Deep learning in medical imaging and radiation therapy

The goals of this review paper on deep learning (DL) in medical imaging and radiation therapy are to (a) summarize what has been achieved to date; (b) identify common and unique challenges, and strategies that researchers have taken to address these challenges; and (c) identify some of the promising...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Medical physics (Lancaster) Ročník 46; číslo 1; s. e1 - e36
Hlavní autoři: Sahiner, Berkman, Pezeshk, Aria, Hadjiiski, Lubomir M., Wang, Xiaosong, Drukker, Karen, Cha, Kenny H., Summers, Ronald M., Giger, Maryellen L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States John Wiley and Sons Inc 01.01.2019
Témata:
ISSN:0094-2405, 2473-4209, 2473-4209
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The goals of this review paper on deep learning (DL) in medical imaging and radiation therapy are to (a) summarize what has been achieved to date; (b) identify common and unique challenges, and strategies that researchers have taken to address these challenges; and (c) identify some of the promising avenues for the future both in terms of applications as well as technical innovations. We introduce the general principles of DL and convolutional neural networks, survey five major areas of application of DL in medical imaging and radiation therapy, identify common themes, discuss methods for dataset expansion, and conclude by summarizing lessons learned, remaining challenges, and future directions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:0094-2405
2473-4209
2473-4209
DOI:10.1002/mp.13264