Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?
Advances in DNA sequencing technology have revolutionized the field of molecular analysis of trophic interactions, and it is now possible to recover counts of food DNA sequences from a wide range of dietary samples. But what do these counts mean? To obtain an accurate estimate of a consumer's d...
Uloženo v:
| Vydáno v: | Molecular ecology Ročník 28; číslo 2; s. 391 - 406 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Blackwell Publishing Ltd
01.01.2019
John Wiley and Sons Inc |
| Témata: | |
| ISSN: | 0962-1083, 1365-294X, 1365-294X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Advances in DNA sequencing technology have revolutionized the field of molecular analysis of trophic interactions, and it is now possible to recover counts of food DNA sequences from a wide range of dietary samples. But what do these counts mean? To obtain an accurate estimate of a consumer's diet should we work strictly with data sets summarizing frequency of occurrence of different food taxa, or is it possible to use relative number of sequences? Both approaches are applied to obtain semi‐quantitative diet summaries, but occurrence data are often promoted as a more conservative and reliable option due to taxa‐specific biases in recovery of sequences. We explore representative dietary metabarcoding data sets and point out that diet summaries based on occurrence data often overestimate the importance of food consumed in small quantities (potentially including low‐level contaminants) and are sensitive to the count threshold used to define an occurrence. Our simulations indicate that using relative read abundance (RRA) information often provides a more accurate view of population‐level diet even with moderate recovery biases incorporated; however, RRA summaries are sensitive to recovery biases impacting common diet taxa. Both approaches are more accurate when the mean number of food taxa in samples is small. The ideas presented here highlight the need to consider all sources of bias and to justify the methods used to interpret count data in dietary metabarcoding studies. We encourage researchers to continue addressing methodological challenges and acknowledge unanswered questions to help spur future investigations in this rapidly developing area of research. |
|---|---|
| AbstractList | Advances in DNA sequencing technology have revolutionized the field of molecular analysis of trophic interactions, and it is now possible to recover counts of food DNA sequences from a wide range of dietary samples. But what do these counts mean? To obtain an accurate estimate of a consumer's diet should we work strictly with data sets summarizing frequency of occurrence of different food taxa, or is it possible to use relative number of sequences? Both approaches are applied to obtain semi‐quantitative diet summaries, but occurrence data are often promoted as a more conservative and reliable option due to taxa‐specific biases in recovery of sequences. We explore representative dietary metabarcoding data sets and point out that diet summaries based on occurrence data often overestimate the importance of food consumed in small quantities (potentially including low‐level contaminants) and are sensitive to the count threshold used to define an occurrence. Our simulations indicate that using relative read abundance (RRA) information often provides a more accurate view of population‐level diet even with moderate recovery biases incorporated; however, RRA summaries are sensitive to recovery biases impacting common diet taxa. Both approaches are more accurate when the mean number of food taxa in samples is small. The ideas presented here highlight the need to consider all sources of bias and to justify the methods used to interpret count data in dietary metabarcoding studies. We encourage researchers to continue addressing methodological challenges and acknowledge unanswered questions to help spur future investigations in this rapidly developing area of research. Advances in DNA sequencing technology have revolutionized the field of molecular analysis of trophic interactions, and it is now possible to recover counts of food DNA sequences from a wide range of dietary samples. But what do these counts mean? To obtain an accurate estimate of a consumer's diet should we work strictly with data sets summarizing frequency of occurrence of different food taxa, or is it possible to use relative number of sequences? Both approaches are applied to obtain semi-quantitative diet summaries, but occurrence data are often promoted as a more conservative and reliable option due to taxa-specific biases in recovery of sequences. We explore representative dietary metabarcoding data sets and point out that diet summaries based on occurrence data often overestimate the importance of food consumed in small quantities (potentially including low-level contaminants) and are sensitive to the count threshold used to define an occurrence. Our simulations indicate that using relative read abundance (RRA) information often provides a more accurate view of population-level diet even with moderate recovery biases incorporated; however, RRA summaries are sensitive to recovery biases impacting common diet taxa. Both approaches are more accurate when the mean number of food taxa in samples is small. The ideas presented here highlight the need to consider all sources of bias and to justify the methods used to interpret count data in dietary metabarcoding studies. We encourage researchers to continue addressing methodological challenges and acknowledge unanswered questions to help spur future investigations in this rapidly developing area of research.Advances in DNA sequencing technology have revolutionized the field of molecular analysis of trophic interactions, and it is now possible to recover counts of food DNA sequences from a wide range of dietary samples. But what do these counts mean? To obtain an accurate estimate of a consumer's diet should we work strictly with data sets summarizing frequency of occurrence of different food taxa, or is it possible to use relative number of sequences? Both approaches are applied to obtain semi-quantitative diet summaries, but occurrence data are often promoted as a more conservative and reliable option due to taxa-specific biases in recovery of sequences. We explore representative dietary metabarcoding data sets and point out that diet summaries based on occurrence data often overestimate the importance of food consumed in small quantities (potentially including low-level contaminants) and are sensitive to the count threshold used to define an occurrence. Our simulations indicate that using relative read abundance (RRA) information often provides a more accurate view of population-level diet even with moderate recovery biases incorporated; however, RRA summaries are sensitive to recovery biases impacting common diet taxa. Both approaches are more accurate when the mean number of food taxa in samples is small. The ideas presented here highlight the need to consider all sources of bias and to justify the methods used to interpret count data in dietary metabarcoding studies. We encourage researchers to continue addressing methodological challenges and acknowledge unanswered questions to help spur future investigations in this rapidly developing area of research. Advances in DNA sequencing technology have revolutionized the field of molecular analysis of trophic interactions, and it is now possible to recover counts of food DNA sequences from a wide range of dietary samples. But what do these counts mean? To obtain an accurate estimate of a consumer's diet should we work strictly with data sets summarizing frequency of occurrence of different food taxa, or is it possible to use relative number of sequences? Both approaches are applied to obtain semi‐quantitative diet summaries, but occurrence data are often promoted as a more conservative and reliable option due to taxa‐specific biases in recovery of sequences. We explore representative dietary metabarcoding data sets and point out that diet summaries based on occurrence data often overestimate the importance of food consumed in small quantities (potentially including low‐level contaminants) and are sensitive to the count threshold used to define an occurrence. Our simulations indicate that using relative read abundance ( RRA ) information often provides a more accurate view of population‐level diet even with moderate recovery biases incorporated; however, RRA summaries are sensitive to recovery biases impacting common diet taxa. Both approaches are more accurate when the mean number of food taxa in samples is small. The ideas presented here highlight the need to consider all sources of bias and to justify the methods used to interpret count data in dietary metabarcoding studies. We encourage researchers to continue addressing methodological challenges and acknowledge unanswered questions to help spur future investigations in this rapidly developing area of research. |
| Author | Deagle, Bruce E. Eveson, J. Paige Vesterinen, Eero J. Clarke, Laurence J. Kartzinel, Tyler R. Clare, Elizabeth L. Thomas, Austen C. McInnes, Julie C. |
| AuthorAffiliation | 1 Australian Antarctic Division Channel Highway Kingston TAS Australia 2 Science Department Smith‐Root Inc. Vancouver Washington 4 Biodiversity Unit and Department of Biology University of Turku Turku Finland 5 Department of Agricultural Sciences University of Helsinki Helsinki Finland 7 Department of Ecology and Evolutionary Biology Brown University Providence Rhode Island 8 CSIRO Oceans and Atmosphere Hobart TAS Australia 3 Antarctic Climate & Ecosystems Cooperative Research Centre University of Tasmania Hobart TAS Australia 6 School of Biological and Chemical Sciences Queen Mary University of London London UK |
| AuthorAffiliation_xml | – name: 6 School of Biological and Chemical Sciences Queen Mary University of London London UK – name: 3 Antarctic Climate & Ecosystems Cooperative Research Centre University of Tasmania Hobart TAS Australia – name: 7 Department of Ecology and Evolutionary Biology Brown University Providence Rhode Island – name: 8 CSIRO Oceans and Atmosphere Hobart TAS Australia – name: 2 Science Department Smith‐Root Inc. Vancouver Washington – name: 1 Australian Antarctic Division Channel Highway Kingston TAS Australia – name: 4 Biodiversity Unit and Department of Biology University of Turku Turku Finland – name: 5 Department of Agricultural Sciences University of Helsinki Helsinki Finland |
| Author_xml | – sequence: 1 givenname: Bruce E. orcidid: 0000-0001-7651-3687 surname: Deagle fullname: Deagle, Bruce E. email: Bruce.Deagle@aad.gov.au organization: Channel Highway – sequence: 2 givenname: Austen C. surname: Thomas fullname: Thomas, Austen C. organization: Smith‐Root Inc – sequence: 3 givenname: Julie C. orcidid: 0000-0001-8902-5199 surname: McInnes fullname: McInnes, Julie C. organization: Channel Highway – sequence: 4 givenname: Laurence J. orcidid: 0000-0002-0844-4453 surname: Clarke fullname: Clarke, Laurence J. organization: University of Tasmania – sequence: 5 givenname: Eero J. orcidid: 0000-0003-3665-5802 surname: Vesterinen fullname: Vesterinen, Eero J. organization: University of Helsinki – sequence: 6 givenname: Elizabeth L. orcidid: 0000-0002-6563-3365 surname: Clare fullname: Clare, Elizabeth L. organization: Queen Mary University of London – sequence: 7 givenname: Tyler R. surname: Kartzinel fullname: Kartzinel, Tyler R. organization: Brown University – sequence: 8 givenname: J. Paige surname: Eveson fullname: Eveson, J. Paige organization: CSIRO Oceans and Atmosphere |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29858539$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk9v1DAQxS1URLeFA18AWeJCD2n9PzEHULUUilTgAhI3y7GdrqvELrbTVb99vewWQQXCFx_mN09vZt4B2AsxOACeY3SM6zuZnDnGrKXsEVhgKnhDJPu-BxZICtJg1NF9cJDzFUKYEs6fgH0iO95xKhdAL-Mcig-XcO3LCr77fAp9gJMrutfJRLup5DJb7_JreB7XMK_iPFq4dtDEcONSgdn9mF0wDianbYYlwkoXnW6h1UW_fQoeD3rM7tnuPwTf3p99XZ43F18-fFyeXjSGtYI1vCN06JFBluoe09Zp3GmKbd9x2yFiyYAG3kpjmOOSMcyEIMJyRDSlRlf0ELzZ6l7P_eSscaEkParr5KfqRUXt1Z-V4FfqMt4oIVFdBasCr3YCKdaJclGTz8aNow4uzlkRQjAiCCHxfxQxyQWiElf05QP0Ks4p1E0ogltBOso4qdSL383_cn1_qAqcbAGTYs7JDcr4oouPm1n8qDBSmyioGgX1Mwq14-hBx73o39id-tqP7vbfoPp0ttx23AEpKsHp |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0268250 crossref_primary_10_1093_icb_icac029 crossref_primary_10_1093_jmammal_gyad061 crossref_primary_10_1111_mec_14941 crossref_primary_10_1111_1749_4877_12947 crossref_primary_10_1111_2041_210X_13796 crossref_primary_10_1111_rec_14056 crossref_primary_10_1111_ibi_12994 crossref_primary_10_3389_fevo_2020_00282 crossref_primary_10_3389_fevo_2019_00395 crossref_primary_10_3897_mbmg_7_86883 crossref_primary_10_1038_s41598_023_42102_4 crossref_primary_10_1111_mec_15903 crossref_primary_10_1002_ece3_10612 crossref_primary_10_3390_d13090437 crossref_primary_10_1007_s00338_022_02302_2 crossref_primary_10_3390_d15090976 crossref_primary_10_1007_s10531_022_02451_4 crossref_primary_10_1093_jme_tjaa267 crossref_primary_10_1111_2041_210X_13206 crossref_primary_10_1038_s42003_020_01562_4 crossref_primary_10_1038_s41598_021_97337_w crossref_primary_10_1002_ece3_11709 crossref_primary_10_1038_s41598_020_60779_9 crossref_primary_10_1111_mec_14920 crossref_primary_10_1111_aec_70016 crossref_primary_10_1111_1755_0998_13060 crossref_primary_10_1007_s00227_025_04712_6 crossref_primary_10_1146_annurev_ecolsys_110218_024908 crossref_primary_10_1111_1755_0998_13067 crossref_primary_10_1016_j_gecco_2024_e03373 crossref_primary_10_1126_science_aau3561 crossref_primary_10_1186_s13071_020_04306_9 crossref_primary_10_1002_aqc_4257 crossref_primary_10_1007_s10452_021_09923_9 crossref_primary_10_1111_1365_2656_70001 crossref_primary_10_3389_fevo_2022_902412 crossref_primary_10_1002_ece3_71091 crossref_primary_10_1002_edn3_510 crossref_primary_10_3390_d14020089 crossref_primary_10_1111_jfb_14245 crossref_primary_10_1111_ele_14394 crossref_primary_10_7717_peerj_12296 crossref_primary_10_7717_peerj_12177 crossref_primary_10_1111_1365_2656_13538 crossref_primary_10_1111_mec_17185 crossref_primary_10_1093_plankt_fbac002 crossref_primary_10_1371_journal_pone_0278070 crossref_primary_10_1002_jwmg_70015 crossref_primary_10_3389_fevo_2023_1108514 crossref_primary_10_7717_peerj_18665 crossref_primary_10_1139_facets_2023_0195 crossref_primary_10_1093_icesjms_fsae134 crossref_primary_10_1111_fog_12668 crossref_primary_10_1016_j_seares_2024_102509 crossref_primary_10_3390_ani14213083 crossref_primary_10_1093_plankt_fbad007 crossref_primary_10_1139_cjfas_2021_0267 crossref_primary_10_1002_ps_70023 crossref_primary_10_1098_rsos_231518 crossref_primary_10_1016_j_ecolind_2025_113943 crossref_primary_10_1111_een_12831 crossref_primary_10_1038_s41559_019_1068_y crossref_primary_10_1002_ece3_5531 crossref_primary_10_1038_s41598_020_61198_6 crossref_primary_10_1007_s10530_022_02739_0 crossref_primary_10_1016_j_biocon_2025_111004 crossref_primary_10_1111_mec_16073 crossref_primary_10_1007_s10344_023_01712_z crossref_primary_10_1016_j_fooweb_2021_e00201 crossref_primary_10_1111_jfb_15380 crossref_primary_10_3897_mbmg_9_144371 crossref_primary_10_1093_femsec_fiaa122 crossref_primary_10_1007_s10530_023_03170_9 crossref_primary_10_1038_s41598_021_02083_8 crossref_primary_10_3389_fmars_2021_682697 crossref_primary_10_1002_ece3_6638 crossref_primary_10_1111_mec_17150 crossref_primary_10_1007_s10344_023_01745_4 crossref_primary_10_1016_j_ejsobi_2022_103449 crossref_primary_10_1093_jmammal_gyaf018 crossref_primary_10_1007_s00442_023_05346_5 crossref_primary_10_1016_j_funeco_2020_100989 crossref_primary_10_1093_icb_icad030 crossref_primary_10_1007_s10340_021_01401_3 crossref_primary_10_1016_j_gecco_2025_e03480 crossref_primary_10_1111_1365_2656_13855 crossref_primary_10_1002_eap_2284 crossref_primary_10_1111_mec_16847 crossref_primary_10_1093_biolinnean_blz061 crossref_primary_10_1111_1755_0998_70033 crossref_primary_10_1002_ece3_9121 crossref_primary_10_3389_fmars_2021_756067 crossref_primary_10_1111_mms_12717 crossref_primary_10_1016_j_agee_2020_107296 crossref_primary_10_1007_s10750_023_05334_z crossref_primary_10_3354_meps13511 crossref_primary_10_1007_s13364_020_00541_8 crossref_primary_10_1111_1365_2656_14238 crossref_primary_10_1007_s10531_021_02279_4 crossref_primary_10_1016_j_cub_2021_08_067 crossref_primary_10_3106_ms2023_0047 crossref_primary_10_1007_s10641_022_01328_3 crossref_primary_10_1007_s10872_025_00773_9 crossref_primary_10_1007_s11355_023_00587_1 crossref_primary_10_1038_s41598_021_96856_w crossref_primary_10_1111_btp_12720 crossref_primary_10_1111_mec_16958 crossref_primary_10_1038_s41598_022_14915_2 crossref_primary_10_1186_s12983_020_00384_8 crossref_primary_10_1111_mec_16719 crossref_primary_10_1007_s13744_022_01011_3 crossref_primary_10_1111_1755_0998_13014 crossref_primary_10_1016_j_actao_2023_103890 crossref_primary_10_1002_ecs2_70319 crossref_primary_10_1016_j_avrs_2022_100034 crossref_primary_10_1111_mec_16712 crossref_primary_10_1111_eea_13396 crossref_primary_10_1038_s41598_020_73609_9 crossref_primary_10_1111_2041_210X_13602 crossref_primary_10_1676_23_00058 crossref_primary_10_7717_peerj_11936 crossref_primary_10_1016_j_agee_2024_108927 crossref_primary_10_1038_s41598_023_35206_4 crossref_primary_10_1007_s13364_022_00646_2 crossref_primary_10_1002_ece3_8298 crossref_primary_10_1016_j_mimet_2021_106271 crossref_primary_10_1038_s41598_022_26862_z crossref_primary_10_1007_s42991_021_00115_4 crossref_primary_10_1111_mec_14886 crossref_primary_10_1002_2688_8319_12120 crossref_primary_10_1038_s42003_025_07948_6 crossref_primary_10_1007_s00227_019_3555_8 crossref_primary_10_1002_2688_8319_12360 crossref_primary_10_3897_mbmg_7_112290 crossref_primary_10_1002_aqc_3563 crossref_primary_10_1007_s10530_024_03266_w crossref_primary_10_3390_genes14030731 crossref_primary_10_1002_oik_11223 crossref_primary_10_3389_fenvs_2019_00197 crossref_primary_10_1016_j_ecolind_2025_113765 crossref_primary_10_1007_s00338_020_01892_z crossref_primary_10_1242_jeb_249697 crossref_primary_10_1139_cjz_2022_0189 crossref_primary_10_1038_s41467_023_44521_3 crossref_primary_10_1111_1755_0998_13231 crossref_primary_10_2326_osj_22_183 crossref_primary_10_1002_ece3_71497 crossref_primary_10_1093_gigascience_giac065 crossref_primary_10_1111_jfb_14400 crossref_primary_10_1038_s41586_019_1264_6 crossref_primary_10_1038_s41598_023_48139_9 crossref_primary_10_1111_2041_210X_13865 crossref_primary_10_3390_ani15070974 crossref_primary_10_1186_s42523_024_00330_7 crossref_primary_10_1093_emph_eoae030 crossref_primary_10_1111_ddi_13216 crossref_primary_10_1002_ece3_10921 crossref_primary_10_3389_fevo_2020_588430 crossref_primary_10_1007_s00227_023_04277_2 crossref_primary_10_1111_1755_0998_14018 crossref_primary_10_1038_s41598_024_58204_6 crossref_primary_10_1051_bioconf_20249401002 crossref_primary_10_1016_j_foreco_2022_120467 crossref_primary_10_1111_1744_7917_12992 crossref_primary_10_1038_s41598_023_46939_7 crossref_primary_10_3106_ms2018_0067 crossref_primary_10_3897_BDJ_11_e111146 crossref_primary_10_1007_s10933_020_00133_1 crossref_primary_10_1002_ece3_72161 crossref_primary_10_1080_21564574_2021_1921058 crossref_primary_10_3897_mbmg_7_106844 crossref_primary_10_1002_ece3_71196 crossref_primary_10_1007_s00338_024_02482_z crossref_primary_10_1016_j_biocon_2022_109678 crossref_primary_10_1111_1755_0998_13057 crossref_primary_10_1371_journal_pone_0264381 crossref_primary_10_1111_mec_14974 crossref_primary_10_1007_s00227_019_3523_3 crossref_primary_10_1016_j_biocontrol_2024_105545 crossref_primary_10_1111_mam_12189 crossref_primary_10_1002_ecy_3256 crossref_primary_10_1111_jfb_15754 crossref_primary_10_1002_ece3_10817 crossref_primary_10_1139_facets_2021_0071 crossref_primary_10_7554_eLife_90559 crossref_primary_10_1111_een_13315 crossref_primary_10_3354_meps13816 crossref_primary_10_1016_j_scitotenv_2020_141969 crossref_primary_10_1111_1365_2656_13442 crossref_primary_10_1111_nph_19385 crossref_primary_10_1111_1365_2656_13206 crossref_primary_10_1093_condor_duaa009 crossref_primary_10_1093_ornithapp_duaf006 crossref_primary_10_1371_journal_pone_0302028 crossref_primary_10_1111_1755_0998_13277 crossref_primary_10_1007_s00338_024_02527_3 crossref_primary_10_1002_ldr_4832 crossref_primary_10_1002_ecs2_3557 crossref_primary_10_1111_2041_210X_13780 crossref_primary_10_1007_s00427_020_00652_x crossref_primary_10_1002_ecm_1549 crossref_primary_10_1038_s41598_022_06195_7 crossref_primary_10_1139_cjfas_2023_0079 crossref_primary_10_3897_zookeys_1149_96936 crossref_primary_10_3389_fmars_2024_1411996 crossref_primary_10_1002_ece3_71681 crossref_primary_10_1002_ece3_71682 crossref_primary_10_1111_mec_16202 crossref_primary_10_1016_j_agee_2025_109590 crossref_primary_10_1002_ece3_71321 crossref_primary_10_1111_1755_0998_13401 crossref_primary_10_1111_1755_0998_13643 crossref_primary_10_1002_lno_11740 crossref_primary_10_1002_ece3_6138 crossref_primary_10_1002_ece3_71565 crossref_primary_10_1111_mec_16689 crossref_primary_10_1002_ecs2_70152 crossref_primary_10_3390_ani13040727 crossref_primary_10_1016_j_aquaculture_2022_738042 crossref_primary_10_1002_ece3_70340 crossref_primary_10_1093_biolinnean_blad005 crossref_primary_10_1007_s11033_024_09885_9 crossref_primary_10_1111_mec_15592 crossref_primary_10_1111_mec_16682 crossref_primary_10_3389_fevo_2022_1070088 crossref_primary_10_1093_gigascience_giz092 crossref_primary_10_7717_peerj_9606 crossref_primary_10_1016_j_cub_2022_12_049 crossref_primary_10_1007_s10530_021_02659_5 crossref_primary_10_1017_S0007485325000276 crossref_primary_10_7717_peerj_12634 crossref_primary_10_1126_science_abd7015 crossref_primary_10_1002_edn3_70146 crossref_primary_10_1002_ece3_11266 crossref_primary_10_1111_avsc_12806 crossref_primary_10_1038_s42003_021_01760_8 crossref_primary_10_1007_s13592_021_00902_5 crossref_primary_10_1111_1755_0998_13536 crossref_primary_10_1111_ibi_13395 crossref_primary_10_3354_meps14228 crossref_primary_10_1016_j_aqrep_2023_101606 crossref_primary_10_1002_ecs2_70288 crossref_primary_10_1002_ece3_70591 crossref_primary_10_1002_edn3_87 crossref_primary_10_3897_mbmg_6_85213 crossref_primary_10_1007_s11829_025_10149_x crossref_primary_10_1007_s10340_023_01609_5 crossref_primary_10_1038_s41598_018_36478_x crossref_primary_10_3390_ani13152536 crossref_primary_10_1002_ece3_6397 crossref_primary_10_1002_edn3_70157 crossref_primary_10_1002_ece3_7004 crossref_primary_10_1002_edn3_70035 crossref_primary_10_1016_j_pocean_2024_103356 crossref_primary_10_1111_mec_16663 crossref_primary_10_1371_journal_pone_0286144 crossref_primary_10_1002_edn3_70153 crossref_primary_10_1111_mec_16545 crossref_primary_10_1002_ecy_3548 crossref_primary_10_1111_1755_0998_13625 crossref_primary_10_1111_1365_2664_14144 crossref_primary_10_1007_s00300_022_03022_7 crossref_primary_10_1002_edn3_74 crossref_primary_10_3389_fevo_2021_623655 crossref_primary_10_1038_s41598_025_04366_w crossref_primary_10_1038_s41598_022_09285_8 crossref_primary_10_1128_mSystems_00458_19 crossref_primary_10_1007_s10531_020_02081_8 crossref_primary_10_1111_mec_15328 crossref_primary_10_1002_edn3_70047 crossref_primary_10_3354_meps14241 crossref_primary_10_1002_edn3_70045 crossref_primary_10_1111_icad_12726 crossref_primary_10_1111_mec_17743 crossref_primary_10_1186_s40168_022_01423_8 crossref_primary_10_1371_journal_pone_0248294 crossref_primary_10_1111_jzo_70011 crossref_primary_10_3390_d14040236 crossref_primary_10_1126_science_abb5352 crossref_primary_10_1111_1365_2664_14272 crossref_primary_10_7717_peerj_11757 crossref_primary_10_1002_ece3_8472 crossref_primary_10_1016_j_foodcont_2025_111667 crossref_primary_10_1371_journal_pone_0241254 crossref_primary_10_1002_ece3_8355 crossref_primary_10_1111_1365_2435_13605 crossref_primary_10_1002_ece3_7265 crossref_primary_10_1002_ece3_9680 crossref_primary_10_1111_1365_2656_13184 crossref_primary_10_1016_j_baae_2025_03_002 crossref_primary_10_1111_1365_2656_14156 crossref_primary_10_1038_s41598_021_93154_3 crossref_primary_10_1111_mec_15555 crossref_primary_10_1111_mec_15797 crossref_primary_10_1002_ecy_70158 crossref_primary_10_3390_insects12040358 crossref_primary_10_1016_j_baae_2020_11_007 crossref_primary_10_1016_j_polar_2022_100838 crossref_primary_10_1016_j_scitotenv_2023_164430 crossref_primary_10_1002_edn3_272 crossref_primary_10_1002_edn3_274 crossref_primary_10_3389_fevo_2022_735588 crossref_primary_10_1093_jmammal_gyab115 crossref_primary_10_1111_1755_0998_13690 crossref_primary_10_1016_j_cub_2021_10_001 crossref_primary_10_1002_ece3_8484 crossref_primary_10_1007_s13593_019_0603_1 crossref_primary_10_3389_fevo_2021_783546 crossref_primary_10_1002_ece3_71352 crossref_primary_10_1002_ece3_7399 crossref_primary_10_1073_pnas_1905666116 crossref_primary_10_1002_ece3_9457 crossref_primary_10_1111_mec_16635 crossref_primary_10_1111_oik_07502 crossref_primary_10_1002_ece3_71118 crossref_primary_10_71161_ivb_144_2_2025_00010 crossref_primary_10_1111_mec_16627 crossref_primary_10_1898_NWN22_17 crossref_primary_10_1098_rsos_200225 crossref_primary_10_1111_mec_17712 crossref_primary_10_1002_ece3_70367 crossref_primary_10_1002_ecy_70013 crossref_primary_10_1080_17429145_2021_2015466 crossref_primary_10_1007_s42991_025_00489_9 crossref_primary_10_3389_fmars_2025_1480327 crossref_primary_10_3390_biology12091245 crossref_primary_10_1371_journal_pone_0240136 crossref_primary_10_1002_edn3_296 crossref_primary_10_1016_j_foreco_2024_122241 crossref_primary_10_1016_j_foodcont_2025_111338 crossref_primary_10_1111_mec_15769 crossref_primary_10_1007_s42965_021_00142_9 crossref_primary_10_1007_s42991_023_00353_8 crossref_primary_10_1093_ornithapp_duab060 crossref_primary_10_1111_aen_12690 crossref_primary_10_1371_journal_pone_0325889 crossref_primary_10_1007_s00227_023_04269_2 crossref_primary_10_1111_1755_0998_13794 crossref_primary_10_1002_ece3_9358 crossref_primary_10_1002_edn3_70000 crossref_primary_10_1007_s00040_025_01058_6 crossref_primary_10_1111_1755_0998_13315 crossref_primary_10_1111_jen_13105 crossref_primary_10_1111_fwb_14076 crossref_primary_10_1111_ibi_13010 crossref_primary_10_3354_meps13520 crossref_primary_10_1093_gigascience_giac020 crossref_primary_10_1002_ece3_4903 crossref_primary_10_1007_s10661_024_12892_9 crossref_primary_10_1016_j_foodres_2024_114901 crossref_primary_10_3390_ani14223303 crossref_primary_10_1038_s41598_024_62162_4 crossref_primary_10_1007_s00338_020_01964_0 crossref_primary_10_1007_s10340_022_01554_9 crossref_primary_10_1002_edn3_168 crossref_primary_10_1126_science_adg0744 crossref_primary_10_1093_ornithapp_duab059 crossref_primary_10_1371_journal_pone_0293092 crossref_primary_10_1002_edn3_27 crossref_primary_10_1007_s00227_024_04448_9 crossref_primary_10_1111_2041_210X_13271 crossref_primary_10_7717_peerj_11030 crossref_primary_10_1002_ece3_11417 crossref_primary_10_1002_edn3_225 crossref_primary_10_1002_edn3_226 crossref_primary_10_3897_mbmg_7_96733 crossref_primary_10_58837_tnh_22_1_255467 crossref_primary_10_1002_ece3_71961 crossref_primary_10_1111_1755_0998_13920 crossref_primary_10_1002_mcf2_10259 crossref_primary_10_1002_ece3_7748 crossref_primary_10_1002_ece3_71605 crossref_primary_10_3354_meps14617 crossref_primary_10_1002_ece3_71606 crossref_primary_10_1002_edn3_354 crossref_primary_10_1002_edn3_355 crossref_primary_10_1139_cjz_2023_0104 crossref_primary_10_1002_edn3_350 crossref_primary_10_1111_1440_1703_12319 crossref_primary_10_3390_ani13040561 crossref_primary_10_1007_s10592_021_01337_2 crossref_primary_10_3897_natureconservation_59_152167 crossref_primary_10_1111_eva_13425 crossref_primary_10_3389_fmars_2021_614394 crossref_primary_10_1002_edn3_457 crossref_primary_10_1111_mec_17245 crossref_primary_10_1111_mec_16158 crossref_primary_10_1111_1755_0998_12960 crossref_primary_10_3389_fmars_2024_1410805 crossref_primary_10_1002_ps_5925 crossref_primary_10_1016_j_soilbio_2021_108264 crossref_primary_10_1111_1755_0998_13816 crossref_primary_10_3390_ani13030511 crossref_primary_10_1016_j_fishres_2021_105936 crossref_primary_10_7554_eLife_90559_3 crossref_primary_10_1038_s41598_023_29019_8 crossref_primary_10_1002_edn3_129 crossref_primary_10_1111_aec_13143 crossref_primary_10_1111_ejss_13154 crossref_primary_10_1002_ece3_10469 crossref_primary_10_1002_ece3_70607 crossref_primary_10_1002_ece3_10460 crossref_primary_10_1111_mec_16387 crossref_primary_10_1002_ece3_10580 crossref_primary_10_3897_herpetozoa_36_e103198 crossref_primary_10_1093_cz_zoad025 crossref_primary_10_1002_ece3_11432 crossref_primary_10_1002_ece3_8978 crossref_primary_10_1002_ece3_10461 crossref_primary_10_1038_s42003_024_05983_3 crossref_primary_10_1016_j_foreco_2020_118768 crossref_primary_10_1111_jbi_14014 crossref_primary_10_1016_j_fooweb_2024_e00373 crossref_primary_10_1002_edn3_497 crossref_primary_10_1111_afe_12635 crossref_primary_10_1098_rsos_240132 crossref_primary_10_1002_edn3_117 crossref_primary_10_1002_edn3_479 crossref_primary_10_1002_ps_8093 crossref_primary_10_1002_ece3_7659 crossref_primary_10_1007_s10841_023_00479_7 crossref_primary_10_1016_j_soilbio_2021_108284 crossref_primary_10_1016_j_foodres_2019_108751 crossref_primary_10_1111_1440_1703_12223 crossref_primary_10_3389_fmars_2024_1288769 crossref_primary_10_1016_j_baae_2021_09_006 crossref_primary_10_1073_pnas_2502691122 crossref_primary_10_1002_aff2_113 crossref_primary_10_1002_edn3_245 crossref_primary_10_1093_cz_zoac073 crossref_primary_10_1098_rsos_230337 crossref_primary_10_1002_edn3_362 crossref_primary_10_1016_j_fooweb_2024_e00365 crossref_primary_10_1016_j_gecco_2025_e03714 crossref_primary_10_1038_s41598_019_48546_x crossref_primary_10_1002_wlb3_01436 crossref_primary_10_1002_ece3_8995 crossref_primary_10_1002_ecy_3921 crossref_primary_10_1002_ece3_7667 crossref_primary_10_3354_meps14655 crossref_primary_10_5424_sjar_2024224_20842 crossref_primary_10_1111_1365_2435_14093 crossref_primary_10_1111_1365_2656_13901 crossref_primary_10_1111_1755_0998_13609 crossref_primary_10_1111_mec_15394 crossref_primary_10_1186_s12983_021_00411_2 crossref_primary_10_3389_fevo_2022_1071771 crossref_primary_10_1139_cjz_2021_0018 crossref_primary_10_1093_icesjms_fsae096 crossref_primary_10_1186_s40657_021_00276_3 crossref_primary_10_1016_j_envpol_2021_117765 crossref_primary_10_22201_ib_20078706e_2023_94_4855 crossref_primary_10_1186_s12983_021_00434_9 crossref_primary_10_1002_ece3_11227 crossref_primary_10_3106_ms2024_0018 crossref_primary_10_1002_ece3_11226 crossref_primary_10_1093_jmammal_gyae102 crossref_primary_10_1002_ece3_8881 crossref_primary_10_1002_ece3_9857 crossref_primary_10_1038_s41597_022_01831_3 crossref_primary_10_3390_genes13112035 crossref_primary_10_1038_s41597_022_01152_5 crossref_primary_10_1080_17429145_2022_2120212 crossref_primary_10_1098_rsos_230156 crossref_primary_10_1111_1365_2664_14096 crossref_primary_10_1111_mec_16352 crossref_primary_10_1002_edn3_421 crossref_primary_10_1111_1744_7917_70074 crossref_primary_10_1002_edn3_206 crossref_primary_10_1002_ps_8287 crossref_primary_10_1002_ece3_6594 crossref_primary_10_1111_oik_09790 crossref_primary_10_1002_eap_2457 crossref_primary_10_1002_ece3_7320 crossref_primary_10_1002_edn3_205 crossref_primary_10_1111_mec_16584 crossref_primary_10_1002_ece3_70526 crossref_primary_10_1186_s13717_025_00630_z crossref_primary_10_1111_1755_0998_13700 crossref_primary_10_1128_msystems_00158_25 crossref_primary_10_1111_1755_0998_13703 crossref_primary_10_1111_1755_0998_13945 crossref_primary_10_1111_1755_0998_13705 crossref_primary_10_1016_j_egg_2024_100317 crossref_primary_10_1002_edn3_454 crossref_primary_10_1080_03014223_2023_2240711 crossref_primary_10_1002_ece3_10038 crossref_primary_10_1002_edn3_439 crossref_primary_10_1111_1365_2664_70082 crossref_primary_10_1080_10643389_2020_1806663 crossref_primary_10_1093_aobpla_plac031 crossref_primary_10_1002_ece3_10031 crossref_primary_10_1111_mec_16332 crossref_primary_10_1111_mec_16576 crossref_primary_10_3389_fevo_2023_1177446 crossref_primary_10_1111_mec_15127 crossref_primary_10_1002_ece3_71731 crossref_primary_10_3389_fmars_2018_00381 crossref_primary_10_1016_j_ecolind_2021_107718 crossref_primary_10_1007_s00227_025_04673_w crossref_primary_10_1007_s11160_024_09907_6 crossref_primary_10_1186_s40657_021_00242_z crossref_primary_10_1111_2041_210X_14078 crossref_primary_10_1111_gcb_16199 |
| Cites_doi | 10.1111/eva.12225 10.1371/journal.pone.0159133 10.1642/AUK-15-176.1 10.1111/j.1365-294X.2011.05403.x 10.1038/srep27282 10.1111/mec.12523 10.1111/1365-2664.12598 10.1007/s00294-015-0482-1 10.1186/1742-9994-6-16 10.1111/mec.12552 10.1139/cjfas-2015-0558 10.1111/2041-210X.12849 10.1111/1755-0998.12402 10.1371/journal.pone.0165252 10.1139/gen-2015-0229 10.1093/oso/9780198767220.001.0001 10.1111/j.1365-294X.2010.04898.x 10.1002/jcp.1041430122 10.1111/j.1755-0998.2010.02974.x 10.3389/fmars.2017.00277 10.1111/mec.14245 10.1093/aobpla/plx015 10.3354/meps12165 10.1371/journal.pone.0082227 10.1002/ece3.773 10.1038/nature24460 10.1371/journal.pone.0130324 10.1038/nrg.2017.44 10.1111/1755-0998.12309 10.1073/pnas.1503283112 10.1093/icesjms/fsm152 10.1111/1755-0998.12265 10.1016/j.biocon.2016.03.022 10.1111/j.1365-294X.2009.04158.x 10.1007/s10592-010-0096-6 10.1111/mec.14474 10.1111/2041-210X.12435 10.1111/j.1755-0998.2008.02352.x 10.1111/2041-210X.12647 10.1007/s00442-014-2933-7 10.1038/srep16738 10.1111/1755-0998.12490 10.1371/journal.pone.0083152 10.1371/journal.pone.0124671 10.1111/2041-210X.12677 10.1186/s12983-016-0150-4 10.1007/s00216-014-8435-y 10.1038/s41559-017-0413-2 10.1038/s41598-017-12501-5 10.1111/mec.12531 10.1111/2041-210X.12960 10.1111/j.1365-294X.2007.03613.x 10.1111/2041-210X.12869 10.1371/journal.pone.0144956 10.1038/nrg.2016.49 10.1111/mec.13481 10.1371/journal.pone.0099722 10.1111/mec.12519 10.1007/s10592-006-9197-7 10.1101/165449 10.1111/fog.12204 10.1038/srep41909 10.1186/2049-2618-2-11 10.1111/nph.12923 10.1515/dna-2015-0021 10.1890/08-2207.1 10.1111/j.2041-210X.2012.00198.x 10.1016/j.mib.2004.04.015 10.1111/1755-0998.12188 10.1111/1755-0998.12355 10.3389/fevo.2016.00015 10.1038/nature12921 10.1038/s41598-017-14984-8 10.1111/mec.12831 10.1111/1755-0998.12103 10.1093/bfgp/elu035 10.1139/cjz-2016-0253 10.1371/journal.pone.0058971 10.1038/s41598-017-17333-x 10.1111/1755-0998.12703 10.1111/mec.13564 10.1101/124149 |
| ContentType | Journal Article |
| Copyright | 2018 John Wiley & Sons Ltd 2018 John Wiley & Sons Ltd. Copyright © 2019 John Wiley & Sons Ltd 2018 The Authors. published by John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2018 John Wiley & Sons Ltd – notice: 2018 John Wiley & Sons Ltd. – notice: Copyright © 2019 John Wiley & Sons Ltd – notice: 2018 The Authors. published by John Wiley & Sons Ltd. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 5PM |
| DOI | 10.1111/mec.14734 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Entomology Abstracts CrossRef AGRICOLA |
| Database_xml | – sequence: 1 dbid: 24P name: Open Access资源_Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Ecology |
| DocumentTitleAlternate | DEAGLE et al |
| EISSN | 1365-294X |
| EndPage | 406 |
| ExternalDocumentID | PMC6905394 29858539 10_1111_mec_14734 MEC14734 |
| Genre | article Journal Article |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 24P 29M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AETEA AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 XJT Y6R ZZTAW ~02 ~IA ~KM ~WT AAYXX AIQQE CITATION O8X AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c4764-5823fb0c0d3ab137ea18a31db85d802d2f0f579cc4e5944146626d502a33ca8a3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 566 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000459345000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0962-1083 1365-294X |
| IngestDate | Tue Nov 04 01:36:59 EST 2025 Fri Sep 05 17:29:23 EDT 2025 Sun Nov 09 09:23:47 EST 2025 Wed Aug 13 11:13:27 EDT 2025 Thu Apr 03 07:02:33 EDT 2025 Sat Nov 29 05:23:22 EST 2025 Tue Nov 18 22:33:10 EST 2025 Wed Aug 20 07:25:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | 2018 John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4764-5823fb0c0d3ab137ea18a31db85d802d2f0f579cc4e5944146626d502a33ca8a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3665-5802 0000-0002-0844-4453 0000-0001-8902-5199 0000-0001-7651-3687 0000-0002-6563-3365 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.14734 |
| PMID | 29858539 |
| PQID | 2176283452 |
| PQPubID | 31465 |
| PageCount | 16 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6905394 proquest_miscellaneous_2221020006 proquest_miscellaneous_2049560391 proquest_journals_2176283452 pubmed_primary_29858539 crossref_citationtrail_10_1111_mec_14734 crossref_primary_10_1111_mec_14734 wiley_primary_10_1111_mec_14734_MEC14734 |
| PublicationCentury | 2000 |
| PublicationDate | January 2019 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
| PublicationTitle | Molecular ecology |
| PublicationTitleAlternate | Mol Ecol |
| PublicationYear | 2019 |
| Publisher | Blackwell Publishing Ltd John Wiley and Sons Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons Inc |
| References | 2010; 11 2017; 7 2017; 8 2013; 3 2017; 4 2010; 19 2004; 7 2011; 11 2017; 551 2013; 8 1990; 143 2014; 175 2017; 9 2014; 23 2018; 9 2017; 74 2018; 2 2014; 2 2013; 13 2009; 90 2002; 100 2007; 8 2014; 14 2016; 198 2007; 64 2014; 9 2014; 7 2012; 21 2009; 18 2015; 15 2015; 14 2015; 5 2015; 3 2017; 26 2015; 10 2008; 17 2016; 53 2015; 407 2015; 205 2017; 573 2016; 17 2016; 16 2016; 59 2018; 27 2016; 13 2016; 11 2016; 4 2017; 95 2016; 6 2015; 25 2016; 7 2012; 3 2014; 506 2017; 17 2015; 61 2017; 98 2015; 112 2016; 133 2018 2009; 9 2017 2017; 18 2009; 6 2016; 25 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 Laake J. (e_1_2_9_46_1) 2002; 100 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 Jusino M. A. (e_1_2_9_40_1) 2017 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 Biffi M. (e_1_2_9_9_1) 2017; 98 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
| References_xml | – volume: 11 start-page: e0165252 year: 2016 article-title: Environmental DNA from seawater samples correlate with trawl catches of subarctic, deepwater fishes publication-title: PLoS ONE – volume: 551 start-page: 507 year: 2017 end-page: 511 article-title: Quantitative microbiome profiling links gut community variation to microbial load publication-title: Nature – volume: 10 start-page: e0130324 year: 2015 article-title: Can DNA‐based ecosystem assessments quantify species abundance? Testing primer bias and biomass—sequence relationships with an innovative metabarcoding protocol publication-title: PLoS ONE – volume: 18 start-page: 2022 year: 2009 end-page: 2038 article-title: Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces publication-title: Molecular Ecology – volume: 112 start-page: 8019 year: 2015 end-page: 8024 article-title: DNA metabarcoding illuminates dietary niche partitioning by African large herbivores publication-title: Proceedings of the National Academy of Sciences – volume: 2 start-page: 11 year: 2014 article-title: CopyRighter: A rapid tool for improving the accuracy of microbial community profiles through lineage‐specific gene copy number correction publication-title: Microbiome – volume: 407 start-page: 1841 year: 2015 end-page: 1848 article-title: Quantitative evaluation of bias in PCR amplification and next‐generation sequencing derived from metabarcoding samples publication-title: Analytical and Bioanalytical Chemistry – volume: 27 start-page: 815 year: 2018 end-page: 825 article-title: Agriculture shapes the trophic niche of a bat preying on multiple pest arthropods across Europe: Evidence from DNA metabarcoding publication-title: Molecular Ecology – volume: 21 start-page: 1931 year: 2012 end-page: 1950 article-title: Who is eating what: Diet assessment using next generation sequencing publication-title: Molecular Ecology – volume: 9 start-page: plx015 year: 2017 article-title: Reconstructing a herbivore's diet using a novel rbcL DNA mini‐barcode for plants publication-title: AoB Plants – volume: 9 start-page: 1060 year: 2018 end-page: 1069 article-title: Avoiding quantification bias in metabarcoding: Application of a cell biovolume correction factor in diatom molecular biomonitoring publication-title: Methods in Ecology and Evolution – volume: 98 start-page: 1497 year: 2017 end-page: 1507 article-title: Novel insights into the diet of the Pyrenean desman ( ) using next‐generation sequencing molecular analyses publication-title: Journal of Mammalogy – volume: 6 start-page: 27282 year: 2016 article-title: Using metabarcoding to reveal and quantify plant‐pollinator interactions publication-title: Scientific Reports – volume: 11 start-page: 2039 year: 2010 end-page: 2048 article-title: Pyrosequencing faecal DNA to determine diet of little penguins: Is what goes in what comes out? publication-title: Conservation Genetics – volume: 23 start-page: 3799 year: 2014 end-page: 3813 article-title: The detectability half‐life in arthropod predator–prey research: What it is, why we need it, how to measure it, and how to use it publication-title: Molecular Ecology – volume: 23 start-page: 3633 year: 2014 end-page: 3647 article-title: An inordinate fondness for beetles? Variation in seasonal dietary preferences of night‐roosting big brown bats ( ) publication-title: Molecular Ecology – volume: 23 start-page: 3706 year: 2014 end-page: 3718 article-title: Improving accuracy of DNA diet estimates using food tissue control materials and an evaluation of proxies for digestion bias publication-title: Molecular Ecology – volume: 11 start-page: 530 year: 2011 end-page: 540 article-title: Proportion of prey consumed can be determined from faecal DNA using real‐time PCR publication-title: Molecular Ecology Resources – volume: 18 start-page: 473 year: 2017 end-page: 484 article-title: Reference standards for next‐generation sequencing publication-title: Nature Reviews Genetics – year: 2018 – volume: 17 start-page: 947 year: 2008 end-page: 963 article-title: Molecular analysis of predation: A review of best practice for DNA‐based approaches publication-title: Molecular Ecology – volume: 11 start-page: e0159133 year: 2016 article-title: DNA metabarcoding reveals diet overlap between the endangered walia ibex and domestic goats ‐ implications for conservation publication-title: PLoS ONE – volume: 3 start-page: 613 year: 2012 end-page: 623 article-title: Biodiversity soup: Metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring publication-title: Methods in Ecology and Evolution – volume: 26 start-page: 4831 year: 2017 end-page: 4845 article-title: High occurrence of jellyfish predation by black‐browed and Campbell albatross identified by DNA metabarcoding publication-title: Molecular Ecology – volume: 59 start-page: 603 year: 2016 end-page: 628 article-title: The use of DNA barcodes in food web construction—terrestrial and aquatic ecologists unite! publication-title: Genome – volume: 14 start-page: 306 year: 2014 end-page: 323 article-title: DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: Application to omnivorous diet publication-title: Molecular Ecology Resources – volume: 11 start-page: e0144956 year: 2016 article-title: Estimation of a killer whale ( ) population's diet using sequencing analysis of DNA from feces publication-title: PLoS ONE – volume: 15 start-page: 1289 year: 2015 end-page: 1303 article-title: Tag jumps illuminated–reducing sequence‐to‐sample misidentifications in metabarcoding studies publication-title: Molecular Ecology Resources – volume: 3 start-page: 4057 year: 2013 end-page: 4069 article-title: Diet analysis by next‐generation sequencing indicates the frequent consumption of introduced plants by the critically endangered red‐headed wood pigeon ( ) in oceanic island habitats publication-title: Ecology and Evolution – volume: 8 start-page: e83152 year: 2013 article-title: From puffins to plankton: A DNA‐based analysis of a seabird food chain in the northern Gulf of Maine publication-title: PLoS ONE – volume: 8 start-page: 743 year: 2007 end-page: 747 article-title: Quantitative analysis of prey DNA in pinniped faeces: Potential to estimate diet composition? publication-title: Conservation Genetics – volume: 8 start-page: e82227 year: 2013 article-title: Adélie penguin population diet monitoring by analysis of food DNA in scats publication-title: PLoS ONE – volume: 16 start-page: 714 year: 2016 end-page: 726 article-title: Quantitative DNA metabarcoding: Improved estimates of species proportional biomass using correction factors derived from control material publication-title: Molecular Ecology Resources – volume: 7 start-page: 17668 year: 2017 article-title: Estimating and mitigating amplification bias in qualitative and quantitative arthropod metabarcoding publication-title: Scientific Reports – volume: 10 start-page: e0124671 year: 2015 article-title: From benchtop to desktop: Important considerations when designing amplicon sequencing workflows publication-title: PLoS ONE – volume: 23 start-page: 3601 year: 2014 end-page: 3604 article-title: Special issue on molecular detection of trophic interactions: unpicking the tangled bank publication-title: Molecular Ecology – volume: 205 start-page: 1389 year: 2015 end-page: 1393 article-title: Parsing ecological signal from noise in next generation amplicon sequencing publication-title: New Phytologist – volume: 15 start-page: 306 year: 2015 end-page: 316 article-title: Detecting frogs as prey in the diets of introduced mammals: A comparison between morphological and DNA‐based diet analyses publication-title: Molecular Ecology Resources – volume: 7 start-page: 41909 year: 2017 article-title: Molecular dietary analysis of two sympatric felids in the Mountains of Southwest China biodiversity hotspot and conservation implications publication-title: Scientific Reports – volume: 133 start-page: 168 year: 2016 end-page: 177 article-title: Diet reconstruction using next‐generation sequencing increases the known ecosystem usage by a shorebird publication-title: The Auk – volume: 64 start-page: 1675 year: 2007 end-page: 1691 article-title: Diet studies of seabirds: A review and recommendations publication-title: ICES Journal of Marine Science – volume: 5 start-page: 16738 year: 2015 article-title: Climatic warming and the future of bison as grazers publication-title: Scientific Reports – year: 2017 article-title: An improved method for utilizing high‐throughput amplicon sequencing to determine the diets of insectivorous animals publication-title: PeerJ – volume: 26 start-page: 379 year: 2017 end-page: 395 article-title: Puffins reveal contrasting relationships between forage fish and ocean climate in the North Pacific publication-title: Fisheries Oceanography – volume: 9 start-page: 134 year: 2017 end-page: 147 article-title: Scrutinizing key steps for reliable metabarcoding of environmental samples publication-title: Methods in Ecology and Evolution – volume: 8 start-page: e58971 year: 2013 article-title: A DNA metabarcoding study of a primate dietary diversity and plasticity across its entire fragmented range publication-title: PLoS ONE – volume: 143 start-page: 160 year: 1990 end-page: 164 article-title: Distinct genomic copy number in mitochondria of different mammalian organs publication-title: Journal of Cellular Physiology – volume: 7 start-page: 1144 year: 2014 end-page: 1157 article-title: Molecular detection of trophic interactions: Emerging trends, distinct advantages, significant considerations and conservation applications publication-title: Evolutionary Applications – volume: 8 start-page: 192 year: 2017 end-page: 202 article-title: Optimised scat collection protocols for dietary DNA metabarcoding in vertebrates publication-title: Methods in Ecology and Evolution – volume: 19 start-page: 5555 year: 2010 end-page: 5565 article-title: Quantifying microbial communities with 454 pyrosequencing: Does read abundance count? publication-title: Molecular Ecology – volume: 2 start-page: 306 year: 2018 article-title: Quantitative species‐level ecology of reef fish larvae via metabarcoding publication-title: Nature Ecology and Evolution – volume: 90 start-page: 1470 year: 2009 end-page: 1477 article-title: Complexity in quantitative food webs publication-title: Ecology – volume: 9 start-page: 278 year: 2017 end-page: 291 article-title: Diet tracing in ecology: Method comparison and selection publication-title: Methods in Ecology and Evolution – volume: 100 start-page: 434 year: 2002 end-page: 447 article-title: Pinniped diet composition: A comparison of estimation models publication-title: Fishery Bulletin – volume: 4 start-page: 277 year: 2017 article-title: DNA metabarcoding as a marine conservation and management tool: A circumpolar examination of fishery discards in the diet of threatened albatrosses publication-title: Frontiers in Marine Science – volume: 74 start-page: 907 year: 2017 end-page: 921 article-title: Harbour seals target juvenile salmon of conservation concern publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 17 start-page: e146 year: 2017 end-page: e159 article-title: A from‐benchtop‐to‐desktop workflow for validating HTS data and for taxonomic identification in diet metabarcoding studies publication-title: Molecular Ecology Resources – volume: 8 start-page: 126 year: 2017 end-page: 134 article-title: A cost‐efficient and simple protocol to enrich prey DNA from extractions of predatory arthropods for large‐scale gut content analysis by Illumina sequencing publication-title: Methods in Ecology and Evolution – volume: 53 start-page: 1148 year: 2016 end-page: 1157 article-title: Quantifying relative fish abundance with eDNA: A promising tool for fisheries management publication-title: Journal of Applied Ecology – volume: 25 start-page: 1581 year: 2016 end-page: 1594 article-title: What you need is what you eat? Prey selection by the bat publication-title: Molecular Ecology – volume: 7 start-page: 15439 year: 2017 article-title: Competing tradeoffs between increasing marine mammal predation and fisheries harvest of Chinook salmon publication-title: Scientific Reports – volume: 198 start-page: 177 year: 2016 end-page: 182 article-title: Dietary preferences of Hawaiian tree snails to inform culture for conservation publication-title: Biological Conservation – volume: 14 start-page: 130 year: 2015 end-page: 142 article-title: Measuring differential gene expression with RNA‐seq: Challenges and strategies for data analysis publication-title: Briefings in Functional Genomics – volume: 14 start-page: 1160 year: 2014 end-page: 1170 article-title: Environmental metabarcodes for insects: In silico PCR reveals potential for taxonomic bias publication-title: Molecular Ecology Resources – volume: 15 start-page: 819 year: 2015 end-page: 830 article-title: Universal and blocking primer mismatches limit the use of high‐throughput DNA sequencing for the quantitative metabarcoding of arthropods publication-title: Molecular Ecology Resources – volume: 13 start-page: 620 year: 2013 end-page: 633 article-title: Quantifying sequence proportions in a DNA‐based diet study using Ion Torrent amplicon sequencing: Which counts count? publication-title: Molecular Ecology Resources – volume: 7 start-page: 60 year: 2016 end-page: 69 article-title: EpiRADseq: Scalable analysis of genomewide patterns of methylation using next‐generation sequencing publication-title: Methods in Ecology and Evolution – volume: 4 start-page: 15 year: 2016 article-title: Within‐population isotopic niche variability in savanna mammals: Disparity between carnivores and herbivores publication-title: Frontiers in Ecology and Evolution – volume: 25 start-page: 527 year: 2015 end-page: 541 article-title: Assessing the vertebrate community of a kelp forest ecosystem using environmental DNA publication-title: Molecular Ecology – volume: 7 start-page: 210 year: 2004 end-page: 220 article-title: Molecular microbial ecology: Land of the one‐eyed king publication-title: Current Opinion in Microbiology – volume: 17 start-page: 333 year: 2016 article-title: Coming of age: Ten years of next‐generation sequencing technologies publication-title: Nature Reviews Genetics – volume: 6 start-page: 16 year: 2009 article-title: Analysing diet of small herbivores: The efficiency of DNA barcoding coupled with high‐throughput pyrosequencing for deciphering the composition of complex plant mixtures publication-title: Frontiers in Zoology – volume: 7 start-page: 12240 year: 2017 article-title: Ecosystem biomonitoring with eDNA: Metabarcoding across the tree of life in a tropical marine environment publication-title: Scientific Reports – volume: 23 start-page: 3605 year: 2014 end-page: 3617 article-title: Who's for dinner? High‐throughput sequencing reveals bat dietary differentiation in a biodiversity hotspot where prey taxonomy is largely un described publication-title: Molecular Ecology – volume: 9 start-page: e99722 year: 2014 article-title: The bias associated with amplicon sequencing does not affect the quantitative assessment of bacterial community dynamics publication-title: PLoS ONE – volume: 506 start-page: 47 year: 2014 article-title: Fifty thousand years of Arctic vegetation and megafaunal diet publication-title: Nature – volume: 13 start-page: 17 year: 2016 article-title: Fecal metagenomics for the simultaneous assessment of diet, parasites, and population genetics of an understudied primate publication-title: Frontiers in Zoology – volume: 573 start-page: 237 year: 2017 end-page: 254 article-title: Assessing the trophic ecology of top predators across a recolonisation frontier using DNA metabarcoding of diets publication-title: Marine Ecology Progress Series – year: 2017 – volume: 9 start-page: 51 year: 2009 end-page: 60 article-title: New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: The trnL approach publication-title: Molecular Ecology Resources – volume: 61 start-page: 591 year: 2015 end-page: 600 article-title: Organellar genome copy number variation and integrity during moderate maturation of roots and leaves of maize seedlings publication-title: Current Genetics – volume: 175 start-page: 737 year: 2014 end-page: 746 article-title: Pyrosequencing of prey DNA in faeces of carnivorous land snails to facilitate ecological restoration and relocation programmes publication-title: Oecologia – volume: 3 start-page: 200 year: 2015 end-page: 206 article-title: The applicability of DNA barcoding for dietary analysis of sika deer publication-title: DNA Barcodes – volume: 95 start-page: 853 year: 2017 end-page: 868 article-title: Diet of endangered Steller sea lions in the Aleutian Islands: New insights from DNA detections and bio‐energetic reconstructions publication-title: Canadian Journal of Zoology – ident: e_1_2_9_14_1 doi: 10.1111/eva.12225 – ident: e_1_2_9_32_1 doi: 10.1371/journal.pone.0159133 – ident: e_1_2_9_33_1 doi: 10.1642/AUK-15-176.1 – ident: e_1_2_9_60_1 doi: 10.1111/j.1365-294X.2011.05403.x – ident: e_1_2_9_61_1 doi: 10.1038/srep27282 – ident: e_1_2_9_74_1 doi: 10.1111/mec.12523 – ident: e_1_2_9_47_1 doi: 10.1111/1365-2664.12598 – ident: e_1_2_9_48_1 doi: 10.1007/s00294-015-0482-1 – ident: e_1_2_9_67_1 doi: 10.1186/1742-9994-6-16 – ident: e_1_2_9_35_1 doi: 10.1111/mec.12552 – ident: e_1_2_9_75_1 doi: 10.1139/cjfas-2015-0558 – ident: e_1_2_9_3_1 doi: 10.1111/2041-210X.12849 – ident: e_1_2_9_66_1 doi: 10.1111/1755-0998.12402 – ident: e_1_2_9_76_1 doi: 10.1371/journal.pone.0165252 – ident: e_1_2_9_64_1 doi: 10.1139/gen-2015-0229 – ident: e_1_2_9_72_1 doi: 10.1093/oso/9780198767220.001.0001 – ident: e_1_2_9_4_1 doi: 10.1111/j.1365-294X.2010.04898.x – ident: e_1_2_9_81_1 doi: 10.1002/jcp.1041430122 – ident: e_1_2_9_10_1 doi: 10.1111/j.1755-0998.2010.02974.x – ident: e_1_2_9_51_1 doi: 10.3389/fmars.2017.00277 – ident: e_1_2_9_50_1 doi: 10.1111/mec.14245 – ident: e_1_2_9_28_1 doi: 10.1093/aobpla/plx015 – ident: e_1_2_9_37_1 doi: 10.3354/meps12165 – ident: e_1_2_9_39_1 doi: 10.1371/journal.pone.0082227 – ident: e_1_2_9_5_1 doi: 10.1002/ece3.773 – ident: e_1_2_9_79_1 doi: 10.1038/nature24460 – ident: e_1_2_9_26_1 doi: 10.1371/journal.pone.0130324 – ident: e_1_2_9_36_1 doi: 10.1038/nrg.2017.44 – volume: 100 start-page: 434 year: 2002 ident: e_1_2_9_46_1 article-title: Pinniped diet composition: A comparison of estimation models publication-title: Fishery Bulletin – ident: e_1_2_9_25_1 doi: 10.1111/1755-0998.12309 – ident: e_1_2_9_41_1 doi: 10.1073/pnas.1503283112 – ident: e_1_2_9_8_1 doi: 10.1093/icesjms/fsm152 – ident: e_1_2_9_16_1 doi: 10.1111/1755-0998.12265 – ident: e_1_2_9_57_1 doi: 10.1016/j.biocon.2016.03.022 – ident: e_1_2_9_21_1 doi: 10.1111/j.1365-294X.2009.04158.x – ident: e_1_2_9_20_1 doi: 10.1007/s10592-010-0096-6 – ident: e_1_2_9_2_1 doi: 10.1111/mec.14474 – ident: e_1_2_9_65_1 doi: 10.1111/2041-210X.12435 – ident: e_1_2_9_78_1 doi: 10.1111/j.1755-0998.2008.02352.x – ident: e_1_2_9_44_1 doi: 10.1111/2041-210X.12647 – ident: e_1_2_9_83_1 doi: 10.1007/s00442-014-2933-7 – ident: e_1_2_9_18_1 doi: 10.1038/srep16738 – year: 2017 ident: e_1_2_9_40_1 article-title: An improved method for utilizing high‐throughput amplicon sequencing to determine the diets of insectivorous animals publication-title: PeerJ – ident: e_1_2_9_73_1 doi: 10.1111/1755-0998.12490 – ident: e_1_2_9_11_1 doi: 10.1371/journal.pone.0083152 – ident: e_1_2_9_52_1 doi: 10.1371/journal.pone.0124671 – ident: e_1_2_9_49_1 doi: 10.1111/2041-210X.12677 – ident: e_1_2_9_68_1 doi: 10.1186/s12983-016-0150-4 – ident: e_1_2_9_58_1 doi: 10.1007/s00216-014-8435-y – ident: e_1_2_9_42_1 doi: 10.1038/s41559-017-0413-2 – ident: e_1_2_9_69_1 doi: 10.1038/s41598-017-12501-5 – ident: e_1_2_9_12_1 doi: 10.1111/mec.12531 – ident: e_1_2_9_80_1 doi: 10.1111/2041-210X.12960 – ident: e_1_2_9_43_1 doi: 10.1111/j.1365-294X.2007.03613.x – ident: e_1_2_9_55_1 doi: 10.1111/2041-210X.12869 – ident: e_1_2_9_30_1 doi: 10.1371/journal.pone.0144956 – ident: e_1_2_9_34_1 doi: 10.1038/nrg.2016.49 – ident: e_1_2_9_62_1 doi: 10.1111/mec.13481 – ident: e_1_2_9_38_1 doi: 10.1371/journal.pone.0099722 – ident: e_1_2_9_15_1 doi: 10.1111/mec.12519 – ident: e_1_2_9_23_1 doi: 10.1007/s10592-006-9197-7 – ident: e_1_2_9_56_1 doi: 10.1101/165449 – ident: e_1_2_9_70_1 doi: 10.1111/fog.12204 – ident: e_1_2_9_85_1 doi: 10.1038/srep41909 – ident: e_1_2_9_6_1 doi: 10.1186/2049-2618-2-11 – ident: e_1_2_9_54_1 doi: 10.1111/nph.12923 – ident: e_1_2_9_53_1 doi: 10.1515/dna-2015-0021 – ident: e_1_2_9_7_1 doi: 10.1890/08-2207.1 – ident: e_1_2_9_86_1 doi: 10.1111/j.2041-210X.2012.00198.x – volume: 98 start-page: 1497 year: 2017 ident: e_1_2_9_9_1 article-title: Novel insights into the diet of the Pyrenean desman (Galemys pyrenaicus) using next‐generation sequencing molecular analyses publication-title: Journal of Mammalogy – ident: e_1_2_9_31_1 doi: 10.1016/j.mib.2004.04.015 – ident: e_1_2_9_19_1 doi: 10.1111/1755-0998.12188 – ident: e_1_2_9_59_1 doi: 10.1111/1755-0998.12355 – ident: e_1_2_9_17_1 doi: 10.3389/fevo.2016.00015 – ident: e_1_2_9_84_1 doi: 10.1038/nature12921 – ident: e_1_2_9_13_1 doi: 10.1038/s41598-017-14984-8 – ident: e_1_2_9_71_1 doi: 10.1111/mec.12831 – ident: e_1_2_9_22_1 doi: 10.1111/1755-0998.12103 – ident: e_1_2_9_29_1 doi: 10.1093/bfgp/elu035 – ident: e_1_2_9_77_1 doi: 10.1139/cjz-2016-0253 – ident: e_1_2_9_63_1 doi: 10.1371/journal.pone.0058971 – ident: e_1_2_9_45_1 doi: 10.1038/s41598-017-17333-x – ident: e_1_2_9_27_1 doi: 10.1111/1755-0998.12703 – ident: e_1_2_9_82_1 doi: 10.1111/mec.13564 – ident: e_1_2_9_24_1 doi: 10.1101/124149 |
| SSID | ssj0013255 |
| Score | 2.6992795 |
| Snippet | Advances in DNA sequencing technology have revolutionized the field of molecular analysis of trophic interactions, and it is now possible to recover counts of... Advances in DNA sequencing technology have revolutionized the field of molecular analysis of trophic interactions, and it is now possible to recover counts of... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 391 |
| SubjectTerms | Computer Simulation Contaminants Counting data collection Data recovery Datasets Deoxyribonucleic acid Diet DNA DNA barcoding DNA Barcoding, Taxonomic - methods DNA sequencing Feces - chemistry Food Food Chain High-Throughput Nucleotide Sequencing Nucleotide sequence nucleotide sequences Special Issue: Species Interactions, Ecological Networks and Community Dynamics Summaries Trophic relationships |
| Title | Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data? |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.14734 https://www.ncbi.nlm.nih.gov/pubmed/29858539 https://www.proquest.com/docview/2176283452 https://www.proquest.com/docview/2049560391 https://www.proquest.com/docview/2221020006 https://pubmed.ncbi.nlm.nih.gov/PMC6905394 |
| Volume | 28 |
| WOSCitedRecordID | wos000459345000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-294X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013255 issn: 0962-1083 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SpIVemr7jJA1q6aEXgy3JlpQeStjskkO7hNLA3ozlB1lI7LJ2EvLvOyM_2CVtKfRgY9AYZGke32jGMwAfSQeW1gg_5iX3Zchj34bcolyVuckjTcEo12xCzed6sTDnW_B5-Bemqw8xHriRZDh9TQKe2mZNyK-LDMVcCfkIdsJQaOrbwOX5WgjBtTxFiM5R12jRlxWiNJ7x1U1j9ABhPkyUXAewzgLNdv9r7s_hWQ882UnHKS9gq6hewpOuFeU9Pk1d-er7V5BO-vYRjM5o2en8hC0rdl20FPzParJ1rOmyD4_ZWX3Hmktqk83uCuZS2FctG_KzGSLSvGFtzZC6xekySkj98houZtMfkzO_b8TgZ1LF0o80F6UNsiAXqQ2FKtJQpyLMrY5yHfCcl0EZKZNlsogM4isZo5uURwFPhchSJH0D21VdFXvApOC5xUvF6PhpazTVW1OIkmIrIqukB5-GHUmyvko5Ncu4SgZvBdcucWvnwYeR9GdXmuN3RIfDtia9dDYJumExwioZcQ_ej8MoVxQsSauivkGawLmOwoR_oeHkMJPF9-BtxynjTLihiKswHqgNHhoJqK735ki1vHT1vWODmtHQUjge-vPHJd-mE_ew_--kB_AUMZ_pTpEOYbtd3RTv4HF22y6b1ZETIbyrhT6CndPvs4uvvwB3JR6E |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9qq-iL3x_Rqqv44Esg2d0kuyJIud5x4vUQaaFvIZtN6IFN5JJa-t87s_ngjqoIPgQWdgKb3ZnZ33xkBuAd6cDSaOHHvOS-DHnsm5AblKvSahspCka5ZhPJcqlOT_XXHfg4_AvT1YcYHW4kGU5fk4CTQ3pDys-LHOU8EfIG7ElkI-TvvcNvs5PFRhTBdT1FlM5R3SjRVxaiTJ7x5e376BrIvJ4ruYlh3SU0u_d_y78Pd3vwyQ46bnkAO0X1EG517SivcDR1JayvHkE26VtIMPLTssPlAVtV7LxoKQEgr-m-Y02XgfiBzetL1pxRq2x2WTCXxr5u2ZCjzRCV2oa1NUPqFtfLKCn102M4mU2PJ3O_b8bg5zKJpR8pLkoT5IEVmQlFUmShykRojYqsCrjlZVBGic5zWUQaMZaM0VSyUcAzIfIMSZ_AblVXxTNgUnBr8EliNP6U0YpqriWIlGIjIpNID94PR5LmfaVyapjxPR0sFty71O2dB29H0h9deY7fEe0P55r2EtqkaIrFCK1kxD14M06jbFHAJKuK-gJpAmc-Ch3-hYaT0Uy3vgdPO1YZV8I1RV2F9iDZYqKRgGp7b89UqzNX4zvWqB01bYVjoj9_XHo0nbjB838nfQ2358dHi3TxefnlBdxBDKg7r9I-7Lbri-Il3Mx_tqtm_aqXqF8LuCGC |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9VAEB7qqYov3i_Rqqv44Esg2d1cVgQp50LFeihioW8hm93QAzYpJ6ml_96ZzYVzqIrgQ2BhJ7DZncs3O5MZgHekA0uthB_zkvsy5LGvQ65RrkqjTJRSMMo1m0iWy_TkRB3twMfhX5iuPsR44UaS4fQ1Cbg9N-WGlJ_ZAuU8EfIG7EpqIjOB3dm3xfHhRhTBdT1FlM5R3aSiryxEmTzjy9v26BrIvJ4ruYlhnRFa3Pu_5d-Huz34ZPsdtzyAHVs9hFtdO8orHM1dCeurR5BP-xYSjO5p2Wy5z1YVO7MtJQAUNdk71nQZiB_YQX3JmlNqlc0uLXNp7OuWDTnaDFGpaVhbM6Rucb2MklI_PYbjxfz79MDvmzH4hUxi6UcpF6UOisCIXIcisXmY5iI0Oo1MGnDDy6CMElUU0kYKMZaM0VUyUcBzIYocSZ_ApKor-wyYFNxofJIYnb9Uq5RqriWIlGItIp1ID94PR5IVfaVyapjxIxs8Fty7zO2dB29H0vOuPMfviPaGc816CW0ydMVihFYy4h68GadRtihgkle2vkCawLmPQoV_oeHkNJPV9-BpxyrjSriiqKtQHiRbTDQSUG3v7ZlqdepqfMcKtaOirXBM9OePy77Op27w_N9JX8Pto9kiO_y8_PIC7iAEVN2l0h5M2vWFfQk3i5_tqlm_6gXqF2XTIP0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Counting+with+DNA+in+metabarcoding+studies%3A+How+should+we+convert+sequence+reads+to+dietary+data%3F&rft.jtitle=Molecular+ecology&rft.au=Deagle%2C+Bruce+E.&rft.au=Thomas%2C+Austen+C.&rft.au=McInnes%2C+Julie+C.&rft.au=Clarke%2C+Laurence+J.&rft.date=2019-01-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0962-1083&rft.eissn=1365-294X&rft.volume=28&rft.issue=2&rft.spage=391&rft.epage=406&rft_id=info:doi/10.1111%2Fmec.14734&rft_id=info%3Apmid%2F29858539&rft.externalDocID=PMC6905394 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon |