Variational Bayesian learning for background subtraction based on local fusion feature

To resist the adverse effect of shadow interference, illumination changes, indigent texture and scenario jitter in object detection and improve performance, a background modelling method based on local fusion feature and variational Bayesian learning is proposed. First, U-LBSP (uniform-local binary...

Full description

Saved in:
Bibliographic Details
Published in:IET computer vision Vol. 10; no. 8; pp. 884 - 893
Main Authors: Yan, Junhua, Wang, Shunfei, Xie, Tianxia, Yang, Yong, Wang, Jiayi
Format: Journal Article
Language:English
Published: The Institution of Engineering and Technology 01.12.2016
Wiley
Subjects:
ISSN:1751-9632, 1751-9640, 1751-9640
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To resist the adverse effect of shadow interference, illumination changes, indigent texture and scenario jitter in object detection and improve performance, a background modelling method based on local fusion feature and variational Bayesian learning is proposed. First, U-LBSP (uniform-local binary similarity patterns) texture feature, lab colour and location feature are used to construct local fusion feature. U-LBSP is modified from local binary patterns in order to reduce computational complexity and better resist the influence of shadow and illumination changes. Joint colour and location feature are introduced to deal with the problem of indigent texture and scenario jitter. Then, LFGMM (Gaussian mixture model based on local fusion feature) is updated and learned by variational Bayes. In order to adapt to dynamic changing scenarios, the variational expectation maximisation algorithm is applied for distribution parameters optimisation. In this way, the optimal number of Gaussian components as well as their parameters can be automatically estimated with less time expended. Experimental results show that the authors’ method achieves outstanding detection performance especially under conditions of shadow disturbances, illumination changes, indigent texture and scenario jitter. Strong robustness and high accuracy have been achieved.
AbstractList To resist the adverse effect of shadow interference, illumination changes, indigent texture and scenario jitter in object detection and improve performance, a background modelling method based on local fusion feature and variational Bayesian learning is proposed. First, U‐LBSP (uniform‐local binary similarity patterns) texture feature, lab colour and location feature are used to construct local fusion feature. U‐LBSP is modified from local binary patterns in order to reduce computational complexity and better resist the influence of shadow and illumination changes. Joint colour and location feature are introduced to deal with the problem of indigent texture and scenario jitter. Then, LFGMM (Gaussian mixture model based on local fusion feature) is updated and learned by variational Bayes. In order to adapt to dynamic changing scenarios, the variational expectation maximisation algorithm is applied for distribution parameters optimisation. In this way, the optimal number of Gaussian components as well as their parameters can be automatically estimated with less time expended. Experimental results show that the authors’ method achieves outstanding detection performance especially under conditions of shadow disturbances, illumination changes, indigent texture and scenario jitter. Strong robustness and high accuracy have been achieved.
Author Yan, Junhua
Xie, Tianxia
Wang, Jiayi
Wang, Shunfei
Yang, Yong
Author_xml – sequence: 1
  givenname: Junhua
  surname: Yan
  fullname: Yan, Junhua
  email: yjh9758@126.com
  organization: College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
– sequence: 2
  givenname: Shunfei
  surname: Wang
  fullname: Wang, Shunfei
  organization: College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
– sequence: 3
  givenname: Tianxia
  surname: Xie
  fullname: Xie, Tianxia
  organization: College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
– sequence: 4
  givenname: Yong
  surname: Yang
  fullname: Yang, Yong
  organization: College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
– sequence: 5
  givenname: Jiayi
  surname: Wang
  fullname: Wang, Jiayi
  organization: College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
BookMark eNqFkUFv1DAQhSNUJNrSH9BbjlyyHSdObHOjK0pXqsQF9mqNnfHKSxoXOwHtv8dpUA8cymlGo_e9J827KM7GMFJRXDPYMODqxtNU2V9-UwPrNgCifVOcM9GySnUczl72pn5XXKR0BGg7pfh5sd9j9Dj5MOJQ3uKJksexHAjj6MdD6UIsDdofhxjmsS_TbKaIdpHnc6K-zMsQbGbdnJarI5zmSO-Ltw6HRFd_52Xx_e7zt-199fD1y2776aGyXHS8qq1ktjGiR5TYK8uc5I5zIGMMSS4a1tvOgZOtEWikrZH3AowQyLqOatNcFrvVtw941E_RP2I86YBePx9CPGiMk7cD6VY2QFIZ1_CaM24VMewUA1S9FUpS9vqwej3F8HOmNOlHnywNA44U5qSZlAAMOl5nKVulNoaUIrmXaAZ66UPnPnTuQy996KWPzIh_GOun58_nl_rhVfLjSv72A53-H6W3-119ewfQMJ7haoUX2THMMRedXgn7A-Rgtgg
CitedBy_id crossref_primary_10_1155_2021_7520862
crossref_primary_10_1016_j_neucom_2019_04_088
crossref_primary_10_1016_j_cosrev_2018_01_004
crossref_primary_10_1049_iet_cvi_2017_0339
crossref_primary_10_1007_s00371_021_02286_0
Cites_doi 10.1109/ICPR.2004.1333992
10.1109/ICPR.2000.905341
10.1016/j.ijleo.2013.08.034
10.1007/978-3-540-75757-3_35
10.1109/CVPRW.2014.126
10.1007/s11390-010-9355-8
10.1109/CVPR.1999.784637
10.1109/WACV.2014.6836059
10.1109/FPT.2012.6412132
10.1109/ICSMC.2004.1400815
10.1007/s00180-011-0246-4
10.1016/j.protcy.2012.03.021
10.1109/ICPR.2010.188
10.1109/TAC.2006.884922
10.1109/TIP.2004.836169
10.1109/CVPRW.2014.68
10.1109/TPAMI.2006.68
ContentType Journal Article
Copyright 2016 The Institution of Engineering and Technology
Copyright_xml – notice: 2016 The Institution of Engineering and Technology
DBID IDLOA
24P
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOA
DOI 10.1049/iet-cvi.2016.0075
DatabaseName IET Digital Library (Open Access)
Wiley Online Library Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Technology Research Database
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9640
EndPage 893
ExternalDocumentID oai_doaj_org_article_5830e89bf342414c9e1a6910a9dc798e
10_1049_iet_cvi_2016_0075
CVI2BF00314
Genre article
GrantInformation_xml – fundername: the Fundamental Research Funds for the Central Universities; Nanjing University of Aeronautics And Astronautics Graduate School Innovation Base (Laboratory) Open Foundation Program
  grantid: kfjj20151505
– fundername: CASC (China Aerospace Science and Technology Corporation) Aerospace Science and Technology Innovation Foundation Project
– fundername: Science and Technology on Avionics Integration Laboratory and Aeronautical Science Foundation of China
  grantid: 20155552050
– fundername: the National Natural Science Foundation of China
  grantid: 61471194
– fundername: Nanjing University of Aeronautics And Astronautics Graduate School Innovation Base (Laboratory) Open Foundation Program
  funderid: kfjj20151505
– fundername: the National Natural Science Foundation of China
  funderid: 61471194
– fundername: the Fundamental Research Funds for the Central Universities
– fundername: Science and Technology on Avionics Integration Laboratory and Aeronautical Science Foundation of China
  funderid: 20155552050
GroupedDBID 0R
24P
29I
3V.
5GY
6IK
8AL
8FE
8FG
8VB
AAJGR
ABJCF
ABPTK
ABUWG
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BFFAM
BGLVJ
BPHCQ
CS3
DU5
DWQXO
EBS
EJD
ESX
GNUQQ
HCIFZ
HZ
IDLOA
IFIPE
IPLJI
J9A
JAVBF
K6V
K7-
L6V
LAI
LOTEE
LXI
LXU
M0N
M43
M7S
MS
NADUK
NXXTH
O9-
OCL
P62
PQEST
PQQKQ
PQUKI
PROAC
PTHSS
QWB
RIE
RNS
RUI
S0W
UNMZH
UNR
ZL0
ZZ
.DC
0R~
0ZK
1OC
AAHHS
AAHJG
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
GROUPED_DOAJ
HZ~
IAO
ITC
K1G
MCNEO
MS~
OK1
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
PQGLB
WIN
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c4764-2c81c3b7daa8ad9c1f84f440ebbbe84731dc6f0f85b7ab8c2a4d70b77a166e2b3
IEDL.DBID WIN
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000396098800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-9632
1751-9640
IngestDate Fri Oct 03 12:40:31 EDT 2025
Thu Oct 02 06:34:53 EDT 2025
Wed Oct 29 21:25:14 EDT 2025
Tue Nov 18 21:51:35 EST 2025
Wed Jan 22 16:59:16 EST 2025
Tue Jan 05 21:45:55 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Gaussian mixture model based on local fusion feature
image fusion
distribution parameter optimisation
object detection
variational expectation maximisation algorithm
illumination changes
shadow disturbances
optimisation
variational techniques
image colour analysis
learning (artificial intelligence)
lab colour
location feature
LFGMM
uniform-local binary similarity pattern texture feature
U-LBSP texture feature
Gaussian components
background modelling method
shadow interference effect
indigent texture
image texture
scenario jitter
jitter
variational Bayesian learning
expectation-maximisation algorithm
Bayes methods
background subtraction
computational complexity
Language English
License Attribution
http://creativecommons.org/licenses/by/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4764-2c81c3b7daa8ad9c1f84f440ebbbe84731dc6f0f85b7ab8c2a4d70b77a166e2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-cvi.2016.0075
PQID 1880010642
PQPubID 23500
PageCount 10
ParticipantIDs iet_journals_10_1049_iet_cvi_2016_0075
wiley_primary_10_1049_iet_cvi_2016_0075_CVI2BF00314
proquest_miscellaneous_1880010642
crossref_citationtrail_10_1049_iet_cvi_2016_0075
crossref_primary_10_1049_iet_cvi_2016_0075
doaj_primary_oai_doaj_org_article_5830e89bf342414c9e1a6910a9dc798e
ProviderPackageCode IDLOA
RUI
PublicationCentury 2000
PublicationDate 20161200
December 2016
2016-12-00
20161201
2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 20161200
PublicationDecade 2010
PublicationTitle IET computer vision
PublicationYear 2016
Publisher The Institution of Engineering and Technology
Wiley
Publisher_xml – name: The Institution of Engineering and Technology
– name: Wiley
References Shen, Y.; Cornford, D.; Opper, M. (C16) 2012; 27
Li, L.; Huang, W.; Gu, I.Y.H. (C7) 2004; 13
Boyd, S.; Vandenberghe, L. (C20) 2006; 51
Hernandez-Lopez, J.J.; Quintanilla-Olvera, A.L.; Lopez-Ramirez, J.L. (C5) 2012; 3
Çaglar, A.; Aksoy, S.; Arikan, O. (C14) 2012; 45
Attias, H. (C19) 2000; 12
Heikkila, M.; Pietikainen, M. (C2) 2006; 28
Wang, B.; Liu, Y.; Xu, W. (C6) 2014; 125
Gorur, D.; Rasmussen, C.E. (C15) 2010; 25
2012; 3
2010; 25
2006; 51
2010
2000; 12
2006; 28
2004; 13
2007
2004
2000; 1
2015
2014
1999; 2
2004; 2
2012; 27
2013
2012; 45
2014; 125
e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_23_2
e_1_2_8_13_2
e_1_2_8_14_2
e_1_2_8_9_2
Çaglar A. (e_1_2_8_15_2) 2012; 45
e_1_2_8_2_2
Attias H. (e_1_2_8_20_2) 2000; 12
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_10_2
e_1_2_8_21_2
e_1_2_8_11_2
e_1_2_8_22_2
Covoes T.F. (e_1_2_8_19_2) 2013
References_xml – volume: 13
  start-page: 1459
  issue: 11
  year: 2004
  end-page: 1472
  ident: C7
  article-title: Statistical modeling of complex backgrounds for foreground object detection
  publication-title: IEEE Trans. Image Process.
– volume: 27
  start-page: 149
  issue: 1
  year: 2012
  end-page: 176
  ident: C16
  article-title: Variational Markov chain Monte Carlo for Bayesian smoothing of non-linear diffusions
  publication-title: Comput. Stat.
– volume: 51
  start-page: 1859
  issue: 11
  year: 2006
  end-page: 1859
  ident: C20
  article-title: Convex optimization
  publication-title: IEEE Trans. Autom. Control
– volume: 45
  start-page: 2804
  issue: 45
  year: 2012
  end-page: 2816
  ident: C14
  article-title: Maximum likelihood estimation of Gaussian mixture models using stochastic search
  publication-title: Pattern Recognit.
– volume: 3
  start-page: 196
  issue: 1
  year: 2012
  end-page: 204
  ident: C5
  article-title: Detecting objects using color and depth segmentation with Kinect sensor
  publication-title: Procedia Technol.
– volume: 125
  start-page: 1406
  issue: 3
  year: 2014
  end-page: 1411
  ident: C6
  article-title: Background subtraction using spatiotemporal condition information
  publication-title: Opt.-Int. J. Light Electron. Opt.
– volume: 28
  start-page: 657
  issue: 4
  year: 2006
  end-page: 662
  ident: C2
  article-title: A texture-based method for modeling the background and detecting moving objects
  publication-title: IEEE Trans. PAMI
– volume: 12
  start-page: 209
  year: 2000
  end-page: 215
  ident: C19
  article-title: A variational Bayesian framework for graphical models
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 25
  start-page: 653
  issue: 4
  year: 2010
  end-page: 664
  ident: C15
  article-title: Dirichlet process Gaussian mixture models: choice of the base distribution
  publication-title: J. Comput. Sci. Technol.
– volume: 2
  start-page: 28
  year: 2004
  end-page: 31
– volume: 12
  start-page: 209
  year: 2000
  end-page: 215
  article-title: A variational Bayesian framework for graphical models
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 45
  start-page: 2804
  issue: 45
  year: 2012
  end-page: 2816
  article-title: Maximum likelihood estimation of Gaussian mixture models using stochastic search
  publication-title: Pattern Recognit.
– start-page: 286
  year: 2007
  end-page: 293
– volume: 3
  start-page: 196
  issue: 1
  year: 2012
  end-page: 204
  article-title: Detecting objects using color and depth segmentation with Kinect sensor
  publication-title: Procedia Technol.
– volume: 1
  start-page: 321
  year: 2000
  end-page: 324
– volume: 2
  year: 1999
– volume: 27
  start-page: 149
  issue: 1
  year: 2012
  end-page: 176
  article-title: Variational Markov chain Monte Carlo for Bayesian smoothing of non‐linear diffusions
  publication-title: Comput. Stat.
– start-page: 746
  year: 2010
  end-page: 749
– start-page: 393
  year: 2014
  end-page: 400
– volume: 28
  start-page: 657
  issue: 4
  year: 2006
  end-page: 662
  article-title: A texture‐based method for modeling the background and detecting moving objects
  publication-title: IEEE Trans. PAMI
– start-page: 3099
  year: 2004
  end-page: 3104
– volume: 13
  start-page: 1459
  issue: 11
  year: 2004
  end-page: 1472
  article-title: Statistical modeling of complex backgrounds for foreground object detection
  publication-title: IEEE Trans. Image Process.
– start-page: 3206
  year: 2013
  end-page: 3213
– volume: 25
  start-page: 653
  issue: 4
  year: 2010
  end-page: 664
  article-title: Dirichlet process Gaussian mixture models: choice of the base distribution
  publication-title: J. Comput. Sci. Technol.
– volume: 125
  start-page: 1406
  issue: 3
  year: 2014
  end-page: 1411
  article-title: Background subtraction using spatiotemporal condition information
  publication-title: Opt.‐Int. J. Light Electron. Opt.
– volume: 45
  start-page: 182
  year: 2012
  end-page: 189
– volume: 51
  start-page: 1859
  issue: 11
  year: 2006
  end-page: 1859
  article-title: Convex optimization
  publication-title: IEEE Trans. Autom. Control
– start-page: 420
  year: 2014
  end-page: 424
– year: 2015
– start-page: 509
  year: 2014
  end-page: 515
– ident: e_1_2_8_13_2
  doi: 10.1109/ICPR.2004.1333992
– volume: 12
  start-page: 209
  year: 2000
  ident: e_1_2_8_20_2
  article-title: A variational Bayesian framework for graphical models
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_2_8_9_2
  doi: 10.1109/ICPR.2000.905341
– ident: e_1_2_8_7_2
  doi: 10.1016/j.ijleo.2013.08.034
– ident: e_1_2_8_4_2
  doi: 10.1007/978-3-540-75757-3_35
– volume: 45
  start-page: 2804
  issue: 45
  year: 2012
  ident: e_1_2_8_15_2
  article-title: Maximum likelihood estimation of Gaussian mixture models using stochastic search
  publication-title: Pattern Recognit.
– ident: e_1_2_8_22_2
  doi: 10.1109/CVPRW.2014.126
– ident: e_1_2_8_16_2
  doi: 10.1007/s11390-010-9355-8
– start-page: 3206
  volume-title: IEEE Congress on Evolutionary Computation
  year: 2013
  ident: e_1_2_8_19_2
– ident: e_1_2_8_12_2
  doi: 10.1109/CVPR.1999.784637
– ident: e_1_2_8_5_2
  doi: 10.1109/WACV.2014.6836059
– ident: e_1_2_8_18_2
  doi: 10.1109/FPT.2012.6412132
– ident: e_1_2_8_2_2
  doi: 10.1109/ICSMC.2004.1400815
– ident: e_1_2_8_17_2
  doi: 10.1007/s00180-011-0246-4
– ident: e_1_2_8_6_2
  doi: 10.1016/j.protcy.2012.03.021
– ident: e_1_2_8_14_2
  doi: 10.1109/ICPR.2010.188
– ident: e_1_2_8_21_2
  doi: 10.1109/TAC.2006.884922
– ident: e_1_2_8_8_2
  doi: 10.1109/TIP.2004.836169
– ident: e_1_2_8_11_2
  doi: 10.1109/CVPRW.2014.68
– ident: e_1_2_8_23_2
– ident: e_1_2_8_10_2
– ident: e_1_2_8_3_2
  doi: 10.1109/TPAMI.2006.68
SSID ssj0056994
Score 2.0867395
Snippet To resist the adverse effect of shadow interference, illumination changes, indigent texture and scenario jitter in object detection and improve performance, a...
SourceID doaj
proquest
crossref
wiley
iet
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 884
SubjectTerms background modelling method
background subtraction
Bayes methods
Bayesian analysis
computational complexity
distribution parameter optimisation
expectation-maximisation algorithm
Gaussian components
Gaussian mixture model based on local fusion feature
Illumination
illumination changes
image colour analysis
image fusion
image texture
indigent texture
Jitter
lab colour
learning (artificial intelligence)
LFGMM
location feature
Mathematical models
object detection
optimisation
Research Article
Resists
scenario jitter
shadow disturbances
shadow interference effect
Shadows
Surface layer
Texture
U-LBSP texture feature
uniform-local binary similarity pattern texture feature
variational Bayesian learning
variational expectation maximisation algorithm
variational techniques
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSxwxFA9FPPRiq21x2yoRSg-FwUwmM0mO7uKiIIsHXbyFfI0sllH2Q-h_3_cy2WW96MXbMCSZzMt7-b3kfRHyizcByx7VhWc8FoJbXzgnAoi7bHSAVQl1ChS-kpOJurvT11ulvtAnrE8P3BPutFYVi0q7thIANsLrWNoGMM7q4KVWEXdfJvX6MNXvwXWjUwlEwMayABbjG3umPp3FZeGfZ-jVhXYIdDDcQqSUuB9wBlq90Dm3NdcEPePPZC_rjPSsn-s--RC7A_Ip6480S-fiC5lO4eCbL_fo0P6LGCBJc12IewrqKXXWP2AgRxfoYuWW8z6sgSKWBQoPCdpou8I7NNrGlPXzK7kdn9-MLopcN6HwQjai4F6VvnIyWKts0L5slWiFYNE5FwGNqjL4pmWtqp20TnluRZDMSWnLponcVd_ITvfYxUNCAf-Dc5rbwJlwglkYEvrpCHpCBMIOCFvTzvicVBxrW_w1ybgttAFCGiC3QXIbJPeA_Nl0eeozarzWeIgLsmmIybDTC2ARk1nEvMUiA_IbB87CuXjtayfrFTcgZWg6sV18XEEX2Obw9Cz4gFSJFd6euxlNL_lwjNum-P4e__GDfMTBe2ean2RnOV_FI7Lrn5ezxfw4CcB_SjgGrQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Variational Bayesian learning for background subtraction based on local fusion feature
URI http://digital-library.theiet.org/content/journals/10.1049/iet-cvi.2016.0075
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-cvi.2016.0075
https://www.proquest.com/docview/1880010642
https://doaj.org/article/5830e89bf342414c9e1a6910a9dc798e
Volume 10
WOSCitedRecordID wos000396098800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Journals
  customDbUrl:
  eissn: 1751-9640
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056994
  issn: 1751-9632
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9640
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056994
  issn: 1751-9632
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC7WxYMX1yeOq0ME8SA0dqfTneToDA4uyLAHHfcW8uplUHpkHgv--61KZ0YXYQXx1oQkHSr5qr48qgrgNW8DpT1qCl_yWAhufeGcCAh32eqAsxKa5Cj8Sc7n6uJCnx_BdO8LM8SHOBy4ETKSviaAWzdkIUFSi5O4jNvCXy3pdRbdJ0hyNK9EAufXs_leGzetTskQ0UpWhW7Fr5tN_e6PHm7YphTCHy0O1rrBPn_nsMkIzU7-y_AfwP3MQdn7YdE8hKPYP4KTzEdZRvvmMSwWuJHOh4VsYn9GcrhkOc_EJUO6y5z138gxpA9ss3Pb9eAmwcg2BoYfyVSybkdncqyLKYroE_gy-_B5-rHIeRgKL2QrCu5V5Wsng7XKBu2rTolOiDI65yJat7oKvu3KTjVOWqc8tyLI0klpq7aN3NVP4bhf9fEZMOQTwTnNbeClcKK02CW20xF5R0RdMIJyPwPG5yDllCvju0mX5UIblJtBuRmSmyG5jeDtocmPIULHbZUnNK2HihRcOxWs1pcmY9U0qi6j0q6rBfIb4XWsbIu0yurgpVZxBG-o4wz2zW1_e7VfNwZRS1cxto-rHTZBtUm7ccFHUKdl8vexm-nijE9mpIbF839qdQr3qHx4jfMCjrfrXXwJd_3VdrlZj-EOF-fjdCgxThi6BtBlHFk
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKQaIXyqvq8jQS4oAUkTiOH0e2sOqKZcWhLL1ZfqVagbJoH5X498w43oUKqUiIWxSNncT2N_PZk5kh5CUTAcseNYUvWSw4s75wjgeAuxQ6wKyEJgUKT-R0qs7P9ac98m4bC9Pnh9gduCEykr5GgOOBdL_h5Jgkcx7Xhb-c4-9Z6FCQzQ1ykwuuEJ5fxtOtPm6ETuUQwU5WhRb8l29Tv_mjiyvWKSXxB5sDUlf45-8sNpmh0eH_-YC75E6mofRtv27ukb3Y3SeHmZLSDPjVAzKbwV46nxfSof0RMeaS5lITFxQYL3XWf8XYkC7Q1catl32kBEXzGChcJGtJ2w0ey9E2pkSiD8nn0fuzk9Mil2IoPJeCF8yrytdOBmuVDdpXreIt52V0zkUwcHUVvGjLVjVOWqc8szzI0klpKyEic_UR2e8WXTwmFChFcE4zG1jJHS8tdAntdATqEUEdDEi5nQLjc55yLJfxzSR_OdcGxs3AuBkcN4PjNiCvd02-90k6rhMe4rzuBDG_drqxWF6YDFfTqLqMSru25kBxuNexsgKYldXBS63igLzCjjPeV9c97cV24RgALnpjbBcXG2gCmhM35JwNSJ3Wyd_f3ZzMxmw4Qk3MH_1Tq-fk9unZx4mZjKcfHpMDlOl_znlC9tfLTXxKbvnL9Xy1fJZA9BNGCx60
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB9qFemL9RPPzxXEByGYbCbZ7KPXelgsxz3o0bdlv1IO5a7cR6H_vTOb3GkRKohvIcxukt2dmd_uZH4D8FbWgcseVZnPZcxQWp85h4HUXdU60KyEKiUKn6rxuDk705M9ON7mwnT8ELsDN9aMZK9ZweNFaLsNJzJJ5iyuM38549-zOKCgqltwG5munfmdcbK1x1WtUzlE8pNFpmv8FdvUH_7o4pp3SiT-5HNI6hr-_B3FJjc0Ovw_H3Af7vUwVHzs1s0D2Ivzh3DYQ1LRK_zqEUyntJfuzwvF0F5FzrkUfamJc0GIVzjrv3NuyDyI1catl12mhGD3GARdJG8p2g0fy4k2JiLRx_Bt9Onr0eesL8WQeVQ1ZtI3hS-dCtY2NmhftA22iHl0zkVycGURfN3mbVM5ZV3jpcWgcqeULeo6Slc-gf35Yh6fgiBIEZzT0gaZo8PcUpfUTkeCHpHMwQDy7RQY3_OUc7mMHybFy1EbGjdD42Z43AyP2wDe75pcdCQdNwkPeV53gsyvnW4sluemV1dTNWUeG-3aEgnioNexsDUhK6uDV7qJA3jHHff6vrrpaW-2C8eQ4nI0xs7jYkNNyHLyhhzlAMq0Tv7-7uZoeiKHI7bE-OyfWr2Gu5PjkTk9GX95Dgcs0v2b8wL218tNfAl3_OV6tlq-Sjr0E9h-Hbk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Bayesian+learning+for+background+subtraction+based+on+local+fusion+feature&rft.jtitle=IET+computer+vision&rft.au=Yan%2C+Junhua&rft.au=Wang%2C+Shunfei&rft.au=Xie%2C+Tianxia&rft.au=Yang%2C+Yong&rft.date=2016-12-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-9640&rft.eissn=1751-9640&rft.volume=10&rft.issue=8&rft.spage=884&rft.epage=893&rft_id=info:doi/10.1049%2Fiet-cvi.2016.0075&rft.externalDBID=10.1049%252Fiet-cvi.2016.0075&rft.externalDocID=CVI2BF00314
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9632&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9632&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9632&client=summon