27 issue: 1 year: 2019 end-page: 46 article-title: Unlocking biodiversity and conservation studies in high‐diversity environments using environmental DNA (eDNA): A test with Guianese freshwater fishes publication-title: Molecular Ecology Resources – volume: 763 start-page: 144208 year: 2021 article-title: Exploring the capacity of aquatic biofilms to act as environmental DNA samplers: Test on macroinvertebrate communities in rivers publication-title: Science of The Total Environment – volume: 11 start-page: 54 issue: 1 year: 2006 article-title: A better lemon squeezer? Maximum‐likelihood regression with beta‐distributed dependent variables publication-title: Psychological Methods – volume: 5 start-page: 13932 issue: 1 year: 2015 article-title: High‐throughput sequencing and morphology perform equally well for benthic monitoring of marine ecosystems publication-title: Scientific Reports – volume: 49 start-page: 7597 issue: 13 year: 2015 end-page: 7605 article-title: Environmental monitoring: Inferring the diatom index from next‐generation sequencing data publication-title: Environmental Science & Technology – volume: 1 year: 2021 article-title: A practical guide to DNA‐based methods for biodiversity assessment publication-title: Advanced Books – volume: 12 start-page: 233 issue: 6 year: 2020 article-title: Biodiversity and community structure of mesozooplankton in the marine and coastal national park areas of Korea publication-title: Diversity – volume: 38 start-page: 448 issue: 3 year: 2019 end-page: 464 article-title: Morphology and metabarcoding: A test with stream diatoms from Mexico highlights the complementarity of identification methods publication-title: Freshwater Science – volume: 74 start-page: 1362 issue: 9 year: 2017 end-page: 1374 article-title: Fish community assessment with eDNA metabarcoding: Effects of sampling design and bioinformatic filtering publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 10 start-page: 6729 issue: 1 year: 2020 article-title: Environmental DNA survey captures patterns of fish and invertebrate diversity across a tropical seascape publication-title: Scientific Reports – volume: 8 year: 2020 article-title: Comparative analysis of morphological and molecular approaches integrated into the study of the dinoflagellate biodiversity within the recently deposited Black Sea sediments – benefits and drawbacks publication-title: Biodiversity Data Journal – volume: 563 start-page: 109 issue: 7729 year: 2018 end-page: 112 article-title: Biodiversity increases and decreases ecosystem stability publication-title: Nature – volume: 13 issue: 4 year: 2018a article-title: DNA metabarcoding and microscopic analyses of sea turtles biofilms: Complementary to understand turtle behavior publication-title: PLoS One – volume: 13 issue: 4 year: 2018 article-title: Plant DNA metabarcoding of lake sediments: How does it represent the contemporary vegetation publication-title: PLoS One – volume: 197 start-page: 131 year: 2016 end-page: 138 article-title: Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system publication-title: Biological Conservation – volume: 129 start-page: 607 issue: 5 year: 2020 end-page: 618 article-title: Uncovering the complete biodiversity structure in spatial networks: The example of riverine systems publication-title: Oikos – volume: 32 start-page: 37 issue: 1 year: 2020 article-title: Combining morphological and metabarcoding approaches reveals the freshwater eukaryotic phytoplankton community publication-title: Environmental Sciences Europe – volume: 8 start-page: 1265 issue: 10 year: 2017 end-page: 1275 article-title: Assessing strengths and weaknesses of DNA metabarcoding‐based macroinvertebrate identification for routine stream monitoring publication-title: Methods in Ecology and Evolution – volume: 10 start-page: 1985 issue: 11 year: 2019 end-page: 2001 article-title: Non‐specific amplification compromises environmental DNA metabarcoding with COI publication-title: Methods in Ecology and Evolution – volume: 9 issue: 1 year: 2014 article-title: Using environmental DNA to census marine fishes in a large mesocosm publication-title: PLoS One – volume: 9 start-page: 15116 issue: 1 year: 2019 article-title: Diat.barcode, an open‐access curated barcode library for diatoms publication-title: Scientific Reports – volume: 7 start-page: 873 issue: 3 year: 2017 end-page: 883 article-title: Effect of marker choice and thermal cycling protocol on zooplankton DNA metabarcoding studies publication-title: Ecology and Evolution – year: 2021 – volume: 9 issue: 8 year: 2014 article-title: Use of High Throughput Sequencing and Light Microscopy Show Contrasting Results in a Study of Phytoplankton Occurrence in a Freshwater Environment publication-title: PLoS One – volume: 17 start-page: 1231 issue: 6 year: 2017 end-page: 1242 article-title: Taxonomy‐free molecular diatom index for high‐throughput eDNA biomonitoring publication-title: Molecular Ecology Resources – volume: 8 start-page: 777 issue: 6 year: 2017 end-page: 784 article-title: Will your paper be used in a meta‐analysis? Make the reach of your research broader and longer lasting publication-title: Methods in Ecology and Evolution – volume: 6 start-page: 732 year: 2019 article-title: Marine vertebrate biodiversity and distribution within the Central California current using environmental DNA (eDNA) metabarcoding and ecosystem surveys publication-title: Frontiers in Marine Science – volume: mec.15661 year: 2020 article-title: Environmental DNA effectively captures functional diversity of coastal fish communities publication-title: Molecular Ecology – volume: 2 start-page: 150088 issue: 7 year: 2015 article-title: MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species publication-title: Royal Society Open Science – volume: 18 start-page: 391 issue: 3 year: 2018 end-page: 406 article-title: Genetic monitoring of open ocean biodiversity: An evaluation of DNA metabarcoding for processing continuous plankton recorder samples publication-title: Molecular Ecology Resources – volume: 10 start-page: 1501 year: 2019 article-title: Diversity and spatial distribution of chromophytic phytoplankton in the bay of bengal revealed by RuBisCO Genes (rbcL) publication-title: Frontiers in Microbiology – volume: 19 year: 2019 article-title: Environmental DNA reveals landscape mosaic of wetland plant communities publication-title: Global Ecology and Conservation – volume: 3 year: 2016 article-title: Benchmarking DNA metabarcoding for biodiversity‐based monitoring and assessment publication-title: Frontiers in Marine Science – volume: 8 start-page: 8908 issue: 17 year: 2018 end-page: 8920 article-title: A comparative analysis of metabarcoding and morphology‐based identification of benthic communities across different regional seas publication-title: Ecology and Evolution – volume: mec.15670 year: 2020 article-title: Assessing the impact of the threatened crucian carp (Carassius carassius) on pond invertebrate diversity: A comparison of conventional and molecular tools publication-title: Molecular Ecology – volume: 57 start-page: 2234 issue: 11 year: 2020 end-page: 2245 article-title: Advances in metabarcoding techniques bring us closer to reliable monitoring of the marine benthos publication-title: Journal of Applied Ecology – volume: 8 start-page: 10185 issue: 1 year: 2018 article-title: Ecological influence of sediment bypass tunnels on macroinvertebrates in dam‐fragmented rivers by DNA metabarcoding publication-title: Scientific Reports – volume: 7 start-page: 260 year: 2019 article-title: How does eDNA compare to traditional trapping? Detecting mosquito communities in South‐African Freshwater Ponds publication-title: Frontiers in Ecology and Evolution – volume: 678 start-page: 499 year: 2019 end-page: 524 article-title: DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap‐analysis and recommendations for future work publication-title: Science of The Total Environment – volume: 52 start-page: 264 issue: 3 year: 2017 end-page: 280 article-title: Molecular and morphological characterization of the Achnanthidium minutissimum complex (Bacillariophyta) in Petuniabukta (Spitsbergen, High Arctic) including the description of A. digitatum sp publication-title: Nov. European Journal of Phycology – volume: 8 issue: 11 year: 2013 article-title: Next generation sequencing reveals the hidden diversity of Zooplankton Assemblages publication-title: PLoS One – volume: 56 start-page: 1232 issue: 5 year: 2019a end-page: 1244 article-title: Ground‐truthing of a fish‐based environmental DNA metabarcoding method for assessing the quality of lakes publication-title: Journal of Applied Ecology – volume: 9 start-page: 9712 issue: 17 year: 2019 end-page: 9722 article-title: DNA metabarcoding adds valuable information for management of biodiversity in roadside stormwater ponds publication-title: Ecology and Evolution – volume: 8 start-page: 10361 issue: 1 year: 2018 article-title: Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation publication-title: Scientific Reports – volume: 3 start-page: 55 issue: 1 year: 2021 end-page: 69 article-title: Environmental DNA metabarcoding for biodiversity monitoring of a highly diverse tropical fish community in a coral reef lagoon: Estimation of species richness and detection of habitat segregation publication-title: Environmental DNA – volume: 15 start-page: 526 issue: 3 year: 2015 end-page: 542 article-title: Metabarcoding vs. Morphological identification to assess diatom diversity in environmental studies publication-title: Molecular Ecology Resources – volume: 3 start-page: 142 issue: 1 year: 2021 end-page: 156 article-title: Comparing environmental DNA metabarcoding and underwater visual census to monitor tropical reef fishes publication-title: Environmental DNA – volume: 41 start-page: D597 issue: D1 year: 2013 end-page: D604 article-title: The protist ribosomal reference database (PR2): A catalog of unicellular eukaryote Small Sub‐Unit rRNA sequences with curated taxonomy publication-title: Nucleic Acids Research – volume: 7 start-page: 1773 issue: 1 year: 2017 article-title: Zooplankton community profiling in a eutrophic freshwater Ecosystem‐Lake Tai Basin by DNA metabarcoding publication-title: Scientific Reports – volume: 101 start-page: 963 year: 2019 end-page: 972 article-title: Comparison of DNA metabarcoding and morphological identification for stream macroinvertebrate biodiversity assessment and monitoring publication-title: Ecological Indicators – volume: 13 start-page: 331 issue: 3 year: 2021 article-title: Integration of DNA‐based approaches in aquatic ecological assessment using benthic macroinvertebrates publication-title: Water – volume: 29 start-page: 4258 issue: 22 year: 2020a end-page: 4264 article-title: Environmental DNA: What’s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring publication-title: Molecular Ecology – volume: 1 start-page: 40 issue: 1 year: 2019 end-page: 53 article-title: Rapid assessment of coral cover from environmental DNA in Hawai’i publication-title: Environmental DNA – volume: 15 start-page: 819 issue: 4 year: 2015 end-page: 830 article-title: Universal and blocking primer mismatches limit the use of high‐throughput DNA sequencing for the quantitative metabarcoding of arthropods publication-title: Molecular Ecology Resources – volume: 7 start-page: 244 issue: 2 year: 2013 end-page: 255 article-title: Accuracy of protist diversity assessments: Morphology compared with cloning and direct pyrosequencing of 18S rRNA genes and ITS regions using the conspicuous tintinnid ciliates as a case study publication-title: The ISME Journal – volume: 21 start-page: 1789 issue: 8 year: 2012 end-page: 1793 article-title: Environmental DNA publication-title: Molecular Ecology – volume: 28 start-page: 420 issue: 2 year: 2019 end-page: 430 article-title: How quantitative is metabarcoding: A meta‐analytical approach publication-title: Molecular Ecology – volume: 15 start-page: 266 issue: 5 year: 2017 end-page: 274 article-title: Freshwater biomonitoring in the Information Age publication-title: Frontiers in Ecology and the Environment – volume: 9 start-page: 3272 issue: 16 year: 2019 article-title: Comparison of water sampling between environmental DNA metabarcoding and conventional microscopic identification: A case study in Gwangyang Bay, South Korea publication-title: Applied Sciences – volume: 106 start-page: 105453 year: 2019 article-title: Testing different (e)DNA metabarcoding approaches to assess aquatic oligochaete diversity and the biological quality of sediments publication-title: Ecological Indicators – volume: 78 start-page: 3411 issue: 9 year: 2021 end-page: 3427 article-title: Metabarcoding reveals hidden species and improves identification of marine zooplankton communities in the North Sea publication-title: ICES Journal of Marine Science – volume: 1 start-page: 290 issue: 3 year: 2019 end-page: 301 article-title: Assessing different components of diversity across a river network using eDNA publication-title: Environmental DNA – volume: 2 start-page: 24 issue: 1 year: 2020 end-page: 41 article-title: Testing the performance of environmental DNA metabarcoding for surveying highly diverse tropical fish communities: A case study from Lake Tanganyika publication-title: Environmental DNA – volume: 18 start-page: 1299 issue: 6 year: 2018 end-page: 1309 article-title: Boosting DNA metabarcoding for biomonitoring with phylogenetic estimation of operational taxonomic units’ ecological profiles publication-title: Molecular Ecology Resources – volume: 4 start-page: 150 issue: 2 year: 2011 end-page: 157 article-title: “Sight‐unseen” detection of rare aquatic species using environmental DNA publication-title: Conservation Letters – volume: 113 start-page: 106225 year: 2020 article-title: 18S–V9 DNA metabarcoding detects the effect of water‐quality impairment on stream biofilm eukaryotic assemblages publication-title: Ecological Indicators – volume: 10 start-page: 5354 issue: 12 year: 2020 end-page: 5367 article-title: Effects of sampling seasons and locations on fish environmental DNA metabarcoding in dam reservoirs publication-title: Ecology and Evolution – volume: 26 start-page: 5872 issue: 21 year: 2017 end-page: 5895 article-title: Environmental DNA metabarcoding: Transforming how we survey animal and plant communities publication-title: Molecular Ecology – volume: 11 start-page: 4803 issue: 9 year: 2021 end-page: 4815 article-title: Meta‐analysis shows that environmental DNA outperforms traditional surveys, but warrants better reporting standards publication-title: Ecology and Evolution – volume: 3 start-page: 261 issue: 1 year: 2021 end-page: 276 article-title: Improved freshwater macroinvertebrate detection from environmental DNA through minimized nontarget amplification publication-title: Environmental DNA – volume: 82 start-page: 1 year: 2017 end-page: 12 article-title: Assessing ecological status with diatoms DNA metabarcoding: Scaling‐up on a WFD monitoring network (Mayotte island, France) publication-title: Ecological Indicators – volume: 47 start-page: 1179 issue: 6 year: 2010 end-page: 1188 article-title: Cost‐efficiency of biodiversity indicators for Mediterranean ecosystems and the effects of socio‐economic factors publication-title: Journal of Applied Ecology – volume: 487 start-page: 113 year: 2017 end-page: 126 article-title: Comparison of morphological and next generation DNA sequencing methods for assessing zooplankton assemblages publication-title: Journal of Experimental Marine Biology and Ecology – volume: 25 start-page: 3101 issue: 13 year: 2016 end-page: 3119 article-title: Environmental DNA metabarcoding of lake fish communities reflects long‐term data from established survey methods publication-title: Molecular Ecology – year: 2020 – volume: 80 start-page: 1150 issue: 4 year: 1999 end-page: 1156 article-title: The meta‐analysis of response ratios in experimental ecology publication-title: Ecology – volume: 64 start-page: 514 issue: 4 year: 2017 end-page: 532 article-title: Haptophyte diversity and vertical distribution explored by 18S and 28S ribosomal RNA gene metabarcoding and scanning electron microscopy publication-title: Journal of Eukaryotic Microbiology – volume: 5 year: 2017 article-title: NGS‐based biodiversity and community structure analysis of meiofaunal eukaryotes in shell sand from Hållö island, Smögen, and soft mud from Gullmarn Fjord, Sweden publication-title: Biodiversity Data Journal – volume: 727 start-page: 138445 year: 2020 article-title: Evaluation and sensitivity analysis of diatom DNA metabarcoding for WFD bioassessment of Mediterranean rivers publication-title: Science of The Total Environment – volume: 160 start-page: 104946 year: 2020 article-title: DNA metabarcoding and morphological analysis—Assessment of zooplankton biodiversity in transitional waters publication-title: Marine Environmental Research – volume: 95 start-page: 194 year: 2018 end-page: 202 article-title: Adapting metabarcoding‐based benthic biomonitoring into routine marine ecological status assessment networks publication-title: Ecological Indicators – volume: 1 start-page: 368 issue: 4 year: 2019 end-page: 384 article-title: Comparison of fish detections, community diversity, and relative abundance using environmental DNA metabarcoding and traditional gears publication-title: Environmental DNA – year: 1999 – volume: 3 year: 2017 article-title: Genetic and manual survey methods yield different and complementary views of an ecosystem publication-title: Frontiers in Marine Science – ident: e_1_2_8_139_1 doi: 10.1002/ece3.5503 – ident: e_1_2_8_149_1 doi: 10.1371/journal.pone.0106510 – ident: e_1_2_8_28_1 doi: 10.3389/fmars.2019.00732 – ident: e_1_2_8_131_1 doi: 10.1093/icesjms/fsaa256 – ident: e_1_2_8_37_1 doi: 10.1002/lom3.10237 – ident: e_1_2_8_72_1 doi: 10.1201/EBK1439809365-c2 – ident: e_1_2_8_121_1 doi: 10.1111/mec.13481 – ident: e_1_2_8_39_1 doi: 10.3390/w13030331 – ident: e_1_2_8_124_1 doi: 10.1038/s41598‐019‐51500‐6 – ident: e_1_2_8_25_1 doi: 10.1111/1755‐0998.12900 – ident: e_1_2_8_75_1 doi: 10.1111/1755‐0998.12919 – ident: e_1_2_8_8_1 doi: 10.1111/1755‐0998.12668 – ident: e_1_2_8_34_1 doi: 10.1111/mec.14350 – ident: e_1_2_8_82_1 doi: 10.3389/fevo.2019.00260 – ident: e_1_2_8_98_1 doi: 10.1111/j.1365‐2664.2010.01864.x – ident: e_1_2_8_101_1 doi: 10.1371/journal.pone.0236540 – ident: e_1_2_8_81_1 doi: 10.3390/app9163272 – ident: e_1_2_8_120_1 doi: 10.1038/s41598‐018‐28424‐8 – ident: e_1_2_8_41_1 doi: 10.1371/journal.pone.0053516 – ident: e_1_2_8_50_1 doi: 10.1098/rsbl.2008.0118 – ident: e_1_2_8_15_1 doi: 10.1002/edn3.129 – ident: e_1_2_8_89_1 doi: 10.1038/srep13932 – ident: e_1_2_8_71_1 doi: 10.1111/j.1755‐263X.2010.00158.x – ident: e_1_2_8_135_1 doi: 10.1016/j.biocon.2016.03.010 – ident: e_1_2_8_85_1 doi: 10.1111/mec.14920 – ident: e_1_2_8_84_1 doi: 10.3897/mbmg.4.51433 – ident: e_1_2_8_83_1 doi: 10.1016/j.ecolind.2019.105982 – ident: e_1_2_8_145_1 doi: 10.1016/j.ecolind.2017.06.024 – ident: e_1_2_8_150_1 doi: 10.1038/s41598‐017‐01808‐y – ident: e_1_2_8_86_1 doi: 10.1002/edn3.35 – ident: e_1_2_8_108_1 doi: 10.1002/edn3.8 – ident: e_1_2_8_54_1 doi: 10.1111/jfb.14383 – ident: e_1_2_8_106_1 doi: 10.1086/704827 – ident: e_1_2_8_10_1 doi: 10.1016/j.ecolind.2018.07.044 – ident: e_1_2_8_114_1 – ident: e_1_2_8_63_1 doi: 10.1016/j.jembe.2016.12.002 – ident: e_1_2_8_56_1 doi: 10.1093/nar/gks1160 – ident: e_1_2_8_94_1 doi: 10.1016/j.ecss.2017.03.019 – ident: e_1_2_8_140_1 doi: 10.1111/j.1365‐294X.2012.05542.x – ident: e_1_2_8_88_1 doi: 10.1002/edn3.177 – ident: e_1_2_8_116_1 doi: 10.1016/j.scitotenv.2020.138445 – ident: e_1_2_8_67_1 doi: 10.1016/j.jembe.2015.04.011 – volume-title: R: A Language and Environment for Statistical Computing year: 2020 ident: e_1_2_8_123_1 – ident: e_1_2_8_68_1 doi: 10.1007/s10933‐020‐00133‐1 – ident: e_1_2_8_49_1 doi: 10.1080/0266476042000214501 – ident: e_1_2_8_42_1 doi: 10.1111/2041‐210X.12789 – ident: e_1_2_8_24_1 doi: 10.1038/nature05202 – ident: e_1_2_8_125_1 doi: 10.1371/journal.pone.0195770 – ident: e_1_2_8_20_1 doi: 10.32614/RJ‐2017‐066 – ident: e_1_2_8_59_1 doi: 10.1890/120103 – ident: e_1_2_8_31_1 doi: 10.1371/journal.pone.0117562 – ident: e_1_2_8_65_1 doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 – ident: e_1_2_8_66_1 doi: 10.1016/j.watres.2018.03.003 – ident: e_1_2_8_23_1 doi: 10.1002/ece3.4283 – ident: e_1_2_8_92_1 doi: 10.1016/j.ecolind.2019.105653 – ident: e_1_2_8_48_1 doi: 10.1002/edn3.40 – ident: e_1_2_8_107_1 doi: 10.1038/s41598‐020‐63565‐9 – ident: e_1_2_8_55_1 doi: 10.1111/jeu.12388 – ident: e_1_2_8_70_1 doi: 10.1080/0269249X.2017.1312548 – ident: e_1_2_8_91_1 doi: 10.1111/1365‐2664.13352 – ident: e_1_2_8_47_1 doi: 10.1371/journal.pone.0201741 – ident: e_1_2_8_73_1 doi: 10.1016/j.ecolind.2020.107070 – ident: e_1_2_8_69_1 doi: 10.1186/s12302‐020‐00321‐w – ident: e_1_2_8_113_1 doi: 10.1111/mec.15643 – ident: e_1_2_8_29_1 doi: 10.1111/2041‐210X.13276 – ident: e_1_2_8_137_1 doi: 10.3897/mbmg.4.53455 – ident: e_1_2_8_112_1 doi: 10.1002/ece3.2186 – ident: e_1_2_8_7_1 doi: 10.1111/mec.15646 – ident: e_1_2_8_17_1 doi: 10.1002/edn3.135 – ident: e_1_2_8_122_1 doi: 10.3389/fmicb.2019.01501 – ident: e_1_2_8_146_1 doi: 10.1021/es506158m – ident: e_1_2_8_147_1 doi: 10.1016/j.ecolind.2019.105453 – ident: e_1_2_8_102_1 doi: 10.1111/jfb.14053 – ident: e_1_2_8_118_1 doi: 10.1080/09670262.2017.1283540 – ident: e_1_2_8_134_1 doi: 10.1016/j.gecco.2019.e00689 – ident: e_1_2_8_12_1 doi: 10.1038/ismej.2012.106 – ident: e_1_2_8_148_1 doi: 10.1016/j.scitotenv.2019.04.247 – ident: e_1_2_8_132_1 doi: 10.1016/j.ecolind.2019.02.008 – ident: e_1_2_8_9_1 doi: 10.3389/fmars.2016.00096 – ident: e_1_2_8_14_1 – ident: e_1_2_8_130_1 doi: 10.1016/j.marenvres.2020.104946 – ident: e_1_2_8_142_1 doi: 10.7717/peerj.9176 – ident: e_1_2_8_152_1 doi: 10.1111/1755‐0998.12336 – ident: e_1_2_8_5_1 doi: 10.1371/journal.pone.0195403 – ident: e_1_2_8_136_1 doi: 10.1037/1082‐989X.11.1.54 – ident: e_1_2_8_64_1 doi: 10.1002/ece3.6279 – ident: e_1_2_8_99_1 doi: 10.1002/edn3.90 – ident: e_1_2_8_110_1 doi: 10.3389/fmars.2020.572680 – ident: e_1_2_8_78_1 doi: 10.1371/journal.pone.0086175 – ident: e_1_2_8_51_1 doi: 10.1371/journal.pone.0210357 – ident: e_1_2_8_151_1 doi: 10.1002/edn3.7 – ident: e_1_2_8_133_1 doi: 10.1038/s41598‐018‐28624‐2 – ident: e_1_2_8_93_1 doi: 10.1371/journal.pone.0081327 – ident: e_1_2_8_79_1 doi: 10.1086/675079 – ident: e_1_2_8_3_1 doi: 10.1002/edn3.111 – ident: e_1_2_8_38_1 doi: 10.1002/edn3.43 – ident: e_1_2_8_57_1 doi: 10.1007/s10750‐006‐0075‐6 – ident: e_1_2_8_2_1 doi: 10.1007/s00227‐016‐2920‐0 – ident: e_1_2_8_103_1 doi: 10.3389/fevo.2020.00276 – ident: e_1_2_8_127_1 doi: 10.1016/j.scitotenv.2020.144208 – ident: e_1_2_8_126_1 doi: 10.1007/s10750‐017‐3381‐2 – ident: e_1_2_8_62_1 doi: 10.1098/rspb.2019.1409 – ident: e_1_2_8_105_1 doi: 10.1098/rsos.150088 – ident: e_1_2_8_13_1 doi: 10.1016/j.scitotenv.2020.140948 – ident: e_1_2_8_100_1 doi: 10.1111/1755‐0998.13012 – ident: e_1_2_8_22_1 doi: 10.3897/mbmg.2.30457 – ident: e_1_2_8_36_1 doi: 10.1371/journal.pone.0023398 – ident: e_1_2_8_95_1 doi: 10.1038/s41598‐017‐15823‐6 – ident: e_1_2_8_19_1 doi: 10.1371/journal.pone.0183347 – ident: e_1_2_8_61_1 doi: 10.1111/mec.15670 – ident: e_1_2_8_111_1 doi: 10.1002/edn3.132 – ident: e_1_2_8_52_1 doi: 10.1111/2041‐210X.12758 – ident: e_1_2_8_76_1 doi: 10.1002/fee.1490 – ident: e_1_2_8_104_1 doi: 10.1016/j.ecolind.2020.106225 – ident: e_1_2_8_80_1 doi: 10.3390/d12060233 – ident: e_1_2_8_128_1 doi: 10.1007/s10201‐020‐00645‐9 – ident: e_1_2_8_143_1 doi: 10.1111/mec.13428 – ident: e_1_2_8_97_1 doi: 10.1002/edn3.33 – ident: e_1_2_8_43_1 doi: 10.1038/s41598‐017‐13157‐x – ident: e_1_2_8_58_1 doi: 10.3897/BDJ.5.e12731 – ident: e_1_2_8_87_1 doi: 10.3897/rio.2.e11321 – ident: e_1_2_8_44_1 doi: 10.1016/j.ecolind.2019.01.014 – ident: e_1_2_8_109_1 doi: 10.2989/1814232X.2019.1689169 – ident: e_1_2_8_96_1 doi: 10.1111/1755‐0998.12940 – ident: e_1_2_8_129_1 doi: 10.1002/edn3.38 – ident: e_1_2_8_46_1 doi: 10.1002/ece3.7382 – ident: e_1_2_8_40_1 doi: 10.3897/BDJ.8.e55172 – ident: e_1_2_8_74_1 doi: 10.5281/zenodo.5837361 – ident: e_1_2_8_21_1 doi: 10.3897/ab.e68634 – ident: e_1_2_8_33_1 doi: 10.1371/journal.pone.0088786 – ident: e_1_2_8_90_1 – ident: e_1_2_8_117_1 doi: 10.1111/1755‐0998.12355 – ident: e_1_2_8_138_1 doi: 10.1111/1365‐2664.13729 – ident: e_1_2_8_4_1 doi: 10.1111/mec.15661 – ident: e_1_2_8_77_1 doi: 10.3389/fmars.2016.00283 – ident: e_1_2_8_6_1 doi: 10.1111/oik.06806 – ident: e_1_2_8_32_1 doi: 10.1111/1755‐0998.12740 – ident: e_1_2_8_11_1 doi: 10.1038/s41598‐020‐70307‐4 – ident: e_1_2_8_30_1 doi: 10.1038/s42003‐018‐0192‐6 – ident: e_1_2_8_26_1 doi: 10.1371/journal.pone.0157366 – ident: e_1_2_8_53_1 doi: 10.1111/mec.15597 – ident: e_1_2_8_119_1 doi: 10.1002/edn3.140 – ident: e_1_2_8_144_1 doi: 10.1002/edn3.67 – ident: e_1_2_8_45_1 doi: 10.1139/cjfas‐2016‐0306 – ident: e_1_2_8_60_1 doi: 10.1111/mec.13660 – ident: e_1_2_8_27_1 doi: 10.1002/ece3.2667 – ident: e_1_2_8_16_1 doi: 10.3897/mbmg.3.34735 – ident: e_1_2_8_18_1 doi: 10.1016/S0025‐326X(00)00061‐8 – ident: e_1_2_8_35_1 doi: 10.1038/ncomms12544 – ident: e_1_2_8_115_1 doi: 10.1038/s41586‐018‐0627‐8 – ident: e_1_2_8_141_1 doi: 10.1371/journal.pone.0041732 |
| SSID | ssj0013255 |
| Score | 2.6827745 |
| Snippet | DNA metabarcoding is increasingly used for the assessment of aquatic communities, and numerous studies have investigated the consistency of this technique with... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1820 |
| SubjectTerms | Aquatic communities Aquatic organisms Biodiversity Community structure Complementarity Data collection Deoxyribonucleic acid diversity assessment DNA DNA barcoding Environmental DNA Estimates Fish freshwater Inventories invertebrates Macroinvertebrates Meta-analysis metabarcoding microorganisms Original ORIGINAL ARTICLES Plankton |
| Title | Meta‐analysis shows both congruence and complementarity of DNA and eDNA metabarcoding to traditional methods for biological community assessment |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.16364 https://www.ncbi.nlm.nih.gov/pubmed/35075700 https://www.proquest.com/docview/2635875791 https://www.proquest.com/docview/2622656654 https://www.proquest.com/docview/2675565449 https://pubmed.ncbi.nlm.nih.gov/PMC9303474 |
| Volume | 31 |
| WOSCitedRecordID | wos000750214900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1365-294X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013255 issn: 0962-1083 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VFqRe-IamtJVBHHoJahIntsWpanfFoV1ViKK9RbbjpSvRpGq2oN74CYif2F_CjJ2NdtWCkLhEljxx4mTGfk7G7wG8lYix9R4GUsJTG3NpZayVs3Eq96xMhUkmXmPp85EYjeR4rE5W4P18L0zgh-g_uFFk-PGaAlybdiHIz519h2Ci4PdgLUkySboNKT9Z-IXgJU8Roqc41sisoxWiNJ7-1OXJ6BbCvJ0ouQhg_Qw0fPRf9_4YHnbAk-0HT3kCK65-Cg-CFOU1lgaevvr6Gfw6djN98-On7uhKWHvWfG-ZwVfKcPH85dKnXjNdV8zno4f0c9LAY82EHY72fZWjwjm2ZDCSGpog2axh2L1qGr4-sqBd3TJEzSxQQZG_UJu0YwVb0z1p6HM4HQ4-HXyIO-WG2HJR8NgqJ2yutMlw0KhyaVI5qXBp52RllEuU0I6nIsejcyR_LIXOdaGdKozLnRLZC1itm9ptAJNGIsgqjMHBg0-S3BQmU8YahchN4lQbwe78FZa2ozUndY2v5Xx5gw-79A87gje96UXg8rjLaGvuB2UXzm1JjD3E_K-SCF731RiI9HdF1665IhtEsjn15m82IkcEzbmK4GVwrf5OMkTmJDYQgVhyut6AiMCXa-rpmScEV4hDuMDr7nqn-3PnyuPBgS9s_rvpK1hPacuHz7vbgtUZutk23LffZtP2csfHHB7FWO7A2uHH4enRb45jNKQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VFlQufH8EChjEoZegJnFiW-JStbsqYneFUIt6i2zHS1dqE9QsoN74CYifyC9hxs5GuyogJC4rS5544-SN_eyM3wC8lMix9Q46UsJTG3NpZayVs3Eqd6xMhUmmPsfSh5GYTOTxsXq3Bq8XZ2GCPkS_4Uae4cdrcnDakF7y8jNnXyGbKPgV2OAII8T3xv774dFo6SuCz3qKLD3F4UZmnbIQRfL0F6_OR5dI5uVYyWUO6yeh4c3_u_1bcKMjn2w3oOU2rLn6DlwL6SgvsDTwEtYXd-HH2M31z2_fdSdZwtqT5mvLDL5Whgvoj-c-_JrpumI-Jj2EoFMePNZM2f5k11c5KpxhSwa9qaFJks0bhv2rZmEHkoX81S1D5syCHBRhhtqkUyvYmu6FQ-_B0XBwuHcQd9kbYstFwWOrnLC50ibDgaPKpUnltMLlnZOVUS5RQjueihx_naMUyFLoXBfaqcK43CmR3Yf1uqndQ2DSSCRahTE4gPBpkpvCZMpYo5C9SZxuI9hevMPSdtLmlGHjtFwscfBhl_5hR_CiN_0U9Dx-Z7S1AELZuXRbkmoPqf-rJILnfTU6I31h0bVrPpMNstmcevM3G5Eji-ZcRfAgYKu_kwzZOSUciECsoK43IDHw1Zp6duJFwRVyES7wf7c96v7cuXI82POFR_9u-gw2Dw7Ho3L0ZvL2MVxP6QiIj8PbgvU5Qu4JXLVf5rP2_Gnngr8AfW03og |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VLSAufBcCBQzi0EtQkzixLXGpursCsV1ViKLeIttx2pVoUjULqLf-hIqfyC9hxslGuyogJC6RJU-cOJmxn5PxewCvJWJsvY2BFPHYhlxaGWrlbBjLbStjYaLSayx9nojpVB4eqv01eLvYC9PyQ_Qf3Cgy_HhNAe5Oi3Ipyk-cfYNoIuPXYJ2TiMwA1ocfxweTpb8IXvUUUXqMw41MOmYhyuTpT16dj66AzKu5kssY1k9C4zv_d_t34XYHPtlO6y33YM1V9-FGK0d5jqWRp7A-fwA_9txc_7y41B1lCWuO6-8NM_haGS6gj858-jXTVcF8Tnqbgk46eKwu2XC646scFU6wJYPRVNMkyeY1w_4Vs_YLJGv1qxuGyJm1dFDkM9Qm7VrB1nRPHPoQDsajT7vvwk69IbRcZDy0ygmbKm0SHDiKVJpYlgUu75wsjHKREtrxWKR4dI4kkKXQqc60U5lxqVMi2YBBVVfuMTBpJAKtzBgcQHgZpSYziTLWKERvEqfbALYW7zC3HbU5KWx8yRdLHHzYuX_YAbzqTU9bPo_fGW0uHCHvQrrJibWH2P9VFMDLvhqDkf6w6MrVX8kG0WxKvfmbjUgRRXOuAnjU-lZ_JwmicxIcCECseF1vQGTgqzXV7NiTgivEIlzgdbe81_25c_neaNcXnvy76Qu4uT8c55P30w9P4VZMO0B8Gt4mDObocc_guv02nzVnz7sI_AW5izcd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta%E2%80%90analysis+shows+both+congruence+and+complementarity+of+DNA+and+eDNA+metabarcoding+to+traditional+methods+for+biological+community+assessment&rft.jtitle=Molecular+ecology&rft.au=Keck%2C+Fran%C3%A7ois&rft.au=Blackman%2C+Rosetta+C.&rft.au=Bossart%2C+Raphael&rft.au=Brantschen%2C+Jeanine&rft.date=2022-03-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0962-1083&rft.eissn=1365-294X&rft.volume=31&rft.issue=6&rft.spage=1820&rft.epage=1835&rft_id=info:doi/10.1111%2Fmec.16364&rft_id=info%3Apmid%2F35075700&rft.externalDocID=PMC9303474 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon |